JP3791831B2 - Steam fired absorption chiller / heater - Google Patents

Steam fired absorption chiller / heater Download PDF

Info

Publication number
JP3791831B2
JP3791831B2 JP2001090591A JP2001090591A JP3791831B2 JP 3791831 B2 JP3791831 B2 JP 3791831B2 JP 2001090591 A JP2001090591 A JP 2001090591A JP 2001090591 A JP2001090591 A JP 2001090591A JP 3791831 B2 JP3791831 B2 JP 3791831B2
Authority
JP
Japan
Prior art keywords
solution
heat exchanger
temperature regenerator
line
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001090591A
Other languages
Japanese (ja)
Other versions
JP2002286320A (en
Inventor
部 尚 樹 刑
前 和 則 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2001090591A priority Critical patent/JP3791831B2/en
Publication of JP2002286320A publication Critical patent/JP2002286320A/en
Application granted granted Critical
Publication of JP3791831B2 publication Critical patent/JP3791831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷温水機に関し、特に、高温再生器、中温再生器、低温再生器を有する3重効用蒸気焚き吸収冷温水機に関する。
【0002】
【従来の技術】
図9に典型的な一例を示す従来の3重効用蒸気焚き吸収冷温水機J1は、高温再生器202と、中温再生器204と、低温再生器206と、吸収器208と、凝縮器210と、蒸発器212とを有している。そして、高温再生器202には加熱源である蒸気が流過する加熱用蒸気ライン214が連通し、加熱用蒸気が保有する熱量が高温再生器202内の吸収溶液に投入されて冷媒蒸気が発生(再生)する。
【0003】
高温再生器202で発生した蒸気は、蒸気ライン(第1の蒸気ライン)216を流れて、中温再生器204内の吸収溶液に対して、保有する熱量を投入する。これにより、中温再生器204で冷媒蒸気が発生(再生)する。
中温再生器204で発生した蒸気は、第2の冷媒蒸気ライン218を流れて、低温再生器206内の吸収溶液に対して、その保有する熱量を投入し、以って、低温再生器206から冷媒蒸気を発生せしめている。
【0004】
従来の3重効用蒸気焚き吸収冷温水機J1では、高温再生器202で熱交換後の蒸気(蒸気ドレン)は、加熱用蒸気ライン214Aを介してそのまま、系外へ排出される。加熱用蒸気ライン214A内の蒸気ドレンは、未だに或程度の熱量を保有しているが、その熱量を保有したまま系外に排出されており、不経済でもったいない。
【0005】
しかし、従来の3重効用蒸気焚き吸収冷温水機J1では、蒸気ドレンが保有している熱量の有効利用については、全く考えられていなかった。。
【0006】
【発明が解決しようとする課題】
本発明は上述したような従来技術の問題点に鑑みて提案されたものであり、蒸気ドレンが保有している熱量の有効利用することが出来る3重効用蒸気焚き吸収冷温水機の提供を目的としている。
【0007】
【課題を解決するための手段】
本発明の蒸気焚き吸収冷温水機は、高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、吸収器(208)から出た吸収溶液が、高温再生器(202)、中温再生器(204)、低温再生器(206)の順に流過する様に構成され、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から高温再生器(202)に向う吸収溶液ラインには低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)は高温再生器(202)から中温再生器(204)に向う吸収溶液ライン(104)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、中温溶液熱交換器(302)は中温再生器(204)から低温再生器(206)に向う吸収溶液ライン(106)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、低温溶液熱交換器(300)は低温再生器(206)から吸収器(208)に向う吸収溶液ライン(108)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第7の蒸気ドレン熱交換器(220、222、224、226、228、230、232)に連通しており、
第1の蒸気ドレン熱交換器(220)は、高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(222)は、高温再生器(202)に向う吸収溶液ラインの中温溶液熱交換器(302)と高温溶液熱交換器(304)の間における第1の分岐点(246B)で分岐する第1の分岐ライン(250)に介装されており、該第1の分岐ライン(250)は高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の第1の合流点(246G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第3の蒸気ドレン熱交換器(224)は、高温再生器(202)に向う吸収溶液ラインの中温溶液熱交換器(302)と第1の分岐点(246B)との間の領域(246)に介装され、
第4の蒸気ドレン熱交換器(226)は、高温再生器(202)に向う吸収溶液ラインの低温溶液熱交換器(300)と中温溶液熱交換器(302)の間における第2の分岐点(240B)で分岐する第2の分岐ライン(244)に介装されており、該第2の分岐ライン(244)は中温溶液熱交換器(302)をバイパスし且つ中温溶液熱交換器(302)と第3の蒸気ドレン熱交換器(224)の間の第2の合流点(242G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第5の蒸気ドレン熱交換器(228)は、高温再生器(202)に向う吸収溶液ラインの低温溶液熱交換器(300)と第2の分岐点(240B)との間の領域(240)に介装され、
第6の蒸気ドレン熱交換器(230)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)の間における第3の分岐点(234B)で分岐する第3の分岐ライン(238)に介装されており、該第3の分岐ライン(238)は低温溶液熱交換器(300)をバイパスし且つ低温溶液熱交換器(300)と第5の蒸気ドレン熱交換器(228)の間の第3の合流点(236G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第7の蒸気ドレン熱交換器(232)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と第3の分岐点(234B)との間の領域(235)に介装されており、
第1〜第7の蒸気ドレン熱交換器(220、222、224、226、228、230、232)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴としている(請求項1:図1)。
【0008】
また、本発明の蒸気焚き吸収冷温水機は、高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、吸収器(208)から出た吸収溶液が、高温再生器(202)、中温再生器(204)、低温再生器(206)の順に流過する様に構成され、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から高温再生器(202)に向う吸収溶液ラインには低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)は高温再生器(202)から中温再生器(204)に向う吸収溶液ライン(104)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、中温溶液熱交換器(302)は中温再生器(204)から低温再生器(206)に向う吸収溶液ライン(106)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、低温溶液熱交換器(300)は低温再生器(206)から吸収器(208)に向う吸収溶液ライン(108)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1の蒸気ドレン熱交換器(220)と、第2の蒸気ドレン熱交換器(232)と、第3の蒸気ドレン熱交換器(225)に連通しており、
第1の蒸気ドレン熱交換器(220)は、高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(232)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)との間の領域に介装されており、
第3の蒸気ドレン熱交換器(225)は、高温再生器(202)に向う吸収溶液ラインの第7の蒸気ドレン熱交換器(232)と低温溶液熱交換器(300)の間における分岐点(234B)で分岐する分岐ライン(236Q)に介装されており、該分岐ライン(236Q)は低温溶液熱交換器(300)と中温溶液熱交換器(302)と高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の合流点(246G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第1の蒸気ドレン熱交換器(220)と第2の蒸気ドレン熱交換器(232)と第3の蒸気ドレン熱交換器(225)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴としている(請求項2:図2)。
【0009】
そして、本発明の蒸気焚き吸収冷温水機は、高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、吸収器(208)から出た吸収溶液が、低温再生器(206)、中温再生器(204)、高温再生器(202)の順に流過する様に構成されており、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から低温再生器(206)に向う吸収溶液ライン(236)には低温溶液熱交換器(300)が介装され、低温再生器(206)から中温再生器(204)に向う吸収溶液ライン(242)には中温溶液熱交換器(302)が介装され、中温溶液熱交換器(302)から高温再生器(202)に向う吸収溶液ライン(248)には高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)から吸収器(208)に向う吸収溶液ライン(110)を流れる吸収溶液が保有する熱量を投入する様に構成され、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第9の蒸気ドレン熱交換器(220、222、224A、224B、226、228A、228B、230、232)に連通しており、
第1の蒸気ドレン熱交換器(220)は、中温再生器(204)から高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(222)は、中温再生器(204)から高温再生器(202)に向う吸収溶液ラインの中温再生器(204)と高温溶液熱交換器(304)の間における第1の分岐点(246B)で分岐する第1の分岐ライン(250)に介装されており、該第1の分岐ライン(250)は高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の第1の合流点(246G)で中温再生器(204)から高温再生器(202)に向う吸収溶液ラインと合流し、
第3の蒸気ドレン熱交換器(224A)は、中温再生器(204)から高温再生器(202)に向う吸収溶液ラインの中温再生器(204)と第1の分岐点(246B)との間の領域(386)に介装され、
第4の蒸気ドレン熱交換器(224B)は、低温再生器(206)から中温再生器(204)に向う吸収溶液ライン(384)の中温溶液熱交換器(302)と中温再生器(204)との間の領域に介装され、
第5の蒸気ドレン熱交換器(226)は、低温再生器(206)から中温再生器(204)に向う吸収溶液ラインの低温再生器(206)と中温溶液熱交換器(302)の間における第2の分岐点(240B)で分岐する第2の分岐ライン(244)に介装されており、該第2の分岐ライン(244)は中温溶液熱交換器(302)をバイパスし且つ中温溶液熱交換器(302)と第4の蒸気ドレン熱交換器(224B)の間の第2の合流点(242G)で低温再生器(206)から中温再生器(204)に向う吸収溶液ラインと合流し、
第6の蒸気ドレン熱交換器(228A)は、低温再生器(206)から中温再生器(204)に向う吸収溶液ラインの低温再生器(206)と第2の分岐点(240B)との間の領域(384)に介装され、
第7の蒸気ドレン熱交換器(228B)は、吸収器(208)から低温再生器(206)に向う吸収溶液ラインの低温溶液熱交換器(300)と低温再生器(206)との間の領域(382)に介装され、
第8の蒸気ドレン熱交換器(230)は、吸収器(208)から低温再生器(206)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)の間における第3の分岐点(234B)で分岐する第3の分岐ライン(238)に介装されており、該第3の分岐ライン(238)は低温溶液熱交換器(300)をバイパスし且つ低温溶液熱交換器(300)と第7の蒸気ドレン熱交換器(228B)の間の第3の合流点(236G)で吸収器(208)から低温再生器(206)に向う吸収溶液ラインと合流し、
第9の蒸気ドレン熱交換器(232)は、吸収器(208)から低温再生器(206)に向う吸収溶液ラインの吸収溶液ポンプ(102)と第3の分岐点(234B)との間の領域(235)に介装されており、
第1〜第9の蒸気ドレン熱交換器(220、222、224A、224B、226、228A、228B、230、232)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴としている(請求項3:図3)。
【0010】
さらに、本発明の蒸気焚き吸収冷温水機は、高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)を出た吸収溶液が低温再生器(206)、中温再生器(204)、高温再生器(202)の順に流過する様に構成され且つ高温再生器(202)と吸収器(208)とを連通する吸収溶液ライン(260)を有し、低温再生器(206)と中温再生器(204)とを連通する吸収溶液ライン(262)から分岐(264)し且つ高温再生器(202)と吸収器(208)とを連通する前記吸収溶液ライン(260)と合流(266)する第1の分岐吸収溶液ライン(268)を有し、中温再生器(204)と高温再生器(202)とを連通する吸収溶液ライン(270)から分岐(272)し且つ高温再生器(202)と吸収器(208)とを連通する前記吸収溶液ライン(260)と合流(274)する第2の分岐吸収溶液ライン(276)を有し、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から低温再生器(206)に向う吸収溶液ライン(236)には低温溶液熱交換器(300)が介装され、低温再生器(206)から中温再生器(204)に向う吸収溶液ライン(242)には中温溶液熱交換器(302)が介装され、中温溶液熱交換器(302)から高温再生器(202)に向う吸収溶液ライン(248)には高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)から吸収器(208)に向う吸収溶液ライン(110)を流れる吸収溶液が保有する熱量を投入する様に構成され、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第9の蒸気ドレン熱交換器(220、222、224、224B、226、228A、228B、230、232)に連通しており、
第1の蒸気ドレン熱交換器(220)は、中温再生器(204)から高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(222)は、中温再生器(204)から高温再生器(202)に向う吸収溶液ラインの第2の分岐吸収溶液ライン(276)の分岐部(272)と高温溶液熱交換器(304)の間における第1の分岐点(246B)で分岐する第1の分岐ライン(250)に介装されており、該第1の分岐ライン(250)は高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の第1の合流点(246G)で中温再生器(204)から高温再生器(202)に向う吸収溶液ラインと合流し、
第3の蒸気ドレン熱交換器(224)は、中温再生器(204)から高温再生器(202)に向う吸収溶液ラインの第2の分岐吸収溶液ライン(276)の分岐部(272)と第1の分岐点(246B)との間の領域に介装され、
第4の蒸気ドレン熱交換器(224B)は、低温再生器(206)から中温再生器(204)に向う吸収溶液ライン(384)の中温溶液熱交換器(302)と中温再生器(204)との間の領域に介装され、
第5の蒸気ドレン熱交換器(226)は、低温再生器(206)から中温再生器(204)に向う吸収溶液ラインの第1の分岐吸収溶液ライン(268)の分岐部(264)と中温溶液熱交換器(302)の間における第2の分岐点(240B)で分岐する第2の分岐ライン(244)に介装されており、該第2の分岐ライン(244)は中温溶液熱交換器(302)をバイパスし且つ中温溶液熱交換器(302)と第4の蒸気ドレン熱交換器(224B)の間の第2の合流点(242G)で低温再生器(206)から中温再生器(204)に向う吸収溶液ラインと合流し、
第6の蒸気ドレン熱交換器(228A)は、低温再生器(206)から中温再生器(204)に向う吸収溶液ラインの第1の分岐吸収溶液ライン(268)の分岐部(264)と第2の分岐点(240B)との間の領域に介装され、
第7の蒸気ドレン熱交換器(228B)は、吸収器(208)から低温再生器(206)に向う吸収溶液ラインの低温溶液熱交換器(300)と低温再生器(206)との間の領域(382)に介装され、
第8の蒸気ドレン熱交換器(230)は、吸収器(208)から低温再生器(206)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)の間における第3の分岐点(234B)で分岐する第3の分岐ライン(238)に介装されており、該第3の分岐ライン(238)は低温溶液熱交換器(300)をバイパスし且つ低温溶液熱交換器(300)と第7の蒸気ドレン熱交換器(228B)の間の第3の合流点(236G)で吸収器(208)から低温再生器(206)に向う吸収溶液ラインと合流し、
第9の蒸気ドレン熱交換器(232)は、吸収器(208)から低温再生器(206)に向う吸収溶液ラインの吸収溶液ポンプ(102)と第3の分岐点(234B)との間の領域(235)に介装されており、
第1〜第9の蒸気ドレン熱交換器(220、222、224、224B、226、228A、228B、230、232)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴としている(請求項4:図4)。
【0011】
或いは、本発明の蒸気焚き吸収冷温水機は、高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から高温再生器(202)に向う吸収溶液ラインには低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)は高温再生器(202)から出た吸収溶液ライン(104)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、中温溶液熱交換器(302)は中温再生器(204)から低温再生器(206)に向う吸収溶液ライン(314)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、低温溶液熱交換器(300)は低温再生器(206)から吸収器(208)に向う吸収溶液ライン(316)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、
吸収器(208)から高温再生器(202)に連通する吸収溶液ライン(282、284、286)が、低温溶液熱交換器(300)と中温溶液熱交換器(302)との間の領域で低温再生器(206)に連通する第1の分岐吸収溶液ライン(306)が分岐(308)しており、中温溶液熱交換器(302)と高温溶液熱交換器(304)との間の領域で中温再生器(204)に連通する第2の分岐吸収溶液ライン(310)が分岐(311)しており、高温再生器(202)から吸収器(208)に向かう吸収溶液ライン(312、314、316)には、中温再生器(204)で加熱された吸収溶液が流れる吸収溶液ライン(318)が合流(320)しており、且つ、低温再生器(206)で加熱された吸収溶液が流れる吸収溶液ライン(322)が合流(324)しており、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第9の蒸気ドレン熱交換器(220、222、223A、224、226、227、228、230、232)に連通しており、
第1の蒸気ドレン熱交換器(220)は、高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(222)は、高温再生器(202)に向う吸収溶液ラインの第2の分岐吸収溶液ライン(310)の分岐部(311)と高温溶液熱交換器(304)の間における第1の分岐点(246B)で分岐する第1の分岐ライン(250)に介装されており、該第1の分岐ライン(250)は高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の第1の合流点(246G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第3の蒸気ドレン熱交換器(223A)は、高温再生器(202)に向う吸収溶液ラインの第2の分岐吸収溶液ライン(310)の分岐部(311)と第1の分岐点(246B)との間の領域(286)に介装され、
第4の蒸気ドレン熱交換器(224)は、高温再生器(202)に向う吸収溶液ラインの中温溶液熱交換器(302)と第2の分岐吸収溶液ライン(310)の分岐部(311)との間の領域に介装され、
第5の蒸気ドレン熱交換器(226)は、高温再生器(202)に向う吸収溶液ラインの第1の分岐吸収溶液ライン(306)の分岐部(308)と中温溶液熱交換器(302)の間における第2の分岐点(240B)で分岐する第2の分岐ライン(244)に介装されており、該第2の分岐ライン(244)は中温溶液熱交換器(302)をバイパスし且つ中温溶液熱交換器(302)と第4の蒸気ドレン熱交換器(224)の間の第2の合流点(242G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第6の蒸気ドレン熱交換器(227)は、高温再生器(202)に向う吸収溶液ラインの第1の分岐吸収溶液ライン(306)の分岐部(308)と第2の分岐点(240B)との間の領域(284)に介装され、
第7の蒸気ドレン熱交換器(228)は、高温再生器(202)に向う吸収溶液ラインの低温溶液熱交換器(300)と第1の分岐吸収溶液ライン(306)の分岐部(308)との間の領域に介装され、
第8の蒸気ドレン熱交換器(230)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)の間における第3の分岐点(282B)で分岐する第3の分岐ライン(283)に介装されており、該第3の分岐ライン(283)は低温溶液熱交換器(300)をバイパスし且つ低温溶液熱交換器(300)と第7の蒸気ドレン熱交換器(228)の間の第3の合流点(283G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第9の蒸気ドレン熱交換器(232)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と第3の分岐点(282B)との間の領域(235)に介装されており、
第1〜第9の蒸気ドレン熱交換器(220、222、223A、224、226、227、228、230、232)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴としている(請求項5:図5)。
【0012】
本発明の蒸気焚き吸収冷温水機は、高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から高温再生器(202)に向う吸収溶液ラインには低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)は高温再生器(202)から出た吸収溶液ライン(104)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、中温溶液熱交換器(302)は中温再生器(204)から低温再生器(206)に向う吸収溶液ライン(314)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、低温溶液熱交換器(300)は低温再生器(206)から吸収器(208)に向う吸収溶液ライン(316)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、
吸収器(208)から高温再生器(202)に連通する吸収溶液ライン(282、284、286)が、低温溶液熱交換器(300)と中温溶液熱交換器(302)との間の領域で低温再生器(206)に連通する第1の分岐吸収溶液ライン(306)が分岐(308)しており、中温溶液熱交換器(302)と高温溶液熱交換器(304)との間の領域で中温再生器(204)に連通する第2の分岐吸収溶液ライン(310)が分岐(311)しており、高温再生器(202)から吸収器(208)に向かう吸収溶液ライン(312、314、316)には、中温再生器(204)で加熱された吸収溶液が流れる吸収溶液ライン(318)が合流(320)しており、且つ、低温再生器(206)で加熱された吸収溶液が流れる吸収溶液ライン(322)が合流(324)しており、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第3の蒸気ドレン熱交換器(220、232、227C)に連通しており、
第1の蒸気ドレン熱交換器(220)は、高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(232)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)との間の領域(282)に介装されており、
第3の蒸気ドレン熱交換器(227C)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)との間の領域(282)における分岐点(282B)で分岐する分岐ライン(251S)に介装されており、該分岐ライン(251S)は低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の合流点(287G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第1〜第3の蒸気ドレン熱交換器(220、232、227C)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴としている(請求項6:図6)。
【0013】
また、本発明の蒸気焚き吸収冷温水機は、高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から高温再生器(202)に向う吸収溶液ラインには低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)は高温再生器(202)から中温再生器(204)へ向う吸収溶液ライン(104)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、中温溶液熱交換器(302)は中温再生器(204)から低温再生器(206)に向う吸収溶液ライン(318)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、低温溶液熱交換器(300)は低温再生器(206)から吸収器(208)に向う吸収溶液ライン(322)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、
吸収器(208)から高温再生器(202)に連通する吸収溶液ライン(282、286)が、低温溶液熱交換器(300)と中温溶液熱交換器(302)との間の領域で低温再生器(206)に連通する第1の分岐吸収溶液ライン(306)が分岐(308)しており、中温溶液熱交換器(302)と高温溶液熱交換器(304)との間の領域で中温再生器(204)に連通する第2の分岐吸収溶液ライン(310)が分岐(311)しており、高温再生器(202)で加熱された吸収溶液が流れる吸収溶液ライン(340)は中温再生器(204)に連通しており、中温再生器(204)で加熱された吸収溶液が流れる吸収溶液ライン(318)は第1の分岐吸収溶液ライン(306)に合流して低温再生器(206)に連通しており、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第9の蒸気ドレン熱交換器(220、222、223A、224、226、227、228、230、232)に連通しており、
第1の蒸気ドレン熱交換器(220)は、高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(222)は、高温再生器(202)に向う吸収溶液ラインの第2の分岐吸収溶液ライン(310)の分岐部(311)と高温溶液熱交換器(304)の間における第1の分岐点(246B)で分岐する第1の分岐ライン(250)に介装されており、該第1の分岐ライン(250)は高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の第1の合流点(246G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第3の蒸気ドレン熱交換器(223A)は、高温再生器(202)に向う吸収溶液ラインの第2の分岐吸収溶液ライン(310)の分岐部(311)と第1の分岐点(246B)との間の領域(286)に介装され、
第4の蒸気ドレン熱交換器(224)は、高温再生器(202)に向う吸収溶液ラインの中温溶液熱交換器(302)と第2の分岐吸収溶液ライン(310)の分岐部(311)との間の領域に介装され、
第5の蒸気ドレン熱交換器(226)は、高温再生器(202)に向う吸収溶液ラインの第1の分岐吸収溶液ライン(306)の分岐部(308)と中温溶液熱交換器(302)の間における第2の分岐点(240B)で分岐する第2の分岐ライン(244)に介装されており、該第2の分岐ライン(244)は中温溶液熱交換器(302)をバイパスし且つ中温溶液熱交換器(302)と第4の蒸気ドレン熱交換器(224)の間の第2の合流点(242G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第6の蒸気ドレン熱交換器(227)は、高温再生器(202)に向う吸収溶液ラインの第1の分岐吸収溶液ライン(306)の分岐部(308)と第2の分岐点(240B)との間の領域に介装され、
第7の蒸気ドレン熱交換器(228)は、高温再生器(202)に向う吸収溶液ラインの低温溶液熱交換器(300)と第1の分岐吸収溶液ライン(306)の分岐部(308)との間の領域に介装され、
第8の蒸気ドレン熱交換器(230)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)の間における第3の分岐点(282B)で分岐する第3の分岐ライン(283)に介装されており、該第3の分岐ライン(283)は低温溶液熱交換器(300)をバイパスし且つ低温溶液熱交換器(300)と第7の蒸気ドレン熱交換器(228)の間の第3の合流点(283G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第9の蒸気ドレン熱交換器(232)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と第3の分岐点(282B)との間の領域(235)に介装されており、
第1〜第9の蒸気ドレン熱交換器(220、222、223A、224、226、227、228、230、232)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴としている(請求項7:図7)。
【0014】
そして本発明の蒸気焚き吸収冷温水機は、高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から高温再生器(202)に向う吸収溶液ラインには低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)は高温再生器(202)から中温再生器(204)へ向う吸収溶液ライン(104)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、中温溶液熱交換器(302)は中温再生器(204)から低温再生器(206)に向う吸収溶液ラインを流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、低温溶液熱交換器(300)は低温再生器(206)から吸収器(208)に向う吸収溶液ラインを流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、
吸収器(208)から高温再生器(202)に連通する吸収溶液ライン(282、286)が、低温溶液熱交換器(300)と中温溶液熱交換器(302)との間の領域で低温再生器(206)に連通する第1の分岐吸収溶液ライン(306)が分岐(308)しており、中温溶液熱交換器(302)と高温溶液熱交換器(304)との間の領域で中温再生器(204)に連通する第2の分岐吸収溶液ライン(310)が分岐(311)しており、高温再生器(202)で加熱された吸収溶液が流れる吸収溶液ライン(340)は中温再生器(204)に連通しており、中温再生器(204)で加熱された吸収溶液が流れる吸収溶液ラインは第1の分岐吸収溶液ライン(306)に合流して低温再生器(206)に連通しており、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第3の蒸気ドレン熱交換器(220、232、227C)に連通しており、
第1の蒸気ドレン熱交換器(220)は、高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(232)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)との間の領域に介装されており、
第3の蒸気ドレン熱交換器(227C)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)との間の領域における分岐点(282B)で分岐する分岐ライン(251S)に介装されており、該分岐ライン(251S)は低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の合流点(287G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第1〜第3の蒸気ドレン熱交換器(220、232、227C)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴としている(請求項8:図8)。
【0015】
かかる構成を具備する本発明によれば、前記加熱用蒸気ライン(214、214A)は高温再生器(202)に連通してから蒸気ドレン熱交換器(220、222、224、226、228、230、232)に連通しており、該蒸気ドレン熱交換器(220、222、224、226、228、230、232)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量が、吸収器(208)から出て再生器(202、204、206)に連通する吸収溶液ライン(234、238、240、244、246、250、252)を流過する吸収溶液(再生器に供給される吸収溶液)に投入される様に構成されている。
すなわち、従来技術では系外へ排出されていた蒸気ドレンが保有する熱量が、再生器(202、204、206)に向けて流れている吸収溶液(再生器に供給される吸収溶液)に投入されて、該吸収溶液の顕熱上昇に有効利用される。
【0016】
そして、再生器(202、204、206)に供給される吸収溶液の液温が昇温する(顕熱上昇)結果として、再生器(202、204、206)で投入される熱量が同一であれば、冷媒蒸気(水蒸気)の再生量が増大し、吸収冷温水機の効率が向上するのである。
【0017】
【発明の実施の形態】
以下、添付図面を参照して、本発明を3重効用蒸気焚き吸収冷温水機に適用した実施形態を説明する。なお、添付図面において、同様な部材には同様な符号を付して、部材名称と符号の重複説明を省略している。
【0018】
図1は、第1の実施形態であるシリーズフロータイプ吸収冷温水機S1の構成を示している。
【0019】
吸収器208と高温再生器202は、ポンプ102を介した吸収溶液ライン234で連通され、高温再生器202と中温再生器204とは吸収溶液ライン104と、第1の冷媒蒸気ライン216で連通されている。
第1の冷媒蒸気ライン216は、ライン内を通過する冷媒蒸気が保有する熱量が、中温再生器204内の吸収溶液に投入されて冷媒蒸気が再生されるよう構成されている。
【0020】
中温再生器204と低温再生器206とは吸収溶液ライン106と第2の冷媒蒸気ライン218で連通されている。
第2の冷媒蒸気ライン218は、ライン内を通過する冷媒蒸気が保有する熱量が、低温再生器206内の吸収溶液に投入されて冷媒蒸気が再生されるよう構成されている。
【0021】
低温再生器206と吸収器208は、吸収溶液ライン108で連通されている。
吸収溶液ライン104に高温溶液熱交換器304が介装され、吸収溶液ライン106に中温溶液熱交換器302が介装され、吸収溶液ライン108に低温溶液熱交換器300が介装されている。
【0022】
高温溶液熱交換器304、中温溶液熱交換器302及び低温溶液熱交換器300は、いづれも吸収溶液ライン234と熱的に接触し、吸収溶液ライン234に伝熱させるよう構成されている。
【0023】
高温再生器202に、外部熱源に通じる加熱用蒸気ライン214が連通され、加熱用蒸気ライン214は高温再生器202を加熱経由してライン214Aとなって次記する各蒸気ドレン熱交換器に接続されて蒸気供給源に戻るよう連通されている。
【0024】
蒸気ドレン熱交換器220は、吸収溶液ライン234の高温溶液熱交換器304と高温再生器202との間の領域252に、ライン214Aと熱的に接触して介装されている。
【0025】
蒸気ドレン熱交換器222は、吸収溶液ライン234の高温溶液熱交換器304を分岐部246Bと合流部246Gでバイパスする領域250に、ライン214Aと熱的に接触して介装されている。
【0026】
蒸気ドレン熱交換器224は、吸収溶液ライン234の高温溶液熱交換器304と中温溶液熱交換器302との間の領域246に、ライン214Aと熱的に接触して介装されている。
【0027】
蒸気ドレン熱交換器226は、吸収溶液ライン234の中温溶液熱交換器302を分岐部240Bと合流部242Gでバイパスする領域244に、ライン214Aと熱的に接触して介装されている。
【0028】
蒸気ドレン熱交換器228は、吸収溶液ライン234の中温溶液熱交換器302と低温溶液熱交換器300との間の領域240に、ライン214Aと熱的に接触して介装されている。
【0029】
蒸気ドレン熱交換器230は、吸収溶液ライン234の低温溶液熱交換器300を分岐部234Bと合流部236Gでバイパスする領域238に、ライン214Aと熱的に接触して介装されている。
【0030】
蒸気ドレン熱交換器232は、吸収溶液ライン234の低温溶液熱交換器300と吸収器208との間の領域235に、ライン214Aと熱的に接触して介装されている。
【0031】
上記各蒸気ドレン熱交換器220、222、224、226、228、230、232は、これらを経由するドレンの温度が、熱的に対となる吸収溶液ライン234の温度より高温であることが必要条件である。したがって、吸収冷温水機S1の温度状況、空調負荷、加熱蒸気の温度、外気条件等によって、各蒸気ドレン熱交換器220、222、224、226、228、230、232の何れか1つあるいは全数を含む何れか複数が介装されている。
【0032】
上記吸収冷温水機S1の作用を、各蒸気ドレン熱交換器220、222、224、226、228、230、232の全てが介装されている例について説明する。
【0033】
吸収器208からポンプ102で吸収溶液ライン234に吐出された冷媒を含む低温の稀釈吸収溶液Liは、蒸気ドレン熱交換器232で加熱され昇温し、分岐部234Bで分岐して一方は領域238を通過して蒸気ドレン熱交換器230で加熱され昇温し、分岐部234で直行の他方の吸収溶液Liは低温溶液熱交換器300を通過して加熱され昇温し、合流部236Gで合流する。
【0034】
なお、分岐部234Bでの吸収溶液Liの分岐割合は、低温溶液熱交換器300からの受熱と、蒸気ドレン熱交換器230からの受熱の合計熱量が最大となって合流部236Gでの吸収溶液Li温度が最大になるように配分される。
【0035】
合流部236Gを通過した吸収溶液Liは、蒸気ドレン熱交換器228を通過して加熱され昇温し、分岐部240Bで分岐して一方は領域244を通過して蒸気ドレン熱交換器226で加熱され昇温し、分岐部240Bで直行の他方の吸収溶液Liは中温溶液熱交換器302を通過して加熱され昇温し、合流部242Gで合流する。分岐部240Bでの吸収溶液Liの分岐割合は、分岐部234Bでの分岐と同じ要領である。
【0036】
合流部242Gを通過した吸収溶液Liは、蒸気ドレン熱交換器224を通過して加熱され昇温し、分岐部246Bで分岐して一方は領域250を通過して蒸気ドレン熱交換器222で加熱され昇温し、分岐部246Bで直行の他方の吸収溶液Liは高温溶液熱交換器304を通過して加熱され昇温し、合流部246Gで合流する。分岐部246Bでの吸収溶液Liの分岐割合は、分岐部234Bでの分岐と同じ要領である。
【0037】
合流部246Gを通過した吸収溶液Liは、蒸気ドレン熱交換器220を通過して加熱され昇温し、高温再生器202に導入される。
【0038】
冷媒溶液を含んだ稀釈吸収溶液Liは、高温再生器202で加熱用蒸気ライン214による蒸気Stにより加熱され、冷媒溶液を蒸気として分離され濃縮された濃縮吸収溶液Liは、吸収溶液ライン104によって高温溶液熱交換器304で放熱し中温再生器204に導入される。
【0039】
濃縮吸収溶液Liは、中温再生器204で第1の冷媒蒸気ライン216からの冷媒蒸気によって加熱され、さらに冷媒溶液を蒸気として分離され濃縮された濃縮溶液Liは、吸収溶液ライン106に向かう。
吸収溶液ライン106に導かれた吸収溶液Liは、中温溶液熱交換器302で放熱し低温再生器206に導入される。
低温再生器206に導入された濃縮吸収溶液Liは冷媒溶液を蒸気として分離され一層濃縮されて、吸収溶液ライン108に導かれ低温溶液熱交換器300で放熱し、吸収器208に戻る。
【0040】
一方、高温再生器202で蒸発分離された冷媒h2は、第1の冷媒蒸気ライン216を介して中温再生器204で放熱して濃縮吸収溶液Liをさらに加熱し、凝縮器210に向かう。また、中温再生器204で蒸発分離された冷媒h3は、低温再生器206で放熱して濃縮吸収溶液Liを加熱し、第1の冷媒蒸気ライン216に合流して凝縮器210に向かう。
【0041】
凝縮器210に導かれた冷媒h2、h3は、凝縮され、蒸発器212で蒸発して外部流体と熱交換する。また、吸収器208で冷媒が外部流体と熱交換する。
このようにして、加熱用蒸気ライン214を介した蒸気の熱量を余すところなく利用して吸収冷温水機S1の熱効率を向上させる。
【0042】
図2は、第2の実施形態であるシリーズフロータイプの吸収冷温水機S4の構成を示している。図1の実施形態と異なる部分を主体に説明する。
高温再生器202に、外部熱源に通じる加熱用蒸気ライン214が連通され、加熱用蒸気ライン214は高温再生器202を加熱経由してライン214Aとなって次記する蒸気ドレン熱交換器に接続されて蒸気供給源に連通されている。
【0043】
蒸気ドレン熱交換器225は、吸収溶液ライン234の蒸気ドレン熱交換器220と高温溶液熱交換器304との間と、低温溶液熱交換器300と蒸気ドレン熱交換器232との間を、分岐部234Bと合流部246Gでバイパスする領域236Qに、ライン214Aと熱的に接触して介装されている。
【0044】
蒸気ドレン熱交換器225の前後に装着されている蒸気ドレン232と220への蒸気ドレン熱交換器225の連通関係は、実質的に前記図1の実施形態と同じである。即ち、図1における蒸気ドレン熱交換器230、228、226、222に代えて、蒸気ドレン熱交換器225を介装した状態である。
上記を除いては、前記図1の構成と同じである。
【0045】
上記吸収冷温水機S4の作用を、蒸気ドレン熱交換器225が介装されている周辺を主体にして説明する。
吸収器208からポンプ102で吸収溶液ライン234に吐出された冷媒を含む低温の稀釈吸収溶液Liは、蒸気ドレン熱交換器232で加熱され昇温し、分岐部234Bで分岐して、一方は領域236Qを通過して蒸気ドレン熱交換器225で加熱され昇温し、分岐部234Bで直行の他方の吸収溶液Liは低温溶液熱交換器300、中低温溶液熱交換器302及び高温溶液熱交換器304を通過して加熱され昇温し、合流部246Gで合流する。
【0046】
合流部246Gを通過した吸収溶液Liは、蒸気ドレン熱交換器220を通過して加熱され昇温して高温再生器202方向に向かう。
上記のようにして、吸収冷温水器の配熱特性に応じて、蒸気ドレン熱交換器の個数を少数にして、かつ熱効率を向上させる。
【0047】
図3は、第3の実施形態であるリバースフロータイプの吸収冷温水機RS5の構成を示している。図1の実施形態と異なる部分を主体に説明する。
稀釈吸収溶液の往路を構成する吸収器208と低温再生器206は、ポンプ102を介した吸収溶液ライン234、235、236、382で連通され、低温再生器206と中温再生器204とは吸収溶液ライン384、242、384で連通され、中温再生器204と高温再生器202とは吸収溶液ライン386、248、252でで連通されている。
【0048】
濃縮吸収溶液の復路を構成する高温再生器202と吸収器208は、吸収溶液ライン110で連通されている。
吸収溶液ライン110には高温再生器202側から高温溶液熱交換器304、中温溶液熱交換器302、低温溶液熱交換器300が介装されている。
【0049】
吸収溶液ライン386と252間の領域248は、高温溶液熱交換器304を貫通して熱的に接触されている。領域248に、分岐部246Bと合流部246Gで高温溶液熱交換器304をバイパスする領域250が連通されている。
【0050】
吸収溶液ライン384の中間部領域242は、中温溶液熱交換器302を貫通して熱的に接触されている。領域242に、分岐部240Bと合流部242Gで中温溶液熱交換器302をバイパスする領域244が連通されている。
【0051】
吸収溶液ライン234と382の中間部領域236は、低温溶液熱交換器300を貫通して熱的に接触されている。領域236に、分岐部234Bと合流部236Gで低温溶液熱交換器300をバイパスする領域238が連通されている。
【0052】
高温溶液熱交換器304、中温溶液熱交換器302及び低温溶液熱交換器300は、それぞれ濃縮吸収溶液から稀釈吸収溶液に熱的に接触し、稀釈吸収溶液に伝熱させるよう構成されている。
【0053】
高温再生器202に、外部熱源に通じる加熱用蒸気ライン214が連通され、加熱用蒸気ライン314は高温再生器202を加熱経由してライン214Aとなって次記する各蒸気ドレン熱交換器に接続されて蒸気供給源に連通されている。
【0054】
蒸気ドレン熱交換器220は、高温溶液熱交換器304と高温再生器202との間の領域252に、ライン214Aと熱的に接触して介装されている。
【0055】
蒸気ドレン熱交換器222は、高温溶液熱交換器304をバイパスする領域250に、ライン214Aと熱的に接触して介装されている。
蒸気ドレン熱交換器224Aは、高温溶液熱交換器304と中温再生器204との間の領域386に、ライン214Aと熱的に接触して介装されている。
【0056】
蒸気ドレン熱交換器224Bは、中温再生器204と中温溶液熱交換器302との間の領域384に、ライン214Aと熱的に接触して介装されている。
【0057】
蒸気ドレン熱交換器226は、中温溶液熱交換器302をバイパスする領域244に、ライン214Aと熱的に接触して介装されている。
【0058】
蒸気ドレン熱交換器228Aは、中温溶液熱交換器302と低温再生器206との間の領域384に、ライン214Aと熱的に接触して介装されている。
【0059】
蒸気ドレン熱交換器228Bは、低温再生器206と低温溶液熱交換器300との間の領域382に、ライン214Aと熱的に接触して介装されている。
蒸気ドレン熱交換器230は、低温溶液熱交換器300をバイパスする領域238に、ライン214Aと熱的に接触して介装されている。
【0060】
蒸気ドレン熱交換器232は、吸収器208と低温溶液熱交換器300との間の領域235に、ライン214Aと熱的に接触して介装されている。
【0061】
上記各蒸気ドレン熱交換器220、222、224A、224B、226、228A、228B、230、232は、これらを経由するドレンの温度が、熱的に対となる吸収溶液の温度より高温であることが必要条件である。したがって、吸収冷温水機RS5の温度状況、空調負荷、加熱蒸気の温度、外気条件等によって、各蒸気ドレン熱交換器220、222、224A、224B、226、228A、228B、230、232の何れか1つあるいは全数を含む何れか複数が介装されている。
上記以外の冷媒蒸気ライン等は、図1と同じである。
【0062】
上記吸収冷温水機RS5の作用を、各蒸気ドレン熱交換器220、222、224A、224B、226、228A、228B、230、232の全てが介装されている例について説明する。
【0063】
吸収器208からポンプ102で吸収溶液ライン234に吐出された冷媒を含む低温の稀釈吸収溶液Liは、蒸気ドレン熱交換器232で加熱され昇温し、分岐部234Bで分岐して一方は領域238を通過して蒸気ドレン熱交換器230で加熱され昇温し、分岐部234Bで直行の他方の吸収溶液Liは低温溶液熱交換器300を通過して加熱され昇温し、合流部236Gで合流する。
【0064】
なお、分岐部234Bでの吸収溶液Liの分岐割合は、低温溶液熱交換器300からの受熱と、蒸気ドレン熱交換器230からの受熱の合計熱量が最大となって合流部236Gでの吸収溶液Li温度が最大になるように配分される。
【0065】
合流部236Gを通過した稀釈吸収溶液Liは、蒸気ドレン熱交換器228Bを通過して加熱され昇温し、低温再生器206に導入される。
低温再生器206で加熱され昇温した稀釈吸収溶液Liは吸収溶液ライン384を介して蒸気ドレン熱交換器228Aで加熱され昇温して分岐部240Bに向かう。そこで分岐した一方の稀釈吸収溶液Liは領域244を通過して蒸気ドレン熱交換器226で加熱され昇温し、分岐部240Bで直行の他方の稀釈吸収溶液Liは中温溶液熱交換器302を通過して加熱され昇温し、合流部242Gで合流する。
【0066】
なお、分岐部240Bでの吸収溶液Liの分岐割合は、前記分岐部234Bにおける分岐要領と同様である
【0067】
合流部242Gを通過した稀釈吸収溶液Liは、蒸気ドレン熱交換器224Bを通過して加熱され昇温し中温再生器204で冷媒蒸気に加熱され、冷媒の1部が蒸発分離されて濃縮される。
【0068】
中温再生器204で濃縮された吸収溶液Liは、溶液ラインの領域386を介して蒸気ドレン熱交換器224Aで加熱され昇温して、分岐部246Bに向かう。
分岐部246Bで分岐した吸収溶液Liの一方は領域250を通過して蒸気ドレン熱交換器222で加熱され昇温し、分岐部246Bで直行の他方の吸収溶液Liは高温溶液熱交換器304を通過して加熱され昇温し、合流部246Gで合流する。
【0069】
なお、分岐部246Bでの吸収溶液Liの分岐割合は、前記分岐部234Bにおける分岐要領と同様である。
【0070】
合流部246Gを通過した吸収溶液Liは、蒸気ドレン熱交換器220を通過して加熱され昇温し、高温再生器202に導入される。
【0071】
冷媒溶液を含んだ吸収溶液Liは、高温再生器202で加熱用蒸気ライン214による蒸気Stにより加熱され、冷媒溶液を蒸気として分離される。濃縮された濃縮吸収溶液Liは、吸収溶液ライン110を介して、高温溶液熱交換器304、中温溶液熱交換器302、低温溶液熱交換器300で放熱し、吸収器208に導入される。
【0072】
このようにして、加熱用蒸気ライン214を介した蒸気の熱量を余すところなく利用して吸収冷温水機RS5の熱効率を向上させる。
【0073】
図4は、第4の実施形態であるリバースパラレルタイプの吸収冷温水機RP6の構成を示している。図5の実施形態と異なる部分を主体に説明する。
低温再生器206と中温再生器204を連通する吸収溶液ライン262の蒸気ドレン熱交換器228の手前に分岐部264が設けられ、分岐ライン268が取りつけられている。分岐ライン268は、高温再生器202と吸収器208を連通する吸収溶液ライン110の中温溶液熱交換器302と低温溶液熱交換器300の間に連通されている。
【0074】
また、中温再生器204と高温再生器202を連通する吸収溶液ライン270の蒸気ドレン224の手前に分岐部272が設られ、分岐ライン276が取りつけられている。分岐ライン276は、中温溶液熱交換器302と高温溶液熱交換器304との間に連通されている。
その他の構成は、図3の吸収冷温水機RS5と同じである。
【0075】
上記吸収冷温水機RP6の作用を、分岐ライン268、276が取りつけられている周辺を主体にして説明する。
吸収器208からポンプ102で吸収溶液ライン234に吐出された冷媒を含む低温の稀釈吸収溶液Liは、蒸気ドレン熱交換器232、低温溶液熱交換器300等を通過して加熱され昇温し、低温再生器206に導入される。
【0076】
低温再生器206で加熱され少し濃縮された稀釈吸収溶液Liは吸収溶液ライン262の分岐部264に向かう。分岐部264で分岐された稀釈吸収溶液Liの一部は、分岐ライン268を介して合流部266で濃縮吸収溶液Liの流れる吸収溶液ライン110に入り、吸収器208に導入される。分岐部264を通過した稀釈吸収溶液Liは蒸気ドレン熱交換器228、中温溶液熱交換器302等を通過して加熱され昇温し中温再生器204に向かう。
【0077】
中温再生器204で加熱され、さらに濃縮された稀釈吸収溶液Liは、吸収溶液ライン270の分岐部272に向かう。分岐部272で分岐された稀釈吸収溶液Liの一部は、分岐ライン274を介して合流部274で濃縮吸収溶液Liの流れる吸収溶液ライン110に入り、吸収器208に導入される。
【0078】
分岐部276を通過した稀釈吸収溶液Liは蒸気ドレン熱交換器224、高温溶液熱交換器304等を通過して加熱され昇温し高温再生器202に向かう。
冷媒溶液を含んだ吸収溶液Liは、高温再生器202で加熱用蒸気ライン214による蒸気Stにより加熱され、冷媒溶液を蒸気として分離される。濃縮された濃縮吸収溶液Liは、吸収溶液ライン110を介して、高温溶液熱交換器304、中温溶液熱交換器302、低温溶液熱交換器300で放熱し、吸収器208に導入される。
上記で省略した作用細部を含む作用全般は、すべて図5の吸収冷温水機RS5と同じである。
【0079】
このようにして、低温再生器206、中温再生器204で加熱され濃縮された稀釈吸収溶液の一部を濃縮吸収溶液ライン110に導入して、系全体としての熱効率を向上させる。
【0080】
図5は、第5の実施形態であるパラレルフロータイプの吸収冷温水機PF9の構成を示している。
吸収器208と高温再生器202とは、ポンプ102を介した吸収溶液ライン282で連通され、高温再生器202と中温再生器204とは、連続する吸収溶液ライン104、312、318で連通され、さらに第1の冷媒蒸気ライン216で連通されている。
【0081】
第1の冷媒蒸気ライン216は、ライン内を通過する冷媒蒸気が保有する熱量が、中温再生器204内の吸収溶液に投入されて冷媒蒸気が再生されるよう構成されている。
【0082】
中温再生器204と低温再生器206とは、連続する吸収溶液ライン318、314、322とで連通され、さらに並列に第2の冷媒蒸気ライン216Aと第3の冷媒蒸気ライン218とで連通されている。
【0083】
第3の冷媒蒸気ライン218は、ライン内を通過する冷媒蒸気が保有する熱量が、低温再生器206内の吸収溶液に投入されて冷媒蒸気が再生されるよう構成されている。
【0084】
低温再生器206と吸収器208は、吸収溶液ライン108で連通されている。
吸収溶液ライン104に高温溶液熱交換器304が介装され、吸収溶液ライン314に中温溶液熱交換器302が介装され、吸収溶液ライン316に低温溶液熱交換器300が介装されている。
【0085】
高温溶液熱交換器304、中温溶液熱交換器302及び低温溶液熱交換器300は、いづれも吸収溶液ライン282と熱的に接触し、吸収溶液ライン282に伝熱させるよう構成されている。
【0086】 高温再生器202に、外部熱源に通じる加熱用蒸気ライン214が連通され、加熱用蒸気ライン214は高温再生器202を加熱経由してライン214Aとなって次記する各蒸気ドレン熱交換器に接続されて蒸気供給源戻るように連通されている。
【0087】
蒸気ドレン熱交換器220は、吸収溶液ライン282の高温溶液熱交換器304と高温再生器202との間の領域252に、ライン214Aと熱的に接触して介装されている。
【0088】
蒸気ドレン熱交換器222は、吸収溶液ライン282の高温溶液熱交換器304を分岐部264Bと合流部246Gでバイパスする領域250に、ライン214Aと熱的に接触して介装されている。
【0089】
蒸気ドレン熱交換器223Aは、吸収溶液ライン282の高温溶液熱交換器304と分岐部311との間の領域286に、ライン214Aと熱的に接触して介装されている。
【0090】
蒸気ドレン熱交換器224は、吸収溶液ライン282の分岐部311と中温溶液熱交換器302との間の領域246Bに、ライン214Aと熱的に接触して介装されている。
【0091】
蒸気ドレン熱交換器226は、吸収溶液ライン282の中温溶液熱交換器302を分岐部240Bと合流部242Gでバイパスする領域244に、ライン214Aと熱的に接触して介装されている。
【0092】
蒸気ドレン熱交換器227は、吸収溶液ライン282の分岐部308と分岐部240Bとの間の領域284に、ライン214Aと熱的に接触して介装されている。
【0093】
蒸気ドレン熱交換器228は、吸収溶液ライン282の分岐部308と合流部283Gとの間の領域238Hに、ライン214Aと熱的に接触して介装されている。
【0094】
蒸気ドレン熱交換器230は、吸収溶液ライン282の低温溶液熱交換器300を分岐部282Bと合流部283Gでバイパスする領域238に、ライン214Aと熱的に接触して介装されている。
【0095】
蒸気ドレン熱交換器232は、吸収溶液ライン282の低温溶液熱交換器300と吸収器208との間の領域235に、ライン214Aと熱的に接触して介装されている。
【0096】
上記各蒸気ドレン熱交換器220、222、223A、224、226、227、228、230、232は、これらを経由するドレンの温度が、熱的に対となる吸収溶液ライン234の温度より高温であることが必要条件である。したがって、吸収冷温水機PF9の温度状況、空調負荷、加熱蒸気の温度、外気条件等によって、各蒸気ドレン熱交換器220、222、223A、224、226、227、228、230、232の何れか1つあるいは全数を含む何れか複数が介装されている。
【0097】
上記吸収冷温水機PF9の作用を、各蒸気ドレン熱交換器220、222、223A、224、226、227、228、230、232の全てが介装されている例について説明する。
吸収器208からポンプ102で吸収溶液ライン282に吐出された冷媒を含む低温の稀釈吸収溶液Liは、蒸気ドレン熱交換器232で加熱され昇温し、分岐部282Bで分岐して一方は領域283を通過して蒸気ドレン熱交換器230で加熱され昇温し、分岐部282Bで直行の他方の稀釈吸収溶液Liは低温溶液熱交換器300を通過して加熱され昇温し、合流部283Gで合流する。
【0098】
なお、分岐部282Bでの稀釈吸収溶液Liの分岐割合は、低温溶液熱交換器300からの受熱と、蒸気ドレン熱交換器230からの受熱の合計熱量が最大となって合流部283Gでの稀釈吸収溶液Li温度が最大になるように配分される。
【0099】
合流部283Gを通過した稀釈吸収溶液Liは、蒸気ドレン熱交換器228を通過して加熱され昇温し、分岐部308で、一方は吸収溶液ライン306を介して低温再生器206に向かう。他方の吸収溶液ライン282を直行して蒸気ドレン熱交換器227で加熱され昇温して分岐部240Bに向かう。
【0100】
分岐部240Bで分岐した稀釈吸収溶液Liの一方は領域244を通過して蒸気ドレン熱交換器226で加熱され昇温し、分岐部240Bで直行の他方の稀釈吸収溶液Liは中温溶液熱交換器302を通過して加熱され昇温し、合流部242Gで合流する。
【0101】
なお、分岐部240Bでの吸収溶液Liの分岐割合は、前記の分岐部282Bでの分岐要領と同じである。
【0102】
合流部242Gを通過した稀釈吸収溶液Liは、蒸気ドレン熱交換器224を通過して加熱され昇温し、分岐部311で分岐して一方は中温再生器204に、他方は高温再生器202に向かう。
【0103】
分岐部311で分岐された稀釈吸収溶液Liは、中温再生器204で第1の冷媒蒸気ライン216の加熱で濃縮される。
高温再生器202に向かった稀釈吸収溶液Liは蒸気ドレン熱交換器223Aで加熱され昇温し、分岐部246Bに向かう。
【0104】
分岐部246Bで分岐した稀釈吸収溶液Liの一方は領域250を通過して蒸気ドレン熱交換器222で加熱され昇温し、分岐部246Bで直行の他方の稀釈吸収溶液Liは高温溶液熱交換器304を通過して加熱され昇温し、合流部246Gで合流する。
【0105】
なお、分岐部246Bでの吸収溶液Liの分岐割合は、前記の分岐部282B及び分岐部240Bでの分岐要領と同じである。
合流部246Gを通過した吸収溶液Liは、蒸気ドレン熱交換器220を通過して加熱され昇温し、高温再生器202に導入される。
【0106】
冷媒溶液を含んだ稀釈吸収溶液Liは、高温再生器202で加熱用蒸気ライン214による蒸気Stにより加熱され、冷媒溶液を蒸気として分離され濃縮された濃縮吸収溶液Liは、吸収溶液ライン104によって高温溶液熱交換器304で放熱して吸収溶液ライン312の合流部320に向かう。
【0107】
合流部320に導かれた吸収溶液は、合流部320で、吸収溶液ライン318を介した吸収溶液と合流し、吸収溶液ライン314によって中温溶液熱交換器302で放熱して合流部324に向かう。
【0108】
合流部324に導かれた吸収溶液は、低温再生器206で濃縮された吸収溶液と合流して、低温溶液熱交換器300で放熱して吸収器208に向かう。
冷媒の移動については、高温再生器202で稀釈吸収溶液Liから蒸発分離され、高熱量をもった蒸気として第1の冷媒蒸気ライン216を介して中温再生器204で吸収溶液を加熱させる。また、中温再生器204で蒸発分離された冷媒蒸気も、第2の冷媒蒸気ライン218を介して低温再生器206で熱量を放出する。
【0109】
低温再生器202で蒸発分離された冷媒蒸気は、中温再生器204からの蒸気とともに凝縮器210で凝縮され、蒸発器212で蒸発して外部流体と熱交換する。また、吸収器208で冷媒が外部流体と熱交換する。
【0110】
このようにして、加熱用蒸気ライン214を介した蒸気の熱量を余すところなく利用して吸収冷温水機PF9の熱効率を向上させる。
【0111】
図6は、第6の実施形態である別のパラレルフロータイプ吸収冷温水機PF14の構成を示している。図5の実施形態と異なる部分を主体に説明する。
高温再生器202に、外部熱源に通じる加熱用蒸気ライン214が連通され、加熱用蒸気ライン214は高温再生器202を加熱経由してライン214Aとなって次記する蒸気ドレン熱交換器に接続されて蒸気供給源に連通されている。
【0112】
蒸気ドレン熱交換器227Cは、吸収溶液ライン282の高温溶液熱交換器304と中温溶液熱交換器302と低温溶液熱交換器300と分岐部308と分岐部311を、分岐部282Bと合流部287Gでバイパスする領域251Sに、ライン214Aと熱的に接触して介装されている。
【0113】
蒸気ドレン熱交換器227Cの前後に装着されている蒸気ドレン熱交換器232と220への蒸気ドレン熱交換器227Cの連通関係は、前記図5の実施形態と同じである。即ち、図5における蒸気ドレン熱交換器222、223A、224、226、227、228、230に代えて、蒸気ドレン熱交換器227Cを介装した状態である。
上記を除いては、前記図5の構成と同じである。
【0114】
上記吸収冷温水機PF14の作用を、蒸気ドレン熱交換器227Cが介装されている周辺を主体にして説明する。
吸収器208からポンプ102で吸収溶液ライン282に吐出された冷媒を含む低温の稀釈吸収溶液Liは、蒸気ドレン熱交換器232で加熱され昇温し、分岐部282Bで分岐して、一方は蒸気ドレン熱交換器227Cで加熱され昇温して合流部287Gに向かう。
【0115】
分岐部282Bで直行の他方の稀釈吸収溶液Liは、低温溶液熱交換器300を通過して加熱され昇温し、分岐部308で、一方は低温再生器206に向かい他方は直行して高温再生器202に向かう。
【0116】
高温再生器202に向かった稀釈吸収溶液Liは、中温溶液熱交換器302で加熱され昇温し分岐部311で一方は中温再生器204に向かい、他方は直行して高温再生器304で加熱され昇温し合流部287Gで蒸気ドレン熱交換器227Cを経由した稀釈吸収溶液Liと合流して高温再生器202に向かう。
【0117】
合流部287Gから高温再生器202に向かった吸収溶液Liは、蒸気ドレン熱交換器220で加熱され昇温し高温再生器202に導入される。
高温再生器202、中温再生器204、低温再生器206等を経由する濃縮吸収溶液及び冷媒蒸気の作動は、図5と同じである。
【0118】
上記のようにして、吸収冷温水機の配熱特性に応じて、蒸気ドレン熱交換器の個数を少数にして、かつ熱効率を向上させる。
【0119】
図7は、第7の実施形態であるシリーズパラレルフロータイプ吸収冷温水機SP15の構成を示している。
吸収器208と高温再生器202は、ポンプ102を介した稀釈吸収溶液ライン282で連通され、高温再生器202と中温再生器204とは吸収溶液ライン104と、第1の冷媒蒸気ライン216で連通されている。
【0120】
第1の冷媒蒸気ライン216は、ライン内を通過する冷媒蒸気が保有する熱量が、中温再生器204内の吸収溶液に投入されて冷媒蒸気が再生されるよう構成されている。
【0121】
中温再生器204と低温再生器206とは連続する吸収溶液ライン318、306と、並列な第1の冷媒蒸気ライン216と第2の冷媒蒸気ライン218とで連通されている。
【0122】
第2の冷媒蒸気ライン218は、ライン内を通過する冷媒蒸気が保有する熱量が、低温再生器206内の吸収溶液に投入されて冷媒蒸気が再生されるよう構成されている。
低温再生器206と吸収器208は、吸収溶液ライン322で連通されている。
【0123】
吸収溶液ライン340に高温溶液熱交換器304が介装され、吸収溶液ライン318に中温溶液熱交換器302が介装され、吸収溶液ライン322に低温溶液熱交換器300が介装されている。
【0124】
高温溶液熱交換器304、中温溶液熱交換器302及び低温溶液熱交換器300は、いづれも吸収溶液ライン282と熱的に接触し、吸収溶液ライン282に伝熱させるよう構成されている。
【0125】
高温再生器202に、外部熱源に通じる加熱用蒸気ライン214が連通され、加熱用蒸気ライン214は高温再生器202を加熱経由してライン214Aとなって次記する各蒸気ドレン熱交換器に接続されて蒸気供給源に戻るよう連通されている。
【0126】
蒸気ドレン熱交換器220は、吸収溶液ライン282の高温溶液熱交換器304と高温再生器202との間の領域252に、ライン214Aと熱的に接触して介装されている。
【0127】
蒸気ドレン熱交換器222は、吸収溶液ライン282の高温溶液熱交換器304を分岐部264と合流部246Gでバイパスする領域250に、ライン214Aと熱的に接触して介装されている。
【0128】
蒸気ドレン熱交換器223Aは、吸収溶液ライン282の分岐部246Bと分岐部311との間の領域286に、ライン214Aと熱的に接触して介装されている。
【0129】
蒸気ドレン熱交換器224は、吸収溶液ライン282の分岐部311と合流部242Gとの間の領域246Bに、ライン214Aと熱的に接触して介装されている。
【0130】
蒸気ドレン熱交換器226は、吸収溶液ライン282の中温溶液熱交換器302を分岐部240Bと合流部242Gでバイパスする領域244に、ライン214Aと熱的に接触して介装されている。
【0131】
蒸気ドレン熱交換器227は、吸収溶液ライン282の分岐部308と分岐部240Bとの間の領域243Pにライン214Aと熱的に接触して介装されている。
【0132】
蒸気ドレン熱交換器228は、吸収溶液ライン282の合流部283Gと分岐部308との間の領域283Hに、ライン214Aと熱的に接触して介装されている。
【0133】
蒸気ドレン熱交換器230は、吸収溶液ライン282の低温溶液熱交換器300を分岐部282Bと合流部283Gでバイパスする領域283に、ライン214Aと熱的に接触して介装されている。
【0134】
蒸気ドレン熱交換器232は、吸収溶液ライン282の吸収器208と分岐部282Bとの間の領域235に、ライン214Aと熱的に接触して介装されている。
【0135】
上記各蒸気ドレン熱交換器220、222、223A、224、226、227、228、230、232は、これらを経由するドレンの温度が、熱的に対となる吸収溶液ライン234の温度より高温であることが必要条件である。したがって、吸収冷温水機SP15の温度状況、空調負荷、加熱蒸気の温度、外気条件等によって、各蒸気ドレン熱交換器220、222、223A、224、226、227、228、230、232の何れか1つあるいは全数を含む何れか複数が介装されている。
【0136】
上記吸収冷温水機SP15の作用を、各蒸気ドレン熱交換器220、222、223A、224、226、227、228、230、232の全てが介装されている例について説明する。
吸収器208からポンプ102で吸収溶液ライン282に吐出された冷媒を含む低温の稀釈吸収溶液Liは、蒸気ドレン熱交換器232で加熱され昇温し、分岐部282Bで分岐して一方は領域283を通過して蒸気ドレン熱交換器230で加熱され昇温し、分岐部282Bで直行の他方の稀釈吸収溶液Liは低温溶液熱交換器300を通過して加熱され昇温し、合流部283Gで合流する。
【0137】
なお、分岐部282Bでの吸収溶液Liの分岐割合は、低温溶液熱交換器300からの受熱と、蒸気ドレン熱交換器230からの受熱の合計熱量が最大となって合流部283Gでの吸収溶液Li温度が最大になるように配分される。
【0138】
合流部283Gを通過した稀釈吸収溶液Liは、蒸気ドレン熱交換器228を通過して加熱され昇温し、分岐部308で、一方は吸収溶液ライン306を介して低温再生器206に向かう。他方は吸収溶液ライン282を直行して蒸気ドレン熱交換器227で加熱され昇温して分岐部240Bに向かう。
【0139】
分岐部240Bで分岐した稀釈吸収溶液Liの一方は領域244を通過して蒸気ドレン熱交換器226で加熱され昇温し、分岐部240Bで直行の他方の稀釈吸収溶液Liは中温溶液熱交換器302を通過して加熱され昇温し、合流部242Gで合流する。
【0140】
なお、分岐部240Bでの吸収溶液Liの分岐割合は、前記の分岐部282Bでの分岐要領と同じである。
合流部242Gを通過した稀釈吸収溶液Liは、蒸気ドレン熱交換器224を通過して加熱され昇温し、分岐部311で分岐して一方は中温再生器204に、他方は高温再生器202に向かう。
【0141】
分岐部311で分岐され吸収溶液ライン310に向かったた稀釈吸収溶液Liは、中温再生器204で第1の冷媒蒸気ライン216の加熱で濃縮される。
高温再生器202に向かった稀釈吸収溶液Liは、蒸気ドレン熱交換器223Aで加熱され昇温し、分岐部246Bに向かう。
【0142】
分岐部246Bで分岐した稀釈吸収溶液Liの一方は領域250を通過して蒸気ドレン熱交換器222で加熱され昇温し、分岐部246Bで直行の他方の稀釈吸収溶液Liは高温溶液熱交換器304を通過して加熱され昇温し、合流部246Gで合流する。
【0143】
なお、分岐部246Bでの吸収溶液Liの分岐割合は、前記の分岐部282B及び分岐部240Bでの分岐要領と同じである。
【0144】
合流部246Gを通過した吸収溶液Liは、蒸気ドレン熱交換器220を通過して加熱され昇温し、高温再生器202に導入される。
【0145】
冷媒溶液を含んだ稀釈吸収溶液Liは、高温再生器202で加熱用蒸気ライン214による蒸気Stにより加熱され、冷媒溶液を蒸気として分離され濃縮された濃縮吸収溶液Liは、吸収溶液ライン340によって高温溶液熱交換器304で放熱して中温再生器204に向かう。
【0146】
中温再生器204で冷媒溶液を蒸気として分離され濃縮された濃縮吸収溶液Liは、吸収溶液ライン318によって中温溶液熱交換器302で放熱して吸収溶液ライン306に合流して低温再生器206に向かう。
低温再生器206で濃縮された吸収溶液は、低温溶液熱交換器300で放熱して吸収器208に向かう。
【0147】
冷媒の移動については、高温再生器202で稀釈吸収溶液Liから蒸発分離され、高熱量をもった蒸気として第1の冷媒蒸気ライン216を介して中温再生器204で吸収溶液を加熱させる。また、中温再生器204で蒸発分離された冷媒蒸気も、第2の冷媒蒸気ライン218を介して低温再生器206で熱量を放出する。
【0148】
低温再生器202で蒸発分離された冷媒蒸気は、中温再生器204からの蒸気とともに凝縮器210で凝縮され、蒸発器212で蒸発して外部流体と熱交換する。また、吸収器208で冷媒が外部流体と熱交換する。
【0149】
このようにして、加熱用蒸気ライン214を介した蒸気の熱量を余すところなく利用して吸収冷温水機SP15の熱効率を向上させる。
【0150】
図8は、第8の実施形態である別のシリーズパラレルフロータイプ吸収冷温水機SP20の構成を示している。図7の実施形態と異なる部分を主体に説明する。
高温再生器202に、外部熱源に通じる加熱用蒸気ライン214が連通され、加熱用蒸気ライン214は高温再生器202を加熱経由してライン214Aとなって次記する蒸気ドレン熱交換器に接続されて蒸気供給源に連通されている。
【0151】
蒸気ドレン熱交換器227Cは、吸収溶液ライン282の高温溶液熱交換器304と中温溶液熱交換器302と低温溶液熱交換器300と分岐部308と分岐部311を、分岐部282Bと合流部287Gでバイパスする領域251Sに、ライン214Aと熱的に接触して介装されている。
【0152】
蒸気ドレン熱交換器227Cの前後に装着されている蒸気ドレン熱交換器232と220への蒸気ドレン熱交換器227Cの連通関係は、前記図7の実施形態と同じである。即ち、図7における蒸気ドレン熱交換器222、223A、224、226、227、228、230に代えて、蒸気ドレン熱交換器227Cを介装した状態である。
上記を除いては、前記図7の構成と同じである。
【0153】
上記吸収冷温水機SP20の作用を、蒸気ドレン熱交換器227Cが介装されている周辺を主体にして説明する。
吸収器208からポンプ102で吸収溶液ライン282に吐出された冷媒を含む低温の稀釈吸収溶液Liは、蒸気ドレン熱交換器232で加熱され昇温し、分岐部282Bで分岐して、一方は蒸気ドレン熱交換器227Cで加熱され昇温して合流部287Gに向かう。
【0154】
分岐部282Bで直行の他方の稀釈吸収溶液Liは、低温溶液熱交換器300を通過して加熱され昇温し、分岐部308で、一方は低温再生器206に向かい他方は直行して高温再生器202に向かう。
【0155】
高温再生器202に向かった稀釈吸収溶液Liは、中温溶液熱交換器302で加熱され昇温し、分岐部311で分岐して一方は中温再生器204に向かい、他方は直行して高温再生器304で加熱され昇温し、合流部287Gで蒸気ドレン熱交換器227Cを経由した稀釈吸収溶液Liと合流して高温再生器202に向かう。
【0156】
合流部287Gから高温再生器202に向かった吸収溶液Liは、蒸気ドレン熱交換器220で加熱され昇温し高温再生器202に導入される。
高温再生器202、中温再生器204、低温再生器206等を経由する濃縮吸収溶液及び冷媒蒸気の作動は、図7と同じである。
【0157】
上記のようにして、吸収冷温水機の配熱特性に応じて、蒸気ドレン熱交換器の個数を少数にして、かつ熱効率を向上させる。
【0158】
なお、図示8種の実施形態はあくまで例示であり、本発明の技術的範囲を限定する趣旨の記述ではない。
例えば、図示では各種のフロータイプ(例えば、シリーズフロー、パラレルフロー、リバースフロー、シリーズ・パラレルフロー、リバース・パラレルフロー)の代表的なもののみを示しているが、図示しないフローパターンにも本発明の利用が可能である。
また、冷媒ドレン熱交換器を配置し、下胴を複数段にし、溶液冷却吸収器を設けた実施形態も多数考えられる。
【0159】
【発明の効果】
本発明の作用効果を、以下に列記する。
(1) 本発明によれば、高温再生器で使用した加熱蒸気を複数の蒸気ドレン熱交換器で使用して稀釈吸収溶液を加熱させているので、熱の回収が大きい。
(2) 再生器で蒸発し発生した冷媒蒸気を低温再生器および低温の稀釈吸収溶液加熱に使用するので熱の回収がさらに大きくなる。
(3) 冷媒ドレンを冷媒ドレン熱交換器に通し、稀釈吸収冷媒を加熱させるので熱の回収が大きくなる。
(4) さらに、蒸発器と吸収器の下胴部分を複数段に分割すれば、機能が向上し熱効率がよくなる。
(5) 吸収器に溶液冷却吸収器を設ければ、再生器からの滴下吸収溶液の熱量を回収できる。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態のシリーズフロータイプ吸収冷温水機を示す構成図。
【図2】 本発明の第2の実施形態の別のシリーズフロータイプ吸収冷温水機を示す構成図。
【図3】 本発明の第3の実施形態のリバースフロータイプ吸収冷温水機を示す構成図。
【図4】 本発明の第4の実施形態のリバースパラレルフロータイプ吸収冷温水機を示す構成図。
【図5】 本発明の第5の実施形態のパラレルフロータイプ吸収冷温水機を示す構成図。
【図6】 本発明の第6の実施形態の別のパラレルフロータイプ吸収冷温水機を示す構成図。
【図7】 本発明の第7の実施形態のシリーズパラレルフロータイプ吸収冷温水機を示す構成図。
【図8】 本発明の第8の実施形態の別のシリーズパラレルフロータイプ吸収冷温水機を示す構成図。
【図9】 従来のシリーズフロータイプ吸収冷温水機を示す構成図。
【符号の説明】
202・・・高温再生器
204・・・中温再生器
206・・・低温再生器
208・・・吸収器
210・・・凝縮器
212・・・蒸発器
214、214A・・加熱用蒸気ライン
220、222、224、226、228、230、232・・蒸気ドレン熱交換器
234、238、240、244、246、250、252・・吸収溶液ライン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption chiller / heater, and more particularly, to a triple effect steam-fired absorption chiller / heater having a high temperature regenerator, a medium temperature regenerator, and a low temperature regenerator.
[0002]
[Prior art]
A conventional triple-effect steam-fired absorption chiller / heater J1 shown in a typical example in FIG. 9 includes a high-temperature regenerator 202, a medium-temperature regenerator 204, a low-temperature regenerator 206, an absorber 208, and a condenser 210. , And an evaporator 212. The high temperature regenerator 202 is connected to a heating steam line 214 through which steam as a heating source flows, and the amount of heat held by the heating steam is input to the absorbing solution in the high temperature regenerator 202 to generate refrigerant vapor. (Reproduce.
[0003]
The steam generated in the high-temperature regenerator 202 flows through the steam line (first steam line) 216 and inputs the amount of heat held to the absorbing solution in the intermediate-temperature regenerator 204. Thereby, refrigerant vapor is generated (regenerated) in the intermediate temperature regenerator 204.
The steam generated in the intermediate temperature regenerator 204 flows through the second refrigerant vapor line 218 and inputs the amount of heat held in the absorption solution in the low temperature regenerator 206, and thus from the low temperature regenerator 206. Refrigerant vapor is generated.
[0004]
In the conventional triple effect steam-fired absorption chiller / heater J1, the steam (steam drain) after the heat exchange in the high-temperature regenerator 202 is directly discharged out of the system through the heating steam line 214A. Although the steam drain in the heating steam line 214A still retains a certain amount of heat, it is discharged out of the system while retaining the amount of heat, which is not economical.
[0005]
However, in the conventional triple effect steam-fired absorption chiller / heater J1, the effective use of the amount of heat held by the steam drain has not been considered at all. .
[0006]
[Problems to be solved by the invention]
The present invention has been proposed in view of the problems of the prior art as described above, and it is an object of the present invention to provide a triple-effect steam-fired absorption chiller / heater that can effectively use the amount of heat held by the steam drain. It is said.
[0007]
[Means for Solving the Problems]
The steam-fired absorption chiller / heater of the present invention includes a high-temperature regenerator (202), a medium-temperature regenerator (204), a low-temperature regenerator (206), an absorber (208), a condenser (210), and evaporation. The absorbent solution discharged from the absorber (208) flows through the high-temperature regenerator (202), the medium-temperature regenerator (204), and the low-temperature regenerator (206) in this order. The heating steam line (214, 214A) communicates with the high-temperature regenerator (202), and the amount of heat held by the steam flowing through the heating steam line (214) becomes the absorption solution in the high-temperature regenerator (202). It is configured to recycle the refrigerant vapor when it is thrown in,
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
A low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304) are interposed in the absorption solution line from the absorber (208) to the high temperature regenerator (202), The high temperature solution heat exchanger (304) converts the amount of heat held by the absorption solution flowing in the absorption solution line (104) from the high temperature regenerator (202) to the intermediate temperature regenerator (204) into the absorption solution toward the high temperature regenerator (202). The medium temperature solution heat exchanger (302) is configured to be charged, and the high temperature regenerator (302) converts the heat held by the absorption solution flowing through the absorption solution line (106) from the medium temperature regenerator (204) to the low temperature regenerator (206). 202), the low temperature solution heat exchanger (300) is held by the absorption solution flowing through the absorption solution line (108) from the low temperature regenerator (206) to the absorber (208). Is configured so as to be introduced into the absorbing solution towards the amount high temperature regenerator (202),
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) is the first to seventh steam drain heat exchangers (220, 222, 224, 226, 228, 230, 232). )
The first steam drain heat exchanger (220) is interposed in a region (252) between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line toward the high temperature regenerator (202). And
The second steam drain heat exchanger (222) is a first branch point between the intermediate solution heat exchanger (302) and the hot solution heat exchanger (304) of the absorption solution line toward the high temperature regenerator (202). (246B) is interposed in a first branch line (250) that bypasses the hot solution heat exchanger (304) and the hot solution heat exchanger (304). ) And the first steam drain heat exchanger (220) at the first junction (246G) and merged with the absorbent solution line toward the high temperature regenerator (202),
The third steam drain heat exchanger (224) is a region (246) between the intermediate solution heat exchanger (302) of the absorbing solution line and the first branch point (246B) toward the high temperature regenerator (202). Intervened in,
The fourth steam drain heat exchanger (226) is a second branch point between the cold solution heat exchanger (300) and the intermediate temperature solution heat exchanger (302) in the absorption solution line toward the high temperature regenerator (202). The second branch line (244) bypasses the intermediate temperature solution heat exchanger (302) and the intermediate temperature solution heat exchanger (302). ) And a third steam drain heat exchanger (224) at the second junction (242G) and merged with the absorbent solution line toward the high temperature regenerator (202),
The fifth steam drain heat exchanger (228) is a region (240) between the cold solution heat exchanger (300) and the second branch point (240B) of the absorption solution line toward the high temperature regenerator (202). Intervened in,
The sixth steam drain heat exchanger (230) is a third branch point (234B) between the absorbent solution pump (102) of the absorbent solution line and the cold solution heat exchanger (300) toward the high temperature regenerator (202). ) That is branched by a third branch line (238) that bypasses the low temperature solution heat exchanger (300) and is connected to the low temperature solution heat exchanger (300). Merging with the absorbent solution line towards the high temperature regenerator (202) at a third junction (236G) between the fifth steam drain heat exchanger (228);
The seventh steam drain heat exchanger (232) is interposed in a region (235) between the absorption solution pump (102) and the third branch point (234B) of the absorption solution line toward the high temperature regenerator (202). And
The first to seventh steam drain heat exchangers (220, 222, 224, 226, 228, 230, 232) are used for the heating steam or steam after the amount of heat is supplied to the absorbing solution in the high temperature regenerator (202). A feature is that the amount of heat held by the drain is introduced into the absorbing solution that leaves the absorber (208) and goes to the high-temperature regenerator (202) (Claim 1: FIG. 1).
[0008]
The steam-fired absorption chiller / heater of the present invention includes a high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), and a condenser (210). The absorption solution discharged from the absorber (208) flows in the order of the high temperature regenerator (202), the medium temperature regenerator (204), and the low temperature regenerator (206). The heating steam line (214, 214A) communicates with the high temperature regenerator (202), and the amount of heat held by the steam flowing through the heating steam line (214) is absorbed in the high temperature regenerator (202). It is configured to regenerate the refrigerant vapor when put into the solution,
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
A low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304) are interposed in the absorption solution line from the absorber (208) to the high temperature regenerator (202), The high temperature solution heat exchanger (304) converts the amount of heat held by the absorption solution flowing in the absorption solution line (104) from the high temperature regenerator (202) to the intermediate temperature regenerator (204) into the absorption solution toward the high temperature regenerator (202). The medium temperature solution heat exchanger (302) is configured to be charged, and the high temperature regenerator (302) converts the amount of heat held by the absorption solution flowing through the absorption solution line (106) from the medium temperature regenerator (204) to the low temperature regenerator (206). 202), the low temperature solution heat exchanger (300) is held by the absorption solution flowing through the absorption solution line (108) from the low temperature regenerator (206) to the absorber (208). Is configured so as to be introduced into the absorbing solution towards the amount high temperature regenerator (202),
A region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) includes a first steam drain heat exchanger (220) and a second steam drain heat exchanger (232). , Communicated with a third steam drain heat exchanger (225),
The first steam drain heat exchanger (220) is interposed in a region (252) between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line toward the high temperature regenerator (202). And
The second steam drain heat exchanger (232) is interposed in the region between the absorbing solution pump (102) and the cold solution heat exchanger (300) of the absorbing solution line toward the high temperature regenerator (202). And
The third steam drain heat exchanger (225) is a branch point between the seventh steam drain heat exchanger (232) and the low temperature solution heat exchanger (300) in the absorption solution line toward the high temperature regenerator (202). (234B), the branch line (236Q) is interposed between the low temperature solution heat exchanger (300), the intermediate temperature solution heat exchanger (302), and the high temperature solution heat exchanger (304). ) And join the absorbing solution line toward the high temperature regenerator (202) at the confluence (246G) between the high temperature solution heat exchanger (304) and the first steam drain heat exchanger (220),
The first steam drain heat exchanger (220), the second steam drain heat exchanger (232), and the third steam drain heat exchanger (225) transfer heat to the absorbing solution in the high temperature regenerator (202). After the charging, the heating steam or the steam drainage is stored in the absorbing solution exiting from the absorber (208) toward the high-temperature regenerator (202). Item 2: FIG.
[0009]
The steam-fired absorption chiller / heater of the present invention includes a high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), and a condenser (210). And the evaporator (212), and the absorbent solution discharged from the absorber (208) flows through the low temperature regenerator (206), the medium temperature regenerator (204), and the high temperature regenerator (202) in this order. The heating steam line (214, 214A) communicates with the high temperature regenerator (202), and the amount of heat held by the steam flowing through the heating steam line (214) is within the high temperature regenerator (202). The refrigerant vapor is regenerated by being put into the absorption solution of
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
The absorption solution line (236) from the absorber (208) to the low temperature regenerator (206) is provided with a low temperature solution heat exchanger (300), and the low temperature regenerator (206) goes to the medium temperature regenerator (204). A medium temperature solution heat exchanger (302) is interposed in the absorption solution line (242), and a high temperature solution heat exchange is performed in the absorption solution line (248) from the medium temperature solution heat exchanger (302) to the high temperature regenerator (202). A heat exchanger (304) is interposed, and is configured to input the amount of heat held by the absorbent solution flowing through the absorbent solution line (110) from the high-temperature solution heat exchanger (304) toward the absorber (208),
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) is the first to ninth steam drain heat exchangers (220, 222, 224A, 224B, 226, 228A, 228B). , 230, 232),
The first steam drain heat exchanger (220) is between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202). Intervened in the region (252),
The second steam drain heat exchanger (222) is between the intermediate temperature regenerator (204) and the high temperature solution heat exchanger (304) of the absorbent solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202). A first branch line (250) that branches at a first branch point (246B) is interposed between the first branch line (250) and the hot solution heat exchanger (304). Join the absorbent solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202) at a first junction (246G) between the heat exchanger (304) and the first steam drain heat exchanger (220). And
The third steam drain heat exchanger (224A) is located between the intermediate temperature regenerator (204) of the absorbing solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202) and the first branch point (246B). In the region (386) of
The fourth steam drain heat exchanger (224B) includes an intermediate solution heat exchanger (302) and an intermediate temperature regenerator (204) in the absorption solution line (384) from the low temperature regenerator (206) to the intermediate temperature regenerator (204). Intervened in the area between and
The fifth steam drain heat exchanger (226) is between the low temperature regenerator (206) and intermediate temperature solution heat exchanger (302) of the absorption solution line from the low temperature regenerator (206) to the medium temperature regenerator (204). A second branch line (244) that branches at the second branch point (240B) is interposed between the second branch line (244) and the intermediate temperature solution heat exchanger (302). Join the absorbent solution line from the low temperature regenerator (206) to the medium temperature regenerator (204) at the second confluence (242G) between the heat exchanger (302) and the fourth steam drain heat exchanger (224B). And
The sixth steam drain heat exchanger (228A) is located between the cold regenerator (206) of the absorbent solution line from the low temperature regenerator (206) to the medium temperature regenerator (204) and the second branch point (240B). In the region (384) of
The seventh steam drain heat exchanger (228B) is between the low temperature solution heat exchanger (300) and the low temperature regenerator (206) of the absorption solution line from the absorber (208) to the low temperature regenerator (206). In the region (382),
The eighth steam drain heat exchanger (230) is located between the absorbent solution pump (102) and the cold solution heat exchanger (300) in the absorbent solution line from the absorber (208) to the cold regenerator (206). Is interposed in a third branch line (238) that branches at the third branch point (234B), the third branch line (238) bypassing the low temperature solution heat exchanger (300) and the low temperature solution heat Joins the absorbent solution line from the absorber (208) to the cold regenerator (206) at a third junction (236G) between the exchanger (300) and the seventh steam drain heat exchanger (228B);
The ninth steam drain heat exchanger (232) is between the absorbent solution pump (102) and the third branch point (234B) of the absorbent solution line from the absorber (208) to the cold regenerator (206). Intervened in the region (235),
The first to ninth steam drain heat exchangers (220, 222, 224A, 224B, 226, 228A, 228B, 230, 232) are heated by supplying heat to the absorbing solution in the high temperature regenerator (202). It is configured that the amount of heat held by the steam for use or the steam drain is put into the absorbing solution that goes out of the absorber (208) and goes to the high-temperature regenerator (202) (Claim 3: FIG. 3). ).
[0010]
Furthermore, the steam-fired absorption chiller / heater of the present invention includes a high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), and a condenser (210). And the evaporator (212), the high-temperature regenerator (202) communicates with the heating steam lines (214, 214A), and the amount of heat held by the steam flowing through the heating steam line (214) is high. The refrigerant vapor is regenerated by being put into the absorbing solution in the regenerator (202),
The absorbent solution exiting the absorber (208) flows through the low temperature regenerator (206), the medium temperature regenerator (204), and the high temperature regenerator (202) in this order, and the high temperature regenerator (202) and the absorber. An absorbent solution line (260) that communicates with (208), branches (264) from the absorbent solution line (262) that communicates between the low temperature regenerator (206) and the intermediate temperature regenerator (204), and a high temperature regenerator The intermediate solution regenerator (204) and the high temperature regenerator have a first branched absorbent solution line (268) that merges (266) with the absorption solution line (260) that communicates between the (202) and the absorber (208). Branching (272) from the absorbing solution line (270) communicating with (202) and joining (274) the absorbing solution line (260) communicating with the high temperature regenerator (202) and the absorber (208). 2 branched absorption solution It has a line (276),
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
The absorption solution line (236) from the absorber (208) to the low temperature regenerator (206) is provided with a low temperature solution heat exchanger (300), and the low temperature regenerator (206) goes to the medium temperature regenerator (204). A medium temperature solution heat exchanger (302) is interposed in the absorption solution line (242), and a high temperature solution heat exchange is performed in the absorption solution line (248) from the medium temperature solution heat exchanger (302) to the high temperature regenerator (202). A heat exchanger (304) is interposed, and is configured to input the amount of heat held by the absorbent solution flowing through the absorbent solution line (110) from the high-temperature solution heat exchanger (304) toward the absorber (208),
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) is the first to ninth steam drain heat exchangers (220, 222, 224, 224B, 226, 228A, 228B). , 230, 232),
The first steam drain heat exchanger (220) is between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202). Intervened in the region (252),
The second steam drain heat exchanger (222) is connected to the branch (272) of the second branched absorbent solution line (276) of the absorbent solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202) and the high temperature. The first branch line (250) is branched at a first branch point (246B) between the solution heat exchangers (304), and the first branch line (250) The hot regenerator from the intermediate temperature regenerator (204) at the first junction (246G) bypassing the regenerator (304) and between the high temperature solution heat exchanger (304) and the first steam drain heat exchanger (220) Merge with the absorbent solution line towards (202),
The third steam drain heat exchanger (224) includes a branch (272) and a second branch absorption solution line (276) of the absorption solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202). Intervened in the area between 1 branch point (246B),
The fourth steam drain heat exchanger (224B) includes an intermediate solution heat exchanger (302) and an intermediate temperature regenerator (204) in the absorption solution line (384) from the low temperature regenerator (206) to the intermediate temperature regenerator (204). Intervened in the area between and
The fifth steam drain heat exchanger (226) is connected to the bifurcation (264) of the first branched absorbent solution line (268) and the intermediate temperature of the absorbent solution line from the low temperature regenerator (206) to the intermediate temperature regenerator (204). It is interposed in a second branch line (244) that branches at a second branch point (240B) between the solution heat exchangers (302), and the second branch line (244) is an intermediate temperature solution heat exchanger. From the low temperature regenerator (206) to the intermediate temperature regenerator at a second junction (242G) bypassing the regenerator (302) and between the intermediate temperature solution heat exchanger (302) and the fourth steam drain heat exchanger (224B) Merge with the absorbent solution line towards (204),
The sixth steam drain heat exchanger (228A) includes a first branch absorption solution line (268) branching portion (264) and an absorption solution line from the low temperature regenerator (206) to the medium temperature regenerator (204). Is interposed in the area between the two branch points (240B),
The seventh steam drain heat exchanger (228B) is between the low temperature solution heat exchanger (300) and the low temperature regenerator (206) of the absorption solution line from the absorber (208) to the low temperature regenerator (206). In the region (382),
The eighth steam drain heat exchanger (230) is located between the absorbent solution pump (102) and the cold solution heat exchanger (300) in the absorbent solution line from the absorber (208) to the cold regenerator (206). Is interposed in a third branch line (238) that branches at the third branch point (234B), the third branch line (238) bypassing the low temperature solution heat exchanger (300) and the low temperature solution heat Joins the absorbent solution line from the absorber (208) to the cold regenerator (206) at a third junction (236G) between the exchanger (300) and the seventh steam drain heat exchanger (228B);
The ninth steam drain heat exchanger (232) is between the absorbent solution pump (102) and the third branch point (234B) of the absorbent solution line from the absorber (208) to the cold regenerator (206). Intervened in the region (235),
The first to ninth steam drain heat exchangers (220, 222, 224, 224B, 226, 228A, 228B, 230, 232) are used to heat the absorption solution in the high-temperature regenerator (202) after the amount of heat is supplied thereto. The amount of heat possessed by the steam for use or the steam drain is introduced into an absorbing solution that exits from the absorber (208) and goes to the high-temperature regenerator (202) (Claim 4: FIG. 4). ).
[0011]
Alternatively, the steam-fired absorption chiller / heater of the present invention includes a high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), and a condenser (210). And the evaporator (212), the high-temperature regenerator (202) communicates with the heating steam lines (214, 214A), and the amount of heat held by the steam flowing through the heating steam line (214) is high. The refrigerant vapor is regenerated by being put into the absorbing solution in the regenerator (202),
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
A low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304) are interposed in the absorption solution line from the absorber (208) to the high temperature regenerator (202), The high temperature solution heat exchanger (304) is configured to input the amount of heat held by the absorption solution flowing through the absorption solution line (104) from the high temperature regenerator (202) into the absorption solution toward the high temperature regenerator (202). The intermediate temperature solution heat exchanger (302) absorbs the amount of heat held by the absorption solution flowing in the absorption solution line (314) from the intermediate temperature regenerator (204) toward the low temperature regenerator (206) toward the high temperature regenerator (202). The low-temperature solution heat exchanger (300) is configured to supply the amount of heat held by the absorption solution flowing through the absorption solution line (316) from the low-temperature regenerator (206) to the absorber (208). 20 Is configured so as to be introduced into the absorption solution toward the),
An absorbent solution line (282, 284, 286) communicating from the absorber (208) to the high temperature regenerator (202) is located in the region between the low temperature solution heat exchanger (300) and the medium temperature solution heat exchanger (302). A first branch absorption solution line (306) communicating with the low temperature regenerator (206) is branched (308), and a region between the medium temperature solution heat exchanger (302) and the high temperature solution heat exchanger (304). The second branch absorption solution line (310) communicating with the intermediate temperature regenerator (204) is branched (311), and the absorption solution lines (312, 314) from the high temperature regenerator (202) to the absorber (208) are branched. 316), the absorption solution line (318) through which the absorption solution heated by the intermediate temperature regenerator (204) flows joins (320), and the absorption solution heated by the low temperature regenerator (206) Flowing absorbent solution Emissions (322) is joined (324),
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) is the first to ninth steam drain heat exchangers (220, 222, 223A, 224, 226, 227, 228). , 230, 232),
The first steam drain heat exchanger (220) is interposed in a region (252) between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line toward the high temperature regenerator (202). And
The second steam drain heat exchanger (222) includes a branch (311) of the second branched absorbent solution line (310) and a high temperature solution heat exchanger (304) of the absorbent solution line toward the high temperature regenerator (202). The first branch line (250) branches at a first branch point (246B) between the first branch line (250B) and bypasses the hot solution heat exchanger (304). And merged with the absorption solution line toward the high temperature regenerator (202) at a first junction (246G) between the high temperature solution heat exchanger (304) and the first steam drain heat exchanger (220),
The third steam drain heat exchanger (223A) includes a branch (311) and a first branch point (246B) of the second branched absorbent solution line (310) of the absorbent solution line toward the high temperature regenerator (202). Intervened in the area (286) between
The fourth steam drain heat exchanger (224) includes a middle temperature solution heat exchanger (302) of the absorption solution line toward the high temperature regenerator (202) and a branch (311) of the second branch absorption solution line (310). Intervened in the area between and
The fifth steam drain heat exchanger (226) includes a branch (308) of the first branched absorbent solution line (306) and an intermediate temperature solution heat exchanger (302) of the absorbent solution line toward the high temperature regenerator (202). Is interposed in a second branch line (244) that branches at a second branch point (240B) between the two, and the second branch line (244) bypasses the intermediate temperature solution heat exchanger (302). And at the second junction (242G) between the intermediate temperature solution heat exchanger (302) and the fourth steam drain heat exchanger (224), joins the absorption solution line toward the high temperature regenerator (202),
The sixth steam drain heat exchanger (227) includes a branch (308) and a second branch point (240B) of the first branched absorbent solution line (306) of the absorbent solution line toward the high temperature regenerator (202). Intervened in the region (284) between
The seventh steam drain heat exchanger (228) includes a low temperature solution heat exchanger (300) of the absorption solution line toward the high temperature regenerator (202) and a branch (308) of the first branch absorption solution line (306). Intervened in the area between and
The eighth steam drain heat exchanger (230) has a third branch point (282B) between the absorbent solution pump (102) of the absorbent solution line and the cold solution heat exchanger (300) toward the high temperature regenerator (202). ) Is branched to a third branch line (283), which bypasses the low temperature solution heat exchanger (300) and is connected to the low temperature solution heat exchanger (300). Merging with the absorbent solution line towards the high temperature regenerator (202) at a third junction (283G) between the seventh steam drain heat exchanger (228);
The ninth steam drain heat exchanger (232) is interposed in the region (235) between the absorption solution pump (102) and the third branch point (282B) of the absorption solution line toward the high temperature regenerator (202). And
The first to ninth steam drain heat exchangers (220, 222, 223A, 224, 226, 227, 228, 230, 232) are used to heat the absorbing solution in the high-temperature regenerator (202) after the amount of heat is supplied thereto. The amount of heat possessed by the steam for use or the steam drain is introduced into an absorbing solution that leaves the absorber (208) and goes to the high-temperature regenerator (202) (Claim 5: FIG. 5). ).
[0012]
The steam-fired absorption chiller / heater of the present invention includes a high-temperature regenerator (202), a medium-temperature regenerator (204), a low-temperature regenerator (206), an absorber (208), a condenser (210), and evaporation. The heating steam line (214, 214A) communicates with the high temperature regenerator (202), and the amount of heat held by the steam flowing through the heating steam line (214) is high temperature regenerator. The refrigerant vapor is regenerated by being charged into the absorbing solution in (202),
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
A low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304) are interposed in the absorption solution line from the absorber (208) to the high temperature regenerator (202), The high temperature solution heat exchanger (304) is configured to input the amount of heat held by the absorption solution flowing through the absorption solution line (104) from the high temperature regenerator (202) into the absorption solution toward the high temperature regenerator (202). The intermediate temperature solution heat exchanger (302) absorbs the amount of heat held by the absorption solution flowing in the absorption solution line (314) from the intermediate temperature regenerator (204) toward the low temperature regenerator (206) toward the high temperature regenerator (202). The low-temperature solution heat exchanger (300) is configured to supply the amount of heat held by the absorption solution flowing through the absorption solution line (316) from the low-temperature regenerator (206) to the absorber (208). 20 Is configured so as to be introduced into the absorption solution toward the),
An absorbent solution line (282, 284, 286) communicating from the absorber (208) to the high temperature regenerator (202) is located in the region between the low temperature solution heat exchanger (300) and the medium temperature solution heat exchanger (302). A first branch absorption solution line (306) communicating with the low temperature regenerator (206) is branched (308), and a region between the medium temperature solution heat exchanger (302) and the high temperature solution heat exchanger (304). The second branch absorption solution line (310) communicating with the intermediate temperature regenerator (204) is branched (311), and the absorption solution lines (312, 314) from the high temperature regenerator (202) to the absorber (208) are branched. 316), the absorption solution line (318) through which the absorption solution heated by the intermediate temperature regenerator (204) flows joins (320), and the absorption solution heated by the low temperature regenerator (206) Flowing absorbent solution Emissions (322) is joined (324),
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) communicates with the first to third steam drain heat exchangers (220, 232, 227C),
The first steam drain heat exchanger (220) is interposed in a region (252) between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line toward the high temperature regenerator (202). And
The second steam drain heat exchanger (232) is interposed in an area (282) between the absorbent solution pump (102) and the cold solution heat exchanger (300) of the absorbent solution line toward the high temperature regenerator (202). And
The third steam drain heat exchanger (227C) is a branch in the region (282) between the absorbing solution pump (102) and the cold solution heat exchanger (300) of the absorbing solution line toward the hot regenerator (202). The branch line (251S) is branched at a point (282B), and the branch line (251S) includes a low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger ( 304) and joins the absorbent solution line toward the high temperature regenerator (202) at the junction (287G) between the high temperature solution heat exchanger (304) and the first steam drain heat exchanger (220),
The first to third steam drain heat exchangers (220, 232, 227C) absorb the amount of heat held by the heating steam or the steam drain after charging the amount of heat into the absorbing solution in the high temperature regenerator (202). It is characterized in that it is constructed so as to be put into the absorbing solution that leaves the vessel (208) and goes to the high temperature regenerator (202) (Claim 6: FIG. 6).
[0013]
The steam-fired absorption chiller / heater of the present invention includes a high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), and a condenser (210). And the evaporator (212), the high-temperature regenerator (202) communicates with the heating steam lines (214, 214A), and the amount of heat held by the steam flowing through the heating steam line (214) is high. The refrigerant vapor is regenerated by being put into the absorbing solution in the regenerator (202),
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
A low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304) are interposed in the absorption solution line from the absorber (208) to the high temperature regenerator (202). The high temperature solution heat exchanger (304) converts the amount of heat held by the absorption solution flowing in the absorption solution line (104) from the high temperature regenerator (202) to the medium temperature regenerator (204) into the absorption solution toward the high temperature regenerator (202). The intermediate temperature solution heat exchanger (302) is configured to be charged, and the high temperature regenerator (302) converts the amount of heat held by the absorption solution flowing through the absorption solution line (318) from the intermediate temperature regenerator (204) to the low temperature regenerator (206). 202), the low temperature solution heat exchanger (300) is held by the absorption solution flowing through the absorption solution line (322) from the low temperature regenerator (206) to the absorber (208). Is configured so as to be introduced into the absorbing solution towards the amount high temperature regenerator (202),
An absorbent solution line (282, 286) communicating from the absorber (208) to the high temperature regenerator (202) is regenerated at a low temperature in the region between the low temperature solution heat exchanger (300) and the intermediate temperature solution heat exchanger (302). A first branched absorbent solution line (306) communicating with the vessel (206) branches off (308) and has a medium temperature in the region between the medium temperature solution heat exchanger (302) and the high temperature solution heat exchanger (304). The second branch absorption solution line (310) communicating with the regenerator (204) is branched (311), and the absorption solution line (340) through which the absorption solution heated by the high temperature regenerator (202) flows is regenerated at a medium temperature. The absorbent solution line (318) through which the absorbent solution heated by the intermediate temperature regenerator (204) flows joins the first branched absorbent solution line (306) and is connected to the low temperature regenerator (206). )
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) is the first to ninth steam drain heat exchangers (220, 222, 223A, 224, 226, 227, 228). , 230, 232),
The first steam drain heat exchanger (220) is interposed in a region (252) between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line toward the high temperature regenerator (202). And
The second steam drain heat exchanger (222) includes a branch (311) of the second branched absorbent solution line (310) and a high temperature solution heat exchanger (304) of the absorbent solution line toward the high temperature regenerator (202). The first branch line (250) branches at a first branch point (246B) between the first branch line (250B) and bypasses the hot solution heat exchanger (304). And merged with the absorption solution line toward the high temperature regenerator (202) at a first junction (246G) between the high temperature solution heat exchanger (304) and the first steam drain heat exchanger (220),
The third steam drain heat exchanger (223A) includes a branch (311) and a first branch point (246B) of the second branched absorbent solution line (310) of the absorbent solution line toward the high temperature regenerator (202). Intervened in the area (286) between
The fourth steam drain heat exchanger (224) includes a middle temperature solution heat exchanger (302) of the absorption solution line toward the high temperature regenerator (202) and a branch (311) of the second branch absorption solution line (310). Intervened in the area between and
The fifth steam drain heat exchanger (226) includes a branch (308) of the first branched absorbent solution line (306) and an intermediate temperature solution heat exchanger (302) of the absorbent solution line toward the high temperature regenerator (202). Is interposed in a second branch line (244) that branches at a second branch point (240B) between the two, and the second branch line (244) bypasses the intermediate temperature solution heat exchanger (302). And at the second junction (242G) between the intermediate temperature solution heat exchanger (302) and the fourth steam drain heat exchanger (224), joins the absorption solution line toward the high temperature regenerator (202),
The sixth steam drain heat exchanger (227) includes a branch (308) and a second branch point (240B) of the first branched absorbent solution line (306) of the absorbent solution line toward the high temperature regenerator (202). Intervened in the area between and
The seventh steam drain heat exchanger (228) includes a low temperature solution heat exchanger (300) of the absorption solution line toward the high temperature regenerator (202) and a branch (308) of the first branch absorption solution line (306). Intervened in the area between and
The eighth steam drain heat exchanger (230) has a third branch point (282B) between the absorbent solution pump (102) of the absorbent solution line and the cold solution heat exchanger (300) toward the high temperature regenerator (202). ) Is branched to a third branch line (283), which bypasses the low temperature solution heat exchanger (300) and is connected to the low temperature solution heat exchanger (300). Merging with the absorbent solution line towards the high temperature regenerator (202) at a third junction (283G) between the seventh steam drain heat exchanger (228);
The ninth steam drain heat exchanger (232) is interposed in the region (235) between the absorption solution pump (102) and the third branch point (282B) of the absorption solution line toward the high temperature regenerator (202). And
The first to ninth steam drain heat exchangers (220, 222, 223A, 224, 226, 227, 228, 230, 232) are used to heat the absorbing solution in the high-temperature regenerator (202) after the amount of heat is supplied thereto. The amount of heat possessed by the steam for use or the steam drain is introduced into the absorbing solution that exits from the absorber (208) and goes to the high-temperature regenerator (202) (Claim 7: FIG. 7). ).
[0014]
The steam-fired absorption chiller / heater of the present invention includes a high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), a condenser (210), An evaporator (212), a heating steam line (214, 214A) communicates with the high temperature regenerator (202), and the amount of heat held by the steam flowing through the heating steam line (214) is regenerated at a high temperature. The refrigerant vapor is regenerated by being put into the absorbing solution in the vessel (202),
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
A low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304) are interposed in the absorption solution line from the absorber (208) to the high temperature regenerator (202). The high temperature solution heat exchanger (304) converts the amount of heat held by the absorption solution flowing in the absorption solution line (104) from the high temperature regenerator (202) to the medium temperature regenerator (204) into the absorption solution toward the high temperature regenerator (202). The medium temperature solution heat exchanger (302) is configured to be charged, and the high temperature regenerator (202) stores the amount of heat held by the absorption solution flowing in the absorption solution line from the medium temperature regenerator (204) toward the low temperature regenerator (206). The low-temperature solution heat exchanger (300) is configured so as to be charged into the absorbent solution facing away, and the high-temperature regenerator (300 2 Is configured so as to be introduced into the absorption solution toward the 2),
An absorbent solution line (282, 286) communicating from the absorber (208) to the high temperature regenerator (202) is regenerated at a low temperature in the region between the low temperature solution heat exchanger (300) and the intermediate temperature solution heat exchanger (302). A first branched absorbent solution line (306) communicating with the vessel (206) branches off (308) and has a medium temperature in the region between the medium temperature solution heat exchanger (302) and the high temperature solution heat exchanger (304). The second branch absorption solution line (310) communicating with the regenerator (204) is branched (311), and the absorption solution line (340) through which the absorption solution heated by the high temperature regenerator (202) flows is regenerated at a medium temperature. The absorbent solution line through which the absorbent solution heated by the intermediate temperature regenerator (204) flows joins the first branched absorbent solution line (306) and communicates with the low temperature regenerator (206). And
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) communicates with the first to third steam drain heat exchangers (220, 232, 227C),
The first steam drain heat exchanger (220) is interposed in a region (252) between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line toward the high temperature regenerator (202). And
The second steam drain heat exchanger (232) is interposed in the region between the absorbing solution pump (102) and the cold solution heat exchanger (300) of the absorbing solution line toward the high temperature regenerator (202). And
The third steam drain heat exchanger (227C) is a branch point (282B) in the region between the absorbing solution pump (102) and the cold solution heat exchanger (300) of the absorbing solution line toward the high temperature regenerator (202). ), And the branch line (251S) includes a low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304). Bypass and join the absorbent solution line towards the hot regenerator (202) at the junction (287G) between the hot solution heat exchanger (304) and the first steam drain heat exchanger (220);
The first to third steam drain heat exchangers (220, 232, 227C) absorb the amount of heat held by the heating steam or the steam drain after charging the amount of heat into the absorbing solution in the high temperature regenerator (202). It is characterized in that it is constituted so as to be put into the absorbing solution which goes out of the vessel (208) and goes to the high temperature regenerator (202) (Claim 8: FIG. 8).
[0015]
According to the present invention having such a configuration, the heating steam line (214, 214A) communicates with the high temperature regenerator (202) and then the steam drain heat exchanger (220, 222, 224, 226, 228, 230). 232), and the steam drain heat exchanger (220, 222, 224, 226, 228, 230, 232) heats the absorbing solution in the high-temperature regenerator (202) after the heat is input. The absorption solution line (234, 238, 240, 244, 246, 250, 252) where the amount of heat held by the steam or steam drain exits the absorber (208) and communicates with the regenerator (202, 204, 206). It is configured so as to be put into the flowing absorbent solution (the absorbent solution supplied to the regenerator).
That is, the amount of heat held by the steam drain that has been discharged out of the system in the prior art is input to the absorbing solution (the absorbing solution supplied to the regenerator) flowing toward the regenerator (202, 204, 206). Thus, it is effectively used for increasing the sensible heat of the absorbing solution.
[0016]
As a result of the temperature rise (sensible heat increase) of the absorbing solution supplied to the regenerator (202, 204, 206), the amount of heat input in the regenerator (202, 204, 206) is the same. For example, the regeneration amount of the refrigerant vapor (water vapor) is increased, and the efficiency of the absorption chiller / heater is improved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a triple effect steam-fired absorption chiller / heater will be described with reference to the accompanying drawings. In the accompanying drawings, similar members are denoted by the same reference numerals, and overlapping description of the member names and reference numerals is omitted.
[0018]
FIG. 1 shows a configuration of a series flow type absorption chiller / heater S1 according to the first embodiment.
[0019]
The absorber 208 and the high temperature regenerator 202 are communicated by an absorption solution line 234 via the pump 102, and the high temperature regenerator 202 and the medium temperature regenerator 204 are communicated by an absorption solution line 104 and a first refrigerant vapor line 216. ing.
The first refrigerant vapor line 216 is configured such that the amount of heat held by the refrigerant vapor passing through the line is input to the absorbing solution in the intermediate temperature regenerator 204 to regenerate the refrigerant vapor.
[0020]
The intermediate temperature regenerator 204 and the low temperature regenerator 206 are communicated with each other through an absorbing solution line 106 and a second refrigerant vapor line 218.
The second refrigerant vapor line 218 is configured such that the amount of heat held by the refrigerant vapor passing through the line is input to the absorbing solution in the low temperature regenerator 206 to regenerate the refrigerant vapor.
[0021]
The low temperature regenerator 206 and the absorber 208 are communicated with each other through the absorption solution line 108.
A high temperature solution heat exchanger 304 is interposed in the absorption solution line 104, a medium temperature solution heat exchanger 302 is interposed in the absorption solution line 106, and a low temperature solution heat exchanger 300 is interposed in the absorption solution line 108.
[0022]
The high temperature solution heat exchanger 304, the medium temperature solution heat exchanger 302, and the low temperature solution heat exchanger 300 are all configured to be in thermal contact with the absorbent solution line 234 and to conduct heat to the absorbent solution line 234.
[0023]
A heating steam line 214 communicating with an external heat source is connected to the high-temperature regenerator 202, and the heating steam line 214 becomes a line 214A through heating the high-temperature regenerator 202 and is connected to each steam drain heat exchanger described below. And communicated back to the steam source.
[0024]
The steam drain heat exchanger 220 is interposed in a region 252 between the high temperature solution heat exchanger 304 and the high temperature regenerator 202 in the absorbent solution line 234 in thermal contact with the line 214A.
[0025]
The steam drain heat exchanger 222 is interposed in a region 250 that bypasses the high temperature solution heat exchanger 304 of the absorption solution line 234 at the branch portion 246B and the junction portion 246G, in thermal contact with the line 214A.
[0026]
The steam drain heat exchanger 224 is interposed in a region 246 between the hot solution heat exchanger 304 and the intermediate solution heat exchanger 302 in the absorbent solution line 234 in thermal contact with the line 214A.
[0027]
The steam drain heat exchanger 226 is interposed in a region 244 that bypasses the intermediate temperature solution heat exchanger 302 of the absorption solution line 234 at the branching portion 240B and the joining portion 242G in thermal contact with the line 214A.
[0028]
The steam drain heat exchanger 228 is interposed in a region 240 between the intermediate solution heat exchanger 302 and the low temperature solution heat exchanger 300 in the absorbent solution line 234 in thermal contact with the line 214A.
[0029]
The steam drain heat exchanger 230 is interposed in a region 238 that bypasses the low temperature solution heat exchanger 300 of the absorption solution line 234 at the branch portion 234B and the junction portion 236G in thermal contact with the line 214A.
[0030]
The steam drain heat exchanger 232 is interposed in a region 235 of the absorbent solution line 234 between the cold solution heat exchanger 300 and the absorber 208 in thermal contact with the line 214A.
[0031]
In each of the steam drain heat exchangers 220, 222, 224, 226, 228, 230, 232, it is necessary that the temperature of the drain passing through them is higher than the temperature of the absorbing solution line 234 that is thermally paired. It is a condition. Therefore, any one or all of the steam drain heat exchangers 220, 222, 224, 226, 228, 230, and 232 depending on the temperature condition of the absorption chiller / heater S1, the air conditioning load, the temperature of the heating steam, the outside air condition, and the like. Any one or more including
[0032]
The operation of the absorption chiller / heater S1 will be described with respect to an example in which all the steam drain heat exchangers 220, 222, 224, 226, 228, 230, and 232 are interposed.
[0033]
The low-temperature diluted absorbent solution Li containing the refrigerant discharged from the absorber 208 to the absorbent solution line 234 by the pump 102 is heated by the steam drain heat exchanger 232 to rise in temperature, branch at the branch portion 234B, and one of the regions 238 Is passed through the steam drain heat exchanger 230 and heated to increase the temperature, and the other absorption solution Li that is orthogonal to the branch portion 234 is heated and heated through the low-temperature solution heat exchanger 300 to be combined at the junction 236G. To do.
[0034]
The branching ratio of the absorbing solution Li at the branching portion 234B is such that the total amount of heat received from the low-temperature solution heat exchanger 300 and the heat received from the steam drain heat exchanger 230 is maximized, and the absorbing solution at the junction 236G. Distribution is performed so that the Li temperature becomes maximum.
[0035]
The absorbing solution Li that has passed through the merging portion 236G passes through the steam drain heat exchanger 228 and is heated to rise in temperature, branches at the branching portion 240B, and passes through the region 244 to be heated by the steam drain heat exchanger 226. Then, the other absorption solution Li, which is perpendicular to the branching section 240B, is heated by passing through the intermediate temperature solution heat exchanger 302, and is merged at the junction section 242G. The branching ratio of the absorbing solution Li in the branching part 240B is the same as that in the branching part 234B.
[0036]
The absorbing solution Li that has passed through the merging portion 242G passes through the steam drain heat exchanger 224 and is heated to rise in temperature, branches at the branching portion 246B, and passes through the region 250 and is heated by the steam drain heat exchanger 222. Then, the other absorbent solution Li that is perpendicular to the branching section 246B is heated by passing through the high-temperature solution heat exchanger 304, and is joined at the joining section 246G. The branching ratio of the absorbing solution Li at the branching part 246B is the same as that at the branching part 234B.
[0037]
The absorbing solution Li that has passed through the merging portion 246 </ b> G passes through the steam drain heat exchanger 220, is heated and heated, and is introduced into the high-temperature regenerator 202.
[0038]
The diluted absorbent solution Li containing the refrigerant solution is heated by the steam St in the heating steam line 214 in the high-temperature regenerator 202, and the concentrated absorbent solution Li separated and concentrated using the refrigerant solution as a vapor is heated by the absorbent solution line 104. The heat is dissipated by the solution heat exchanger 304 and introduced into the intermediate temperature regenerator 204.
[0039]
The concentrated absorbent Li is heated by the refrigerant vapor from the first refrigerant vapor line 216 in the intermediate temperature regenerator 204, and the concentrated solution Li separated and concentrated using the refrigerant solution as vapor is directed to the absorbent solution line 106.
The absorbing solution Li led to the absorbing solution line 106 dissipates heat in the intermediate temperature solution heat exchanger 302 and is introduced into the low temperature regenerator 206.
The concentrated absorbent solution Li introduced into the low-temperature regenerator 206 is separated and further concentrated as a refrigerant solution as a vapor, is led to the absorbent solution line 108, radiates heat in the low-temperature solution heat exchanger 300, and returns to the absorber 208.
[0040]
On the other hand, the refrigerant h2 evaporated and separated by the high-temperature regenerator 202 dissipates heat in the intermediate-temperature regenerator 204 via the first refrigerant vapor line 216, further heats the concentrated absorbent solution Li, and goes to the condenser 210. The refrigerant h3 evaporated and separated by the intermediate temperature regenerator 204 releases heat by the low temperature regenerator 206 to heat the concentrated absorbent solution Li, joins the first refrigerant vapor line 216, and goes to the condenser 210.
[0041]
The refrigerants h2 and h3 guided to the condenser 210 are condensed and evaporated by the evaporator 212 to exchange heat with an external fluid. In addition, the refrigerant exchanges heat with the external fluid in the absorber 208.
In this way, the heat efficiency of the absorption chiller / heater S1 is improved by making full use of the heat quantity of the steam through the heating steam line 214.
[0042]
FIG. 2 shows a configuration of a series flow type absorption chiller / heater S4 according to the second embodiment. A description will be given mainly of parts different from the embodiment of FIG.
A heating steam line 214 leading to an external heat source is connected to the high-temperature regenerator 202, and the heating steam line 214 becomes a line 214A via the heating of the high-temperature regenerator 202 and is connected to a steam drain heat exchanger described below. Connected to the steam source.
[0043]
The steam drain heat exchanger 225 branches between the steam drain heat exchanger 220 and the hot solution heat exchanger 304 in the absorption solution line 234 and between the cold solution heat exchanger 300 and the steam drain heat exchanger 232. A region 236Q that is bypassed by the portion 234B and the junction 246G is interposed in thermal contact with the line 214A.
[0044]
The communication relationship of the steam drain heat exchanger 225 to the steam drains 232 and 220 mounted before and after the steam drain heat exchanger 225 is substantially the same as the embodiment of FIG. That is, the steam drain heat exchanger 225 is interposed instead of the steam drain heat exchangers 230, 228, 226, and 222 in FIG.
Except for the above, the configuration is the same as in FIG.
[0045]
The operation of the absorption chiller / heater S4 will be described with a focus on the vicinity where the steam drain heat exchanger 225 is interposed.
The low-temperature diluted absorbent solution Li containing the refrigerant discharged from the absorber 208 to the absorbent solution line 234 by the pump 102 is heated by the steam drain heat exchanger 232 to be heated and branched at the branch portion 234B, and one of the regions is a region. 236Q passes through 236Q and is heated by the steam drain heat exchanger 225 to increase the temperature, and the other absorption solution Li that goes straight at the branch portion 234B is the low-temperature solution heat exchanger 300, the medium-low temperature solution heat exchanger 302, and the high-temperature solution heat exchanger. It passes through 304, is heated and heated up, and merges at the junction 246G.
[0046]
The absorbing solution Li that has passed through the merging portion 246 </ b> G passes through the steam drain heat exchanger 220, is heated to rise in temperature, and travels toward the high-temperature regenerator 202.
As described above, according to the heat distribution characteristics of the absorption chiller / heater, the number of steam drain heat exchangers is reduced and the thermal efficiency is improved.
[0047]
FIG. 3 shows a configuration of a reverse flow type absorption chiller / heater RS5 according to the third embodiment. A description will be given mainly of parts different from the embodiment of FIG.
The absorber 208 and the low temperature regenerator 206 constituting the outgoing path of the diluted absorbent solution are communicated with each other through the absorption solution lines 234, 235, 236, and 382 via the pump 102. The low temperature regenerator 206 and the intermediate temperature regenerator 204 are connected to the absorbent solution. The medium temperature regenerator 204 and the high temperature regenerator 202 are communicated with each other through absorption solution lines 386, 248 and 252.
[0048]
The high-temperature regenerator 202 and the absorber 208 constituting the return path of the concentrated absorbent solution are communicated with each other through the absorbent solution line 110.
A high temperature solution heat exchanger 304, a medium temperature solution heat exchanger 302, and a low temperature solution heat exchanger 300 are interposed in the absorption solution line 110 from the high temperature regenerator 202 side.
[0049]
The region 248 between the absorbent solution lines 386 and 252 is in thermal contact with the hot solution heat exchanger 304. The region 248 communicates with a region 250 that bypasses the high-temperature solution heat exchanger 304 at the branching portion 246B and the joining portion 246G.
[0050]
The middle region 242 of the absorbent solution line 384 is in thermal contact with the intermediate solution heat exchanger 302. The region 242 communicates with a region 244 that bypasses the intermediate temperature solution heat exchanger 302 at the branching portion 240B and the joining portion 242G.
[0051]
The middle region 236 of the absorbent solution lines 234 and 382 passes through the cold solution heat exchanger 300 and is in thermal contact. The region 236 communicates with a region 238 that bypasses the low-temperature solution heat exchanger 300 at the branching portion 234B and the joining portion 236G.
[0052]
The high temperature solution heat exchanger 304, the medium temperature solution heat exchanger 302, and the low temperature solution heat exchanger 300 are each configured to thermally contact the diluted absorbent solution from the concentrated absorbent solution and transfer heat to the diluted absorbent solution.
[0053]
A heating steam line 214 leading to an external heat source is connected to the high-temperature regenerator 202, and the heating steam line 314 becomes a line 214A via the high-temperature regenerator 202 via heating, and is connected to each steam drain heat exchanger described below. And communicated to a steam source.
[0054]
The steam drain heat exchanger 220 is interposed in a region 252 between the high temperature solution heat exchanger 304 and the high temperature regenerator 202 in thermal contact with the line 214A.
[0055]
The steam drain heat exchanger 222 is interposed in a region 250 that bypasses the high temperature solution heat exchanger 304 in thermal contact with the line 214A.
Steam drain heat exchanger 224A is interposed in a region 386 between hot solution heat exchanger 304 and intermediate temperature regenerator 204 in thermal contact with line 214A.
[0056]
The steam drain heat exchanger 224B is interposed in a region 384 between the intermediate temperature regenerator 204 and the intermediate temperature solution heat exchanger 302 in thermal contact with the line 214A.
[0057]
The steam drain heat exchanger 226 is interposed in a region 244 that bypasses the intermediate temperature solution heat exchanger 302 in thermal contact with the line 214A.
[0058]
The steam drain heat exchanger 228A is interposed in a region 384 between the medium temperature solution heat exchanger 302 and the low temperature regenerator 206 in thermal contact with the line 214A.
[0059]
The steam drain heat exchanger 228B is interposed in a region 382 between the low temperature regenerator 206 and the low temperature solution heat exchanger 300 in thermal contact with the line 214A.
The steam drain heat exchanger 230 is interposed in a region 238 that bypasses the low temperature solution heat exchanger 300 in thermal contact with the line 214A.
[0060]
The steam drain heat exchanger 232 is interposed in a region 235 between the absorber 208 and the cold solution heat exchanger 300 in thermal contact with the line 214A.
[0061]
In each of the steam drain heat exchangers 220, 222, 224A, 224B, 226, 228A, 228B, 230, 232, the temperature of the drain passing through them is higher than the temperature of the absorbing solution that is thermally paired. Is a necessary condition. Therefore, any one of the steam drain heat exchangers 220, 222, 224A, 224B, 226, 228A, 228B, 230, 232 depending on the temperature condition of the absorption chiller / heater RS5, the air conditioning load, the temperature of the heating steam, the outside air condition, etc. One or a plurality including one or all of the numbers are interposed.
Other refrigerant vapor lines and the like are the same as in FIG.
[0062]
The operation of the absorption chiller / heater RS5 will be described with respect to an example in which all the steam drain heat exchangers 220, 222, 224A, 224B, 226, 228A, 228B, 230, and 232 are interposed.
[0063]
The low-temperature diluted absorbent solution Li containing the refrigerant discharged from the absorber 208 to the absorbent solution line 234 by the pump 102 is heated by the steam drain heat exchanger 232 to rise in temperature, branch at the branch portion 234B, and one of the regions 238 And the other absorption solution Li direct in the branch part 234B is heated and heated through the low-temperature solution heat exchanger 300, and joins in the joining part 236G. To do.
[0064]
The branching ratio of the absorbing solution Li at the branching portion 234B is such that the total amount of heat received from the low-temperature solution heat exchanger 300 and the heat received from the steam drain heat exchanger 230 is maximized, and the absorbing solution at the junction 236G. Distribution is performed so that the Li temperature becomes maximum.
[0065]
The diluted absorbent solution Li that has passed through the merging portion 236G is heated and heated through the steam drain heat exchanger 228B, and is introduced into the low-temperature regenerator 206.
The diluted absorbent solution Li heated by the low-temperature regenerator 206 and heated is heated by the steam drain heat exchanger 228A via the absorbent solution line 384 and heated to the branching section 240B. One of the diluted absorbent solutions Li branched there passes through the region 244 and is heated by the steam drain heat exchanger 226, and the temperature of the other diluted absorbent solution Li passes through the branch 240B, and the other diluted absorbent solution Li passes through the intermediate temperature solution heat exchanger 302. Then, the temperature is raised and the temperature is raised, and the merging portion 242G joins.
[0066]
The branching ratio of the absorbing solution Li in the branching part 240B is the same as the branching procedure in the branching part 234B.
[0067]
The diluted absorbent solution Li that has passed through the junction 242G is heated and heated through the steam drain heat exchanger 224B, heated to the refrigerant vapor in the intermediate temperature regenerator 204, and part of the refrigerant is evaporated and separated to be concentrated. .
[0068]
The absorbing solution Li concentrated in the intermediate temperature regenerator 204 is heated by the steam drain heat exchanger 224A through the region 386 of the solution line and heated to the branch portion 246B.
One of the absorbing solutions Li branched at the branching portion 246B passes through the region 250 and is heated by the steam drain heat exchanger 222 to be heated, and the other absorbing solution Li at the branching portion 246B passes through the high-temperature solution heat exchanger 304. It passes through and is heated to rise in temperature, and merges at the junction 246G.
[0069]
The branching ratio of the absorbing solution Li at the branching portion 246B is the same as the branching procedure at the branching portion 234B.
[0070]
The absorbing solution Li that has passed through the merging portion 246 </ b> G passes through the steam drain heat exchanger 220, is heated and heated, and is introduced into the high-temperature regenerator 202.
[0071]
The absorbing solution Li containing the refrigerant solution is heated by the vapor St by the heating vapor line 214 in the high-temperature regenerator 202, and is separated using the refrigerant solution as vapor. The concentrated concentrated absorbent Li is radiated by the high temperature solution heat exchanger 304, the medium temperature solution heat exchanger 302, and the low temperature solution heat exchanger 300 via the absorption solution line 110 and introduced into the absorber 208.
[0072]
In this way, the heat efficiency of the absorption chiller / heater RS5 is improved by making full use of the amount of heat of the steam via the heating steam line 214.
[0073]
FIG. 4 shows the configuration of a reverse parallel type absorption chiller / heater RP6 according to the fourth embodiment. A description will be given mainly of parts different from the embodiment of FIG.
A branch portion 264 is provided in front of the steam drain heat exchanger 228 of the absorption solution line 262 communicating with the low temperature regenerator 206 and the intermediate temperature regenerator 204, and the branch line 268 is attached. The branch line 268 is communicated between the medium temperature solution heat exchanger 302 and the low temperature solution heat exchanger 300 that connect the high temperature regenerator 202 and the absorber 208 to each other.
[0074]
Further, a branch portion 272 is provided in front of the vapor drain 224 of the absorption solution line 270 that connects the intermediate temperature regenerator 204 and the high temperature regenerator 202, and a branch line 276 is attached. The branch line 276 is communicated between the medium temperature solution heat exchanger 302 and the high temperature solution heat exchanger 304.
Other configurations are the same as those of the absorption chiller / heater RS5 of FIG.
[0075]
The operation of the absorption chiller / heater RP6 will be described focusing on the periphery where the branch lines 268 and 276 are attached.
The low-temperature diluted absorbent solution Li containing the refrigerant discharged from the absorber 208 to the absorbent solution line 234 by the pump 102 passes through the steam drain heat exchanger 232, the low-temperature solution heat exchanger 300, etc. It is introduced into the low temperature regenerator 206.
[0076]
The diluted absorbent solution Li heated by the low-temperature regenerator 206 and slightly concentrated is directed to the branch 264 of the absorbent solution line 262. A part of the diluted absorbent solution Li branched at the branch part 264 enters the absorbent solution line 110 through which the concentrated absorbent solution Li flows at the junction part 266 via the branch line 268 and is introduced into the absorber 208. The diluted absorbent solution Li that has passed through the branching portion 264 is heated through the steam drain heat exchanger 228, the intermediate temperature solution heat exchanger 302, and the like, and is heated to the intermediate temperature regenerator 204.
[0077]
The diluted absorbent solution Li heated by the intermediate temperature regenerator 204 and further concentrated is directed to the branch 272 of the absorbent solution line 270. A part of the diluted absorbent solution Li branched at the branch part 272 enters the absorbent solution line 110 through which the concentrated absorbent solution Li flows at the junction part 274 via the branch line 274 and is introduced into the absorber 208.
[0078]
The diluted absorbent solution Li that has passed through the branching portion 276 passes through the steam drain heat exchanger 224, the high temperature solution heat exchanger 304, and the like, is heated and heated, and travels toward the high temperature regenerator 202.
The absorbing solution Li containing the refrigerant solution is heated by the vapor St by the heating vapor line 214 in the high-temperature regenerator 202, and is separated using the refrigerant solution as vapor. The concentrated concentrated absorbent Li is radiated by the high temperature solution heat exchanger 304, the medium temperature solution heat exchanger 302, and the low temperature solution heat exchanger 300 via the absorption solution line 110 and introduced into the absorber 208.
All the actions including the action details omitted above are all the same as the absorption chiller / heater RS5 of FIG.
[0079]
In this way, a part of the diluted absorbent solution heated and concentrated by the low temperature regenerator 206 and the intermediate temperature regenerator 204 is introduced into the concentrated absorbent solution line 110, thereby improving the thermal efficiency of the entire system.
[0080]
FIG. 5 shows a configuration of a parallel flow type absorption chiller / heater PF9 of the fifth embodiment.
The absorber 208 and the high temperature regenerator 202 are communicated with each other through an absorption solution line 282 via the pump 102, and the high temperature regenerator 202 and the medium temperature regenerator 204 are communicated with each other through continuous absorption solution lines 104, 312, 318, Further, the first refrigerant vapor line 216 communicates.
[0081]
The first refrigerant vapor line 216 is configured such that the amount of heat held by the refrigerant vapor passing through the line is input to the absorbing solution in the intermediate temperature regenerator 204 to regenerate the refrigerant vapor.
[0082]
The intermediate temperature regenerator 204 and the low temperature regenerator 206 are communicated with continuous absorption solution lines 318, 314, and 322, and are further communicated in parallel with the second refrigerant vapor line 216A and the third refrigerant vapor line 218. Yes.
[0083]
The third refrigerant vapor line 218 is configured such that the amount of heat held by the refrigerant vapor passing through the line is input to the absorbing solution in the low temperature regenerator 206 to regenerate the refrigerant vapor.
[0084]
The low temperature regenerator 206 and the absorber 208 are communicated with each other through the absorption solution line 108.
A high temperature solution heat exchanger 304 is interposed in the absorption solution line 104, a medium temperature solution heat exchanger 302 is interposed in the absorption solution line 314, and a low temperature solution heat exchanger 300 is interposed in the absorption solution line 316.
[0085]
The high temperature solution heat exchanger 304, the medium temperature solution heat exchanger 302, and the low temperature solution heat exchanger 300 are all configured to be in thermal contact with the absorbing solution line 282 and transfer heat to the absorbing solution line 282.
A heating steam line 214 communicating with an external heat source is connected to the high-temperature regenerator 202, and the heating steam line 214 becomes a line 214 A via the heating of the high-temperature regenerator 202, and each steam drain heat exchange described below. Connected to the vessel and communicated back to the steam source.
[0087]
The steam drain heat exchanger 220 is interposed in a region 252 between the high temperature solution heat exchanger 304 and the high temperature regenerator 202 in the absorbent solution line 282 in thermal contact with the line 214A.
[0088]
The steam drain heat exchanger 222 is interposed in thermal contact with the line 214A in a region 250 that bypasses the high-temperature solution heat exchanger 304 of the absorption solution line 282 at the branch portion 264B and the junction portion 246G.
[0089]
The steam drain heat exchanger 223A is interposed in a region 286 between the high temperature solution heat exchanger 304 and the branch 311 of the absorption solution line 282 in thermal contact with the line 214A.
[0090]
The steam drain heat exchanger 224 is interposed in a region 246B between the branch portion 311 of the absorption solution line 282 and the intermediate temperature solution heat exchanger 302 in thermal contact with the line 214A.
[0091]
The steam drain heat exchanger 226 is interposed in a region 244 that bypasses the intermediate temperature solution heat exchanger 302 of the absorbing solution line 282 at the branching portion 240B and the joining portion 242G in thermal contact with the line 214A.
[0092]
The steam drain heat exchanger 227 is interposed in a region 284 between the branch 308 and the branch 240B of the absorption solution line 282 in thermal contact with the line 214A.
[0093]
The steam drain heat exchanger 228 is interposed in a region 238H between the branch portion 308 and the merge portion 283G of the absorbing solution line 282 in thermal contact with the line 214A.
[0094]
The steam drain heat exchanger 230 is interposed in a region 238 that bypasses the low-temperature solution heat exchanger 300 of the absorption solution line 282 at the branch portion 282B and the junction portion 283G in thermal contact with the line 214A.
[0095]
The steam drain heat exchanger 232 is interposed in a region 235 between the cold solution heat exchanger 300 and the absorber 208 of the absorbent solution line 282 in thermal contact with the line 214A.
[0096]
In each of the steam drain heat exchangers 220, 222, 223A, 224, 226, 227, 228, 230, 232, the temperature of the drain passing through these is higher than the temperature of the absorbing solution line 234 that is thermally paired. It is a necessary condition. Therefore, any one of the steam drain heat exchangers 220, 222, 223A, 224, 226, 227, 228, 230, 232 depending on the temperature condition of the absorption chiller / heater PF9, the air conditioning load, the temperature of the heating steam, the outside air condition, etc. One or a plurality including one or all of the numbers are interposed.
[0097]
The operation of the absorption chiller / heater PF9 will be described with respect to an example in which all the steam drain heat exchangers 220, 222, 223A, 224, 226, 227, 228, 230, and 232 are interposed.
The low-temperature diluted absorbent solution Li containing the refrigerant discharged from the absorber 208 to the absorbent solution line 282 by the pump 102 is heated by the steam drain heat exchanger 232 to rise in temperature, and is branched at the branching portion 282B. And the other diluted absorbent solution Li is directly passed through the low-temperature solution heat exchanger 300 and heated to rise in temperature at the junction 283G. Join.
[0098]
Note that the branching ratio of the diluted absorbent solution Li at the branching portion 282B is such that the total amount of heat received from the low temperature solution heat exchanger 300 and the heat received from the steam drain heat exchanger 230 is maximized, and the dilution at the junction 283G is performed. The absorption solution Li temperature is distributed so as to be maximized.
[0099]
The diluted absorbent solution Li that has passed through the merging portion 283G passes through the steam drain heat exchanger 228 and is heated to rise in temperature. At the branch portion 308, one is directed to the low-temperature regenerator 206 through the absorbent solution line 306. The other absorption solution line 282 goes straight, is heated by the steam drain heat exchanger 227, and is heated to the branching section 240B.
[0100]
One of the diluted absorbent solutions Li branched at the branch 240B passes through the region 244 and is heated by the steam drain heat exchanger 226 to increase the temperature, and the other diluted absorbent solution Li at the branch 240B is the intermediate temperature solution heat exchanger. It passes through 302 and is heated to rise in temperature, and merges at the junction 242G.
[0101]
The branching ratio of the absorbing solution Li at the branching portion 240B is the same as the branching procedure at the branching portion 282B.
[0102]
The diluted absorbent solution Li that has passed through the junction 242G passes through the steam drain heat exchanger 224 and is heated to rise in temperature, branching off at the branching section 311 and one into the medium temperature regenerator 204 and the other into the high temperature regenerator 202. Head.
[0103]
The diluted absorbent solution Li branched by the branch part 311 is concentrated by heating the first refrigerant vapor line 216 in the intermediate temperature regenerator 204.
The diluted absorbent solution Li toward the high-temperature regenerator 202 is heated by the steam drain heat exchanger 223A to increase the temperature, and proceeds to the branching section 246B.
[0104]
One of the diluted absorbent solutions Li branched at the branch portion 246B passes through the region 250 and is heated by the steam drain heat exchanger 222 to be heated, and the other diluted absorbent solution Li at the branch portion 246B is heated at the high temperature solution heat exchanger. It passes through 304, is heated and heated up, and merges at the junction 246G.
[0105]
The branching ratio of the absorbing solution Li at the branching portion 246B is the same as the branching procedure at the branching portion 282B and the branching portion 240B.
The absorbing solution Li that has passed through the merging portion 246 </ b> G passes through the steam drain heat exchanger 220, is heated and heated, and is introduced into the high-temperature regenerator 202.
[0106]
The diluted absorbent solution Li containing the refrigerant solution is heated by the steam St in the heating steam line 214 in the high-temperature regenerator 202, and the concentrated absorbent solution Li separated and concentrated using the refrigerant solution as a vapor is heated by the absorbent solution line 104. The heat is dissipated by the solution heat exchanger 304 and travels toward the junction 320 of the absorbing solution line 312.
[0107]
The absorbing solution guided to the merging unit 320 is merged with the absorbing solution via the absorbing solution line 318 in the merging unit 320, dissipates heat in the intermediate temperature solution heat exchanger 302 through the absorbing solution line 314, and travels to the merging unit 324.
[0108]
The absorption solution guided to the merge unit 324 merges with the absorption solution concentrated by the low temperature regenerator 206, dissipates heat in the low temperature solution heat exchanger 300, and travels toward the absorber 208.
As for the movement of the refrigerant, the absorption solution is heated by the intermediate temperature regenerator 204 through the first refrigerant vapor line 216 as a vapor having a high heat quantity after being evaporated and separated from the diluted absorption solution Li by the high temperature regenerator 202. In addition, the refrigerant vapor evaporated and separated by the intermediate temperature regenerator 204 also releases heat by the low temperature regenerator 206 through the second refrigerant vapor line 218.
[0109]
The refrigerant vapor evaporated and separated by the low temperature regenerator 202 is condensed by the condenser 210 together with the vapor from the intermediate temperature regenerator 204, and evaporated by the evaporator 212 to exchange heat with an external fluid. In addition, the refrigerant exchanges heat with the external fluid in the absorber 208.
[0110]
In this manner, the heat efficiency of the absorption chiller / heater PF9 is improved by making full use of the heat quantity of the steam through the heating steam line 214.
[0111]
FIG. 6 shows the configuration of another parallel flow type absorption chiller / heater PF14 according to the sixth embodiment. A description will be given mainly of parts different from the embodiment of FIG.
A heating steam line 214 leading to an external heat source is connected to the high-temperature regenerator 202, and the heating steam line 214 becomes a line 214A via the heating of the high-temperature regenerator 202 and is connected to a steam drain heat exchanger described below. Connected to the steam source.
[0112]
The steam drain heat exchanger 227C includes a high temperature solution heat exchanger 304, a medium temperature solution heat exchanger 302, a low temperature solution heat exchanger 300, a branch portion 308, and a branch portion 311 of the absorption solution line 282, and a branch portion 282B and a junction portion 287G. In the region 251S to be bypassed, the line 214A is in thermal contact with the region 251S.
[0113]
The communication relationship of the steam drain heat exchanger 227C to the steam drain heat exchangers 232 and 220 mounted before and after the steam drain heat exchanger 227C is the same as that of the embodiment of FIG. In other words, the steam drain heat exchanger 227C is interposed instead of the steam drain heat exchangers 222, 223A, 224, 226, 227, 228, 230 in FIG.
Except for the above, the configuration is the same as that shown in FIG.
[0114]
The operation of the absorption chiller / heater PF14 will be described mainly with respect to the periphery where the steam drain heat exchanger 227C is interposed.
The low-temperature diluted absorbent solution Li containing the refrigerant discharged from the absorber 208 to the absorbent solution line 282 by the pump 102 is heated by the steam drain heat exchanger 232 to be heated and branched at the branch portion 282B. It is heated by the drain heat exchanger 227C and heated to the joining portion 287G.
[0115]
The other diluted absorption solution Li that goes straight at the branching portion 282B passes through the low-temperature solution heat exchanger 300 and is heated to rise in temperature, and at the branching portion 308, one goes to the low-temperature regenerator 206 and the other goes straight to the high-temperature regeneration. Head to vessel 202.
[0116]
The diluted absorption solution Li toward the high temperature regenerator 202 is heated by the intermediate temperature solution heat exchanger 302 and heated, and at the branching portion 311, one goes to the intermediate temperature regenerator 204 and the other goes straight and is heated by the high temperature regenerator 304. The temperature is raised and merged with the diluted absorbent solution Li via the steam drain heat exchanger 227C at the merge portion 287G and headed to the high temperature regenerator 202.
[0117]
The absorbing solution Li directed from the junction 287G to the high temperature regenerator 202 is heated by the steam drain heat exchanger 220, heated, and introduced into the high temperature regenerator 202.
The operation of the concentrated absorbent solution and the refrigerant vapor via the high temperature regenerator 202, the medium temperature regenerator 204, the low temperature regenerator 206, and the like is the same as in FIG.
[0118]
As described above, according to the heat distribution characteristics of the absorption chiller / heater, the number of steam drain heat exchangers is reduced and the thermal efficiency is improved.
[0119]
FIG. 7 shows a configuration of a series parallel flow type absorption chiller / heater SP15 according to the seventh embodiment.
The absorber 208 and the high temperature regenerator 202 are communicated with each other through a diluted absorption solution line 282 via the pump 102, and the high temperature regenerator 202 and the medium temperature regenerator 204 are communicated with each other through the absorption solution line 104 and the first refrigerant vapor line 216. Has been.
[0120]
The first refrigerant vapor line 216 is configured such that the amount of heat held by the refrigerant vapor passing through the line is input to the absorbing solution in the intermediate temperature regenerator 204 to regenerate the refrigerant vapor.
[0121]
The intermediate temperature regenerator 204 and the low temperature regenerator 206 are communicated with each other through continuous absorption solution lines 318 and 306, and a first refrigerant vapor line 216 and a second refrigerant vapor line 218 in parallel.
[0122]
The second refrigerant vapor line 218 is configured such that the amount of heat held by the refrigerant vapor passing through the line is input to the absorbing solution in the low temperature regenerator 206 to regenerate the refrigerant vapor.
The low temperature regenerator 206 and the absorber 208 are communicated with each other through an absorption solution line 322.
[0123]
A high temperature solution heat exchanger 304 is interposed in the absorption solution line 340, a medium temperature solution heat exchanger 302 is interposed in the absorption solution line 318, and a low temperature solution heat exchanger 300 is interposed in the absorption solution line 322.
[0124]
The high temperature solution heat exchanger 304, the medium temperature solution heat exchanger 302, and the low temperature solution heat exchanger 300 are all configured to be in thermal contact with the absorbing solution line 282 and transfer heat to the absorbing solution line 282.
[0125]
A heating steam line 214 communicating with an external heat source is connected to the high-temperature regenerator 202, and the heating steam line 214 becomes a line 214A through heating the high-temperature regenerator 202 and is connected to each steam drain heat exchanger described below. And communicated back to the steam source.
[0126]
The steam drain heat exchanger 220 is interposed in a region 252 between the high temperature solution heat exchanger 304 and the high temperature regenerator 202 in the absorbent solution line 282 in thermal contact with the line 214A.
[0127]
The steam drain heat exchanger 222 is interposed in a region 250 that bypasses the high-temperature solution heat exchanger 304 of the absorption solution line 282 at the branch portion 264 and the junction portion 246G in thermal contact with the line 214A.
[0128]
The steam drain heat exchanger 223A is interposed in a region 286 between the branch portion 246B and the branch portion 311 of the absorption solution line 282 in thermal contact with the line 214A.
[0129]
The steam drain heat exchanger 224 is interposed in a region 246B between the branch portion 311 and the merge portion 242G of the absorbing solution line 282 in thermal contact with the line 214A.
[0130]
The steam drain heat exchanger 226 is interposed in a region 244 that bypasses the intermediate temperature solution heat exchanger 302 of the absorbing solution line 282 at the branching portion 240B and the joining portion 242G in thermal contact with the line 214A.
[0131]
The steam drain heat exchanger 227 is interposed in a region 243P between the branch 308 and the branch 240B of the absorption solution line 282 in thermal contact with the line 214A.
[0132]
The steam drain heat exchanger 228 is interposed in a region 283H between the joining portion 283G and the branching portion 308 of the absorbing solution line 282 in thermal contact with the line 214A.
[0133]
The steam drain heat exchanger 230 is interposed in a region 283 that bypasses the low-temperature solution heat exchanger 300 of the absorption solution line 282 at the branch portion 282B and the junction portion 283G in thermal contact with the line 214A.
[0134]
The steam drain heat exchanger 232 is interposed in a region 235 between the absorber 208 and the branch 282B of the absorption solution line 282 in thermal contact with the line 214A.
[0135]
In each of the steam drain heat exchangers 220, 222, 223A, 224, 226, 227, 228, 230, 232, the temperature of the drain passing through these is higher than the temperature of the absorbing solution line 234 that is thermally paired. It is a necessary condition. Therefore, one of the steam drain heat exchangers 220, 222, 223A, 224, 226, 227, 228, 230, 232 depending on the temperature condition of the absorption chiller / heater SP15, the air conditioning load, the temperature of the heated steam, the outside air conditions, and the like. Any one or more including one or all of the numbers are interposed.
[0136]
The operation of the absorption chiller / heater SP15 will be described with respect to an example in which all of the steam drain heat exchangers 220, 222, 223A, 224, 226, 227, 228, 230, and 232 are interposed.
The low-temperature diluted absorbent solution Li containing the refrigerant discharged from the absorber 208 to the absorbent solution line 282 by the pump 102 is heated by the steam drain heat exchanger 232 to rise in temperature, and is branched at the branching portion 282B. And the other diluted absorbent solution Li is directly passed through the low-temperature solution heat exchanger 300 and heated to rise in temperature at the junction 283G. Join.
[0137]
The branching ratio of the absorbing solution Li at the branching portion 282B is such that the total amount of heat received from the low-temperature solution heat exchanger 300 and the heat received from the steam drain heat exchanger 230 is maximized, and the absorbing solution at the junction 283G. Distribution is performed so that the Li temperature becomes maximum.
[0138]
The diluted absorbent solution Li that has passed through the merging portion 283G passes through the steam drain heat exchanger 228 and is heated to rise in temperature. At the branch portion 308, one is directed to the low-temperature regenerator 206 through the absorbent solution line 306. The other goes straight through the absorption solution line 282, is heated by the steam drain heat exchanger 227, rises in temperature, and goes to the branch 240B.
[0139]
One of the diluted absorbent solutions Li branched at the branch 240B passes through the region 244 and is heated by the steam drain heat exchanger 226 to increase the temperature, and the other diluted absorbent solution Li at the branch 240B is the intermediate temperature solution heat exchanger. It passes through 302 and is heated to rise in temperature, and merges at the junction 242G.
[0140]
The branching ratio of the absorbing solution Li at the branching portion 240B is the same as the branching procedure at the branching portion 282B.
The diluted absorbent solution Li that has passed through the junction 242G passes through the steam drain heat exchanger 224 and is heated to rise in temperature, branching off at the branching section 311 and one into the medium temperature regenerator 204 and the other into the high temperature regenerator 202. Head.
[0141]
The diluted absorbent solution Li branched from the branch section 311 and directed to the absorbent solution line 310 is concentrated by heating the first refrigerant vapor line 216 in the intermediate temperature regenerator 204.
The diluted absorbent solution Li toward the high-temperature regenerator 202 is heated by the steam drain heat exchanger 223A to increase the temperature, and proceeds to the branching portion 246B.
[0142]
One of the diluted absorbent solutions Li branched at the branch portion 246B passes through the region 250 and is heated by the steam drain heat exchanger 222 to be heated, and the other diluted absorbent solution Li at the branch portion 246B is heated at the high temperature solution heat exchanger. It passes through 304, is heated and heated up, and merges at the junction 246G.
[0143]
The branching ratio of the absorbing solution Li at the branching portion 246B is the same as the branching procedure at the branching portion 282B and the branching portion 240B.
[0144]
The absorbing solution Li that has passed through the merging portion 246 </ b> G passes through the steam drain heat exchanger 220, is heated and heated, and is introduced into the high-temperature regenerator 202.
[0145]
The diluted absorbent solution Li containing the refrigerant solution is heated by the steam St by the heating steam line 214 in the high-temperature regenerator 202, and the concentrated absorbent solution Li separated and concentrated using the refrigerant solution as the vapor is heated by the absorbent solution line 340. The solution heat exchanger 304 radiates heat toward the intermediate temperature regenerator 204.
[0146]
The concentrated absorbent solution Li separated and concentrated by the intermediate temperature regenerator 204 as a vapor is radiated by the intermediate solution heat exchanger 302 through the absorbent solution line 318 and merged with the absorbent solution line 306 toward the low temperature regenerator 206. .
The absorption solution concentrated by the low temperature regenerator 206 is radiated by the low temperature solution heat exchanger 300 and directed to the absorber 208.
[0147]
As for the movement of the refrigerant, the absorption solution is heated by the intermediate temperature regenerator 204 through the first refrigerant vapor line 216 as a vapor having a high heat quantity after being evaporated and separated from the diluted absorption solution Li by the high temperature regenerator 202. In addition, the refrigerant vapor evaporated and separated by the intermediate temperature regenerator 204 also releases heat by the low temperature regenerator 206 through the second refrigerant vapor line 218.
[0148]
The refrigerant vapor evaporated and separated by the low temperature regenerator 202 is condensed by the condenser 210 together with the vapor from the intermediate temperature regenerator 204, and evaporated by the evaporator 212 to exchange heat with an external fluid. In addition, the refrigerant exchanges heat with the external fluid in the absorber 208.
[0149]
In this way, the heat efficiency of the absorption chiller / heater SP15 is improved by making full use of the amount of heat of the steam through the heating steam line 214.
[0150]
FIG. 8 shows a configuration of another series parallel flow type absorption chiller / heater SP20 according to the eighth embodiment. A different part from the embodiment of FIG. 7 will be mainly described.
A heating steam line 214 leading to an external heat source is connected to the high-temperature regenerator 202, and the heating steam line 214 becomes a line 214A via the heating of the high-temperature regenerator 202 and is connected to a steam drain heat exchanger described below. Connected to the steam source.
[0151]
The steam drain heat exchanger 227C includes a high temperature solution heat exchanger 304, a medium temperature solution heat exchanger 302, a low temperature solution heat exchanger 300, a branch portion 308, and a branch portion 311 of the absorption solution line 282, and a branch portion 282B and a junction portion 287G. In the region 251S to be bypassed, the line 214A is in thermal contact with the region 251S.
[0152]
The communication relationship of the steam drain heat exchanger 227C to the steam drain heat exchangers 232 and 220 mounted before and after the steam drain heat exchanger 227C is the same as that of the embodiment of FIG. In other words, the steam drain heat exchanger 227C is interposed instead of the steam drain heat exchangers 222, 223A, 224, 226, 227, 228, 230 in FIG.
Except for the above, the configuration is the same as in FIG.
[0153]
The operation of the absorption chiller / heater SP20 will be described mainly in the vicinity where the steam drain heat exchanger 227C is interposed.
The low-temperature diluted absorbent solution Li containing the refrigerant discharged from the absorber 208 to the absorbent solution line 282 by the pump 102 is heated by the steam drain heat exchanger 232 to be heated and branched at the branch portion 282B. It is heated by the drain heat exchanger 227C and heated to the joining portion 287G.
[0154]
The other diluted absorption solution Li that goes straight at the branching portion 282B passes through the low-temperature solution heat exchanger 300 and is heated to rise in temperature, and at the branching portion 308, one goes to the low-temperature regenerator 206 and the other goes straight to the high-temperature regeneration. Head to vessel 202.
[0155]
The diluted absorbent solution Li toward the high temperature regenerator 202 is heated by the intermediate temperature solution heat exchanger 302 to be heated, branched at the branching section 311, one is directed to the intermediate temperature regenerator 204, and the other is directed to the high temperature regenerator. The temperature is increased by heating at 304, and the diluted absorption solution Li that has passed through the steam drain heat exchanger 227 </ b> C is merged at the junction 287 </ b> G and is directed to the high-temperature regenerator 202.
[0156]
The absorbing solution Li directed from the junction 287G to the high temperature regenerator 202 is heated by the steam drain heat exchanger 220, heated, and introduced into the high temperature regenerator 202.
The operation of the concentrated absorbent solution and the refrigerant vapor via the high temperature regenerator 202, the medium temperature regenerator 204, the low temperature regenerator 206, etc. is the same as in FIG.
[0157]
As described above, according to the heat distribution characteristics of the absorption chiller / heater, the number of steam drain heat exchangers is reduced and the thermal efficiency is improved.
[0158]
It should be noted that the eight illustrated embodiments are merely examples, and are not intended to limit the technical scope of the present invention.
For example, in the drawing, only representative ones of various flow types (for example, series flow, parallel flow, reverse flow, series / parallel flow, reverse / parallel flow) are shown, but the present invention also applies to a flow pattern (not shown). Can be used.
Further, many embodiments in which a refrigerant drain heat exchanger is arranged, the lower body is provided in a plurality of stages, and a solution cooling absorber is provided are also conceivable.
[0159]
【The invention's effect】
The effects of the present invention are listed below.
(1) According to the present invention, since the diluted absorption solution is heated using the heating steam used in the high-temperature regenerator in the plurality of steam drain heat exchangers, the heat recovery is large.
(2) Since the refrigerant vapor generated by evaporation in the regenerator is used for heating the low-temperature regenerator and the low-temperature diluted absorbent solution, heat recovery is further increased.
(3) Since the refrigerant drain is passed through the refrigerant drain heat exchanger and the diluted absorption refrigerant is heated, the heat recovery is increased.
(4) Further, if the lower body portion of the evaporator and the absorber is divided into a plurality of stages, the function is improved and the thermal efficiency is improved.
(5) If a solution cooling absorber is provided in the absorber, the amount of heat of the dripped absorbing solution from the regenerator can be recovered.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a series flow type absorption chiller / heater according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram showing another series flow type absorption chiller / heater according to the second embodiment of the present invention.
FIG. 3 is a configuration diagram showing a reverse flow type absorption chiller / heater according to a third embodiment of the present invention.
FIG. 4 is a configuration diagram showing a reverse parallel flow type absorption chiller / heater according to a fourth embodiment of the present invention.
FIG. 5 is a configuration diagram showing a parallel flow type absorption chiller / heater according to a fifth embodiment of the present invention.
FIG. 6 is a block diagram showing another parallel flow type absorption chiller / heater according to the sixth embodiment of the present invention.
FIG. 7 is a block diagram showing a series parallel flow type absorption chiller / heater according to a seventh embodiment of the present invention.
FIG. 8 is a configuration diagram showing another series parallel flow type absorption chiller / heater according to the eighth embodiment of the present invention.
FIG. 9 is a block diagram showing a conventional series flow type absorption chiller / heater.
[Explanation of symbols]
202 ... high temperature regenerator
204 ... Medium temperature regenerator
206 ... low temperature regenerator
208 ... Absorber
210 ... Condenser
212 ... Evaporator
214, 214A ... Steam line for heating
220, 222, 224, 226, 228, 230, 232... Steam drain heat exchanger
234, 238, 240, 244, 246, 250, 252... Absorbing solution line

Claims (8)

高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、吸収器(208)から出た吸収溶液が、高温再生器(202)、中温再生器(204)、低温再生器(206)の順に流過する様に構成され、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から高温再生器(202)に向う吸収溶液ラインには低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)は高温再生器(202)から中温再生器(204)に向う吸収溶液ライン(104)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、中温溶液熱交換器(302)は中温再生器(204)から低温再生器(206)に向う吸収溶液ライン(106)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、低温溶液熱交換器(300)は低温再生器(206)から吸収器(208)に向う吸収溶液ライン(108)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第7の蒸気ドレン熱交換器(220、222、224、226、228、230、232)に連通しており、
第1の蒸気ドレン熱交換器(220)は、高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(222)は、高温再生器(202)に向う吸収溶液ラインの中温溶液熱交換器(302)と高温溶液熱交換器(304)の間における第1の分岐点(246B)で分岐する第1の分岐ライン(250)に介装されており、該第1の分岐ライン(250)は高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の第1の合流点(246G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第3の蒸気ドレン熱交換器(224)は、高温再生器(202)に向う吸収溶液ラインの中温溶液熱交換器(302)と第1の分岐点(246B)との間の領域(246)に介装され、
第4の蒸気ドレン熱交換器(226)は、高温再生器(202)に向う吸収溶液ラインの低温溶液熱交換器(300)と中温溶液熱交換器(302)の間における第2の分岐点(240B)で分岐する第2の分岐ライン(244)に介装されており、該第2の分岐ライン(244)は中温溶液熱交換器(302)をバイパスし且つ中温溶液熱交換器(302)と第3の蒸気ドレン熱交換器(224)の間の第2の合流点(242G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第5の蒸気ドレン熱交換器(228)は、高温再生器(202)に向う吸収溶液ラインの低温溶液熱交換器(300)と第2の分岐点(240B)との間の領域(240)に介装され、
第6の蒸気ドレン熱交換器(230)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)の間における第3の分岐点(234B)で分岐する第3の分岐ライン(238)に介装されており、該第3の分岐ライン(238)は低温溶液熱交換器(300)をバイパスし且つ低温溶液熱交換器(300)と第5の蒸気ドレン熱交換器(228)の間の第3の合流点(236G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第7の蒸気ドレン熱交換器(232)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と第3の分岐点(234B)との間の領域(235)に介装されており、
第1〜第7の蒸気ドレン熱交換器(220、222、224、226、228、230、232)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴とする蒸気焚き吸収冷温水機。
A high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), a condenser (210), and an evaporator (212). The absorbent solution discharged from (208) flows through the high-temperature regenerator (202), the medium-temperature regenerator (204), and the low-temperature regenerator (206) in this order. The steam lines (214, 214A) communicate with each other, and the amount of heat held by the steam flowing through the heating steam line (214) is input to the absorbing solution in the high-temperature regenerator (202) to regenerate the refrigerant steam. Has been
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
A low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304) are interposed in the absorption solution line from the absorber (208) to the high temperature regenerator (202), The high temperature solution heat exchanger (304) converts the amount of heat held by the absorption solution flowing in the absorption solution line (104) from the high temperature regenerator (202) to the intermediate temperature regenerator (204) into the absorption solution toward the high temperature regenerator (202). The medium temperature solution heat exchanger (302) is configured to be charged, and the high temperature regenerator (302) converts the amount of heat held by the absorption solution flowing through the absorption solution line (106) from the medium temperature regenerator (204) to the low temperature regenerator (206). 202), the low temperature solution heat exchanger (300) is held by the absorption solution flowing through the absorption solution line (108) from the low temperature regenerator (206) to the absorber (208). Is configured so as to be introduced into the absorbing solution towards the amount high temperature regenerator (202),
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) is the first to seventh steam drain heat exchangers (220, 222, 224, 226, 228, 230, 232). )
The first steam drain heat exchanger (220) is interposed in a region (252) between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line toward the high temperature regenerator (202). And
The second steam drain heat exchanger (222) is a first branch point between the intermediate solution heat exchanger (302) and the hot solution heat exchanger (304) of the absorption solution line toward the high temperature regenerator (202). (246B) is interposed in a first branch line (250) that bypasses the hot solution heat exchanger (304) and the hot solution heat exchanger (304). ) And the first steam drain heat exchanger (220) at the first junction (246G) and merged with the absorbent solution line toward the high temperature regenerator (202),
The third steam drain heat exchanger (224) is a region (246) between the intermediate solution heat exchanger (302) of the absorbing solution line and the first branch point (246B) toward the high temperature regenerator (202). Intervened in,
The fourth steam drain heat exchanger (226) is a second branch point between the cold solution heat exchanger (300) and the intermediate temperature solution heat exchanger (302) in the absorption solution line toward the high temperature regenerator (202). The second branch line (244) bypasses the intermediate temperature solution heat exchanger (302) and the intermediate temperature solution heat exchanger (302). ) And a third steam drain heat exchanger (224) at the second junction (242G) and merged with the absorbent solution line toward the high temperature regenerator (202),
The fifth steam drain heat exchanger (228) is a region (240) between the cold solution heat exchanger (300) and the second branch point (240B) of the absorption solution line toward the high temperature regenerator (202). Intervened in,
The sixth steam drain heat exchanger (230) is a third branch point (234B) between the absorbent solution pump (102) of the absorbent solution line and the cold solution heat exchanger (300) toward the high temperature regenerator (202). ) That is branched by a third branch line (238) that bypasses the low temperature solution heat exchanger (300) and is connected to the low temperature solution heat exchanger (300). Merging with the absorbent solution line towards the high temperature regenerator (202) at a third junction (236G) between the fifth steam drain heat exchanger (228);
The seventh steam drain heat exchanger (232) is interposed in a region (235) between the absorption solution pump (102) and the third branch point (234B) of the absorption solution line toward the high temperature regenerator (202). And
The first to seventh steam drain heat exchangers (220, 222, 224, 226, 228, 230, 232) are used for the heating steam or steam after the amount of heat is supplied to the absorbing solution in the high temperature regenerator (202). A steam-fired absorption chiller / heater characterized by being configured to input the amount of heat held by the drain into an absorption solution that leaves the absorber (208) and goes to the high-temperature regenerator (202).
高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、吸収器(208)から出た吸収溶液が、高温再生器(202)、中温再生器(204)、低温再生器(206)の順に流過する様に構成され、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から高温再生器(202)に向う吸収溶液ラインには低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)は高温再生器(202)から中温再生器(204)に向う吸収溶液ライン(104)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、中温溶液熱交換器(302)は中温再生器(204)から低温再生器(206)に向う吸収溶液ライン(106)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、低温溶液熱交換器(300)は低温再生器(206)から吸収器(208)に向う吸収溶液ライン(108)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1の蒸気ドレン熱交換器(220)と、第2の蒸気ドレン熱交換器(232)と、第3の蒸気ドレン熱交換器(225)に連通しており、
第1の蒸気ドレン熱交換器(220)は、高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(232)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)との間の領域に介装されており、
第3の蒸気ドレン熱交換器(225)は、高温再生器(202)に向う吸収溶液ラインの第2の蒸気ドレン熱交換器(232)と低温溶液熱交換器(300)の間における分岐点(234B)で分岐する分岐ライン(236Q)に介装されており、該分岐ライン(236Q)は低温溶液熱交換器(300)と中温溶液熱交換器(302)と高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の合流点(246G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第1の蒸気ドレン熱交換器(220)と第2の蒸気ドレン熱交換器(232)と第3の蒸気ドレン熱交換器(225)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴とする蒸気焚き吸収冷温水機。
A high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), a condenser (210), and an evaporator (212). The absorbent solution discharged from (208) flows through the high-temperature regenerator (202), the medium-temperature regenerator (204), and the low-temperature regenerator (206) in this order. The steam lines (214, 214A) communicate with each other, and the amount of heat held by the steam flowing through the heating steam line (214) is input to the absorbing solution in the high-temperature regenerator (202) to regenerate the refrigerant steam. Has been
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
A low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304) are interposed in the absorption solution line from the absorber (208) to the high temperature regenerator (202), The high temperature solution heat exchanger (304) converts the amount of heat held by the absorption solution flowing in the absorption solution line (104) from the high temperature regenerator (202) to the intermediate temperature regenerator (204) into the absorption solution toward the high temperature regenerator (202). The medium temperature solution heat exchanger (302) is configured to be charged, and the high temperature regenerator (302) converts the amount of heat held by the absorption solution flowing through the absorption solution line (106) from the medium temperature regenerator (204) to the low temperature regenerator (206). 202), the low temperature solution heat exchanger (300) is held by the absorption solution flowing through the absorption solution line (108) from the low temperature regenerator (206) to the absorber (208). Is configured so as to be introduced into the absorbing solution towards the amount high temperature regenerator (202),
A region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) includes a first steam drain heat exchanger (220) and a second steam drain heat exchanger (232). , Communicated with a third steam drain heat exchanger (225),
The first steam drain heat exchanger (220) is interposed in a region (252) between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line toward the high temperature regenerator (202). And
The second steam drain heat exchanger (232) is interposed in the region between the absorbing solution pump (102) and the cold solution heat exchanger (300) of the absorbing solution line toward the high temperature regenerator (202). And
The third steam drain heat exchanger (225) is a bifurcation point between the second steam drain heat exchanger (232) and the cold solution heat exchanger (300) in the absorption solution line toward the high temperature regenerator (202). (234B), the branch line (236Q) is interposed between the low temperature solution heat exchanger (300), the intermediate temperature solution heat exchanger (302), and the high temperature solution heat exchanger (304). ) And join the absorbing solution line toward the high temperature regenerator (202) at the confluence (246G) between the high temperature solution heat exchanger (304) and the first steam drain heat exchanger (220),
The first steam drain heat exchanger (220), the second steam drain heat exchanger (232), and the third steam drain heat exchanger (225) transfer heat to the absorbing solution in the high temperature regenerator (202). Steam heating characterized by being configured so that the amount of heat held by the heating steam or steam drain after charging is supplied to the absorbing solution exiting from the absorber (208) toward the high temperature regenerator (202). Absorption chiller / heater.
高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、吸収器(208)から出た吸収溶液が、低温再生器(206)、中温再生器(204)、高温再生器(202)の順に流過する様に構成されており、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から低温再生器(206)に向う吸収溶液ライン(236)には低温溶液熱交換器(300)が介装され、低温再生器(206)から中温再生器(204)に向う吸収溶液ライン(242)には中温溶液熱交換器(302)が介装され、中温溶液熱交換器(302)から高温再生器(202)に向う吸収溶液ライン(248)には高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)から吸収器(208)に向う吸収溶液ライン(110)を流れる吸収溶液が保有する熱量を投入する様に構成され、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第9の蒸気ドレン熱交換器(220、222、224A、224B、226、228A、228B、230、232)に連通しており、
第1の蒸気ドレン熱交換器(220)は、中温再生器(204)から高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(222)は、中温再生器(204)から高温再生器(202)に向う吸収溶液ラインの中温再生器(204)と高温溶液熱交換器(304)の間における第1の分岐点(246B)で分岐する第1の分岐ライン(250)に介装されており、該第1の分岐ライン(250)は高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の第1の合流点(246G)で中温再生器(204)から高温再生器(202)に向う吸収溶液ラインと合流し、
第3の蒸気ドレン熱交換器(224A)は、中温再生器(204)から高温再生器(202)に向う吸収溶液ラインの中温再生器(204)と第1の分岐点(246B)との間の領域(386)に介装され、
第4の蒸気ドレン熱交換器(224B)は、低温再生器(206)から中温再生器(204)に向う吸収溶液ライン(384)の中温溶液熱交換器(302)と中温再生器(204)との間の領域に介装され、
第5の蒸気ドレン熱交換器(226)は、低温再生器(206)から中温再生器(204)に向う吸収溶液ラインの低温再生器(206)と中温溶液熱交換器(302)の間における第2の分岐点(240B)で分岐する第2の分岐ライン(244)に介装されており、該第2の分岐ライン(244)は中温溶液熱交換器(302)をバイパスし且つ中温溶液熱交換器(302)と第4の蒸気ドレン熱交換器(224B)の間の第2の合流点(242G)で低温再生器(206)から中温再生器(204)に向う吸収溶液ラインと合流し、
第6の蒸気ドレン熱交換器(228A)は、低温再生器(206)から中温再生器(204)に向う吸収溶液ラインの低温再生器(206)と第2の分岐点(240B)との間の領域(384)に介装され、
第7の蒸気ドレン熱交換器(228B)は、吸収器(208)から低温再生器(206)に向う吸収溶液ラインの低温溶液熱交換器(300)と低温再生器(206)との間の領域(382)に介装され、
第8の蒸気ドレン熱交換器(230)は、吸収器(208)から低温再生器(206)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)の間における第3の分岐点(234B)で分岐する第3の分岐ライン(238)に介装されており、該第3の分岐ライン(238)は低温溶液熱交換器(300)をバイパスし且つ低温溶液熱交換器(300)と第7の蒸気ドレン熱交換器(228B)の間の第3の合流点(236G)で吸収器(208)から低温再生器(206)に向う吸収溶液ラインと合流し、
第9の蒸気ドレン熱交換器(232)は、吸収器(208)から低温再生器(206)に向う吸収溶液ラインの吸収溶液ポンプ(102)と第3の分岐点(234B)との間の領域(235)に介装されており、
第1〜第9の蒸気ドレン熱交換器(220、222、224A、224B、226、228A、228B、230、232)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴とする蒸気焚き吸収冷温水機。
A high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), a condenser (210), and an evaporator (212). The absorbent solution discharged from (208) flows through the low-temperature regenerator (206), the medium-temperature regenerator (204), and the high-temperature regenerator (202) in this order. The heating steam lines (214, 214A) communicate with each other so that the amount of heat held by the steam flowing through the heating steam line (214) is input to the absorbing solution in the high-temperature regenerator (202) to regenerate the refrigerant steam. Is composed of
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
The absorption solution line (236) from the absorber (208) to the low temperature regenerator (206) is provided with a low temperature solution heat exchanger (300), and the low temperature regenerator (206) goes to the medium temperature regenerator (204). A medium temperature solution heat exchanger (302) is interposed in the absorption solution line (242), and a high temperature solution heat exchange is performed in the absorption solution line (248) from the medium temperature solution heat exchanger (302) to the high temperature regenerator (202). A heat exchanger (304) is interposed, and is configured to input the amount of heat held by the absorbent solution flowing through the absorbent solution line (110) from the high-temperature solution heat exchanger (304) toward the absorber (208),
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) is the first to ninth steam drain heat exchangers (220, 222, 224A, 224B, 226, 228A, 228B). , 230, 232),
The first steam drain heat exchanger (220) is between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202). Intervened in the region (252),
The second steam drain heat exchanger (222) is between the intermediate temperature regenerator (204) and the high temperature solution heat exchanger (304) of the absorbent solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202). A first branch line (250) that branches at a first branch point (246B) is interposed between the first branch line (250) and the hot solution heat exchanger (304). Join the absorbent solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202) at a first junction (246G) between the heat exchanger (304) and the first steam drain heat exchanger (220). And
The third steam drain heat exchanger (224A) is located between the intermediate temperature regenerator (204) of the absorbing solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202) and the first branch point (246B). In the region (386) of
The fourth steam drain heat exchanger (224B) includes an intermediate solution heat exchanger (302) and an intermediate temperature regenerator (204) in the absorption solution line (384) from the low temperature regenerator (206) to the intermediate temperature regenerator (204). Intervened in the area between and
The fifth steam drain heat exchanger (226) is between the low temperature regenerator (206) and intermediate temperature solution heat exchanger (302) of the absorption solution line from the low temperature regenerator (206) to the medium temperature regenerator (204). A second branch line (244) that branches at the second branch point (240B) is interposed between the second branch line (244) and the intermediate temperature solution heat exchanger (302). Join the absorbent solution line from the low temperature regenerator (206) to the medium temperature regenerator (204) at the second confluence (242G) between the heat exchanger (302) and the fourth steam drain heat exchanger (224B). And
The sixth steam drain heat exchanger (228A) is located between the cold regenerator (206) of the absorbent solution line from the low temperature regenerator (206) to the medium temperature regenerator (204) and the second branch point (240B). In the region (384) of
The seventh steam drain heat exchanger (228B) is between the low temperature solution heat exchanger (300) and the low temperature regenerator (206) of the absorption solution line from the absorber (208) to the low temperature regenerator (206). In the region (382),
The eighth steam drain heat exchanger (230) is located between the absorbent solution pump (102) and the cold solution heat exchanger (300) in the absorbent solution line from the absorber (208) to the cold regenerator (206). Is interposed in a third branch line (238) that branches at the third branch point (234B), the third branch line (238) bypassing the low temperature solution heat exchanger (300) and the low temperature solution heat Joins the absorbent solution line from the absorber (208) to the cold regenerator (206) at a third junction (236G) between the exchanger (300) and the seventh steam drain heat exchanger (228B);
The ninth steam drain heat exchanger (232) is between the absorbent solution pump (102) and the third branch point (234B) of the absorbent solution line from the absorber (208) to the cold regenerator (206). Intervened in the region (235),
The first to ninth steam drain heat exchangers (220, 222, 224A, 224B, 226, 228A, 228B, 230, 232) are heated by supplying heat to the absorbing solution in the high temperature regenerator (202). A steam-fired absorption chiller / heater characterized by being configured so that the amount of heat held by the steam or steam drain is put into an absorbing solution that exits from the absorber (208) and goes to the high-temperature regenerator (202).
高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)を出た吸収溶液が低温再生器(206)、中温再生器(204)、高温再生器(202)の順に流過する様に構成され且つ高温再生器(202)と吸収器(208)とを連通する吸収溶液ライン(260)を有し、低温再生器(206)と中温再生器(204)とを連通する吸収溶液ライン(262)から分岐(264)し且つ高温再生器(202)と吸収器(208)とを連通する前記吸収溶液ライン(260)と合流(266)する第1の分岐吸収溶液ライン(268)を有し、中温再生器(204)と高温再生器(202)とを連通する吸収溶液ライン(270)から分岐(272)し且つ高温再生器(202)と吸収器(208)とを連通する前記吸収溶液ライン(260)と合流(274)する第2の分岐吸収溶液ライン(276)を有し、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から低温再生器(206)に向う吸収溶液ライン(236)には低温溶液熱交換器(300)が介装され、低温再生器(206)から中温再生器(204)に向う吸収溶液ライン(242)には中温溶液熱交換器(302)が介装され、中温溶液熱交換器(302)から高温再生器(202)に向う吸収溶液ライン(248)には高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)から吸収器(208)に向う吸収溶液ライン(110)を流れる吸収溶液が保有する熱量を投入する様に構成され、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第9の蒸気ドレン熱交換器(220、222、224、224B、226、228A、228B、230、232)に連通しており、
第1の蒸気ドレン熱交換器(220)は、中温再生器(204)から高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(222)は、中温再生器(204)から高温再生器(202)に向う吸収溶液ラインの第2の分岐吸収溶液ライン(276)の分岐部(272)と高温溶液熱交換器(304)の間における第1の分岐点(246B)で分岐する第1の分岐ライン(250)に介装されており、該第1の分岐ライン(250)は高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の第1の合流点(246G)で中温再生器(204)から高温再生器(202)に向う吸収溶液ラインと合流し、
第3の蒸気ドレン熱交換器(224)は、中温再生器(204)から高温再生器(202)に向う吸収溶液ラインの第2の分岐吸収溶液ライン(276)の分岐部(272)と第1の分岐点(246B)との間の領域に介装され、
第4の蒸気ドレン熱交換器(224B)は、低温再生器(206)から中温再生器(204)に向う吸収溶液ライン(384)の中温溶液熱交換器(302)と中温再生器(204)との間の領域に介装され、
第5の蒸気ドレン熱交換器(226)は、低温再生器(206)から中温再生器(204)に向う吸収溶液ラインの第1の分岐吸収溶液ライン(268)の分岐部(264)と中温溶液熱交換器(302)の間における第2の分岐点(240B)で分岐する第2の分岐ライン(244)に介装されており、該第2の分岐ライン(244)は中温溶液熱交換器(302)をバイパスし且つ中温溶液熱交換器(302)と第4の蒸気ドレン熱交換器(224B)の間の第2の合流点(242G)で低温再生器(206)から中温再生器(204)に向う吸収溶液ラインと合流し、
第6の蒸気ドレン熱交換器(228A)は、低温再生器(206)から中温再生器(204)に向う吸収溶液ラインの第1の分岐吸収溶液ライン(268)の分岐部(264)と第2の分岐点(240B)との間の領域に介装され、
第7の蒸気ドレン熱交換器(228B)は、吸収器(208)から低温再生器(206)に向う吸収溶液ラインの低温溶液熱交換器(300)と低温再生器(206)との間の領域(382)に介装され、
第8の蒸気ドレン熱交換器(230)は、吸収器(208)から低温再生器(206)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)の間における第3の分岐点(234B)で分岐する第3の分岐ライン(238)に介装されており、該第3の分岐ライン(238)は低温溶液熱交換器(300)をバイパスし且つ低温溶液熱交換器(300)と第7の蒸気ドレン熱交換器(228B)の間の第3の合流点(236G)で吸収器(208)から低温再生器(206)に向う吸収溶液ラインと合流し、
第9の蒸気ドレン熱交換器(232)は、吸収器(208)から低温再生器(206)に向う吸収溶液ラインの吸収溶液ポンプ(102)と第3の分岐点(234B)との間の領域(235)に介装されており、
第1〜第9の蒸気ドレン熱交換器(220、222、224、224B、226、228A、228B、230、232)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴とする蒸気焚き吸収冷温水機。
A high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), a condenser (210), and an evaporator (212) are provided. The heating steam line (214, 214A) communicates with the vessel (202), and the amount of heat held by the steam flowing through the heating steam line (214) is input to the absorbing solution in the high temperature regenerator (202). It is configured to regenerate the refrigerant vapor,
The absorbent solution exiting the absorber (208) flows through the low temperature regenerator (206), the medium temperature regenerator (204), and the high temperature regenerator (202) in this order, and the high temperature regenerator (202) and the absorber. An absorbent solution line (260) that communicates with (208), branches (264) from the absorbent solution line (262) that communicates between the low temperature regenerator (206) and the intermediate temperature regenerator (204), and a high temperature regenerator The intermediate solution regenerator (204) and the high temperature regenerator have a first branched absorbent solution line (268) that merges (266) with the absorption solution line (260) that communicates between the (202) and the absorber (208). Branching (272) from the absorbing solution line (270) communicating with (202) and joining (274) the absorbing solution line (260) communicating with the high temperature regenerator (202) and the absorber (208). 2 branched absorption solution It has a line (276),
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
The absorption solution line (236) from the absorber (208) to the low temperature regenerator (206) is provided with a low temperature solution heat exchanger (300), and the low temperature regenerator (206) goes to the medium temperature regenerator (204). A medium temperature solution heat exchanger (302) is interposed in the absorption solution line (242), and a high temperature solution heat exchange is performed in the absorption solution line (248) from the medium temperature solution heat exchanger (302) to the high temperature regenerator (202). A heat exchanger (304) is interposed, and is configured to input the amount of heat held by the absorbent solution flowing through the absorbent solution line (110) from the high-temperature solution heat exchanger (304) toward the absorber (208),
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) is the first to ninth steam drain heat exchangers (220, 222, 224, 224B, 226, 228A, 228B). , 230, 232),
The first steam drain heat exchanger (220) is between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202). Intervened in the region (252),
The second steam drain heat exchanger (222) is connected to the branch (272) of the second branched absorbent solution line (276) of the absorbent solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202) and the high temperature. The first branch line (250) is branched at a first branch point (246B) between the solution heat exchangers (304), and the first branch line (250) The hot regenerator from the intermediate temperature regenerator (204) at the first junction (246G) bypassing the regenerator (304) and between the high temperature solution heat exchanger (304) and the first steam drain heat exchanger (220) Merge with the absorbent solution line towards (202),
The third steam drain heat exchanger (224) includes a branch (272) and a second branch absorption solution line (276) of the absorption solution line from the intermediate temperature regenerator (204) to the high temperature regenerator (202). Intervened in the area between 1 branch point (246B),
The fourth steam drain heat exchanger (224B) includes an intermediate solution heat exchanger (302) and an intermediate temperature regenerator (204) in the absorption solution line (384) from the low temperature regenerator (206) to the intermediate temperature regenerator (204). Intervened in the area between and
The fifth steam drain heat exchanger (226) is connected to the bifurcation (264) of the first branched absorbent solution line (268) and the intermediate temperature of the absorbent solution line from the low temperature regenerator (206) to the intermediate temperature regenerator (204). It is interposed in a second branch line (244) that branches at a second branch point (240B) between the solution heat exchangers (302), and the second branch line (244) is an intermediate temperature solution heat exchanger. From the low temperature regenerator (206) to the intermediate temperature regenerator at a second junction (242G) bypassing the regenerator (302) and between the intermediate temperature solution heat exchanger (302) and the fourth steam drain heat exchanger (224B) Merge with the absorbent solution line towards (204),
The sixth steam drain heat exchanger (228A) includes a first branch absorption solution line (268) branching portion (264) and an absorption solution line from the low temperature regenerator (206) to the medium temperature regenerator (204). Is interposed in the area between the two branch points (240B),
The seventh steam drain heat exchanger (228B) is between the low temperature solution heat exchanger (300) and the low temperature regenerator (206) of the absorption solution line from the absorber (208) to the low temperature regenerator (206). In the region (382),
The eighth steam drain heat exchanger (230) is located between the absorbent solution pump (102) and the cold solution heat exchanger (300) in the absorbent solution line from the absorber (208) to the cold regenerator (206). Is interposed in a third branch line (238) that branches at the third branch point (234B), the third branch line (238) bypassing the low temperature solution heat exchanger (300) and the low temperature solution heat Joins the absorbent solution line from the absorber (208) to the cold regenerator (206) at a third junction (236G) between the exchanger (300) and the seventh steam drain heat exchanger (228B);
The ninth steam drain heat exchanger (232) is between the absorbent solution pump (102) and the third branch point (234B) of the absorbent solution line from the absorber (208) to the cold regenerator (206). Intervened in the region (235),
The first to ninth steam drain heat exchangers (220, 222, 224, 224B, 226, 228A, 228B, 230, 232) are used to heat the absorption solution in the high-temperature regenerator (202) after the amount of heat is supplied thereto. A steam-fired absorption chiller / heater characterized by being configured so that the amount of heat possessed by the steam or steam drain is put into an absorbing solution that exits from the absorber (208) and goes to the high-temperature regenerator (202).
高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から高温再生器(202)に向う吸収溶液ラインには低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)は高温再生器(202)から出た吸収溶液ライン(104)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、中温溶液熱交換器(302)は中温再生器(204)から低温再生器(206)に向う吸収溶液ライン(314)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、低温溶液熱交換器(300)は低温再生器(206)から吸収器(208)に向う吸収溶液ライン(316)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、
吸収器(208)から高温再生器(202)に連通する吸収溶液ライン(282、284、286)が、低温溶液熱交換器(300)と中温溶液熱交換器(302)との間の領域で低温再生器(206)に連通する第1の分岐吸収溶液ライン(306)が分岐(308)しており、中温溶液熱交換器(302)と高温溶液熱交換器(304)との間の領域で中温再生器(204)に連通する第2の分岐吸収溶液ライン(310)が分岐(311)しており、高温再生器(202)から吸収器(208)に向かう吸収溶液ライン(312、314、316)には、中温再生器(204)で加熱された吸収溶液が流れる吸収溶液ライン(318)が合流(320)しており、且つ、低温再生器(206)で加熱された吸収溶液が流れる吸収溶液ライン(322)が合流(324)しており、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第9の蒸気ドレン熱交換器(220、222、223A、224、226、227、228、230、232)に連通しており、
第1の蒸気ドレン熱交換器(220)は、高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(222)は、高温再生器(202)に向う吸収溶液ラインの第2の分岐吸収溶液ライン(310)の分岐部(311)と高温溶液熱交換器(304)の間における第1の分岐点(246B)で分岐する第1の分岐ライン(250)に介装されており、該第1の分岐ライン(250)は高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の第1の合流点(246G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第3の蒸気ドレン熱交換器(223A)は、高温再生器(202)に向う吸収溶液ラインの第2の分岐吸収溶液ライン(310)の分岐部(311)と第1の分岐点(246B)との間の領域(286)に介装され、
第4の蒸気ドレン熱交換器(224)は、高温再生器(202)に向う吸収溶液ラインの中温溶液熱交換器(302)と第2の分岐吸収溶液ライン(310)の分岐部(311)との間の領域に介装され、
第5の蒸気ドレン熱交換器(226)は、高温再生器(202)に向う吸収溶液ラインの第1の分岐吸収溶液ライン(306)の分岐部(308)と中温溶液熱交換器(302)の間における第2の分岐点(240B)で分岐する第2の分岐ライン(244)に介装されており、該第2の分岐ライン(244)は中温溶液熱交換器(302)をバイパスし且つ中温溶液熱交換器(302)と第4の蒸気ドレン熱交換器(224)の間の第2の合流点(242G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第6の蒸気ドレン熱交換器(227)は、高温再生器(202)に向う吸収溶液ラインの第1の分岐吸収溶液ライン(306)の分岐部(308)と第2の分岐点(240B)との間の領域(284)に介装され、
第7の蒸気ドレン熱交換器(228)は、高温再生器(202)に向う吸収溶液ラインの低温溶液熱交換器(300)と第1の分岐吸収溶液ライン(306)の分岐部(308)との間の領域に介装され、
第8の蒸気ドレン熱交換器(230)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)の間における第3の分岐点(282B)で分岐する第3の分岐ライン(283)に介装されており、該第3の分岐ライン(283)は低温溶液熱交換器(300)をバイパスし且つ低温溶液熱交換器(300)と第7の蒸気ドレン熱交換器(228)の間の第3の合流点(283G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第9の蒸気ドレン熱交換器(232)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と第3の分岐点(282B)との間の領域(235)に介装されており、
第1〜第9の蒸気ドレン熱交換器(220、222、223A、224、226、227、228、230、232)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴とする蒸気焚き吸収冷温水機。
A high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), a condenser (210), and an evaporator (212) are provided. The heating steam line (214, 214A) communicates with the vessel (202), and the amount of heat held by the steam flowing through the heating steam line (214) is input to the absorbing solution in the high temperature regenerator (202). It is configured to regenerate the refrigerant vapor,
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
A low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304) are interposed in the absorption solution line from the absorber (208) to the high temperature regenerator (202), The high temperature solution heat exchanger (304) is configured to input the amount of heat held by the absorption solution flowing through the absorption solution line (104) from the high temperature regenerator (202) into the absorption solution toward the high temperature regenerator (202). The intermediate temperature solution heat exchanger (302) absorbs the amount of heat held by the absorption solution flowing in the absorption solution line (314) from the intermediate temperature regenerator (204) toward the low temperature regenerator (206) toward the high temperature regenerator (202). The low-temperature solution heat exchanger (300) is configured to supply the amount of heat held by the absorption solution flowing through the absorption solution line (316) from the low-temperature regenerator (206) to the absorber (208). 20 Is configured so as to be introduced into the absorption solution toward the),
An absorbent solution line (282, 284, 286) communicating from the absorber (208) to the high temperature regenerator (202) is located in the region between the low temperature solution heat exchanger (300) and the medium temperature solution heat exchanger (302). A first branch absorption solution line (306) communicating with the low temperature regenerator (206) is branched (308), and a region between the medium temperature solution heat exchanger (302) and the high temperature solution heat exchanger (304). The second branch absorption solution line (310) communicating with the intermediate temperature regenerator (204) is branched (311), and the absorption solution lines (312, 314) from the high temperature regenerator (202) to the absorber (208) are branched. 316), the absorption solution line (318) through which the absorption solution heated by the intermediate temperature regenerator (204) flows joins (320), and the absorption solution heated by the low temperature regenerator (206) Flowing absorbent solution Emissions (322) is joined (324),
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) is the first to ninth steam drain heat exchangers (220, 222, 223A, 224, 226, 227, 228). , 230, 232),
The first steam drain heat exchanger (220) is interposed in a region (252) between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line toward the high temperature regenerator (202). And
The second steam drain heat exchanger (222) includes a branch (311) of the second branched absorbent solution line (310) and a high temperature solution heat exchanger (304) of the absorbent solution line toward the high temperature regenerator (202). The first branch line (250) branches at a first branch point (246B) between the first branch line (250B) and bypasses the hot solution heat exchanger (304). And merged with the absorption solution line toward the high temperature regenerator (202) at a first junction (246G) between the high temperature solution heat exchanger (304) and the first steam drain heat exchanger (220),
The third steam drain heat exchanger (223A) includes a branch (311) and a first branch point (246B) of the second branched absorbent solution line (310) of the absorbent solution line toward the high temperature regenerator (202). Intervened in the area (286) between
The fourth steam drain heat exchanger (224) includes a middle temperature solution heat exchanger (302) of the absorption solution line toward the high temperature regenerator (202) and a branch (311) of the second branch absorption solution line (310). Intervened in the area between and
The fifth steam drain heat exchanger (226) includes a branch (308) of the first branched absorbent solution line (306) and an intermediate temperature solution heat exchanger (302) of the absorbent solution line toward the high temperature regenerator (202). Is interposed in a second branch line (244) that branches at a second branch point (240B) between the two, and the second branch line (244) bypasses the intermediate temperature solution heat exchanger (302). And at the second junction (242G) between the intermediate temperature solution heat exchanger (302) and the fourth steam drain heat exchanger (224), joins the absorption solution line toward the high temperature regenerator (202),
The sixth steam drain heat exchanger (227) includes a branch (308) and a second branch point (240B) of the first branched absorbent solution line (306) of the absorbent solution line toward the high temperature regenerator (202). Intervened in the region (284) between
The seventh steam drain heat exchanger (228) includes a low temperature solution heat exchanger (300) of the absorption solution line toward the high temperature regenerator (202) and a branch (308) of the first branch absorption solution line (306). Intervened in the area between and
The eighth steam drain heat exchanger (230) has a third branch point (282B) between the absorbent solution pump (102) of the absorbent solution line and the cold solution heat exchanger (300) toward the high temperature regenerator (202). ) Is branched to a third branch line (283), which bypasses the low temperature solution heat exchanger (300) and is connected to the low temperature solution heat exchanger (300). Merging with the absorbent solution line towards the high temperature regenerator (202) at a third junction (283G) between the seventh steam drain heat exchanger (228);
The ninth steam drain heat exchanger (232) is interposed in the region (235) between the absorption solution pump (102) and the third branch point (282B) of the absorption solution line toward the high temperature regenerator (202). And
The first to ninth steam drain heat exchangers (220, 222, 223A, 224, 226, 227, 228, 230, 232) are used to heat the absorbing solution in the high-temperature regenerator (202) after the amount of heat is supplied thereto. A steam-fired absorption chiller / heater characterized by being configured so that the amount of heat held by the steam or steam drain is put into an absorbing solution that exits from the absorber (208) and goes to the high-temperature regenerator (202).
高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から高温再生器(202)に向う吸収溶液ラインには低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)は高温再生器(202)から出た吸収溶液ライン(104)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、中温溶液熱交換器(302)は中温再生器(204)から低温再生器(206)に向う吸収溶液ライン(314)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、低温溶液熱交換器(300)は低温再生器(206)から吸収器(208)に向う吸収溶液ライン(316)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、
吸収器(208)から高温再生器(202)に連通する吸収溶液ライン(282、284、286)が、低温溶液熱交換器(300)と中温溶液熱交換器(302)との間の領域で低温再生器(206)に連通する第1の分岐吸収溶液ライン(306)が分岐(308)しており、中温溶液熱交換器(302)と高温溶液熱交換器(304)との間の領域で中温再生器(204)に連通する第2の分岐吸収溶液ライン(310)が分岐(311)しており、高温再生器(202)から吸収器(208)に向かう吸収溶液ライン(312、314、316)には、中温再生器(204)で加熱された吸収溶液が流れる吸収溶液ライン(318)が合流(320)しており、且つ、低温再生器(206)で加熱された吸収溶液が流れる吸収溶液ライン(322)が合流(324)しており、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第3の蒸気ドレン熱交換器(220、232、227C)に連通しており、
第1の蒸気ドレン熱交換器(220)は、高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(232)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)との間の領域(282)に介装されており、
第3の蒸気ドレン熱交換器(227C)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)との間の領域(282)における分岐点(282B)で分岐する分岐ライン(251S)に介装されており、該分岐ライン(251S)は低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の合流点(287G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第1〜第3の蒸気ドレン熱交換器(220、232、227C)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴とする蒸気焚き吸収冷温水機。
A high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), a condenser (210), and an evaporator (212) are provided. The heating steam line (214, 214A) communicates with the vessel (202), and the amount of heat held by the steam flowing through the heating steam line (214) is input to the absorbing solution in the high temperature regenerator (202). It is configured to regenerate the refrigerant vapor,
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
A low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304) are interposed in the absorption solution line from the absorber (208) to the high temperature regenerator (202), The high temperature solution heat exchanger (304) is configured to input the amount of heat held by the absorption solution flowing through the absorption solution line (104) from the high temperature regenerator (202) into the absorption solution toward the high temperature regenerator (202). The intermediate temperature solution heat exchanger (302) absorbs the amount of heat held by the absorption solution flowing in the absorption solution line (314) from the intermediate temperature regenerator (204) toward the low temperature regenerator (206) toward the high temperature regenerator (202). The low-temperature solution heat exchanger (300) is configured to supply the amount of heat held by the absorption solution flowing through the absorption solution line (316) from the low-temperature regenerator (206) to the absorber (208). 20 Is configured so as to be introduced into the absorption solution toward the),
An absorbent solution line (282, 284, 286) communicating from the absorber (208) to the high temperature regenerator (202) is located in the region between the low temperature solution heat exchanger (300) and the medium temperature solution heat exchanger (302). A first branch absorption solution line (306) communicating with the low temperature regenerator (206) is branched (308), and a region between the medium temperature solution heat exchanger (302) and the high temperature solution heat exchanger (304). The second branch absorption solution line (310) communicating with the intermediate temperature regenerator (204) is branched (311), and the absorption solution lines (312, 314) from the high temperature regenerator (202) to the absorber (208) are branched. 316), the absorption solution line (318) through which the absorption solution heated by the intermediate temperature regenerator (204) flows joins (320), and the absorption solution heated by the low temperature regenerator (206) Flowing absorbent solution Emissions (322) is joined (324),
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) communicates with the first to third steam drain heat exchangers (220, 232, 227C),
The first steam drain heat exchanger (220) is interposed in a region (252) between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line toward the high temperature regenerator (202). And
The second steam drain heat exchanger (232) is interposed in an area (282) between the absorbent solution pump (102) and the cold solution heat exchanger (300) of the absorbent solution line toward the high temperature regenerator (202). And
The third steam drain heat exchanger (227C) is a branch in the region (282) between the absorbing solution pump (102) and the cold solution heat exchanger (300) of the absorbing solution line toward the hot regenerator (202). The branch line (251S) is branched at a point (282B), and the branch line (251S) includes a low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger ( 304) and joins the absorbent solution line toward the high temperature regenerator (202) at the junction (287G) between the high temperature solution heat exchanger (304) and the first steam drain heat exchanger (220),
The first to third steam drain heat exchangers (220, 232, 227C) absorb the amount of heat held by the heating steam or the steam drain after charging the amount of heat into the absorbing solution in the high-temperature regenerator (202). A steam-fired absorption chiller / heater, characterized in that it is configured to enter the absorbent solution exiting from the vessel (208) toward the high temperature regenerator (202).
高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から高温再生器(202)に向う吸収溶液ラインには低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)は高温再生器(202)から中温再生器(204)へ向う吸収溶液ライン(104)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、中温溶液熱交換器(302)は中温再生器(204)から低温再生器(206)に向う吸収溶液ライン(318)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、低温溶液熱交換器(300)は低温再生器(206)から吸収器(208)に向う吸収溶液ライン(322)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、
吸収器(208)から高温再生器(202)に連通する吸収溶液ライン(282、286)が、低温溶液熱交換器(300)と中温溶液熱交換器(302)との間の領域で低温再生器(206)に連通する第1の分岐吸収溶液ライン(306)が分岐(308)しており、中温溶液熱交換器(302)と高温溶液熱交換器(304)との間の領域で中温再生器(204)に連通する第2の分岐吸収溶液ライン(310)が分岐(311)しており、高温再生器(202)で加熱された吸収溶液が流れる吸収溶液ライン(340)は中温再生器(204)に連通しており、中温再生器(204)で加熱された吸収溶液が流れる吸収溶液ライン(318)は第1の分岐吸収溶液ライン(306)に合流して低温再生器(206)に連通しており、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第9の蒸気ドレン熱交換器(220、222、223A、224、226、227、228、230、232)に連通しており、
第1の蒸気ドレン熱交換器(220)は、高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(222)は、高温再生器(202)に向う吸収溶液ラインの第2の分岐吸収溶液ライン(310)の分岐部(311)と高温溶液熱交換器(304)の間における第1の分岐点(246B)で分岐する第1の分岐ライン(250)に介装されており、該第1の分岐ライン(250)は高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の第1の合流点(246G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第3の蒸気ドレン熱交換器(223A)は、高温再生器(202)に向う吸収溶液ラインの第2の分岐吸収溶液ライン(310)の分岐部(311)と第1の分岐点(246B)との間の領域(286)に介装され、
第4の蒸気ドレン熱交換器(224)は、高温再生器(202)に向う吸収溶液ラインの中温溶液熱交換器(302)と第2の分岐吸収溶液ライン(310)の分岐部(311)との間の領域に介装され、
第5の蒸気ドレン熱交換器(226)は、高温再生器(202)に向う吸収溶液ラインの第1の分岐吸収溶液ライン(306)の分岐部(308)と中温溶液熱交換器(302)の間における第2の分岐点(240B)で分岐する第2の分岐ライン(244)に介装されており、該第2の分岐ライン(244)は中温溶液熱交換器(302)をバイパスし且つ中温溶液熱交換器(302)と第4の蒸気ドレン熱交換器(224)の間の第2の合流点(242G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第6の蒸気ドレン熱交換器(227)は、高温再生器(202)に向う吸収溶液ラインの第1の分岐吸収溶液ライン(306)の分岐部(308)と第2の分岐点(240B)との間の領域に介装され、
第7の蒸気ドレン熱交換器(228)は、高温再生器(202)に向う吸収溶液ラインの低温溶液熱交換器(300)と第1の分岐吸収溶液ライン(306)の分岐部(308)との間の領域に介装され、
第8の蒸気ドレン熱交換器(230)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)の間における第3の分岐点(282B)で分岐する第3の分岐ライン(283)に介装されており、該第3の分岐ライン(283)は低温溶液熱交換器(300)をバイパスし且つ低温溶液熱交換器(300)と第7の蒸気ドレン熱交換器(228)の間の第3の合流点(283G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第9の蒸気ドレン熱交換器(232)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と第3の分岐点(282B)との間の領域(235)に介装されており、
第1〜第9の蒸気ドレン熱交換器(220、222、223A、224、226、227、228、230、232)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴とする蒸気焚き吸収冷温水機。
A high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), a condenser (210), and an evaporator (212) are provided. The heating steam line (214, 214A) communicates with the vessel (202), and the amount of heat held by the steam flowing through the heating steam line (214) is input to the absorbing solution in the high temperature regenerator (202). It is configured to regenerate the refrigerant vapor,
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
A low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304) are interposed in the absorption solution line from the absorber (208) to the high temperature regenerator (202). The high temperature solution heat exchanger (304) converts the amount of heat held by the absorption solution flowing in the absorption solution line (104) from the high temperature regenerator (202) to the medium temperature regenerator (204) into the absorption solution toward the high temperature regenerator (202). The intermediate temperature solution heat exchanger (302) is configured to be charged, and the high temperature regenerator (302) converts the amount of heat held by the absorption solution flowing through the absorption solution line (318) from the intermediate temperature regenerator (204) to the low temperature regenerator (206). 202), the low temperature solution heat exchanger (300) is held by the absorption solution flowing through the absorption solution line (322) from the low temperature regenerator (206) to the absorber (208). Is configured so as to be introduced into the absorbing solution towards the amount high temperature regenerator (202),
An absorbent solution line (282, 286) communicating from the absorber (208) to the high temperature regenerator (202) is regenerated at a low temperature in the region between the low temperature solution heat exchanger (300) and the intermediate temperature solution heat exchanger (302). A first branched absorbent solution line (306) communicating with the vessel (206) branches off (308) and has a medium temperature in the region between the medium temperature solution heat exchanger (302) and the high temperature solution heat exchanger (304). The second branch absorption solution line (310) communicating with the regenerator (204) is branched (311), and the absorption solution line (340) through which the absorption solution heated by the high temperature regenerator (202) flows is regenerated at a medium temperature. The absorbent solution line (318) through which the absorbent solution heated by the intermediate temperature regenerator (204) flows joins the first branched absorbent solution line (306) and is connected to the low temperature regenerator (206). )
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) is the first to ninth steam drain heat exchangers (220, 222, 223A, 224, 226, 227, 228). , 230, 232),
The first steam drain heat exchanger (220) is interposed in a region (252) between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line toward the high temperature regenerator (202). And
The second steam drain heat exchanger (222) includes a branch (311) of the second branched absorbent solution line (310) and a high temperature solution heat exchanger (304) of the absorbent solution line toward the high temperature regenerator (202). The first branch line (250) branches at a first branch point (246B) between the first branch line (250B) and bypasses the hot solution heat exchanger (304). And merged with the absorption solution line toward the high temperature regenerator (202) at a first junction (246G) between the high temperature solution heat exchanger (304) and the first steam drain heat exchanger (220),
The third steam drain heat exchanger (223A) includes a branch (311) and a first branch point (246B) of the second branched absorbent solution line (310) of the absorbent solution line toward the high temperature regenerator (202). Intervened in the area (286) between
The fourth steam drain heat exchanger (224) includes a middle temperature solution heat exchanger (302) of the absorption solution line toward the high temperature regenerator (202) and a branch (311) of the second branch absorption solution line (310). Intervened in the area between and
The fifth steam drain heat exchanger (226) includes a branch (308) of the first branched absorbent solution line (306) and an intermediate temperature solution heat exchanger (302) of the absorbent solution line toward the high temperature regenerator (202). Is interposed in a second branch line (244) that branches at a second branch point (240B) between the two, and the second branch line (244) bypasses the intermediate temperature solution heat exchanger (302). And at the second junction (242G) between the intermediate temperature solution heat exchanger (302) and the fourth steam drain heat exchanger (224), joins the absorption solution line toward the high temperature regenerator (202),
The sixth steam drain heat exchanger (227) includes a branch (308) and a second branch point (240B) of the first branched absorbent solution line (306) of the absorbent solution line toward the high temperature regenerator (202). Intervened in the area between and
The seventh steam drain heat exchanger (228) includes a low temperature solution heat exchanger (300) of the absorption solution line toward the high temperature regenerator (202) and a branch (308) of the first branch absorption solution line (306). Intervened in the area between and
The eighth steam drain heat exchanger (230) has a third branch point (282B) between the absorbent solution pump (102) of the absorbent solution line and the cold solution heat exchanger (300) toward the high temperature regenerator (202). ) Is branched to a third branch line (283), which bypasses the low temperature solution heat exchanger (300) and is connected to the low temperature solution heat exchanger (300). Merging with the absorbent solution line towards the high temperature regenerator (202) at a third junction (283G) between the seventh steam drain heat exchanger (228);
The ninth steam drain heat exchanger (232) is interposed in the region (235) between the absorption solution pump (102) and the third branch point (282B) of the absorption solution line toward the high temperature regenerator (202). And
The first to ninth steam drain heat exchangers (220, 222, 223A, 224, 226, 227, 228, 230, 232) are used to heat the absorbing solution in the high-temperature regenerator (202) after the amount of heat is supplied thereto. A steam-fired absorption chiller / heater characterized by being configured so that the amount of heat held by the steam or steam drain is put into an absorbing solution that exits from the absorber (208) and goes to the high-temperature regenerator (202).
高温再生器(202)と、中温再生器(204)と、低温再生器(206)と、吸収器(208)と、凝縮器(210)と、蒸発器(212)とを有し、高温再生器(202)には加熱用蒸気ライン(214、214A)が連通し、加熱用蒸気ライン(214)を流過する蒸気が保有する熱量が高温再生器(202)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
高温再生器(202)で再生した蒸気が流過する第1の冷媒蒸気ライン(216)が中温再生器(204)に連通し、第1の冷媒蒸気ライン(216)を流過する冷媒蒸気が保有する熱量が中温再生器(204)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、中温再生器(204)で再生した蒸気が流過する第2の冷媒蒸気ライン(218)が低温再生器(206)に連通し、第2の冷媒蒸気ライン(218)を流過する冷媒蒸気が保有する熱量が低温再生器(206)内の吸収溶液に投入されて冷媒蒸気が再生する様に構成されており、
吸収器(208)から高温再生器(202)に向う吸収溶液ラインには低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)が介装され、高温溶液熱交換器(304)は高温再生器(202)から中温再生器(204)へ向う吸収溶液ライン(104)を流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、中温溶液熱交換器(302)は中温再生器(204)から低温再生器(206)に向う吸収溶液ラインを流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、低温溶液熱交換器(300)は低温再生器(206)から吸収器(208)に向う吸収溶液ラインを流れる吸収溶液が保有する熱量を高温再生器(202)に向う吸収溶液に投入する様に構成され、
吸収器(208)から高温再生器(202)に連通する吸収溶液ライン(282、286)が、低温溶液熱交換器(300)と中温溶液熱交換器(302)との間の領域で低温再生器(206)に連通する第1の分岐吸収溶液ライン(306)が分岐(308)しており、中温溶液熱交換器(302)と高温溶液熱交換器(304)との間の領域で中温再生器(204)に連通する第2の分岐吸収溶液ライン(310)が分岐(311)しており、高温再生器(202)で加熱された吸収溶液が流れる吸収溶液ライン(340)は中温再生器(204)に連通しており、中温再生器(204)で加熱された吸収溶液が流れる吸収溶液ラインは第1の分岐吸収溶液ライン(306)に合流して低温再生器(206)に連通しており、
前記加熱用蒸気ライン(214、214A)の高温再生器(202)を経由した領域(214A)は第1〜第3の蒸気ドレン熱交換器(220、232、227C)に連通しており、
第1の蒸気ドレン熱交換器(220)は、高温再生器(202)に向う吸収溶液ラインの高温溶液熱交換器(304)と高温再生器(202)の間の領域(252)に介装され、
第2の蒸気ドレン熱交換器(232)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)との間の領域に介装されており、
第3の蒸気ドレン熱交換器(227C)は、高温再生器(202)に向う吸収溶液ラインの吸収溶液ポンプ(102)と低温溶液熱交換器(300)との間の領域における分岐点(282B)で分岐する分岐ライン(251S)に介装されており、該分岐ライン(251S)は低温溶液熱交換器(300)、中温溶液熱交換器(302)、高温溶液熱交換器(304)をバイパスし且つ高温溶液熱交換器(304)と第1の蒸気ドレン熱交換器(220)の間の合流点(287G)で高温再生器(202)に向う吸収溶液ラインと合流し、
第1〜第3の蒸気ドレン熱交換器(220、232、227C)は、高温再生器(202)内の吸収溶液に熱量を投入した後に前記加熱用蒸気或いは蒸気ドレンが保有する熱量を、吸収器(208)から出て高温再生器(202)に向う吸収溶液に投入する様に構成されていることを特徴とする蒸気焚き吸収冷温水機。
A high temperature regenerator (202), a medium temperature regenerator (204), a low temperature regenerator (206), an absorber (208), a condenser (210), and an evaporator (212) are provided. The heating steam line (214, 214A) communicates with the vessel (202), and the amount of heat held by the steam flowing through the heating steam line (214) is input to the absorbing solution in the high temperature regenerator (202). It is configured to regenerate the refrigerant vapor,
The first refrigerant vapor line (216) through which the steam regenerated in the high temperature regenerator (202) flows is communicated with the intermediate temperature regenerator (204), and the refrigerant vapor flowing through the first refrigerant vapor line (216) The second refrigerant vapor line in which the amount of heat held is input to the absorbing solution in the intermediate temperature regenerator (204) to regenerate the refrigerant vapor, and the regenerated vapor flows in the intermediate temperature regenerator (204). (218) communicates with the low-temperature regenerator (206), and the amount of heat held by the refrigerant vapor flowing through the second refrigerant vapor line (218) is input to the absorbing solution in the low-temperature regenerator (206) to generate refrigerant vapor. Is configured to play,
A low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304) are interposed in the absorption solution line from the absorber (208) to the high temperature regenerator (202). The high temperature solution heat exchanger (304) converts the amount of heat held by the absorption solution flowing in the absorption solution line (104) from the high temperature regenerator (202) to the medium temperature regenerator (204) into the absorption solution toward the high temperature regenerator (202). The medium temperature solution heat exchanger (302) is configured to be charged, and the high temperature regenerator (202) stores the amount of heat held by the absorption solution flowing in the absorption solution line from the medium temperature regenerator (204) toward the low temperature regenerator (206). The low-temperature solution heat exchanger (300) is configured so as to be charged into the absorbent solution facing away, and the high-temperature regenerator (300 2 Is configured so as to be introduced into the absorption solution toward the 2),
An absorbent solution line (282, 286) communicating from the absorber (208) to the high temperature regenerator (202) is regenerated at a low temperature in the region between the low temperature solution heat exchanger (300) and the intermediate temperature solution heat exchanger (302). A first branched absorbent solution line (306) communicating with the vessel (206) branches off (308) and has a medium temperature in the region between the medium temperature solution heat exchanger (302) and the high temperature solution heat exchanger (304). The second branch absorption solution line (310) communicating with the regenerator (204) is branched (311), and the absorption solution line (340) through which the absorption solution heated by the high temperature regenerator (202) flows is regenerated at a medium temperature. The absorbent solution line through which the absorbent solution heated by the intermediate temperature regenerator (204) flows joins the first branched absorbent solution line (306) and communicates with the low temperature regenerator (206). And
The region (214A) of the heating steam line (214, 214A) through the high temperature regenerator (202) communicates with the first to third steam drain heat exchangers (220, 232, 227C),
The first steam drain heat exchanger (220) is interposed in a region (252) between the high temperature solution heat exchanger (304) and the high temperature regenerator (202) of the absorption solution line toward the high temperature regenerator (202). And
The second steam drain heat exchanger (232) is interposed in the region between the absorbing solution pump (102) and the cold solution heat exchanger (300) of the absorbing solution line toward the high temperature regenerator (202). And
The third steam drain heat exchanger (227C) is a branch point (282B) in the region between the absorbing solution pump (102) and the cold solution heat exchanger (300) of the absorbing solution line toward the high temperature regenerator (202). ), And the branch line (251S) includes a low temperature solution heat exchanger (300), a medium temperature solution heat exchanger (302), and a high temperature solution heat exchanger (304). Bypass and join the absorbent solution line towards the hot regenerator (202) at the junction (287G) between the hot solution heat exchanger (304) and the first steam drain heat exchanger (220);
The first to third steam drain heat exchangers (220, 232, 227C) absorb the amount of heat held by the heating steam or the steam drain after charging the amount of heat into the absorbing solution in the high-temperature regenerator (202). A steam-fired absorption chiller / heater, characterized in that it is configured to enter the absorbent solution exiting from the vessel (208) toward the high temperature regenerator (202).
JP2001090591A 2001-03-27 2001-03-27 Steam fired absorption chiller / heater Expired - Fee Related JP3791831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001090591A JP3791831B2 (en) 2001-03-27 2001-03-27 Steam fired absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090591A JP3791831B2 (en) 2001-03-27 2001-03-27 Steam fired absorption chiller / heater

Publications (2)

Publication Number Publication Date
JP2002286320A JP2002286320A (en) 2002-10-03
JP3791831B2 true JP3791831B2 (en) 2006-06-28

Family

ID=18945354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090591A Expired - Fee Related JP3791831B2 (en) 2001-03-27 2001-03-27 Steam fired absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3791831B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596683B2 (en) * 2001-06-05 2010-12-08 三洋電機株式会社 Absorption refrigerator

Also Published As

Publication number Publication date
JP2002286320A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP2010164281A (en) Single/double effect absorption water cooler/heater
KR101845300B1 (en) Fusion energy system of geothermal, solar and water heat energy
WO2002018849A1 (en) Absorption refrigerating machine
JP3791831B2 (en) Steam fired absorption chiller / heater
JP4521855B2 (en) Absorption refrigerator
JP3791835B2 (en) Absorption chiller / heater
JP3791832B2 (en) Steam fired absorption chiller / heater
JP3791836B2 (en) Absorption chiller / heater
KR100543484B1 (en) Single-and Double-Effect Absorption Refrigerator
JP4553523B2 (en) Absorption refrigerator
JP3578207B2 (en) Steam heating type double effect absorption refrigerator / cooler / heater, power generation / cooling / heating / hot water supply system using the same, and system control method thereof
KR101045440B1 (en) Absorption type refrigerator having the solution recirculrating device
WO2002018850A1 (en) Absorption refrigerating machine
JP3331363B2 (en) Absorption refrigerator
JP4086505B2 (en) Heating operation method and apparatus for a multi-effect absorption refrigerator / cooling / heating machine
JP3723373B2 (en) Waste heat input type absorption chiller / heater
JPS63116066A (en) Double effect absorption water chiller and heater
KR101045463B1 (en) Absorption type refrigerator having the solution heating condensor
JP3851136B2 (en) Absorption refrigerator
JP4557468B2 (en) Absorption refrigerator
JP2001116389A (en) Absorption hot and chilled water generator
JPH11182966A (en) Absorption hot and chilled water generator
JP4562325B2 (en) Absorption refrigerator
JPH08159591A (en) Absorption type refrigerator
JP3593052B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees