JP5552550B1 - Oxidation catalyst and method for producing oxidation reaction product - Google Patents
Oxidation catalyst and method for producing oxidation reaction product Download PDFInfo
- Publication number
- JP5552550B1 JP5552550B1 JP2013028790A JP2013028790A JP5552550B1 JP 5552550 B1 JP5552550 B1 JP 5552550B1 JP 2013028790 A JP2013028790 A JP 2013028790A JP 2013028790 A JP2013028790 A JP 2013028790A JP 5552550 B1 JP5552550 B1 JP 5552550B1
- Authority
- JP
- Japan
- Prior art keywords
- oxidation
- catalyst
- bond
- added
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 *CC(Nc1cccc2c1nccc2)=O Chemical compound *CC(Nc1cccc2c1nccc2)=O 0.000 description 1
- WREVVZMUNPAPOV-UHFFFAOYSA-N Nc1c2ncccc2ccc1 Chemical compound Nc1c2ncccc2ccc1 WREVVZMUNPAPOV-UHFFFAOYSA-N 0.000 description 1
- NMCYMWMIYYZOKT-UHFFFAOYSA-N O=C(CN(CC1=NC=CCC1)Cc1ncccc1)Nc1cccc2c1nccc2 Chemical compound O=C(CN(CC1=NC=CCC1)Cc1ncccc1)Nc1cccc2c1nccc2 NMCYMWMIYYZOKT-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
【課題】高い選択性及び触媒回転数を可能とするsp3C−H結合の酸化方法を提供する。
【解決手段】本発明にかかるsp3C−H結合の酸化方法は、下記一般式(1)で表される金属錯体触媒を酸化触媒としてsp3C−H結合を酸化することを特徴とする。
【化1】
(式中、Mは鉄、マンガン又はコバルトであり、Lは任意の配位子であり、Xは対イオンであり、nは0、1又は2である。)
【選択図】 なしThe present invention provides a method for oxidizing an sp 3 C—H bond that enables high selectivity and catalyst rotation speed.
The sp 3 C—H bond oxidation method according to the present invention is characterized by oxidizing a sp 3 C—H bond using a metal complex catalyst represented by the following general formula (1) as an oxidation catalyst. .
[Chemical 1]
(In the formula, M is iron, manganese or cobalt, L is an arbitrary ligand, X is a counter ion, and n is 0, 1 or 2.)
[Selection figure] None
Description
本発明は不活性なsp3C−H結合を酸化するための酸化触媒及び酸化反応生成物の製造方法に関する。 The present invention relates to an oxidation catalyst for oxidizing an inactive sp 3 C—H bond and a method for producing an oxidation reaction product .
sp3C−H結合は不活性であり、これを酸化することは一般に困難であるが、生体内では、このような酸化反応が温和な条件で進行している。シトクロム450やメタンモノオキシゲナーゼが関与する生体内の酸化反応はその好例である。
このような生体内でのsp3C−H結合の酸化反応のメカニズムを元に、sp3C−H結合の酸化を触媒する金属錯体触媒の設計が種々試みられている(例えば、特許文献1参照)。
また、本発明者らは、アルカンC−H結合を過酸化水素で選択的に水酸化するための金属錯体触媒として、2−[ビス(ピリジン−2−イルメチル)]アミノ−N−キノリン−8−イル−アセトアミダートの鉄(III)錯体が優れていることについて報告している(非特許文献1参照)。
The sp 3 C—H bond is inactive and is generally difficult to oxidize, but in the living body, such an oxidation reaction proceeds under mild conditions. In vivo oxidation reactions involving cytochrome 450 and methane monooxygenase are good examples.
Various attempts have been made to design metal complex catalysts that catalyze the oxidation of sp 3 C—H bonds based on the mechanism of the oxidation reaction of sp 3 C—H bonds in vivo (for example, Patent Document 1). reference).
In addition, the present inventors have used 2- [bis (pyridin-2-ylmethyl)] amino-N-quinoline-8 as a metal complex catalyst for selectively hydroxylating an alkane C—H bond with hydrogen peroxide. -It has been reported that the iron (III) complex of yl-acetamidate is excellent (see Non-Patent Document 1).
しかし、従来の金属錯体触媒では、sp3C−H結合の酸化反応の選択性において、未だ改良の余地があった。
また、選択性のほかに、触媒回転数を向上させることも重要である。
However, the conventional metal complex catalyst still has room for improvement in the selectivity of the oxidation reaction of the sp 3 C—H bond.
In addition to selectivity, it is also important to improve the catalyst rotation speed.
そこで、本発明は、高い選択性及び触媒回転数を可能とする酸化触媒及び酸化反応生成物の製造方法を提供することを目的としている。 Then, this invention aims at providing the manufacturing method of the oxidation catalyst and oxidation reaction product which enable high selectivity and catalyst rotation speed.
本発明者は、上記課題を解決するために、鋭意検討を行った結果、特定の金属錯体触媒を酸化触媒として用いることとすれば、高い選択性及び触媒回転数が発揮されることを見出し、本発明を完成するに至った。 As a result of intensive studies in order to solve the above problems, the present inventors have found that if a specific metal complex catalyst is used as an oxidation catalyst, high selectivity and catalyst rotation speed can be exhibited. The present invention has been completed.
すなわち、本発明にかかる酸化触媒は、下記一般式(1)で表される金属錯体触媒からなることを特徴とする。
また、本発明にかかる酸化反応生成物の製造方法は、sp 3 C−H結合を酸化し得る酸化剤によってsp 3 C−H結合を有する化合物を酸化してsp 3 C−H結合が酸化された酸化反応生成物を製造する方法において、前記酸化を、酸化触媒として下記一般式(1)で表される金属錯体触媒を用いて行うことを特徴とする。
なお、以下では、上記本発明にかかる酸化触媒を用いて酸化を行うことを、「本発明にかかるsp 3 C−H結合の酸化方法」又は「本発明の酸化方法」と称することがある。
That is, the oxidation catalyst of the present invention is characterized in that it consists of a metal complex catalyst represented by the following general formula (1).
In the method for producing an oxidation reaction product according to the present invention, the sp 3 C—H bond is oxidized by oxidizing the compound having the sp 3 C—H bond with an oxidizing agent capable of oxidizing the sp 3 C—H bond. In the method for producing an oxidation reaction product, the oxidation is performed using a metal complex catalyst represented by the following general formula (1) as an oxidation catalyst.
In the following, the oxidation using the oxidation catalyst according to the present invention may be referred to as “ the oxidation method of sp 3 C—H bond according to the present invention” or “the oxidation method of the present invention”.
(式中、Mは鉄、マンガン又はコバルトであり、Lは任意の配位子であり、Xは対イオンであり、nは0、1又は2である。) (In the formula, M is iron, manganese or cobalt, L is an arbitrary ligand, X is a counter ion, and n is 0, 1 or 2.)
本発明によれば、sp3C−H結合の酸化を、高い選択性、高い触媒回転数で行うことができる。 According to the present invention, the oxidation of sp 3 C—H bond can be performed with high selectivity and high catalyst rotation speed.
以下、本発明にかかるsp3C−H結合の酸化方法の実施形態について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。 Hereinafter, embodiments of the method for oxidizing sp 3 C—H bonds according to the present invention will be described in detail. However, the scope of the present invention is not limited to these descriptions, and the present invention is not limited to the following examples. Changes can be made as appropriate without departing from the spirit of the invention.
〔金属錯体触媒〕
本発明の酸化反応で用いる金属錯体触媒は、下記一般式(1)で表される。
[Metal complex catalyst]
The metal complex catalyst used in the oxidation reaction of the present invention is represented by the following general formula (1).
上式(1)中、Mは鉄、マンガン又はコバルトであり、好ましくは鉄である。
Lは、四座配位子である複素環化合物の他にMに配位する任意の配位子であり、例えば、アセトニトリル、ヒドロキソ、クロライド、トリフラート、アクアなどが挙げられる。
Xは対イオンであり、好ましくはClO4 -である。
nは0、1又は2である。
In the above formula (1), M is iron, manganese or cobalt, preferably iron.
L is an arbitrary ligand that coordinates to M in addition to the heterocyclic compound that is a tetradentate ligand, and examples thereof include acetonitrile, hydroxo, chloride, triflate, and aqua.
X is a counterion, preferably ClO 4 - is.
n is 0, 1 or 2.
〔金属錯体触媒の製造方法〕
上記金属錯体触媒について、好ましい製造方法の一例を挙げるが、本発明で用いる金属錯体触媒は、下記の製造方法で得られるものに限定されるものではない。
[Method for producing metal complex catalyst]
Although an example of a preferable manufacturing method is given about the said metal complex catalyst, the metal complex catalyst used by this invention is not limited to what is obtained with the following manufacturing method.
例えば、アミノ基が保護基で保護されたプロリンと、8−アミノキノリンとを出発原料とする下記の合成スキームが好適に採用できる。 For example, the following synthetic scheme using a proline in which an amino group is protected with a protecting group and 8-aminoquinoline as starting materials can be suitably employed.
なお、上記において、Pは保護基であり、例えば、Boc基(tert−ブトキシカルボニル基)、Z基(ベンジルオキシカルボニル基)など、アミノ基の保護に用いられる公知のものでよい。 In the above, P is a protecting group, and may be a known group used for protecting an amino group, such as a Boc group (tert-butoxycarbonyl group) or a Z group (benzyloxycarbonyl group).
次に、以上のようにして得られた複素環化合物を金属に配位させることで、目的の金属錯体触媒が得られる。その方法としては、特に限定されず、従来公知の方法を採用することができる。 Next, the target metal complex catalyst is obtained by coordinating the heterocyclic compound obtained as described above to a metal. The method is not particularly limited, and a conventionally known method can be employed.
例えば、溶剤中、錯体を形成し得る条件で上記複素環化合物と所定の金属イオンとを共存させればよく、具体的には、上記複素環化合物を、塩基性化合物とともに溶剤に溶解し、ここに、所定の金属イオン溶液を添加することにより、錯体の微結晶を形成することができる。 For example, the heterocyclic compound and a predetermined metal ion may be allowed to coexist in a solvent under conditions capable of forming a complex. Specifically, the heterocyclic compound is dissolved in a solvent together with a basic compound, In addition, a complex crystallite can be formed by adding a predetermined metal ion solution.
ここで、前記溶剤としては、メタノール、アセトニトリルなどの極性有機溶剤が好適である。前記塩基性化合物としては、トリエチルアミン、N,N−ジイソプロピルエチルアミンなどが好適である。 Here, as said solvent, polar organic solvents, such as methanol and acetonitrile, are suitable. As the basic compound, triethylamine, N, N-diisopropylethylamine and the like are suitable.
錯体形成後に、メタノールなどの溶剤で洗浄することで高純度の金属錯体触媒を得ることができる。 After the complex formation, a high-purity metal complex catalyst can be obtained by washing with a solvent such as methanol.
〔金属錯体触媒によるsp3C−H結合の酸化〕
本発明の酸化方法は、上記金属錯体触媒を酸化触媒として用いてsp3C−H結合を酸化する。
好ましくは、カルボン酸の共存下で酸化反応を行う。カルボン酸の共存下では、選択性、触媒回転数の改善効果がさらに優れたものとなるからである。
[Oxidation of sp 3 CH bond by metal complex catalyst]
In the oxidation method of the present invention, the sp 3 C—H bond is oxidized using the metal complex catalyst as an oxidation catalyst.
Preferably, the oxidation reaction is performed in the presence of carboxylic acid. This is because in the coexistence of carboxylic acid, the effect of improving the selectivity and the number of rotations of the catalyst is further improved.
本発明の酸化方法によれば、sp3C−H結合を選択的に酸化することができるが、ここで、選択的とは、具体的には、特定のsp3C−H結合が他のsp3C−H結合に優先して酸化されることを意味する。このとき、複数のsp3C−H結合のうち、いずれのsp3C−H結合が酸化されるかは、通常、各sp3C−H結合における結合解離エネルギーの大きさによって決まる。すなわち、通常、結合解離エネルギーが小さいsp3C−H結合が優先して酸化される。 According to the oxidation method of the present invention, it is possible to selectively oxidize sp 3 C—H bonds. Here, “selective” specifically refers to specific sp 3 C—H bonds other than It means that it is oxidized in preference to the sp 3 C—H bond. At this time, which sp 3 C—H bond is oxidized among a plurality of sp 3 C—H bonds is usually determined by the magnitude of bond dissociation energy in each sp 3 C—H bond. That is, normally, sp 3 C—H bonds having low bond dissociation energy are preferentially oxidized.
本発明の酸化方法において、カルボン酸を共存させる場合、例えば、酢酸、プロピオン酸、トリクロロ酢酸、トリフルオロ酢酸などが好適に用いられ、特に好ましくは、酢酸である。 In the oxidation method of the present invention, when carboxylic acid is allowed to coexist, for example, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid and the like are preferably used, and acetic acid is particularly preferable.
酸化反応を行うための酸化剤としては、例えば、過酸化水素、オゾン、m−クロロ過安息香酸(mCPBA)、2−ヨードキシ安息香酸エステル(IBXエステル)、t−ブチルヒドロペルオキシド、クメンヒドロペルオキシドなどが挙げられる。副生物が酸素や水などの環境負荷が少ないものである点で、過酸化水素やオゾンが好ましく挙げられる。 Examples of the oxidizing agent for performing the oxidation reaction include hydrogen peroxide, ozone, m-chloroperbenzoic acid (mCPBA), 2-iodoxybenzoic acid ester (IBX ester), t-butyl hydroperoxide, cumene hydroperoxide, and the like. Is mentioned. Hydrogen peroxide and ozone are preferred because the by-products are those that have a low environmental load such as oxygen and water.
また、酸化反応における溶剤としては、例えば、アセトニトリル、ジメチルアセトアミドなどが挙げられ、中でも、高活性である点でアセトニトリルが好ましい。 Examples of the solvent in the oxidation reaction include acetonitrile and dimethylacetamide. Among them, acetonitrile is preferable because of its high activity.
本発明の酸化方法は、選択性に優れ、かつ、触媒回転数も十分であるので、少量の添加で効率的かつ経済的に酸化反応を行うことができる。
例えば、酸化条件や原料の種類にもよるが、モル基準で、金属錯体触媒:基質(酸化対象となる物質)=1:200程度とすることができる。
Since the oxidation method of the present invention is excellent in selectivity and has a sufficient number of catalyst rotations, the oxidation reaction can be carried out efficiently and economically with a small amount of addition.
For example, although depending on the oxidation conditions and the type of raw material, the metal complex catalyst: substrate (substance to be oxidized) = 1: 200 can be set on the molar basis.
本発明の酸化方法によれば、例えば、アルコールを製造することができる。また、さらに酸化反応を進めてケトンを製造することもできる。
特に、アルコールは、その水酸基を反応基点としてエステルやエーテルなどの誘導体を容易に製造することができ、さらに、ビニル基を有する酸でエステル化するなどすれば、モノマーとしての展開も可能であり、多様な応用展開が期待できる。このように、アルカンからアルコールを直接かつ高選択的に合成することの意義は極めて大きい。
According to the oxidation method of the present invention, for example, alcohol can be produced. Further, the ketone can be produced by further proceeding the oxidation reaction.
In particular, alcohols can be easily produced as derivatives such as esters and ethers using the hydroxyl group as a reactive base, and can also be developed as monomers by esterification with an acid having a vinyl group. Various application development can be expected. Thus, the significance of synthesizing alcohol directly and highly selectively from alkanes is extremely significant.
より具体的な例を挙げれば、例えば、アダマンタン誘導体は医薬やフォトレジスト材料などの用途においての有用性が注目されているが、本発明の酸化方法によれば、アダマンタンから、1−アダマンタノールを選択的に高い収率で得ることができ、さらに、その水酸基を反応基点として、様々なアダマンタン誘導体を効率的に製造することができる。 To give more specific examples, for example, adamantane derivatives are attracting attention for their usefulness in applications such as pharmaceuticals and photoresist materials. However, according to the oxidation method of the present invention, 1-adamantanol is converted from adamantane. It can be selectively obtained in a high yield, and various adamantane derivatives can be efficiently produced using the hydroxyl group as a reactive base point.
以下、実施例を用いて、本発明の酸化方法について説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although the oxidation method of this invention is demonstrated using an Example, this invention is not limited to these Examples.
〔合成例〕
<合成例1>
下記反応により、化合物(A1)を合成した。
(Synthesis example)
<Synthesis Example 1>
Compound (A1) was synthesized by the following reaction.
具体的には、まず、Boc−L−プロリン(0.40g,1.86mmol)を、シュレンク管に加え、窒素置換した後、無水テトラヒドロフランを5mL加えた。氷浴下、クロロギ酸エチル(0.18ml,1.86mmol)を15分かけて添加すると、白色の沈殿が生成した。更に、1時間撹拌した後、8−アミノキノリン(0.268g,1.86mmol)を添加し、室温で一晩撹拌した。更に、加熱還流を3時間行った後、酢酸エチルを2mL加え、数滴のトリエチルアミンを添加した。その後、沈殿を含む反応混合物をセライトろ過し、濾液をエバポレーターによって濃縮乾固した結果、薄桃色の固体が得られた。この固体を酢酸エチルに溶解させ、分液操作によりNH4Cl飽和水溶液を用い洗浄後、Na2SO4を用いて有機層を乾燥した後、濃縮乾固した。得られた固体をカラムクロマトグラフィー(シリカ,酢酸エチル:ヘキサン=3:1)によって精製し、白色固体を得た。
得られた白色固体は、収量0.51g、収率80%であり、下記の同定結果から上記化合物(A1)であることが確認できた。
1H NMR(500MHz,DMSO−d6,δ):10.4,10.3(s,1H),8.91(d,J=7.5Hz,1H),8.66(d,J=7.5Hz,1H),8.43(dd,J=1.7,8.6Hz,1H),7.69(d,J=8.0Hz,1H),7.65(dd,J=4.3,8.3Hz,1H),7.60(t,J=7.1Hz,1H),4.51(dd,J=8.3,4.3Hz,1H),3.41〜3.54(m,2H),2.10〜2.30(m,1H),2.00〜2.12(m,1H),1.86〜1.94(m,2H),1.46,1.23(s,9H).
Specifically, first, Boc-L-proline (0.40 g, 1.86 mmol) was added to the Schlenk tube and purged with nitrogen, and then 5 mL of anhydrous tetrahydrofuran was added. In the ice bath, ethyl chloroformate (0.18 ml, 1.86 mmol) was added over 15 minutes and a white precipitate formed. Further, after stirring for 1 hour, 8-aminoquinoline (0.268 g, 1.86 mmol) was added and stirred overnight at room temperature. Furthermore, after heating and refluxing for 3 hours, 2 mL of ethyl acetate was added, and a few drops of triethylamine were added. Thereafter, the reaction mixture containing the precipitate was filtered through Celite, and the filtrate was concentrated to dryness using an evaporator. As a result, a light pink solid was obtained. This solid was dissolved in ethyl acetate, washed with a saturated aqueous NH 4 Cl solution by a liquid separation operation, the organic layer was dried using Na 2 SO 4 , and then concentrated to dryness. The obtained solid was purified by column chromatography (silica, ethyl acetate: hexane = 3: 1) to obtain a white solid.
The obtained white solid had a yield of 0.51 g and a yield of 80%, and it was confirmed from the following identification result that it was the compound (A1).
1 H NMR (500 MHz, DMSO-d 6 , δ): 10.4, 10.3 (s, 1H), 8.91 (d, J = 7.5 Hz, 1H), 8.66 (d, J = 7.5 Hz, 1 H), 8.43 (dd, J = 1.7, 8.6 Hz, 1 H), 7.69 (d, J = 8.0 Hz, 1 H), 7.65 (dd, J = 4 .3, 8.3 Hz, 1H), 7.60 (t, J = 7.1 Hz, 1H), 4.51 (dd, J = 8.3, 4.3 Hz, 1H), 3.41-3. 54 (m, 2H), 2.10 to 2.30 (m, 1H), 2.00 to 2.12 (m, 1H), 1.86 to 1.94 (m, 2H), 1.46 1.23 (s, 9H).
<合成例2>
上記化合物(A1)を用いて、下記反応により、下記化合物(A2)を合成した。
<Synthesis Example 2>
The following compound (A2) was synthesized by the following reaction using the above compound (A1).
具体的には、まず、上記化合物(A1)(0.30g,0,88mmol)をシュレンク管に加え、ジクロロメタン(1mL)に溶解させ氷浴した。トリフルオロ酢酸(1mL)をゆっくりと添加すると溶液が橙色に変化した。1時間撹拌した後、反応混合物をエバポレーターを用いて濃縮乾固した。得られた固体をジクロロメタンに溶解し、飽和NaOH水溶液と飽和NaCl水溶液を用いて分液操作を行った。Na2SO4を用いて有機層を乾燥した後、濃縮乾固し白色固体を得た。
得られた白色固体は、収量0.20g、収率96%であり、下記の同定結果から上記化合物(A2)であることが確認できた。
1H NMR(500MHz,DMSO−d6,δ):11.2(s,1H),8.97(s,1H),8.65(dd,J=2.3,7.5Hz,1H),8.44(dd,J=1.7,8.0Hz,1H),7.74(dd,J=2.0,8.3Hz,1H),7.67(dt,J=4.0,8.0Hz,1H),7.62(dt,J=3.4,8.0Hz,1H),4.48(s,1H),3.19(m,2H),2.36(m,1H),2.00(m,1H),1.86(m,2H).
13C NMR(125.8MHz,DMSO−d6,δ):169.7(s),149.1(s),138.4(s),136.5(s),133.9(s),127.9(s),126.8(s),122.6(s),122.2(s),117.2(s),60.3(s),39.8(s),30.1(s),24.4(s).
Specifically, first, the compound (A1) (0.30 g, 0, 88 mmol) was added to a Schlenk tube, dissolved in dichloromethane (1 mL), and bathed in an ice bath. Slow addition of trifluoroacetic acid (1 mL) turned the solution orange. After stirring for 1 hour, the reaction mixture was concentrated to dryness using an evaporator. The obtained solid was dissolved in dichloromethane, and a liquid separation operation was performed using a saturated NaOH aqueous solution and a saturated NaCl aqueous solution. The organic layer was dried using Na 2 SO 4 and then concentrated to dryness to obtain a white solid.
The obtained white solid had a yield of 0.20 g and a yield of 96%, and it was confirmed from the following identification result that it was the compound (A2).
1 H NMR (500 MHz, DMSO-d 6 , δ): 11.2 (s, 1H), 8.97 (s, 1H), 8.65 (dd, J = 2.3, 7.5 Hz, 1H) , 8.44 (dd, J = 1.7, 8.0 Hz, 1H), 7.74 (dd, J = 2.0, 8.3 Hz, 1H), 7.67 (dt, J = 4.0) , 8.0 Hz, 1H), 7.62 (dt, J = 3.4, 8.0 Hz, 1H), 4.48 (s, 1H), 3.19 (m, 2H), 2.36 (m , 1H), 2.00 (m, 1H), 1.86 (m, 2H).
13 C NMR (125.8 MHz, DMSO-d 6 , δ): 169.7 (s), 149.1 (s), 138.4 (s), 136.5 (s), 133.9 (s) , 127.9 (s), 126.8 (s), 122.6 (s), 122.2 (s), 117.2 (s), 60.3 (s), 39.8 (s), 30.1 (s), 24.4 (s).
<合成例3>
上記化合物(A2)を用いて、下記反応により、化合物(A3)(以下、単に「H−ppaq」という)を合成した。
<Synthesis Example 3>
Using the compound (A2), a compound (A3) (hereinafter simply referred to as “H-ppaq”) was synthesized by the following reaction.
具体的には、まず、上記化合物(A2)(0.20g,0.84mmol)、Na2CO3(0.45g,4.2mmol)、2−(クロロメチル)ピリジン塩酸塩(0.14g,0.84mmol)を、30ml二口ナスフラスコに加え、窒素置換した。無水CH3CNを10mL加え、3時間加熱還流を行った。更に、2−(クロロメチル)ピリジン塩酸塩(0.04g)、ヨウ化カリウム(0.03g)を加え、2時間加熱還流を行った。反応混合物をセライトろ過し、エバポレーターを用いて濾液を濃縮した。得られた粗精製物をカラムクロマトグラフィー(Al2O3,酢酸エチル:ヘキサン=2:1)によって精製し、黄色油状物質を得た。
得られた黄色油状物質は、収量0.15g、収率55%であり、下記の同定結果からH−ppaqであることが確認できた。
1H NMR(500MHz,DMSO−d6,δ):11.6(s,1H),9.01(dd,J=1.7,4.0Hz,1H),8.74(dd,J=1.4,7.7Hz,1H),8.47(dd,J=1.7,4.0Hz,1H),8.43(dd,J=1.7,8.6Hz,1H),8.11(d,J=7.5Hz,1H),7.91(dt,J=1.7,7.4Hz,1H),7.68(dd,J=1.4,8.3Hz,1H),7.67(dd,J=4.0,8.0Hz,1H),7.60(t,J=7.7Hz,1H),7.27(ddd,J=1.2,5.2,7.4Hz,1H),4.18(d,J=13.8Hz,1H),3.78(d,J=13.8Hz,1H),3.52(dd,J=5.2,10.3Hz,1H),3.12(ddd,J=2.6,6.9,9.4Hz,1H),2.49(dt,J=6.7,9.6Hz,1H),2.32(dq,J=9.4,12.8Hz,1H),1.95(dq,J=4.5,8.9Hz,1H),1.84(m,1H),1.76(m,1H).
13C NMR(125.8MHz,DMSO−d6,δ):172.5(s),158.5(s),148.9(s),148.5(s),137.9(s),136.6(s),136.5(s),134.0(s),127.8(s),127.0(s),122.9(s),122.2(s),122.2(s),121.7(s),115.3(s),67.0(s),61.2(s),53.5(s),30.3(s),23.9(s).
Specifically, first, the compound (A2) (0.20 g, 0.84 mmol), Na 2 CO 3 (0.45 g, 4.2 mmol), 2- (chloromethyl) pyridine hydrochloride (0.14 g, 0.84 mmol) was added to a 30 ml two-necked eggplant flask and purged with nitrogen. 10 mL of anhydrous CH 3 CN was added, and the mixture was heated to reflux for 3 hours. Furthermore, 2- (chloromethyl) pyridine hydrochloride (0.04 g) and potassium iodide (0.03 g) were added, and the mixture was heated to reflux for 2 hours. The reaction mixture was filtered through Celite, and the filtrate was concentrated using an evaporator. The obtained crude product was purified by column chromatography (Al 2 O 3 , ethyl acetate: hexane = 2: 1) to obtain a yellow oily substance.
The obtained yellow oily substance had a yield of 0.15 g and a yield of 55%, and was confirmed to be H-ppaq from the following identification results.
1 H NMR (500 MHz, DMSO-d 6 , δ): 11.6 (s, 1H), 9.01 (dd, J = 1.7, 4.0 Hz, 1H), 8.74 (dd, J = 1.4, 7.7 Hz, 1 H), 8.47 (dd, J = 1.7, 4.0 Hz, 1 H), 8.43 (dd, J = 1.7, 8.6 Hz, 1 H), 8 .11 (d, J = 7.5 Hz, 1H), 7.91 (dt, J = 1.7, 7.4 Hz, 1H), 7.68 (dd, J = 1.4, 8.3 Hz, 1H) ), 7.67 (dd, J = 4.0, 8.0 Hz, 1H), 7.60 (t, J = 7.7 Hz, 1H), 7.27 (ddd, J = 1.2, 5.). 2,7.4 Hz, 1H), 4.18 (d, J = 13.8 Hz, 1H), 3.78 (d, J = 13.8 Hz, 1H), 3.52 (dd, J = 5.2). , 10.3Hz, 1H , 3.12 (ddd, J = 2.6, 6.9, 9.4 Hz, 1H), 2.49 (dt, J = 6.7, 9.6 Hz, 1H), 2.32 (dq, J = 9.4, 12.8 Hz, 1H), 1.95 (dq, J = 4.5, 8.9 Hz, 1H), 1.84 (m, 1H), 1.76 (m, 1H).
13 C NMR (125.8 MHz, DMSO-d 6 , δ): 172.5 (s), 158.5 (s), 148.9 (s), 148.5 (s), 137.9 (s) , 136.6 (s), 136.5 (s), 134.0 (s), 127.8 (s), 127.0 (s), 122.9 (s), 122.2 (s), 122.2 (s), 121.7 (s), 115.3 (s), 67.0 (s), 61.2 (s), 53.5 (s), 30.3 (s), 23 .9 (s).
<合成例4>
上記H−ppaq(化合物(A3))を用いて、下記反応により、下記化合物(A4)(H−ppaqの鉄錯体。以下、単に「Fe(III)−ppaq」という)を合成した。
<Synthesis Example 4>
Using the above H-ppaq (compound (A3)), the following compound (A4) (iron complex of H-ppaq. Hereinafter, simply referred to as “Fe (III) -ppaq”) was synthesized by the following reaction.
具体的には、まず、上記H−ppaq(0.13g,0.40mmol)と、Fe(ClO4)3・nH2O(0.25g,0.47mmol)をそれぞれ別のサンプル瓶に秤量し、それぞれ少量のメタノールにて溶解させた。H−ppaqを溶解させたサンプル瓶にトリエチルアミン(0.05mL,0.40mmol)を加え、Fe(ClO4)3・9H2Oのメタノール溶液にゆっくりと添加していくと溶液が暗褐色に変化した。そのまま一晩撹拌させ、溶液を濃縮した。粗生成物をアセトニトリルに溶解させ、ジエチルエーテルを貧溶媒として気液拡散により再結晶を行い、黒色固体としてFe(III)−ppaqを得た。
元素分析による同定結果は以下のとおりである。
計算値(C24H26Cl2FeN6O9.5):C,42.56;H,3.87;N,12.41
測定値:C,42.74;H,3.73;N,12.4
Specifically, first, H-ppaq (0.13 g, 0.40 mmol) and Fe (ClO 4 ) 3 .nH 2 O (0.25 g, 0.47 mmol) were weighed in separate sample bottles. Each was dissolved in a small amount of methanol. Triethylamine (0.05 mL, 0.40 mmol) was added to the sample bottle in which H-ppaq was dissolved, and when the solution was slowly added to a methanol solution of Fe (ClO 4 ) 3 · 9H 2 O, the solution turned dark brown did. It was allowed to stir overnight and the solution was concentrated. The crude product was dissolved in acetonitrile and recrystallized by gas-liquid diffusion using diethyl ether as a poor solvent to obtain Fe (III) -ppaq as a black solid.
The identification results by elemental analysis are as follows.
Calculated (C 24 H 26 Cl 2 FeN 6 O 9.5): C, 42.56; H, 3.87; N, 12.41
Measurement: C, 42.74; H, 3.73; N, 12.4
〔比較用合成例1〕
<比較用合成例1−1>
下記反応により、下記化合物(B1)を合成した。
[Comparative Synthesis Example 1]
<Comparative Synthesis Example 1-1>
The following compound (B1) was synthesized by the following reaction.
具体的には、まず、クーゲルローアにて精製した2−ピコリルアミン(4.01g,37.0mmol)を100ml二口ナスフラスコに秤量し、トルエン50mlを加えた。さらにギ酸(3.48g,74.0mmol)を加え、ディンスタック管を取り付けた後に110℃で加熱還流を行った。ディンスタック管にたまった溶液を取り除きトルエンを加えることを数回繰り返した。5時間後、TLC(Al2O3,酢酸エチル:ヘキサン=10:1)にて反応終了を確認した。濃縮した後、炭酸ナトリウム水溶液とジクロロメタンにより分液操作を行い、有機相を濃縮したところ、茶褐色の油状物質が得られた。
得られた茶褐色の油状物質は、収量3.15g、収率56.7%であり、下記の同定結果から上記化合物(B1)であることが確認できた。
1H NMR(500MHz,CDCl3,δ):8.54(d,J=4.6Hz,1H),8.33(s,1H),7.68(dt,J=7.7,1.7Hz,1H),7.28(d,J=7.5Hz,1H),7.22(dd,J=7.5,5.2Hz,1H),7.03(br,1H),4.62(d,J=5.2Hz,2H).
13C NMR(125.8MHz,CDCl3,δ):161.5(s),156.2(s),149.0(s),137.0(s),122.5(s),122.1(s),43.1(s).
Specifically, first, 2-picolylamine (4.01 g, 37.0 mmol) purified by Kugelrohr was weighed into a 100 ml two-necked eggplant flask, and 50 ml of toluene was added. Further, formic acid (3.48 g, 74.0 mmol) was added, and a din stack tube was attached, followed by heating to reflux at 110 ° C. The solution accumulated in the Dinstack tube was removed and toluene was added several times. After 5 hours, the completion of the reaction was confirmed by TLC (Al 2 O 3 , ethyl acetate: hexane = 10: 1). After concentration, liquid separation was performed with an aqueous sodium carbonate solution and dichloromethane, and the organic phase was concentrated to obtain a brown oily substance.
The resulting brown oily substance had a yield of 3.15 g and a yield of 56.7%, and it was confirmed from the following identification result that it was the compound (B1).
1 H NMR (500 MHz, CDCl 3 , δ): 8.54 (d, J = 4.6 Hz, 1H), 8.33 (s, 1H), 7.68 (dt, J = 7.7, 1. 7 Hz, 1 H), 7.28 (d, J = 7.5 Hz, 1 H), 7.22 (dd, J = 7.5, 5.2 Hz, 1 H), 7.03 (br, 1 H), 4. 62 (d, J = 5.2 Hz, 2H).
13 C NMR (125.8 MHz, CDCl 3 , δ): 161.5 (s), 156.2 (s), 149.0 (s), 137.0 (s), 122.5 (s), 122 .1 (s), 43.1 (s).
<比較用合成例1−2>
上記化合物(B1)を用いて、下記反応により、下記化合物(B2)を合成した。
<Comparative Synthesis Example 1-2>
The following compound (B2) was synthesized by the following reaction using the compound (B1).
具体的には、まず、上記化合物(B1)を500ml三口ナスフラスコに入れ、さらに、乾燥したテトラヒドロフランを150ml加え窒素置換した。その後、水素化ナトリウム(1.68g,69.6mmol)を加えると、溶液は白色に変化した。1時間半後、ヨードメタン(2.2mL,34.7mmol)をシリンジを用いてゆっくりと加えた。数時間かけて溶液の色は徐々に茶色に変化していった。一晩撹拌後、TLC(Al2O3,酢酸エチル:ヘキサン=10:1)にて反応終了を確認し、蒸留水40ml、メタノール30mlを加え水酸化ナトリウム4.04gを加え、100℃で一晩加熱還流した。その後、TLC(Al2O3,酢酸エチル:ヘキサン=10:1)により反応終了を確認した後、濃縮し、塩化ナトリウム水溶液とジクロロメタンにより分液操作を行い、有機相を濃縮したところ、褐色油状物質を得た。
得られた褐色油状物質は、収量2.29g、収率80.8%であり、下記の同定結果から上記化合物(B2)であることが確認できた。
1HNMR(500MHz,CDCl3,δ):8.56(d,J=5.2Hz,1H),7.65(dt,J=7.6,1.9Hz,1H),7.31(d,J=7.5Hz,1H),7.16(dd,J=7.7,4.9Hz,1H),3.88(s,1H),2.49(s,1H),1.97(br,1H).
Specifically, first, the compound (B1) was placed in a 500 ml three-necked eggplant flask, and further 150 ml of dry tetrahydrofuran was added and the atmosphere was replaced with nitrogen. Thereafter, when sodium hydride (1.68 g, 69.6 mmol) was added, the solution turned white. After 1.5 hours, iodomethane (2.2 mL, 34.7 mmol) was added slowly using a syringe. Over the course of several hours, the color of the solution gradually changed to brown. After stirring overnight, the completion of the reaction was confirmed by TLC (Al 2 O 3 , ethyl acetate: hexane = 10: 1), 40 ml of distilled water and 30 ml of methanol were added, and 4.04 g of sodium hydroxide was added. Refluxed overnight. Then, after confirming the completion of the reaction by TLC (Al 2 O 3 , ethyl acetate: hexane = 10: 1), the mixture was concentrated and subjected to a liquid separation operation with an aqueous sodium chloride solution and dichloromethane, and the organic phase was concentrated to obtain a brown oil Obtained material.
The obtained brown oily substance was 2.29 g in yield and 80.8% in yield, and it was confirmed from the following identification result that it was the above compound (B2).
1 HNMR (500 MHz, CDCl 3 , δ): 8.56 (d, J = 5.2 Hz, 1H), 7.65 (dt, J = 7.6, 1.9 Hz, 1H), 7.31 (d , J = 7.5 Hz, 1H), 7.16 (dd, J = 7.7, 4.9 Hz, 1H), 3.88 (s, 1H), 2.49 (s, 1H), 1.97. (Br, 1H).
<比較用合成例1−3>
上記化合物(B2)を用いて、下記反応を順次行い、下記化合物(B3)(以下、単に「H−mpaq」という)を合成した。
<Comparative Synthesis Example 1-3>
Using the compound (B2), the following reaction was sequentially performed to synthesize the following compound (B3) (hereinafter simply referred to as “H-mpaq”).
具体的には、まず、300ml二口ナスフラスコに、8−アミノキノリン(2.70g、18.7mmol)、炭酸ナトリウム(2.79g、26.2mmol)を加え、窒素置換した後に脱水アセトニトリルを100ml加えた。氷浴した後、ブロモアセチルブロミド(2.0ml,22.5mmol)をゆっくりと加えると、溶液は黄色に変化し、固体が生成した。その後、徐々に赤色に変化した。3時間後、TLC(シリカ、酢酸エチル:ヘキサン=1:3)により反応終了を確認し、固体生成物をセライトろ過で取り除き、濃縮したところ、赤色の針状固体を得た。 Specifically, first, 8-aminoquinoline (2.70 g, 18.7 mmol) and sodium carbonate (2.79 g, 26.2 mmol) were added to a 300 ml two-necked eggplant flask, and after nitrogen substitution, 100 ml of dehydrated acetonitrile was added. added. After an ice bath, bromoacetyl bromide (2.0 ml, 22.5 mmol) was added slowly and the solution turned yellow and a solid formed. Then it gradually turned red. After 3 hours, the completion of the reaction was confirmed by TLC (silica, ethyl acetate: hexane = 1: 3), and the solid product was removed by Celite filtration and concentrated to obtain a red needle-like solid.
次に、300ml三口ナスフラスコに炭酸ナトリウム(2.79g,26.2mmol)と上記化合物(B2)(18.7g,2.29mmol)を加え、窒素置換を行った。その後、脱水アセトニトリル100ml加え、氷浴した。ここに、上記赤色の針状固体4.99gをゆっくり加え、一晩撹拌した。その後、TLC(Al2O3,酢酸エチル:ヘキサン=10:1)により反応終了を確認した後、固体生成物をセライトろ過で取り除き、濃縮したところ、赤色油状物質を得た。この生成物をカラムクロマトグラフィー(Al2O3,酢酸エチル:ヘキサン=2:1)にて精製した。不純物を含む溶液と、含まない溶液に分けられたので、それらを別々に濃縮し、得られた固体をアセトニトリルで再結晶し、淡黄色の固体を得た。 Next, sodium carbonate (2.79 g, 26.2 mmol) and the above compound (B2) (18.7 g, 2.29 mmol) were added to a 300 ml three-necked eggplant flask, and nitrogen substitution was performed. Thereafter, 100 ml of dehydrated acetonitrile was added, followed by ice bathing. To this, 4.99 g of the red needle solid was slowly added and stirred overnight. Then, after confirming the completion of the reaction by TLC (Al 2 O 3 , ethyl acetate: hexane = 10: 1), the solid product was removed by Celite filtration and concentrated to obtain a red oily substance. The product was purified by column chromatography (Al 2 O 3 , ethyl acetate: hexane = 2: 1). Since the solution was divided into a solution containing impurities and a solution containing no impurities, they were concentrated separately, and the obtained solid was recrystallized from acetonitrile to obtain a pale yellow solid.
最終的に得られた淡黄色の固体は、収量2.51g、収率43.7%であり、下記の同定結果からH−mpaqであることが確認できた。
1H NMR(500MHz,CDCl3,δ):11.5(s,1H),8.90(dd,J=4.0,1.7Hz,1H),8.81(dd,J=6.9,1.7Hz,1H),8.55(dd,J=4.3,1.4Hz,1H),8.18(dd,J=8.0,1.7Hz,1H),8.07(d,J=8.0Hz,1H),7.73(dd,J=7.7,1.7Hz,1H),7.54(m,2H),7.48(dd,J=8.3,4.3Hz,1H),7.19(dd,J=6.9,5.2Hz,1H),3.95(s,2H),3.42(s,2H),2.50(s,3H).
13C NMR(125.8MHz,CDCl3δ):169.6(s),158.9(s),149.1(s),148.4(s),139.1(s),136.7(s),136.4(s),134.4(s),128.2(s),127.5(s),123.2(s),122.4(s),121.8(s),121.6(s),116.7(s),64.3(s),62.6(s),43.6(s).
The finally obtained pale yellow solid had a yield of 2.51 g and a yield of 43.7%, and it was confirmed from the following identification result that it was H-mpaq.
1 H NMR (500 MHz, CDCl 3 , δ): 11.5 (s, 1H), 8.90 (dd, J = 4.0, 1.7 Hz, 1H), 8.81 (dd, J = 6. 9, 1.7 Hz, 1 H), 8.55 (dd, J = 4.3, 1.4 Hz, 1 H), 8.18 (dd, J = 8.0, 1.7 Hz, 1 H), 8.07 (D, J = 8.0 Hz, 1H), 7.73 (dd, J = 7.7, 1.7 Hz, 1H), 7.54 (m, 2H), 7.48 (dd, J = 8. 3, 4.3 Hz, 1H), 7.19 (dd, J = 6.9, 5.2 Hz, 1H), 3.95 (s, 2H), 3.42 (s, 2H), 2.50 ( s, 3H).
13 C NMR (125.8 MHz, CDCl 3 δ): 169.6 (s), 158.9 (s), 149.1 (s), 148.4 (s), 139.1 (s), 136. 7 (s), 136.4 (s), 134.4 (s), 128.2 (s), 127.5 (s), 123.2 (s), 122.4 (s), 121.8 (S), 121.6 (s), 116.7 (s), 64.3 (s), 62.6 (s), 43.6 (s).
<比較用合成例1−4>
上記H−mpaq(化合物(B3))を用いて、下記反応により、下記化合物(B4)(H−mpaqの鉄錯体。以下、単に「Fe(III)−mpaq」という)を合成した。
<Comparative Synthesis Example 1-4>
Using the above H-mpaq (compound (B3)), the following compound (B4) (an iron complex of H-mpaq. Hereinafter, simply referred to as “Fe (III) -mpaq”) was synthesized by the following reaction.
具体的には、まず、上記H−mpaq(0.1g,0.33mmol)と、Fe(ClO4)3・9H2O(0.20g,0.39mmol)をそれぞれ別のサンプル瓶に秤量し、両方の物質を少量のメタノールにて溶解させた。H−mpaqを溶解させたサンプル瓶にトリエチルアミン(0.04ml,0.33mmol)を加え、Fe(ClO4)3・9H2Oのメタノール溶液にゆっくりと添加していくと溶液が暗緑色に変化した。そのまま一晩撹拌させ、溶液をメンブレンフィルターによりろ過し、暗青色の固体を得た。収量は0.21gであった。
ESI−MSの分析結果は以下のとおりである。
ESI−MS:ポジティブモード:m/z391.98[Fe(III)−mpaq(CH3O)]+
Specifically, first, H-mpaq (0.1 g, 0.33 mmol) and Fe (ClO 4 ) 3 .9H 2 O (0.20 g, 0.39 mmol) were weighed in separate sample bottles. Both materials were dissolved in a small amount of methanol. Triethylamine (0.04 ml, 0.33 mmol) is added to the sample bottle in which H-mpaq is dissolved, and when the solution is slowly added to a methanol solution of Fe (ClO 4 ) 3 · 9H 2 O, the solution turns dark green did. The mixture was allowed to stir overnight, and the solution was filtered through a membrane filter to obtain a dark blue solid. The yield was 0.21g.
The analysis results of ESI-MS are as follows.
ESI-MS: Positive mode: m / z 391.98 [Fe (III) -mpaq (CH 3 O)] +
〔比較用合成例2〕
<比較用合成例2−1>
下記反応により化合物(C1)(以下、「H−dpaq」という)を合成した。
[Comparative Synthesis Example 2]
<Comparative Synthesis Example 2-1>
Compound (C1) (hereinafter referred to as “H-dpaq”) was synthesized by the following reaction.
具体的には、反応容器に炭酸ナトリウム(2.02g、19.4mmol)と8−アミノキノリン(2.00g、13.9mmol)を加え、アルゴン雰囲気下にした後、脱水アセトニトリル40mLを加えた。反応容器を氷浴にて0℃にした後、撹拌下、ブロモアセチルブロミド(3.36mL、16.6mmol)を10分かけて加えた。20分後、白色固体を「Celite500」(登録商標)を用いた吸引濾過によって除去し、濾液をエバポレーターによって濃縮後、真空乾燥し、桃色固体を得た。
得られた桃色固体3.54gと炭酸ナトリウム(2.06g、19.4mmol)を反応容器に入れ、アルゴン雰囲気下にした後、脱水アセトニトリル40mLを加えた。氷浴にて0℃にした後、撹拌下、2,2’−ジピコリルアミン(3.31mL、16.6mmol)を20分かけて加えた。一晩撹拌させた後、セライトを用いて白色固体を吸引濾過によって除去し、濾液をエバポレーターによって濃縮後、真空乾燥した。粗生成物はアルミナカラム(酢酸エチル:ヘキサン=1:1)にて精製し、白色固体を得た。
Specifically, sodium carbonate (2.02 g, 19.4 mmol) and 8-aminoquinoline (2.00 g, 13.9 mmol) were added to the reaction vessel, and after being placed in an argon atmosphere, 40 mL of dehydrated acetonitrile was added. The reaction vessel was brought to 0 ° C. in an ice bath, and bromoacetyl bromide (3.36 mL, 16.6 mmol) was added over 10 minutes with stirring. After 20 minutes, the white solid was removed by suction filtration using “Celite 500” (registered trademark), and the filtrate was concentrated by an evaporator and then vacuum-dried to obtain a pink solid.
The obtained pink solid (3.54 g) and sodium carbonate (2.06 g, 19.4 mmol) were put in a reaction vessel and brought to an argon atmosphere, and then 40 mL of dehydrated acetonitrile was added. After bringing the temperature to 0 ° C. in an ice bath, 2,2′-dipiconylamine (3.31 mL, 16.6 mmol) was added over 20 minutes with stirring. After stirring overnight, the white solid was removed by suction filtration using Celite, and the filtrate was concentrated by an evaporator and dried in vacuo. The crude product was purified with an alumina column (ethyl acetate: hexane = 1: 1) to obtain a white solid.
得られた白色固体は、収量4.6g、収率86%であり、下記の同定結果からH−dpaqであることが確認できた。
1HNMR(500MHz,CDCl3)による同定結果は以下のとおりである。
δ3.53(s,2H),4.01(s,4H),7.14(dd,J=4.9Hz,J=7.2Hz,2H),7.55−7.50(m,3H),7.64(ddd,J=1.5Hz,J=7.5Hz,2H),7.97(d,J=8.0Hz,2H),8.19(dd,J=1.2Hz,J=8.6Hz,1H),8.51(d,J=5.1Hz,2H),8.76(dd,J=2.6Hz,J=6.0Hz,1H),8.93(dd,J=1.4Hz,J=4.3Hz,1H),11.6(s,1H)
13CNMR(125.8MHz,CDCl3)による同定結果は以下のとおりである。
δ59.6(s),61.3(s),116.8(s),121.8(s),121.9(s),122.6(s),123.6(s),127.7(s),128.3(s),134.7(s),136.6(s),136.8(s),139.1(s),148.3(s),149.4(s),158.5(s),169.8(s)
元素分析による同定結果は以下のとおりである。
計算値(C23H21N5O):C,72.04;H,5.52;N,18.26
測定値:C,72.25;H,5.45;N,18.36
The obtained white solid had a yield of 4.6 g and a yield of 86%, and was confirmed to be H-dpaq from the following identification results.
The identification result by 1 HNMR (500 MHz, CDCl 3 ) is as follows.
δ3.53 (s, 2H), 4.01 (s, 4H), 7.14 (dd, J = 4.9 Hz, J = 7.2 Hz, 2H), 7.55-7.50 (m, 3H) ), 7.64 (ddd, J = 1.5 Hz, J = 7.5 Hz, 2H), 7.97 (d, J = 8.0 Hz, 2H), 8.19 (dd, J = 1.2 Hz, J = 8.6 Hz, 1H), 8.51 (d, J = 5.1 Hz, 2H), 8.76 (dd, J = 2.6 Hz, J = 6.0 Hz, 1H), 8.93 (dd , J = 1.4 Hz, J = 4.3 Hz, 1H), 11.6 (s, 1H)
The identification result by 13 CNMR (125.8 MHz, CDCl 3 ) is as follows.
δ 59.6 (s), 61.3 (s), 116.8 (s), 121.8 (s), 121.9 (s), 122.6 (s), 123.6 (s), 127 .7 (s), 128.3 (s), 134.7 (s), 136.6 (s), 136.8 (s), 139.1 (s), 148.3 (s), 149. 4 (s), 158.5 (s), 169.8 (s)
The identification results by elemental analysis are as follows.
Calculated (C 23 H 21 N 5 O ): C, 72.04; H, 5.52; N, 18.26
Measurement: C, 72.25; H, 5.45; N, 18.36
<比較用合成例2−2>
上記H−dpaq(化合物(C1))を用いて、下記化合物(C2)(H−dpaqの鉄錯体。以下、単に「Fe(III)−dpaq」という)を合成した。
<Comparative Synthesis Example 2-2>
Using the above H-dpaq (compound (C1)), the following compound (C2) (iron complex of H-dpaq. Hereinafter, simply referred to as “Fe (III) -dpaq”) was synthesized.
すなわち、H−dpaq(0.10g、0.26mmol)およびトリエチルアミン(0.03g、0.30mmol)をメタノール1.0mLに溶解させ、過塩素酸第二鉄(Fe(ClO4)3・6H2O、0.11g、0.31mmol)のメタノール溶液1.0mLを加えた。反応溶液は緑色に変化した。2時間撹拌した後、メンブランフィルターを用いて沈殿を濾集、真空乾燥し、緑黒色固体を得た。得られた固体をアセトニトリルに溶解させ酢酸エチルを貧溶媒とし気液拡散法によって再結晶すると、空気中で安定なブロック状の緑黒色結晶が得られた。収量0.14g、収率78%であった。 That is, H-dpaq (0.10 g, 0.26 mmol) and triethylamine (0.03 g, 0.30 mmol) were dissolved in 1.0 mL of methanol, and ferric perchlorate (Fe (ClO 4 ) 3 · 6H 2 O, 0.11 g, 0.31 mmol) in methanol (1.0 mL) was added. The reaction solution turned green. After stirring for 2 hours, the precipitate was collected using a membrane filter and vacuum-dried to obtain a greenish black solid. When the obtained solid was dissolved in acetonitrile and recrystallized by a gas-liquid diffusion method using ethyl acetate as a poor solvent, a blocky green-black crystal stable in the air was obtained. The yield was 0.14 g and the yield was 78%.
〔実施例1〕
合成例1で得たFe(III)−ppaqを酸化触媒として用いて、下記反応により、アダマンタンの酸化反応を行った。
[Example 1]
Using Fe (III) -ppaq obtained in Synthesis Example 1 as an oxidation catalyst, an adamantane oxidation reaction was performed by the following reaction.
具体的には、好気下、室温で、Fe(III)−ppaqのアセトニトリル溶液1ml(0.5mM,0.5μmol)に錯体に対して500当量のアダマンタンを加え、しばらく撹拌した後、過酸化水素のアセトニトリル溶液(0.5ml,0.02M,10μmol)を30分かけて添加し、5分間撹拌した。ニトロベンゼンのアセトニトリル溶液を内部標準として添加し、ガスクロマトグラフィーにて溶液の組成を測定した。
機器:ガスクロマトグラフ「GC2014」(島津製作所製)
カラム:キャピラリーカラム「InertCap」(60m×0.25mm)(ジーエルサイエンス社製)
測定条件:初期温度100℃で5分間保持、その後220℃まで10℃/minで昇温、220℃に到達後11分間保持
Specifically, 500 equivalents of adamantane with respect to the complex was added to 1 ml (0.5 mM, 0.5 μmol) of Fe (III) -ppaq in acetonitrile under aerobic conditions at room temperature, and after stirring for a while, peroxidation was performed. Hydrogen in acetonitrile (0.5 ml, 0.02 M, 10 μmol) was added over 30 minutes and stirred for 5 minutes. A solution of nitrobenzene in acetonitrile was added as an internal standard, and the composition of the solution was measured by gas chromatography.
Instrument: Gas chromatograph “GC2014” (manufactured by Shimadzu Corporation)
Column: Capillary column “InertCap” (60 m × 0.25 mm) (manufactured by GL Sciences Inc.)
Measurement conditions: hold at initial temperature of 100 ° C. for 5 minutes, then increase to 220 ° C. at 10 ° C./min, reach 220 ° C. and hold for 11 minutes
〔実施例2〕
アダマンタンを加えてしばらく撹拌した後、過酸化水素のアセトニトリル溶液を添加する前に、酢酸(100当量)を添加したこと以外は、実施例1と同様にしてアダマンタンの酸化反応を行った。なお、ガスクロマトグラフィーによる溶液組成の測定においては、測定後20分経過後、再度ガスクロマトグラフィーにて溶液の組成を測定したところ、酢酸を添加した溶液の酸化基質が増加していたため、そのまま1晩撹拌し、ガスクロマトグラフィーにて溶液の組成を測定した。
[Example 2]
After adding adamantane and stirring for a while, the adamantane oxidation reaction was carried out in the same manner as in Example 1 except that acetic acid (100 equivalents) was added before adding the acetonitrile solution of hydrogen peroxide. In the measurement of the solution composition by gas chromatography, 20 minutes after the measurement, the composition of the solution was measured again by gas chromatography. As a result, the number of oxidized substrates in the solution to which acetic acid was added was increased. The mixture was stirred overnight, and the composition of the solution was measured by gas chromatography.
〔比較例1〕
Fe(III)−ppaqのアセトニトリル溶液1ml(0.5mM,0.5μmol)に代えて、比較用合成例1で得たFe(III)−mpaqのアセトニトリル溶液1ml(0.5mM,0.5μmol)を用いたこと以外は、実施例1と同様にしてアダマンタンの酸化反応を行った。
[Comparative Example 1]
Instead of 1 ml (0.5 mM, 0.5 μmol) of an acetonitrile solution of Fe (III) -ppaq, 1 ml (0.5 mM, 0.5 μmol) of an acetonitrile solution of Fe (III) -mpaq obtained in Comparative Synthesis Example 1 The adamantane oxidation reaction was carried out in the same manner as in Example 1 except that was used.
〔比較例2〕
Fe(III)−ppaqのアセトニトリル溶液1ml(0.5mM,0.5μmol)に代えて、比較用合成例1で得たFe(III)−mpaqのアセトニトリル溶液1ml(0.5mM,0.5μmol)を用いたこと以外は、実施例2と同様にしてアダマンタンの酸化反応を行った。
[Comparative Example 2]
Instead of 1 ml (0.5 mM, 0.5 μmol) of an acetonitrile solution of Fe (III) -ppaq, 1 ml (0.5 mM, 0.5 μmol) of an acetonitrile solution of Fe (III) -mpaq obtained in Comparative Synthesis Example 1 An adamantane oxidation reaction was carried out in the same manner as in Example 2 except that was used.
〔比較例3〕
Fe(III)−ppaqのアセトニトリル溶液1ml(0.5mM,0.5μmol)に代えて、比較用合成例2で得たFe(III)−dpaqのアセトニトリル溶液1ml(0.5mM,0.5μmol)を用いたこと以外は、実施例1と同様にしてアダマンタンの酸化反応を行った。
[Comparative Example 3]
Instead of 1 ml (0.5 mM, 0.5 μmol) of an acetonitrile solution of Fe (III) -ppaq, 1 ml (0.5 mM, 0.5 μmol) of an acetonitrile solution of Fe (III) -dpaq obtained in Synthesis Example 2 for comparison The adamantane oxidation reaction was carried out in the same manner as in Example 1 except that was used.
〔酸化反応の結果〕
上記各実施例1,2、比較例1〜3における各酸化反応について、第3級炭素のC−H結合が酸化されて生成した1−アダマンタノール(目的生成物)、第2級炭素のC−H結合が酸化されて生成した2−アダマンタノール及び2−アダマンタノン(副生成物)の各生成モル量とそれらの値から算出される選択性(3°/2°)、1−アダマンタノールの生成率、及び、触媒回転数(TON)を下表に示す。
[Results of oxidation reaction]
In each of the oxidation reactions in Examples 1 and 2 and Comparative Examples 1 to 3, 1-adamantanol (target product) produced by oxidizing the C—H bond of the tertiary carbon, C of the secondary carbon -Mole amounts of 2-adamantanol and 2-adamantanone (byproduct) produced by oxidation of -H bond and selectivity calculated from these values (3 ° / 2 °), 1-adamantanol The production rate and catalyst rotation speed (TON) are shown in the table below.
なお、選択性(3°/2°)は、第3級炭素のC−H結合の酸化が第2級炭素のC−H結合の酸化に対してどれだけ優先して進行するかを表すもので、アダマンタン1分子あたり、第3級炭素のC−H結合が4個、第2級炭素のC−H結合が12個存在するので、各生成物のモル量から、下式で算出される。
3°/2°=3×{[1−アダマンタノール]/([2−アダマンタノール]+[2−アダマンタノン])}
また、1−アダマンタノールの生成率(%)は、1−アダマンタノール、過酸化水素の各モル量から、下式で算出される値である。
生成率(%)=100×[1−アダマンタノール]/[過酸化水素]
触媒回転数(TON)は、アダマンタンの酸化生成物と触媒の各モル比から、下式で算出される値である。
触媒回転数(TON)=[アダマンタンの酸化生成物]/[触媒]
The selectivity (3 ° / 2 °) represents how much the oxidation of the C—H bond of the tertiary carbon proceeds with respect to the oxidation of the C—H bond of the secondary carbon. Since there are 4 tertiary carbon C—H bonds and 12 secondary carbon C—H bonds per molecule of adamantane, the following formula is calculated from the molar amount of each product. .
3 ° / 2 ° = 3 × {[1-adamantanol] / ([2-adamantanol] + [2-adamantanone])}
The production rate (%) of 1-adamantanol is a value calculated by the following equation from the molar amounts of 1-adamantanol and hydrogen peroxide.
Production rate (%) = 100 × [1-adamantanol] / [hydrogen peroxide]
The catalyst rotation speed (TON) is a value calculated by the following formula from each molar ratio of the oxidation product of adamantane and the catalyst.
Catalyst rotational speed (TON) = [oxidation product of adamantane] / [catalyst]
上記表1から、本発明所定の金属錯体触媒を酸化触媒として用いた実施例1,2では、Fe(III)−dpaqを用いた比較例3と比べて、高い選択性が発揮されていることが分かる。
さらに、Fe(III)−mpaqを用いた比較例1,2では、比較例3よりも選択性が高いものの、触媒回転数がやや低い。これに対して、本発明所定の金属錯体触媒を酸化触媒として用いた実施例1,2では、比較例1,2よりも選択性が高い上、触媒回転数も高い。
また、実施例1,2の結果の対比から、カルボン酸を共存させた方が、選択性及び触媒回転数が高くなることが分かる。
From Table 1 above, in Examples 1 and 2 using the metal complex catalyst of the present invention as an oxidation catalyst, high selectivity is exhibited compared to Comparative Example 3 using Fe (III) -dpaq. I understand.
Furthermore, in Comparative Examples 1 and 2 using Fe (III) -mpaq, although the selectivity is higher than that in Comparative Example 3, the catalyst rotation speed is slightly lower. On the other hand, in Examples 1 and 2 using the metal complex catalyst of the present invention as an oxidation catalyst, selectivity is higher than Comparative Examples 1 and 2 and the number of catalyst rotations is also high.
In addition, from the comparison of the results of Examples 1 and 2, it can be seen that selectivity and catalyst rotation speed are higher when carboxylic acid is present together.
本発明の酸化方法は、従来酸化が困難であったアダマンタンなどにおけるsp3C−H結合を選択的に酸化する方法として好適に利用することができる。 The oxidation method of the present invention can be suitably used as a method for selectively oxidizing sp 3 C—H bonds in adamantane and the like that have been difficult to oxidize conventionally.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013028790A JP5552550B1 (en) | 2013-02-18 | 2013-02-18 | Oxidation catalyst and method for producing oxidation reaction product |
PCT/JP2013/072385 WO2014034515A1 (en) | 2012-08-29 | 2013-08-22 | METHOD FOR OXIDIZING sp3C-H BOND |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013028790A JP5552550B1 (en) | 2013-02-18 | 2013-02-18 | Oxidation catalyst and method for producing oxidation reaction product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5552550B1 true JP5552550B1 (en) | 2014-07-16 |
JP2014156439A JP2014156439A (en) | 2014-08-28 |
Family
ID=51416817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013028790A Expired - Fee Related JP5552550B1 (en) | 2012-08-29 | 2013-02-18 | Oxidation catalyst and method for producing oxidation reaction product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5552550B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090221083A1 (en) * | 2007-10-03 | 2009-09-03 | Board Of Trustees Of University Of Illinois | Selective Aliphatic C-H Oxidation |
-
2013
- 2013-02-18 JP JP2013028790A patent/JP5552550B1/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090221083A1 (en) * | 2007-10-03 | 2009-09-03 | Board Of Trustees Of University Of Illinois | Selective Aliphatic C-H Oxidation |
Non-Patent Citations (4)
Title |
---|
JPN6014006339; ANGEWANDTE CHEMIE INTERNATIONAL EDITION 51(14), 2012, 3448-3452 * |
JPN6014006341; ANGEWANDTE CHEMIE INTERNATIONAL EDITION 39(13), 2000, 2343-2346 * |
JPN6014006343; 斉藤沙知、荒川健吾、人見穣、小寺政人: '窒素4座アミダート配位を有する単核鉄(III)錯体による過酸化水素の活性化' 錯体化学会第62回討論会 要旨集 , 20120901, 231頁, 錯体化学会 * |
JPN6014006345; 平松和明、荒川健吾、人見穣、小寺政人: '水中での単核非ヘム錯体による過酸化水素の活性化' 錯体化学会第61回討論会 要旨集 , 20110901, 372頁, 錯体化学会 * |
Also Published As
Publication number | Publication date |
---|---|
JP2014156439A (en) | 2014-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Campbell et al. | Unsymmetrical salen-type ligands: high yield synthesis of salen-type Schiff bases containing two different benzaldehyde moieties | |
Jin et al. | Design of N-cinnamyl sulfinamides as new sulfur-containing olefin ligands for asymmetric catalysis: achieving structural simplicity with a categorical linear framework | |
JP2008239495A (en) | Method for producing optically active epoxy compound, complex to be used in the method and method for producing the same | |
Tumma et al. | A facile method for the N-formylation of primary and secondary amines by liquid phase oxidation of methanol in the presence of hydrogen peroxide over basic copper hydroxyl salts | |
Kumar et al. | Half-sandwich para-cymene ruthenium (II) naphthylazophenolato complexes: Synthesis, molecular structure, light emission, redox behavior and catalytic oxidation properties | |
Sarmah et al. | Selective oxidation of alcohols catalysed by a cubane-like Co (III) oxo cluster immobilised on porous organomodified silica | |
Wong et al. | Ditopic redox-active polyferrocenyl zinc (II) dithiocarbamate macrocyclic receptors: synthesis, coordination and electrochemical recognition properties | |
Hao et al. | Trinuclear ruthenium carbonyl complexes with salicylaldimine ligands as efficient catalysts for the oxidation of secondary alcohols | |
Wang et al. | Asymmetric epoxidation of styrene and chromenes catalysed by chiral (salen) Mn (III) complexes with a pyrrolidine backbone | |
JP5552550B1 (en) | Oxidation catalyst and method for producing oxidation reaction product | |
WO2014034515A1 (en) | METHOD FOR OXIDIZING sp3C-H BOND | |
JP5552510B2 (en) | Oxidation catalyst and method for producing oxidation reaction product | |
CN115920973A (en) | Preparation method of deuterated methanol | |
JP2008222584A (en) | Method for producing imine compound | |
CN102584863A (en) | Metal complex of novel double piperidine derivative with symmetric structure | |
Das et al. | A novel quinoline-based NNN-pincer Cu (ii) complex as a superior catalyst for oxidative esterification of allylic C (sp 3)–H bonds | |
JP5659191B2 (en) | Heterocyclic compounds, oxidation catalysts and uses thereof | |
JP4413507B2 (en) | Pincer metal complex, method for producing the same, and pincer metal complex catalyst | |
CN104774183B (en) | A kind of auspicious relax of formoxyl cuts down the preparation method of spit of fland calcium intermediate | |
JP2021008467A (en) | Ruthenium complex and production method thereof, catalyst, and production method of oxygen-containing compound | |
JPH03246238A (en) | Oxygen oxidation of olefin with halogenated porphine complex catalyst | |
JP2009136807A (en) | Oxidation catalyst and its use | |
CN109553515B (en) | Method for preparing nonanal by selective oxidation of erucic acid or ester thereof | |
WO2024034666A1 (en) | Ruthenium complex, method for producing same, catalyst composition, oxidation method and method for producing oxygen-containing compound | |
CN117185966B (en) | Method for carrying out open-loop sulfonylation on cycloalkanol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140526 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5552550 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |