JP3791662B2 - Metal detection method and metal detector - Google Patents

Metal detection method and metal detector Download PDF

Info

Publication number
JP3791662B2
JP3791662B2 JP33651899A JP33651899A JP3791662B2 JP 3791662 B2 JP3791662 B2 JP 3791662B2 JP 33651899 A JP33651899 A JP 33651899A JP 33651899 A JP33651899 A JP 33651899A JP 3791662 B2 JP3791662 B2 JP 3791662B2
Authority
JP
Japan
Prior art keywords
coil
transmission
reception
subject
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33651899A
Other languages
Japanese (ja)
Other versions
JP2001124862A6 (en
JP2001124862A5 (en
JP2001124862A (en
Inventor
正夫 金澤
宗彦 三木
稔 堀越
康敬 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electronics Co Ltd
Original Assignee
Nissin Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electronics Co Ltd filed Critical Nissin Electronics Co Ltd
Priority to JP33651899A priority Critical patent/JP3791662B2/en
Publication of JP2001124862A publication Critical patent/JP2001124862A/en
Publication of JP2001124862A6 publication Critical patent/JP2001124862A6/en
Publication of JP2001124862A5 publication Critical patent/JP2001124862A5/ja
Application granted granted Critical
Publication of JP3791662B2 publication Critical patent/JP3791662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は衣服などの被検体縫製品内又は、パン、食肉などの被検体食品内に混入した縫製針、釘、注射針などの針状金属異物(以下被検物と言う)を検出るためのニードルディテクタに好適に適用される金属検出方法および金属検出機に関するものである。
【0002】
【従来の技術】
従来の縫製品用又は、食品用の針状金属異物検出装置としては、ベルトコンベヤなどの搬送手段と検出センサーとしての単体のサーチコイル及び該コイルで得られた受信信号を増幅し検出する制御部とを組み合せたコンベヤ式ニードルディテクタがある。
【0003】
これらの従来のニードルディテクタは、ベルトコンベヤなどの搬送機に載った被検体がトンネル通路型のサーチコイルを通過する際、交流励振磁界によるサーチコイルの誘導起電力が混入の被検物により変化することをとらえる交流磁界式か、直流励振磁界の混入針類による変化を誘導起電力としてサーチコイルがとらえる直流磁界式があるが、いずれも誘導起電力を増幅して検出する電磁誘導原理によるものである。
【0004】
【発明が解決しようとる課題】
従来の縫製用又は、食品用のニードルディテクタを用いた被検物の検出は、針類が一般的な形状の被検体に比し、微小断面直径に対し長手の比寸法が数十倍と極端に違う状被検物の故で、サーチコイル通過時における針状金属異物の姿勢により、受信コイルへの鎖交磁束の変化に差異が生じ、検出感度が大きく異なるという、いわゆる被検物検出の方向性という問題があった。
【0005】
送受信対向配置型サーチコイルのサーチコイル通過時における被検物の姿勢による受信コイルの鎖交磁束の変化は、励振磁界が交流磁界であるか、直流磁界であるか並びに被検物が強磁性体金属か非磁性体金属かにより大きく変わる。これは、両者の検出原理の相違に起因しておる。以下、主として交流励振磁界により説明する。
【0006】
図8は従来技術に係るニードルディテクタの全体構成を説明するための側面図である。ニードルディテクタの中央部には外形がほぼ直方体形状を成し、その中央部に長方形トンネル通路4が形成され、そのトンネル通路4内を被検体41が載置された搬送機3のベルトコンベヤが貫通するように、送受信対向配置型サーチコイル20(送受信同軸配置型サーチコイル30も同様)が立設されている。そして、該サーチコイル20(30)が被検体41内の被検物を検出した信号は制御盤50に送られ、そこで増幅演算処理される。
【0007】
図3および図4はそれぞれ従来例に係るニードルディテクタの送受信対向配置型サーチコイル20の構成を示す説明用斜視図および図3のA方向断面図である。送信コイル21と受信コイル22とはトンネル通路4を鋏んで相対峙しており、送信コイル21に対峙する一対の受信コイル22a,22bは、トンネル通路4内の搬送方向Pと直交する励振磁束23が被検物のために変化するのを両受信コイル22a,22bで鎖交磁束の変化として捉え、その誘導起電力の変化を図示しない差動接続回路により受信コイル22a,22bの差動出力信号として制御盤50に出力するようになっている。
【0008】
図5および図6は送受信コイルが同軸に配置された送受信同軸配置型サーチコイル30の送信コイル31と受信コイル32の配置の構成を示す説明用斜視図および図5のB方向断面図である。トンネル通路4を取り囲むようにループ状の3つのコイルが同心状に配置されており、中央部には送信コイル31が、これを挟んで前後部には一対の受信コイル32a,32bが配設されている。これら一対の受信コイル32a,32bの機能は上述の受信コイル22a,22bと同様であり、送受信同軸配置型検出信号の変化を差動接続回路により差動出力信号として制御盤50に出力する。
【0009】
図9は送受信対向配置型サーチコイル20の断面Aにおける強磁性体金属の被検物40が励振磁束23の方向と一致した姿勢の場合に、磁束が片方の最寄りの受信コイル22bに集中鎖交している状態を示した磁束の流れを示す説明図である。
【0010】
被検物40が強磁性体金属の場合、その姿勢が励振磁束23の方向と一致したとき被検物40内を通った方が磁気抵抗が最小となるため、被検物40周りに磁束が集中し、その 結果、ある時点で最寄りの受信コイル22bの鎖交磁束は極端に大きくなる。つまり、サーチコイル20内の被検物40の姿勢が励振磁束23の方向と一致した時、最高の感度を示す。
【0011】
図10は同じく、サーチコイル20の断面Aにおける非磁性体金属の針状被検物40の姿勢が搬送方向Pと一致し、励振磁束23の方向と直交した姿勢の場合の磁束の流れを示す説明図である。この場合は強磁性体金属の被検物40と違い、励振磁束23が被検物40と鎖交する際に被検物40の表面付近に渦電流が流れ、その電流による逆起電力の磁束が本来の磁束を打ち消すように働くため、鎖交表面積が大きい程大幅に鎖交磁束が減少し、被検物40を避けるような磁束変化となる。その結果、ある時点で最寄りの受信コイル22bの鎖交磁束は極端に疎密度となり、誘導起電力の変化も大きくなる。
【0012】
つまり、被検物40が非磁性体金属の場合は、図9の磁束分布と逆現象になり、この姿勢で誘導起電力の変化が大きく、最高の検出感度を示す。
【0013】
送受信対向配置型サーチコイル20において、被検物が強磁性体金属の場合は、磁束が磁気抵抗のより小さい被検物に収束されることにより受信コイルの鎖交磁束の変化をとらえる原理によるので、送受信対向配置型サーチコイル20通過時被検物の姿勢が、励振コイルの磁束の方向と同方向であった場合に磁気抵抗が最も小さくなり、受信コイルの鎖交磁束の変化が最も大きく検出感度も高い。しかし、逆に被検物の姿勢が前記磁束の方向と直交する場合は検出感度は著しく低下する。
【0014】
被検物が非磁性体金属の場合は、検物に発生する渦電流による逆起電力磁束が本来の磁束を打ち消すように働く。こうして生じた鎖交磁束の変化を受信コイルが捉えるように構成されているので、励振コイルからの磁束による鎖交磁束が最も大きい被検物の姿勢が、受信コイルの送受信対向配置型サーチコイル20通過時における鎖交磁束の変化も最も大きく感度も高い。しかし、これと逆に最小鎖交磁束の姿勢つまり被検物と励振磁界が同方向となるとき、感度が著しく低下するというように、被検物の姿勢による極端な感度差がある。
【0015】
送受信同軸型サーチコイル30の場合も、励振磁束の方向に対する被検物の姿勢と検出感度は、被検物が強磁性金属体非磁性金属体かによって異なることは同様である。即ち、励振磁束の方向と被検物の姿勢に関する動作原理は、送受信対向配置型サーチコイル20の場合と本質的には変わらないが、送受信同軸配置型サーチコイル30を通過する被検体41からみた場合、励振磁束の方向が互いに90°の差異があるため、検出感度に関してはほぼ逆の関係になる。上記のように被検物の姿勢次第で検出感度に大差があり、もっと直裁に言えば、単のサーチコイル20(30)のみで針状金属異物を検出した場合は、該異物を検出できたり、できなかったりする
【0016】
以下に上述の従来例に係るニードルディテクタの具体的な実証試験の結果を示す。
図3に示す断面が縦長の長方形トンネル通路4を有した送受信対向配置型サーチコイル20の場合、次に述べるX,Y,Z方向にそれぞれ平行に配置された針状金属異物を検出した送受信対向配置型サーチコイル20の検出電圧は下記の通りである。なお、X方向は搬送方向Pに、Y方向は搬送方向Pに垂直な横方向に、Z方向は搬送方向Pに垂直な縦方向にそれぞれ平行な方向を表す。また、針状金属異物としては、強磁性体は鉄製アップリケ針、非磁性体はステンレス製同等針を用いた。
送受信対向配置型サーチコイル 検出電圧V
被検物材質/姿勢 強磁性体金属 非磁性体金属
Y 12.3 1.3
X 6.8 4.1
Z 1.3 8
【0017】
上記試験結果から分かるように、強磁性体金属ではZ方向、非磁性体金属ではY方向に平行な針状金属異物は極端に検出電圧が小さく、従って、これらの測定値は実際上ノイズなど外乱要因のため実用上、有意な測定値と判断できない。つまり、上記方向に配置された針状金属異物を検出することができない。このように、従来のサーチコイル20(30)で針状金属異物を検出した場合は、針状金属異物の姿勢によりこれを検出不能なケースが生じる。なお、X方向の検出電圧がY,Z方向の検出電圧の中間的な値を示しているのは、送信コイル21の形状が縦長の長方形形状を有しているため、励振磁束23の裾開きが生じているためと推察できる。
【0018】
次に、同様に断面が縦長の長方形トンネル通路4を有した送受信同軸配置型サーチコイル30で針状金属異物を検出した場合の送受信同軸配置型サーチコイル30の検出電圧は下記の通りである。なお、試供針は上記と同じである。
送受信同軸配置型サーチコイル 検出電圧V
被検物材質/姿勢 強磁性体金属 非磁性体金属
Y 1.2 10
X 6.8 4.1
Z 1.3 8
【0019】
このように、送受信同軸配置型サーチコイル30の場合は、Y方向とZ方向に配置された強磁性体金属の針状金属異物を検出することができない。
本発明は従来技術におけるかかる課題を解決すべく為されたものであり、被検体中に混入した針状金属異物の向きに拘わらず、殆ど全ての針状金属異物を検出することができる金属検出方法および金属検出機を提供することを目的とする。
【0020】
【課題を解決するための手段】
上記課題を解決するために、本発明は被検体が搬送される搬送路に沿って搬送方向に対して互いに逆向きの傾斜角を有してそれぞれ配置された送受信対向配置型サーチコイルと送受信同軸配置型サーチコイルを通過した際のそれぞれのサーチコイルから出力された受信信号に基づいて被検体中に混入した金属異物を検出するようにしたものである。
【0021】
【発明の実施の形態】
以下、本発明の実施について、図面に基づいて具体的に説明する。
【0022】
図1および図2はそれぞれ本発明の一実施例に係るニードルディテクタ全体を説明するためのサーチコイルを断面表示した側面図および正面図である駆動プ−リ5は軸受8を介して機体のフレーム7に固定された前後の軸受台6に回転自在に取り付けられている。原動機などの駆動系を含めて、周知の構成であるため、図示並びに説明は省略する。本実施例においては、搬送機3上の被検体の搬送方向Pに対し、送受信対向配置型サーチコイル20又は送受信同軸配置型サーチコイル30を搬送面と互いに逆向きの傾斜角度αで対向して片仮名のハの字状に配置している。
この傾斜角度αのとしては、感度上からは45°が良いが、傾斜角度が減少する程、トンネル通路4と搬送機3との関係からサーチコイル20(30)の長手寸法が大きくなるので経済的な面を考慮し60°に設定したなお、搬送機3の搬送手段としてはベルトコンベヤを用いているが、他の駆動手段を用いても良い。
【0023】
また、それぞれのサーチコイル20(30)一対は、各サーチコイル20(30)のトンネル通路4出入り口面が搬送機3の搬送方向Pに対し片仮名のハの字(又は、逆ハの字 )になるよう、前記出入り口面と搬送通路面とが規定角度を保持して対向するように構成し、被検体41の搬送方向Pに対し前後に一定間隔で対向配置した。
【0024】
このような配置構成のサーチコイル20(30)の組み合せによれば、搬送面とサーチコイル20(30)が一定の角度で、しかも片仮名のハの字か逆ハの字で傾斜配置されているため、サーチコイル20(30)通過時搬送面上の被検体40内の針状の被検物41の姿勢次第では、一方のサーチコイル20(30)では、鎖交磁束24の変化つまり感度が最小でも、引き続いて通過する他方のサーチコイル20(30)の励振磁束23と姿勢との相対的関係が大きく異なるため感度は最小とはならない。
【0025】
これは、針類の寸法がサーチコイル20(30)内の検出姿勢次第では、断面の直径寸法でみた場合極めて微小寸法であるため、被検物40の材質にもよるが、単体のサーチコイルでは検出不能による不都合が頻発することとなる。
【0026】
また、それぞれのサーチコイル20(30)一対は、各サーチコイル20(30)のトンネル通路4出入り口面が搬送機3の搬送方向Pに対し片仮名のハの字又は、逆ハの字になるように、前記出入り口面と搬送通路面とが規定角度を保持して対向するように構成し、被検体41の搬送方向に対し前後に一定間隔を保つように配置した。
【0027】
このような配置構成のサーチコイル20(30)の組み合せによれば、搬送面とサーチコイル20(30)が所定の角度で、しかも片仮名のハの字で傾斜配置されているため、サーチコイル20(30)通過時に搬送面上の被検体41内の針状被検物40は、一方のサーチコイル20(30)では、鎖交磁束の変化つまりサーチコイル20(30)の検出電圧が最小でも、引き続いて通過する他方のサーチコイル20(30)での励振磁束23と被検物40の姿勢との相対角度が大きくなるため、検出電圧は微少にならない。
【0028】
本実施例によるニードルディテクタ10の実証試験の結果は、次の通りとなった。
1.送受信対向配置型サーチコイル 検出電圧V;強磁性体金属(非磁性体金属)
サーチコイル傾斜角度/姿勢 +60° −60°
Y 12.3(1.3) 12.3(1.3
X 6.1(6.2) 6.1(6.2)
Z 4.1(7.5) 4.1(7.5)
Z+30° 1.3(8) 6.1(6.2)
2.送受信同軸配置型サーチコイル 検出電圧V;強磁性体金属(非磁性体金属)
サーチコイル傾斜角度/姿勢 +60° −60°
Y 12.3(1.31.2(10)
X 6.1(6.2) 13.5(3.6)
Z 4.1(7.5) 8.5(5.3)
Z+30° 1.3(8.3) 13.5(3.6)
【0029】
これによれば、アンダーラインで示す検出電圧は全て非検出扱いの微電圧であり、送受信対向配置型サーチコイル20の場合、姿勢Z+30°では+60°サーチコイルで磁性体金属時1.3Vと低値であるが、−60°サーチコイルで6.1Vと逆転している。一方、非磁性体金属の被検物40を検出する場合は、一対の送受信対向配置型サーチコイル20双方で検出しても1.3Vと微電圧のため、被検物40の検出は難しい
【0030】
次に、送受信同軸配置型サーチコイル30の場合は、アンダーライン付きの微低電圧の姿勢の値でも、一対の他のサーチコイル30のいずれか一方の値は最大値に近い検出電圧を示していることが分かる。このことは、送受信同軸配置型サーチコイル30の片仮名ハの字組み合せが最も検出の死角がないことを実証しており、また、他の組み合せとしては、送受信対向配置型サーチコイル20を傾斜角+60°の配置に、送受信同軸配置型サーチコイル30を傾斜角−60°の配置に組み合せた構成でも検出不能になる被検物40の姿勢はない。
【0031】
上記の実証試験は、説明を簡単にするために、針状被検物40の姿勢がX,Y,Z,Z+30°方向のみの場合の結果を示したが、針状被検物40の姿勢は一般的には任意の方向を向いているしかしながら、針状被検物40が任意の方向を向いていても、針状被検物40の向きは、それぞれX,Y,Z方向を示す針状被検物40のベクトル和で示すことができるから、上記説明は任意の向きに向いた針状被検物40に適用することができる
【0032】
図7は本発明の実施例の変形例に係る側面図を示したものであり、サーチコイル20(30)を搬送機上で片仮名の逆ハの字状に構成したニードルディテクタ10’の全体を説明するための側面図である
【0033】
図11は一対のサーチコイル20(30)を片仮名のハの字状に配設した状態で、サーチコイル20(30)中での針状被検物40の姿勢が特別の形態となった4例を例示した明図でる。
【0033】
図12は上述の送受信対向配置型サーチコイル20の場合の搬送方向に沿った断面図で、針状被検物40の各姿勢は図11に対応したものである。
【0034】
図13はサーチコイル20(30)の筐体60内に配設した送受信コイル21,22(31,32)を片仮名のハの字配置、および一体の筐体60内に樹脂性モールド61にて充填固着した構造とし、共通トンネル64内に搬送機3を貫通配置する構成とした本発明の実施例の変形例に係る側面図である。この例では、送受信対向配置型サーチコイル20と同軸配置型サーチコイル30を組み合せた構成となっている。この場合、より小型化が可能となる
【0035】
【発明の効果】
以上説明したように発明によれば、搬送方向に対して互いに逆向きの傾斜角を有して配置された送受信対向配置型サーチコイルと送受信同軸配置型サーチコイルを通過した際のそれぞれの受信信号に基づいて被検体中に混入した金属異物を検出するようにしたので、一方のサーチコイルで金属異物を検出できなかった場合でも、他方のサーチコイルで金属異物を検出することができるから、被検体中に混入した針状金属異物の向きに拘わらず、全ての針状金属異物を検出することができる。
【図面の簡単な説明】
【図1】 本発明の実施に係るニードルディテクタ側面図である。
【図2】 同じく、ニードルディテクタ正面図である。
【図3】 送受信対向配置型サーチコイルの構成を示す説明用斜視図である。
【図4】 図3のA方向断面図である。
【図5】 送受信同軸配置型サーチコイルの送信コイルと受信コイルの配置の構成を示す説明用斜視図である。
【図6】 図5のB方向断面図である。
【図7】 本発明の実施例の変形例に係る側面図である。
【図8】 従来技術に係るニードルディテクタの全体構成を説明するための側面図である。
【図9】 送受信対向配置型サーチコイルの断面Aにおける強磁性体金属の被検物が励振磁束の方向と一致した姿勢の場合の磁束の流れを示す説明図である。
【図10】 サーチコイルの断面Aにおける非磁性体金属の針状被検物の姿勢が搬送方向Pと一致し、励振磁束の方向と直交した姿勢の場合の磁束の流れを示す説明図である。
【図11】 一対のサーチコイルが片仮名のハの字状に配設した状態での針状被検物の4例を例示した明図である。
【図12】 送受信対向配置型サーチコイルの場合の搬送方向に沿った断面図である。
【図13】 筐体内に樹脂性モールドにて充填固着した構造とした本発明の実施例の変形例に係る側面図である。
【符号の説明】
3 搬送機
4,64 トンネル通路
5 駆動プーリー
6 軸受台
7 フレーム
8 軸受
10 ニードルディテクタ
20 送受信対向配置型サーチコイル
21,31 送信コイル
22,32 受信コイル
23,33 励振磁束
24 鎖交磁束
30 送受信同軸型サーチコイル
40 針状金属異物(被検物)
41 被検体
50,51 制御盤
60 筐体
61 樹脂性モールド
[0001]
BACKGROUND OF THE INVENTION
The present invention is in the subject garment such as clothing or, you detect bread, sewing needles mixed into the subject food products such as meat, nail, needle-shaped metal foreign object such as a needle (hereinafter referred to as analyte) those concerning the suitably applied metal detection method and a metal detector in the needle detector for.
[0002]
[Prior art]
As a conventional needle-shaped metallic foreign object detection device for sewing products or foods, there are a conveying means such as a belt conveyor, a single search coil as a detection sensor, and a control unit that amplifies and detects a received signal obtained by the coil. There is a conveyor type needle detector that combines
[0003]
In these conventional needle detectors, when an object mounted on a conveyor such as a belt conveyor passes through a tunnel path type search coil, the induced electromotive force of the search coil due to the AC excitation magnetic field varies depending on the mixed object. There are AC magnetic field type that captures this, or DC magnetic field type that the search coil captures the change caused by the mixed needles of the DC excitation magnetic field as an induced electromotive force, both of which are based on the principle of electromagnetic induction that amplifies and detects the induced electromotive force. is there.
[0004]
The present invention is that you try to solve]
The detection of a test object using a conventional needle detector for sewing or food is extremely extreme, with the specific dimension of the longitudinal direction being several tens of times larger than the diameter of a microscopic cross-section compared to a test object having a general shape. Because of the different needle- shaped specimens, the so-called specimen detection that the change in the linkage flux to the receiving coil varies depending on the attitude of the needle-shaped metal foreign object when passing through the search coil and the detection sensitivity differs greatly. There was a problem of directionality.
[0005]
Changes in the interlinkage magnetic flux of the receiving coil due to the posture of the test object when passing through the search coil of the transmission / reception counter-arranged search coil, whether the excitation magnetic field is an AC magnetic field or a DC magnetic field, and the test object is a ferromagnetic material It varies greatly depending on whether it is a metal or a non-magnetic metal. This is due to the difference between the detection principles of the two. Hereinafter, description will be given mainly using an AC excitation magnetic field.
[0006]
FIG. 8 is a side view for explaining the overall configuration of the needle detector according to the prior art. The outer shape of the needle detector has a substantially rectangular parallelepiped shape, and a rectangular tunnel passage 4 is formed in the center of the needle detector. The belt conveyor of the transfer machine 3 on which the subject 41 is placed passes through the tunnel passage 4. As shown, a transmission / reception opposed arrangement type search coil 20 (same for transmission / reception coaxial arrangement type search coil 30) is provided upright. Then, the signal detected by the search coil 20 (30) in the subject 41 is sent to the control panel 50, where it is subjected to amplification calculation processing.
[0007]
FIGS. 3 and 4 are an explanatory perspective view and a cross-sectional view in the A direction of FIG. The transmitting coil 21 and the receiving coil 22 are opposed to each other across the tunnel path 4, and the pair of receiving coils 22 a and 22 b facing the transmitting coil 21 are excited magnetic fluxes 23 orthogonal to the transport direction P in the tunnel path 4. Change due to the test object is regarded as a change in the interlinkage magnetic flux in both the reception coils 22a and 22b, and the change in the induced electromotive force is detected by the differential connection circuit (not shown) as a differential output signal of the reception coils 22a and 22b. Is output to the control panel 50.
[0008]
5 and 6 are a perspective view for explaining the arrangement of the transmitting coil 31 and the receiving coil 32 of the transmission / reception coaxial arrangement type search coil 30 in which the transmission / reception coils are coaxially arranged, and a sectional view in the B direction of FIG. Three loop-shaped coils are concentrically arranged so as to surround the tunnel passage 4, a transmitting coil 31 is disposed at the center portion, and a pair of receiving coils 32 a and 32 b are disposed at the front and rear portions sandwiching this. ing. The functions of the pair of receiving coils 32a and 32b are the same as those of the receiving coils 22a and 22b described above, and a change in the transmission / reception coaxial arrangement type detection signal is output to the control panel 50 as a differential output signal by the differential connection circuit.
[0009]
FIG. 9 shows the case where the ferromagnetic metal test object 40 in the cross section A of the transmission / reception counter-arranged search coil 20 is in a posture that coincides with the direction of the excitation magnetic flux 23, and the magnetic flux is concentrated and linked to the nearest receiving coil 22b. It is explanatory drawing which shows the flow of the magnetic flux which showed the state which is carrying out.
[0010]
When the test object 40 is a ferromagnetic metal, the magnetic resistance is minimum when passing through the test object 40 when its posture matches the direction of the excitation magnetic flux 23, so that a magnetic flux is generated around the test object 40. As a result, the interlinkage magnetic flux of the nearest receiving coil 22b becomes extremely large at a certain time. That is, the highest sensitivity is obtained when the posture of the test object 40 in the search coil 20 matches the direction of the excitation magnetic flux 23.
[0011]
Similarly, FIG. 10 shows the flow of magnetic flux in the case where the posture of the non-magnetic metal needle-like test object 40 in the cross section A of the search coil 20 coincides with the transport direction P and is perpendicular to the direction of the excitation magnetic flux 23. It is explanatory drawing. In this case, unlike the ferromagnetic metal test object 40, an eddy current flows near the surface of the test object 40 when the excitation magnetic flux 23 is linked to the test object 40, and the back electromotive force magnetic flux is generated by the current. Therefore, the larger the interlinkage surface area, the more the interlinkage magnetic flux decreases and the magnetic flux changes so as to avoid the test object 40. As a result, the flux linkage of the nearest receiving coil 22b becomes extremely sparse at a certain point in time, and the change in induced electromotive force also increases.
[0012]
That is, when the test object 40 is a non-magnetic metal, the phenomenon is opposite to the magnetic flux distribution of FIG. 9, and the change in induced electromotive force is large in this posture, and the highest detection sensitivity is exhibited.
[0013]
In the transmission / reception opposed arrangement type search coil 20 , when the test object is a ferromagnetic metal, the magnetic flux is converged on the test object having a smaller magnetic resistance so that the change in the interlinkage magnetic flux of the reception coil is captured. , the attitude of the transmitting and receiving opposed type search coil 20 specimen during passing, Ri most small magnetic resistance in the case was in the direction the same direction of the magnetic flux of the exciting coil, a change in flux linkage of the receiver coil the largest detection sensitivity is also high. On the contrary, when the posture of the test object is orthogonal to the direction of the magnetic flux, the detection sensitivity is significantly reduced.
[0014]
If the test object is a non-magnetic metal, rather work as counter electromotive force flux due to eddy current generated in the test object cancels the original flux. Since the receiving coil is configured to detect the change in the linkage flux generated in this way , the position of the test object having the largest linkage flux due to the flux from the excitation coil is determined so that the search coil 20 is arranged opposite to the receiving coil. The change in flux linkage during passage is the largest and the sensitivity is high. However, on the contrary, there is an extreme difference in sensitivity depending on the posture of the test object such that when the posture of the minimum flux linkage, that is, the test object and the excitation magnetic field are in the same direction , the sensitivity is significantly reduced .
[0015]
In the case of the transmission / reception coaxial search coil 30 as well, the posture and detection sensitivity of the test object with respect to the direction of the excitation magnetic flux are the same depending on whether the test object is a ferromagnetic metal body or a nonmagnetic metal body . That is, the operating principle relating to the posture of the direction and the test of the excitation magnetic flux does not change essentially in the case of transmitting and receiving opposed type search coil 20, or a test body 41 which passes through the transmitting and receiving coaxial arrangement type search coil 30 If there lamination, since the direction of the excitation magnetic flux is 90 ° difference from each other, ing substantially inverse relationship with respect to the detection sensitivity. There is little difference in the detection sensitivity depending on the posture of the object as described above, more speaking straightforward, if only detects the acicular metal foreign object in a single search coil 20 (30), detects a foreign matter Can or can not .
[0016]
The result of the concrete demonstration test of the needle detector according to the above-described conventional example is shown below.
In the case of the transmission / reception facing arrangement type search coil 20 having the rectangular tunnel passage 4 having a vertically long cross section shown in FIG. 3, the transmission / reception facing which detects the needle-like metal foreign matter arranged in parallel in the X, Y and Z directions described below. The detection voltage of the arrangement type search coil 20 is as follows. Note that the X direction represents the conveyance direction P, the Y direction represents a horizontal direction perpendicular to the conveyance direction P, and the Z direction represents a direction parallel to the vertical direction perpendicular to the conveyance direction P. As the needle-shaped metal foreign matter, an iron applique needle was used for the ferromagnetic material, and a stainless steel equivalent needle was used for the non-magnetic material.
Transmitting / receiving opposed type search coil Detection voltage V
Specimen material / posture Ferromagnetic metal Nonmagnetic metal
Y 12.3 1.3
X 6.8 4.1
Z 1.38
[0017]
As can be seen from the above test results, the detection voltage is extremely small for acicular metal foreign bodies parallel to the Z direction in ferromagnetic metals and in the Y direction in non-magnetic metals. Therefore, these measured values are actually disturbances such as noise. Because of the factors, it cannot be judged as a practically significant measured value. That is, it is impossible to detect the needle-shaped metallic foreign matter arranged in the above direction. As described above, when a needle-like metal foreign object is detected by the conventional search coil 20 (30), there is a case where it cannot be detected due to the posture of the needle-like metal foreign object. The reason why the detection voltage in the X direction shows an intermediate value between the detection voltages in the Y and Z directions is that the shape of the transmission coil 21 is a vertically long rectangular shape, so that the bottom of the excitation magnetic flux 23 opens. It can be inferred that this has occurred.
[0018]
Next, the detection voltage of the transmission / reception coaxially arranged search coil 30 when detecting the needle-shaped metallic foreign object with the transmission / reception coaxially arranged search coil 30 having the rectangular tunnel passage 4 having a vertically long cross section is as follows. The sample needle is the same as above.
Transmission / reception coaxial arrangement type search coil Detection voltage V
Specimen material / posture Ferromagnetic metal Nonmagnetic metal
Y 1.2 10
X 6.8 4.1
Z 1.38
[0019]
As described above, in the case of the transmission / reception coaxial arrangement type search coil 30, it is impossible to detect the needle-like metal foreign object of the ferromagnetic metal arranged in the Y direction and the Z direction.
The present invention has been made to solve such a problem in the prior art, and can detect almost all needle-like metal foreign objects regardless of the direction of the needle-like metal foreign substances mixed in the subject. The object is to provide a method and a metal detector.
[0020]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a transmission / reception opposed-arranged search coil and a transmission / reception coaxial that are arranged with inclination angles opposite to each other along a conveyance path along which a subject is conveyed. The metallic foreign matter mixed in the subject is detected based on the reception signal output from each search coil when passing through the arrangement type search coil.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be specifically described with reference to the drawings.
[0022]
FIGS. 1 and 2 are a side view and a front view, respectively, showing a search coil in cross-section for explaining the entire needle detector according to one embodiment of the present invention . The drive pulley 5 is rotatably attached to the front and rear bearing bases 6 fixed to the frame 7 of the airframe via bearings 8. Since it is a known configuration including a drive system such as a prime mover , illustration and description thereof are omitted. In this embodiment, the transmission / reception opposed arrangement type search coil 20 or the transmission / reception coaxial arrangement type search coil 30 is opposed to the conveyance surface at an inclination angle α opposite to the conveyance direction P of the subject on the conveyance device 3. It is arranged in the shape of a Katakana letter C.
The value of the inclination angle α is preferably 45 ° from the viewpoint of sensitivity. However, as the inclination angle decreases , the longitudinal dimension of the search coil 20 (30) increases due to the relationship between the tunnel passage 4 and the transporter 3 . Considering the economical aspect, it is set to 60 °. In addition, although the belt conveyor is used as a conveyance means of the conveying machine 3, you may use another drive means.
[0023]
In addition, each search coil 20 (30) pair includes a tunnel passage 4 entrance / exit surface of each search coil 20 (30) having a Katakana letter C (or reverse letter C ) in the conveyance direction P of the conveyor 3. In this way, the entrance / exit surface and the transport passage surface are configured to face each other while maintaining a specified angle, and are arranged to face each other in the transport direction P of the subject 41 at regular intervals.
[0024]
According to the combination of the search coils 20 (30) having such an arrangement, the conveying surface and the search coil 20 (30) are inclined at a constant angle and in a katakana letter C or an inverted letter C. Therefore, depending on the posture of the needle-like test object 41 in the subject 40 on the transport surface when passing through the search coil 20 (30), one search coil 20 (30) has a change in the flux linkage 24, that is, sensitivity. Even at the minimum, since the relative relationship between the excitation magnetic flux 23 and the posture of the other search coil 20 (30) that subsequently passes is greatly different, the sensitivity is not minimum.
[0025]
This is because, depending on the detection posture in the search coil 20 (30), the dimensions of the needles are extremely small when viewed in terms of the diameter of the cross section. Then, inconvenience due to the inability to detect frequently occurs.
[0026]
In addition, each search coil 20 (30) pair is configured such that the entrance / exit surface of the tunnel passage 4 of each search coil 20 (30) is in the shape of Katakana C or reverse C in the transport direction P of the transporter 3. In addition, the entrance / exit surface and the transport passage surface are configured to face each other while maintaining a specified angle, and are arranged so as to maintain a predetermined interval in the front-rear direction in the transport direction of the subject 41.
[0027]
According to the combination of the search coils 20 (30) having such an arrangement, the search coil 20 and the search coil 20 (30) are inclined at a predetermined angle and in a Katakana letter C. (30) The needle-like test object 40 in the subject 41 on the transport surface when passing through the one search coil 20 (30) has a minimum change in linkage flux, that is, even if the detection voltage of the search coil 20 (30) is minimum. Since the relative angle between the excitation magnetic flux 23 in the other search coil 20 (30) that subsequently passes and the posture of the test object 40 increases, the detection voltage does not become minute.
[0028]
The results of the verification test of the needle detector 10 according to this example are as follows.
1. Transmit / receive opposed arrangement type search coil Detection voltage V: Ferromagnetic metal (non-magnetic metal)
Search coil tilt angle / posture + 60 ° -60 °
Y 12.3 ( 1.3 ) 12.3 ( 1.3 )
X 6.1 (6.2) 6.1 (6.2)
Z 4.1 (7.5) 4.1 (7.5)
Z + 30 ° 1.3 (8) 6.1 (6.2)
2. Transmission / reception coaxial arrangement type search coil Detection voltage V: Ferromagnetic metal (non-magnetic metal)
Search coil tilt angle / posture + 60 ° -60 °
Y 12.3 ( 1.3 ) 1.2 (10)
X 6.1 (6.2) 13.5 (3.6)
Z 4.1 (7.5) 8.5 (5.3)
Z + 30 ° 1.3 (8.3) 13.5 (3.6)
[0029]
According to this, all of the detection voltages indicated by the underline are non-detectable fine voltages , and in the case of the transmission / reception opposed arrangement type search coil 20 , the orientation Z + 30 ° is a + 60 ° search coil and the magnetic metal is as low as 1.3 V. Although it is a value, it is reversed to 6.1 V by a -60 ° search coil . On the other hand , when detecting the test object 40 made of a non-magnetic metal, it is difficult to detect the test object 40 because the voltage is 1.3 V, even if it is detected by both the pair of transmission / reception counter-arranged search coils 20 .
[0030]
Next, in the case of the transmission / reception coaxial arrangement type search coil 30 , even if the value of the attitude of the low voltage with an underline is shown, one of the values of the other pair of search coils 30 indicates a detection voltage close to the maximum value. I understand that. This proves that the katakana letter C combination of the transmission / reception coaxial arrangement type search coil 30 has the least detection blind spot, and as another combination, the transmission / reception counter arrangement type search coil 20 has an inclination angle +60. Even when the transmission / reception coaxial arrangement type search coil 30 is combined with the arrangement at an inclination angle of −60 ° , there is no posture of the test object 40 that can not be detected.
[0031]
In the above demonstration test , in order to simplify the explanation, the results when the posture of the needle-shaped specimen 40 is only in the X, Y, Z, Z + 30 ° directions are shown. The posture is generally in an arbitrary direction . However, even if the needle-shaped test object 40 faces in an arbitrary direction, the direction of the needle-shaped test object 40 can be indicated by the vector sum of the needle-shaped test object 40 indicating the X, Y, and Z directions, respectively. Therefore, the above description can be applied to the needle-like test object 40 oriented in an arbitrary direction .
[0032]
FIG. 7 shows a side view according to a modification of the embodiment of the present invention , and the entire needle detector 10 ′ in which the search coil 20 (30) is formed in a reverse letter C shape of Katakana on the transport device 3. It is a side view for demonstrating .
[0033]
FIG. 11 shows a state in which the posture of the needle-like test object 40 in the search coil 20 (30) is in a special form in a state in which a pair of search coils 20 (30) are arranged in the shape of a Katakana letter C. examples Ru Oh in the description diagram illustrating a.
[0033]
Figure 12 is a sectional view taken along the conveying direction when the above-described transmission and reception opposed type search coil 20, the position of the needle test object 40 are those corresponding to FIG. 11.
[0034]
In FIG. 13, the transmission / reception coils 21 and 22 (31 and 32) disposed in the case 60 of the search coil 20 (30) are arranged in a Katakana letter C shape, and the resin mold 61 is provided in the integral case 60. FIG. 6 is a side view according to a modified example of the embodiment of the present invention in which a structure in which filling and fixing are performed and a transporter 3 is disposed through a common tunnel 64 is shown. In this example, the transmission / reception opposed arrangement type search coil 20 and the coaxial arrangement type search coil 30 are combined. In this case, the size can be further reduced .
[0035]
【The invention's effect】
As described above, according to the present invention, each reception when passing through the transmission / reception opposed arrangement type search coil and the transmission / reception coaxial arrangement type search coil arranged with inclination angles opposite to each other with respect to the transport direction. Since the metallic foreign matter mixed in the subject is detected based on the signal, even if the metallic foreign matter cannot be detected by one search coil, the metallic foreign matter can be detected by the other search coil. Regardless of the direction of the acicular metal foreign matter mixed in the subject, all the acicular metal foreign matters can be detected.
[Brief description of the drawings]
1 is a side view of the needle detector according to an embodiment of the present invention.
FIG. 2 is a front view of the needle detector , similarly .
FIG. 3 is an explanatory perspective view showing a configuration of a transmission / reception opposed arrangement type search coil.
4 is a cross-sectional view in the A direction of FIG .
FIG. 5 is an explanatory perspective view showing the configuration of the arrangement of transmission coils and reception coils of a transmission / reception coaxial arrangement type search coil .
6 is a cross-sectional view in the B direction of FIG .
FIG. 7 is a side view according to a modification of the embodiment of the present invention.
FIG. 8 is a side view for explaining the overall configuration of a needle detector according to the prior art .
FIG. 9 is an explanatory diagram showing the flow of magnetic flux when the ferromagnetic metal test object in the cross section A of the transmission / reception counter-arranged search coil is in a posture that matches the direction of the excitation magnetic flux .
FIG. 10 is an explanatory diagram showing the flow of magnetic flux when the posture of the non-magnetic metal needle-like test object in the cross section A of the search coil coincides with the transport direction P and is perpendicular to the direction of the excitation magnetic flux. .
11 is a explanation diagram illustrating a fourth example of a needle-shaped test object in the state in which the pair of search coils are disposed in the form of a slanted roof Katakana.
FIG. 12 is a cross-sectional view taken along the carrying direction in the case of a transmission / reception opposed arrangement type search coil.
FIG. 13 is a side view according to a modified example of the embodiment of the present invention in which a housing is filled and fixed with a resin mold .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 3 Conveyor 4,64 Tunnel passage 5 Drive pulley 6 Bearing stand 7 Frame 8 Bearing 10 Needle detector 20 Transmission / reception opposing arrangement type search coil 21 , 31 Transmission coil 22 , 32 Reception coil 23 , 33 Excitation magnetic flux 24 Interlinkage magnetic flux 30 Transmission / reception coaxial Type search coil 40 Needle-like metal foreign object (test object)
41 Subject 50 , 51 Control panel 60 Housing 61 Resin mold

Claims (2)

直流または交流磁界方式の励振源に接続された送信コイルと、該送信コイルに対向して励振磁束が貫通するように配置された受信コイルとで構成された送受信対向配置型サーチコイルまたは送受信同軸配置型サーチコイル中を、それぞれ前記送信コイルによる励振磁束を横切ってまたは励振磁束に沿って搬送された被検体中に混入した金属異物により生じた前記励振磁束の乱れを前記受信コイルで検出し、受信信号を演算処理することにより前記被検体中の金属異物を検出する金属検出方法において、前記被検体が搬送される搬送路に沿って前記被検体の搬送方向に対して互いに逆向きの傾斜角を有してそれぞれ配置された前記送受信対向配置型サーチコイルと前記送受信同軸配置型サーチコイルを前記被検体がそれぞれ通過した際に出力された各受信信号に基づいて前記被検体中に混入した金属異物を検出するようにしたことを特徴とする金属検出方法。Transmission / reception facing arrangement type search coil or transmission / reception coaxial arrangement composed of a transmission coil connected to a direct current or alternating current magnetic field type excitation source and a reception coil arranged so that the excitation magnetic flux passes through the transmission coil. The receiving coil detects the disturbance of the excitation magnetic flux caused by the metal foreign matter mixed in the subject that has crossed the excitation magnetic flux generated by the transmission coil or along the excitation magnetic flux in the type search coil. In a metal detection method for detecting a metal foreign object in the subject by calculating a signal, inclination angles opposite to each other with respect to the transport direction of the subject are set along a transport path along which the subject is transported. of outputting the reception coaxial arrangement type search coil and the transceiver opposed type search coils arranged respectively have when the subject has passed respectively Metal detection method is characterized in that to detect the metallic foreign matter mixed in the object based on the received signal. 送信コイルと該送信コイルに対向して励振磁束が貫通するように配置された受信コイルとで構成された送受信対向配置型サーチコイルまたは送受信同軸配置型サーチコイルと、それぞれ前記送信コイルによる励振磁束を横切ってまたは励振磁束に沿って被検体を搬送する搬送手段と、前記受信コイルで検出された受信信号を演算処理することにより前記被検体中に混入した金属異物が元で生じた前記励振磁束の乱れを検出して前記被検体中の金属異物を検出する金属検出手段とを有した金属検出機において、前記被検体が搬送される搬送路に沿って互いに配置型式の異なる少なくとも一対の前記サーチコイルが互いに逆向きの傾斜角を有して配置され、前記金属検出手段は前記被検体がそれぞれ通過した際に各々の前記サーチコイルから出力されたそれぞれの受信信号に基づいて前記被検体中に混入した金属異物を検出するようにしたことを特徴とする金属検出機。A transmission / reception counter arrangement type search coil or a transmission / reception coaxial arrangement type search coil composed of a transmission coil and a reception coil arranged so as to pass through the excitation coil opposite to the transmission coil, and excitation magnetic flux generated by the transmission coil respectively. A transport means for transporting the subject across or along the excitation magnetic flux, and the excitation magnetic flux generated by the metallic foreign matter mixed in the subject by calculating the received signal detected by the reception coil. In a metal detector having a metal detection means for detecting disturbance and detecting a metal foreign object in the subject, at least a pair of the search coils having different arrangement types along a transport path along which the subject is transported There are arranged with an inclination angle opposite to each other, the metal detector is output from said search coil of each when the subject has passed respectively Metal detector being characterized in that to detect the metallic foreign matter mixed in the object based on the respective received signals.
JP33651899A 1999-10-22 1999-10-22 Metal detection method and metal detector Expired - Lifetime JP3791662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33651899A JP3791662B2 (en) 1999-10-22 1999-10-22 Metal detection method and metal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33651899A JP3791662B2 (en) 1999-10-22 1999-10-22 Metal detection method and metal detector

Publications (4)

Publication Number Publication Date
JP2001124862A JP2001124862A (en) 2001-05-11
JP2001124862A6 JP2001124862A6 (en) 2004-10-21
JP2001124862A5 JP2001124862A5 (en) 2005-04-07
JP3791662B2 true JP3791662B2 (en) 2006-06-28

Family

ID=18299966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33651899A Expired - Lifetime JP3791662B2 (en) 1999-10-22 1999-10-22 Metal detection method and metal detector

Country Status (1)

Country Link
JP (1) JP3791662B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511086B2 (en) * 2001-09-14 2010-07-28 アンリツ産機システム株式会社 Metal detector
JP2012083271A (en) * 2010-10-13 2012-04-26 Toyohashi Univ Of Technology Detector
KR101464415B1 (en) * 2012-12-28 2014-11-25 주식회사 포스코아이씨티 Apparatus and Method for Detecting Metal
JP2015059818A (en) * 2013-09-18 2015-03-30 トヨタ自動車株式会社 Magnetic foreign matter detection method and magnetic foreign matter detection apparatus
KR101600671B1 (en) * 2013-12-31 2016-03-07 주식회사 포스코아이씨티 Apparatus Detecting Metal
JP6371561B2 (en) * 2014-03-31 2018-08-08 アンリツインフィビス株式会社 Metal detector
CN110133726B (en) * 2019-04-25 2024-03-22 中铁二院工程集团有限责任公司 Method for arranging exploration survey lines of railway tunnel aviation electromagnetic method
KR102233822B1 (en) * 2019-07-19 2021-03-30 (주)나우시스템즈 Metallic foreign components detecting apparatus and metallic foreign components detecting method
DE102020111730A1 (en) 2020-04-29 2021-11-04 Minebea Intec Aachen GmbH & Co. KG Metal detector

Also Published As

Publication number Publication date
JP2001124862A (en) 2001-05-11

Similar Documents

Publication Publication Date Title
US7525308B2 (en) Magnetic detecting device and material identifying device
JP3791662B2 (en) Metal detection method and metal detector
US6218830B1 (en) Method and apparatus for enhanced detecting the presence of magnetic substances in non-magnetic products
US5705924A (en) Hall effect sensor for detecting an induced image magnet in a smooth material
CN105510433B (en) A kind of metal tube electromagnetic nondestructive device based on dynamic raw eddy current
KR101914689B1 (en) The apparatus for identifying metallic foreign components
JP3041026B2 (en) Metal detector
JPH1025658A (en) Detection of magnetic substance in non-magnetic goods and device for the same
JP2014092365A (en) Metal detector
JP2001124862A5 (en)
JP2001124862A6 (en) Needle detector
KR20180064726A (en) The apparatus for identifying metallic foreign components and weighting the product
JP6159112B2 (en) Metal detector
JP3819903B2 (en) Metal detector
CN207528903U (en) A kind of detecting system of anisotropic magnetic material differently- oriented directivity
JP3875161B2 (en) Metal detector sensor and metal detector
WO2019151422A1 (en) Inspection device
JP2008232745A (en) Iron piece detector
JP3999747B2 (en) Metal detector
JPH08101279A (en) Metal detector
JP6103848B2 (en) Foreign object detection device
JP3608701B2 (en) Metal detector
KR20180068521A (en) The apparatus for identifying metallic foreign components and weighting the product
JP2003066156A (en) Metal detecting machine
EP1065529B1 (en) Method and apparatus for detecting foreign matter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060329

R150 Certificate of patent or registration of utility model

Ref document number: 3791662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term