JP4511086B2 - Metal detector - Google Patents

Metal detector Download PDF

Info

Publication number
JP4511086B2
JP4511086B2 JP2001279899A JP2001279899A JP4511086B2 JP 4511086 B2 JP4511086 B2 JP 4511086B2 JP 2001279899 A JP2001279899 A JP 2001279899A JP 2001279899 A JP2001279899 A JP 2001279899A JP 4511086 B2 JP4511086 B2 JP 4511086B2
Authority
JP
Japan
Prior art keywords
detection head
magnetic flux
magnetic
metal
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001279899A
Other languages
Japanese (ja)
Other versions
JP2003084071A (en
Inventor
誠至 山岸
紀彦 長岡
聡 三谷
茂 久保寺
Original Assignee
アンリツ産機システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アンリツ産機システム株式会社 filed Critical アンリツ産機システム株式会社
Priority to JP2001279899A priority Critical patent/JP4511086B2/en
Publication of JP2003084071A publication Critical patent/JP2003084071A/en
Application granted granted Critical
Publication of JP4511086B2 publication Critical patent/JP4511086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被検査体に混入した金属物を検出する金属検出機に関し、特に磁束のバランスを調整する調整機構を備えた金属検出機に関するものである。
【0002】
【従来の技術】
金属検出機は、被検査体に混入された金属が検査磁界に与える変化を検出することによって、被検査体に金属が混入しているか否かを判別している。
図3は、金属検出機における検出ヘッドの検出原理を示す図である。図3に示すように、従来では、例えば中央の送信コイル31の前後に受信コイル32,33を配置して、被検査体Wの通過方向(図3中A方向)に対して平行な磁力線を生成するヘッドコイル配置をした同軸型の検出ヘッド30が用いられている。
【0003】
上記検出ヘッド30では、各コイル31,32,33の内側に連続する検査空間S内において、中央の送信コイル31の交番磁界による磁束に交わる受信コイル32,33にそれぞれ位相が逆の誘起電圧V1,V2を発生させる。各受信コイル32,33は、送信コイル31に対して等しい距離に配置され、検査空間Sから被検査体Wが遠い位置にある非検出状態では誘起電圧V1,V2の大きさが等しく差が0となる。
【0004】
例えば、金属Mが混入した被検査体Wが、図3中A方向に進行して手前の受信コイル32内に移動すると、受信コイル32内の磁束密度が増し、逆に受信コイル33内の磁束密度が減少する。このため、受信コイル32の誘起電圧V1は、受信コイル33の誘起電圧V2よりも大きくなる。次いで、進行した被検査体Wが受信コイル33内まで移動すると、受信コイル32内よりも受信コイル33内の磁束密度の方が大きくなるため、誘起電圧V1より誘起電圧V2の方が大きくなる。このようにして、検出ヘッド30から出力される誘起電圧V1,V2の差の変化(磁界の揺らぎ)に基づいて、検査空間S内を通過した被検査体Wに金属Mが混入しているか否かを判定することができる。
【0005】
一般に、上記検出ヘッド30は、検査空間S内に搬送コンベア(不図示)が貫通するように配置されており、図4に示す略ロ字型の筐体35内部に収容されている。筐体35は、金属(例えばアルミ合金やステンレス鋼)などの磁気シールドの材質で形成されている。そして、搬送コンベアによって被検査体Wを搬送して検査空間S内を通過させる。
【0006】
上記の構成において、製造・組立時の誤差などにより、非検出状態にて受信コイル32,33における各誘起電圧V1,V2の差が0とならず、誘起電圧の平衡が狂うことがある。このため、金属Mの検出が正確に行えなくなってしまう。そこで、バランス調整が必要となる。従来でのバランス調整は、図4に示すように、筐体35の検査空間Sの部位に磁性体および非磁性体である金属板36を貼ったり、外側部に磁性体および非磁性体である金属棒37(例えばネジ)を差し込むことでバランス調整を行っていた。金属板36での調整は、筐体35に対する貼り付け位置を変化させて誘起電圧が平衡した位置にて固定する。金属棒37での調整は、筐体35に対する差し込み深さを変化させて誘起電圧が平衡した位置にて固定する。
【0007】
【発明が解決しようとする課題】
ところで、上述した従来の金属検出機で用いられている同軸型の検出ヘッド30では、例えば針形状や薄板形状の金属Mについて、上記形状の金属Mである磁性体が磁束に略直交する配置、あるいは上記形状の金属Mである非磁性体が磁束に平行な配置で被検査体Wに混入していた場合では、磁束の変化が少ないため誘起電圧V1,V2の差が小さく検出感度が落ちてしまう。すなわち、被検査体Wに混入している金属Mを検出できないおそれがある。
【0008】
そこで、図5に示すように、検出ヘッド30とは磁束の方向が直交する検出ヘッド40を検出ヘッド30と共に用いた二軸二組の金属検出機が考えられる。検出ヘッド40は、図5に示すように、例えば検出ヘッド30の上方に送信コイル41を配置し、送信コイル41に対向する検出ヘッド30の下方に、併設した受信コイル42,43を配置して、被検査体Wの通過方向(図3中A方向)に対して直交する磁力線を生成するヘッドコイル配置をした対向型とされている。検出ヘッド40は、検査空間S内において送信コイル41の交番磁界による磁束に交わる各送信コイル42,43にそれぞれ位相が逆の誘起電圧V3,V4を発生させる。各受信コイル42,43は、送信コイル41に対して等しい距離に配置され、非検出状態では誘起電圧V3,V4の大きさが等しく差が0となる。
【0009】
この金属検出機では、図5に示すように、検出ヘッド30では左右方向の磁束を生じ、検出ヘッド40では上下方向の磁束を生じる。そして、検出ヘッド30の磁束に対して針形状や薄板形状の金属Mである磁性体が磁束に略直交する配置であっても、検出ヘッド40側では、その磁束に対して平行な配置となるので、磁束の変化が多くなって誘起電圧V3,V4の差が大きく検出感度が良好となる。また、検出ヘッド30の磁束に対して針形状や薄板形状の金属Mである非磁性体が磁束に平行な配置であっても、検出ヘッド40側では、その磁束に対して直交する配置となるので、磁束の変化が多くなって誘起電圧V3,V4の差が大きく検出感度が良好となる。このように、検出ヘッド40は検出ヘッド30で検出し難い金属Mを良好に検出し、逆に検出ヘッド30は検出ヘッド40で検出し難い金属Mを良好に検出する。
【0010】
しかしながら、上述した二軸二組の金属検出機は、上記バランス調整によって検出ヘッド30の誘起電圧の平衡を得ようとしても、その影響で検出ヘッド40での誘起電圧の平衡が得られなくなってしまう。逆に、上記バランス調整によって検出ヘッド40の誘起電圧の平衡を得ようとした場合には、その影響で検出ヘッド30での誘起電圧の平衡が得られなくなってしまう。このように、二軸二組の金属検出機では、双方の検出ヘッド30,40の誘起電圧の平衡を得ることが困難であるという問題が生じる。
【0011】
そこで本発明は、上記課題を解消するために、二軸二組の各検出ヘッドをなす金属検出機にて、各検出ヘッドの誘起電圧の平衡の調整を容易に行うことができる金属検出機を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記目的を達成するため本発明による請求項1記載の金属検出機は、
被検査体Wが搬送される検査空間S内に直交する二軸の磁界を生成する各検出ヘッド30,40を共に有した金属検出機であって、
薄板状の磁性体からなり、前記一方の検出ヘッド30が発生する磁束に平行に配置されて前記一方の検出ヘッド30の磁束に対して移動可能とされた第一調整部材11と、
薄板状の非磁性体からなり、前記一方の検出ヘッド30が発生する磁束に直交するように配置されて前記一方の検出ヘッド30の磁束に対して移動可能とされた第二調整部材12と、
薄板状の磁性体からなり、前記他方の検出ヘッド40が発生する磁束に平行に配置されて前記他方の検出ヘッド40の磁束に対して移動可能とされた第三調整部材13と、
薄板状の非磁性体からなり、前記他方の検出ヘッド40が発生する磁束に直交するように配置されて前記他方の検出ヘッド40の磁束に対して移動可能とされた第四調整部材14と、
を備えたことを特徴とする。
【0013】
請求項2記載の金属検出機は、請求項1記載の金属検出機において、
前記第一調整部材11、前記第二調整部材12、前記第三調整部材13および前記第四調整部材14は、それぞれ前記移動方向に移動可能とされた磁界に影響を及ぼさない直方形状の各支持部材20に対して取り付けられていることを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して具体的に説明する。
図1は本発明の金属検出機の検出ヘッドを示す概略図、図2はバランス調整機構を示す斜視図である。
なお、以下に説明する実施の形態において、上述した従来の技術と同一または同等部分には同一符号を付して説明する。
【0015】
図1に示すように、金属検出機は、被検査体Wが搬送される検査空間S内に直交する二軸の磁界を生成する二組の各検出ヘッド30,40を共に有している。本実施の形態では、一方の検出ヘッド30が同軸型検出ヘッド30として構成され、他方の検出ヘッド40が対向型検出ヘッド40として構成されている。
【0016】
同軸型検出ヘッド30は、中央に送信コイル31の前後の同軸上に、それぞれ逆巻きの各受信コイル32,33を配置して、被検査体Wの通過方向(図1中A方向)に対して平行な磁力線を生成するヘッドコイル配置をなす。同軸型検出ヘッド30は、各コイル31,32,33の内側に連続する検査空間Sをなしている。同軸型検出ヘッド30は、検査空間S内において送信コイル31の交番磁界により図1中左右方向(図5参照)の磁束を発生させることにより、この磁束に交わる各送信コイル32,33にそれぞれ位相が逆の誘起電圧V1,V2を発生させる。各受信コイル32,33は、送信コイル31に対して等しい距離に配置され、非検出状態では誘起電圧V1,V2の大きさが等しく差が0となる。
【0017】
対向型検出ヘッド40は、同軸型検出ヘッド30の一側(上側)に送信コイル41を配置し、この送信コイル41に対向するように同軸型検出ヘッド30の他側(下側)に各受信コイル42,43を併設して配置して、被検査体Wの通過方向(図3中A方向)に対して直交する磁力線を生成するヘッドコイル配置をなす。対向型検出ヘッド40は、送信コイル41と各受信コイル42,43との間に前記検査空間Sをなしている。対向型検出ヘッド40は、検査空間S内において送信コイル41の交番磁界により図1中上下方向(図5参照)の磁束を発生させるとにより、この磁束に交わる各送信コイル42,43にそれぞれ位相が逆の誘起電圧V3,V4を発生させる。各受信コイル42,43は、送信コイル41に対して等しい距離に配置され、非検出状態では誘起電圧V3,V4の大きさが等しく差が0となる。この対向型検出ヘッド40は、検査空間Sにおいて、同軸型検出ヘッド30の磁束と直交する磁束を生じる。
【0018】
上記各検出ヘッド30,40は、検査空間S内に搬送コンベア(不図示)などの搬送手段が貫通するように配置され、図1に示す略ロ字型の筐体35内部に収容される。筐体35は、金属(例えばアルミ合金やステンレス鋼)などの磁気シールドの材質で形成されている。そして、搬送コンベアによって被検査体Wを搬送して検査空間S内を通過させる。
【0019】
上記構成の金属検出機では、同軸型検出ヘッド30において、金属Mが混入した被検査体Wが搬送手段によって図1中A方向に進行して手前の受信コイル32内に移動すると、受信コイル32内の磁束密度が増し、逆に受信コイル33内の磁束密度が減少する。このため、受信コイル32の誘起電圧V1は、受信コイル33の誘起電圧V2よりも大きくなる。次いで、進行した被検査体Wが受信コイル33内まで移動すると、受信コイル32内よりも受信コイル33内の磁束密度の方が大きくなるため、誘起電圧V1より誘起電圧V2の方が大きくなる。このようにして、同軸型検出ヘッド30から出力される誘起電圧V1,V2の差の変化(磁界の揺らぎ)に基づいて、検査空間S内を通過した被検査体Wに金属Mが混入しているか否かを判定することができる。
【0020】
また、対向型検出ヘッド40において、金属Mが混入した被検査体Wが搬送手段によって図1中A方向に進行して送信コイル41と手前の受信コイル42との間に移動すると、送信コイル41・受信コイル42間の磁束密度が増し、逆に送信コイル41・受信コイル43間の磁束密度が減少する。このため、受信コイル42の誘起電圧V3は、受信コイル43の誘起電圧V4よりも大きくなる。次いで、進行した被検査体Wが送信コイル41と受信コイル43との間に移動すると、送信コイル41・受信コイル42間よりも、送信コイル41・受信コイル43間の磁束密度の方が大きくなるため、誘起電圧V3より誘起電圧V4の方が大きくなる。このようにして、同軸型検出ヘッド40から出力される誘起電圧V3,V4の差の変化(磁界の揺らぎ)に基づいて、検査空間S内を通過した被検査体Wに金属Mが混入しているか否かを判定することができる。
【0021】
すなわち、本実施の形態の金属検出機では、被検査体Wに混入した金属Mが針形状や薄板形状で、且つ、磁性体の場合、同軸型検出ヘッド30で生じる磁束に対して略直交する配置である時、対向型検出ヘッド40で生じる磁束に対して平行な配置となる。これにより、同軸型検出ヘッド30では磁束の変化が少なく誘起電圧V1,V2の差が小さいので金属Mの検出感度が落ちるが、対向型検出ヘッド40では磁束の変化が多く誘起電圧V3,V4の差が大きいので金属Mの検出感度が良好となる。逆に、同じく針形状や薄板形状で、且つ、磁性体の金属Mが同軸型検出ヘッド30で生じる磁束に対して平行な配置である時、対向型検出ヘッド40で生じる磁束に対して略直交する配置となる。これにより、対向型検出ヘッド40では磁束の変化が少なく誘起電圧V3,V4の差が小さいので金属Mの検出感度が落ちるが、同軸型検出ヘッド30では磁束の変化が多く誘起電圧V1,V2の差が大きいので金属Mの検出感度が良好となる。
【0022】
さらに、本実施の形態の金属検出機では、被検査体Wに混入した金属Mが針形状や薄板形状で、且つ、非磁性体の場合、同軸型検出ヘッド30で生じる磁束に対して平行な配置である時、対向型検出ヘッド40で生じる磁束に対して略直交する配置となる。これにより、同軸型検出ヘッド30では磁束の変化が少なく誘起電圧V1,V2の差が小さいので金属Mの検出感度が落ちるが、対向型検出ヘッド40では磁束の変化が多く誘起電圧V3,V4の差が大きいので金属Mの検出感度が良好となる。逆に、同じく針形状や薄板形状で、且つ、非磁性体の金属Mが同軸型検出ヘッド30で生じる磁束に対して略直交する配置である時、対向型検出ヘッド40で生じる磁束に対して平行な配置となる。これにより、対向型検出ヘッド40では磁束の変化が少なく誘起電圧V3,V4の差が小さいので金属Mの検出感度が落ちるが、同軸型検出ヘッド30では磁束の変化が多く誘起電圧V1,V2の差が大きいので金属Mの検出感度が良好となる。
【0023】
このように、上述した金属検出機は、互いに磁束が直交する同軸型検出ヘッド30および対向型検出ヘッド40を共に用いることで、一方の検出ヘッドで検出し難い配置にある金属M(磁性体あるいは非磁性体)であっても、他方の検出ヘッドで検出し、被検査体Wに混入した金属Mをもれなく検出する。
【0024】
上記構成の金属検出機において、製造・組立時の誤差などによって非検出状態にて、同軸型検出ヘッド30では受信コイル32,33における各誘起電圧V1,V2の差が0とならず、対向型検出ヘッド40では受信コイル42,43における各誘起電圧V3,V4の差が0とならず、それぞれ誘起電圧の平衡が狂うことがある。これにより、金属Mの検出が正確に行えなくなるでバランス調整が必要となる。
【0025】
本実施の形態の金属検出機では、下記のバランス調整機構を備えている。バランス調整機構は、図1および図2に示すように、第一調整部材11と、第二調整部材12と、第三調整部材13と、第四調整部材14とを有している。
【0026】
第一調整部材11および第三調整部材13は、薄板状の磁性金属体(例えば鉄)からなる。第二調整部材12および第四調整部材14は、薄板状の非磁性金属体(例えばアルミ合金やステンレス鋼など)からなる。各調整部材11,12,13,14は、それぞれ各支持部材20に取り付けられている。各支持部材20は、磁界に影響を及ぼさない電磁気に対する透明体である例えば合成樹脂材を直方形状に成形してなる。
【0027】
第一調整部材11は、同軸型検出ヘッド30が発生する図1中左右方向(図5参照)の磁束に平行となるように、支持部材20の上面に取り付けられている。また、第二調整部材12は、同軸型検出ヘッド30が発生する図1中左右方向(図5参照)の磁束に直交するように、支持部材20の側面に取り付けられている。また、第三調整部材13は、対向型検出ヘッド30が発生する図1中上下方向(図5参照)の磁束に平行となるように、支持部材20の側面に取り付けられている。また、第四調整部材14は、対向型検出ヘッド30が発生する図1中上下方向(図5参照)の磁束に直交するように、支持部材20の上面に取り付けられている。これにより、各調整部材11,12,13,14の各検出ヘッド30,40の磁束に対する上記配置を容易に得ることが可能である。
【0028】
各調整部材11,12,13,14が取り付けられた各支持部材20は、それぞれ筐体35の底面の凹部35a内に収容固定される基台21上に配設されている。各支持部材20は、図2に示すように、基台21に立設された固定片21aに回転自在に設けられた各調整ネジ22が螺合されることにより、それぞれ調整ネジ22の回転に際して基台21上を移動する。すなわち、各調整部材11,12は、各調整ネジ22の回転により同軸型検出ヘッド30の磁束に対して移動可能とされ、各調整部材13,14は、各調整ネジ22の回転により対向型検出ヘッド40の磁束に対して移動可能とされている。なお、基台21、固定片21aおよび調整ネジ22は、支持部材20と同様に磁界に影響を及ぼさない電磁気に対する透明体である例えば合成樹脂材からなる。
【0029】
バランス調整に際しては、例えば、最初に同軸型検出ヘッド30にかかり、各調整部材11,12を移動させる。次いで対向型検出ヘッド40にかかり、各調整部材13,14を移動させる。
【0030】
同軸型検出ヘッド30の磁束に平行する磁性金属体である第一調整部材11は、その移動により同軸型検出ヘッド30の磁束に対して変化を与えるが、対向型検出ヘッド40の磁束に直交するので大きな変化を与えない。さらに、同軸型検出ヘッド30の磁束に直交する非磁性金属体である第二調整部材12は、その移動により同軸型検出ヘッド30の磁束に対して変化を与えるが、対向型検出ヘッド40の磁束に平行するので大きな変化を与えない。これにより、各調整部材11,12を移動させた場合には、同軸型検出ヘッド30のみのバランス調整が行われて対向型検出ヘッド40の磁束に影響を与えずに同軸型検出ヘッド30の誘起電圧の平衡を得ることが可能である。
【0031】
また、対向型検出ヘッド40の磁束に平行する磁性金属体である第三調整部材13は、その移動により対向型検出ヘッド40の磁束に対して変化を与えるが、同軸型検出ヘッド30の磁束に直交するので大きな変化を与えない。さらに、対向型検出ヘッド40の磁束に直交する非磁性金属体である第四調整部材14は、その移動により対向型検出ヘッド40の磁束に対して変化を与えるが、同軸型検出ヘッド30の磁束に平行するので大きな変化を与えない。これにより、各調整部材13,14を移動させた場合には、対向型検出ヘッド40のみのバランス調整が行われて同軸型検出ヘッド30の磁束に影響を与えずに対向型検出ヘッド40の誘起電圧の平衡を得ることが可能である。
【0032】
なお、各検出ヘッド30,40のバランス調整にかかり、各調整部材11,12,13,14全てを移動させる必要はなく、適した各調整部材11,12,13,14を選択して移動させればよい。
【0033】
また、上述した実施の形態では、各調整部材11,12,13,14が取り付けられた各支持部材20を移動させる構成は、上述の構成に限らず、例えば、図示しないが各支持部材20を基台21に設けた長穴あるいは大穴を介してネジ固定し、ネジを緩めて移動させるなど様々な構成が考えられる。
【0034】
【発明の効果】
以上説明したように本発明による金属検出機は、一方の検出ヘッドの磁束に平行する磁性体である第一調整部材と、一方の検出ヘッドの磁束に直交する非磁体である第二調整部材の移動により、他方の検出ヘッドの磁束に影響を与えずに一方の検出ヘッドのみのバランス調整が行われる。また、他方の検出ヘッドの磁束に平行する磁性体である第三調整部材と、他方の検出ヘッドの磁束に直交する非磁体である第四調整部材の移動により、一方の検出ヘッドの磁束に影響を与えずに他方の検出ヘッドのみのバランス調整が行われる。これにより、二軸二組の各検出ヘッドの誘起電圧の平衡の調整を容易に行うことができる。
【0035】
また、第一調整部材、第二調整部材、第三調整部材および第四調整部材を、移動可能とされた磁界に影響を及ぼさない各支持部材に対して取り付ければ、各調整部材の各検出ヘッドの磁束に対する上記配置を容易に得ることができる。
【図面の簡単な説明】
【図1】本発明の金属検出機の検出ヘッドを示す概略図。
【図2】バランス調整機構を示す斜視図。
【図3】従来の金属検出機の検出ヘッドを示す概略図。
【図4】従来のバランス調整機構を示す斜視図。
【図5】二軸二組の検出ヘッドを示す概略図。
【符号の説明】
11…第一調整部材、12…第二調整部材、13…第三調整部材、14…第四調整部材、20…支持部材、30…同軸型検出ヘッド(一方の検出ヘッド)、31…送信コイル、32…受信コイル、33…受信コイル、40…対向型検出ヘッド(他方の検出ヘッド)、41…送信コイル、42…受信コイル、43…受信コイル。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal detector that detects a metal object mixed in an object to be inspected, and more particularly to a metal detector that includes an adjustment mechanism that adjusts the balance of magnetic flux.
[0002]
[Prior art]
The metal detector determines whether or not metal is mixed in the inspection object by detecting a change that the metal mixed in the inspection object gives to the inspection magnetic field.
FIG. 3 is a diagram showing the detection principle of the detection head in the metal detector. As shown in FIG. 3, conventionally, for example, receiving coils 32 and 33 are arranged before and after the central transmitting coil 31, and magnetic lines of force parallel to the passing direction of the object to be inspected W (A direction in FIG. 3). A coaxial detection head 30 having a generated head coil arrangement is used.
[0003]
In the detection head 30, in the inspection space S continuous inside the coils 31, 32, and 33, the induced voltages V <b> 1 that are opposite in phase to the receiving coils 32 and 33 that intersect the magnetic flux generated by the alternating magnetic field of the central transmission coil 31. , V2 is generated. The receiving coils 32 and 33 are arranged at the same distance from the transmitting coil 31, and the induced voltages V1 and V2 are equal in magnitude in the non-detection state where the object W is far from the examination space S and the difference is zero. It becomes.
[0004]
For example, when the inspected object W mixed with the metal M travels in the direction A in FIG. 3 and moves into the front receiving coil 32, the magnetic flux density in the receiving coil 32 increases, and conversely, the magnetic flux in the receiving coil 33 increases. Density decreases. For this reason, the induced voltage V1 of the receiving coil 32 becomes larger than the induced voltage V2 of the receiving coil 33. Next, when the inspected object W advances to the inside of the receiving coil 33, the magnetic flux density in the receiving coil 33 becomes larger than that in the receiving coil 32. Therefore, the induced voltage V2 becomes larger than the induced voltage V1. In this way, whether or not the metal M is mixed in the inspection object W that has passed through the inspection space S based on the change in the difference between the induced voltages V1 and V2 output from the detection head 30 (magnetic field fluctuation). Can be determined.
[0005]
In general, the detection head 30 is arranged so that a conveyor (not shown) passes through the inspection space S, and is housed in a substantially rectangular housing 35 shown in FIG. The housing 35 is formed of a magnetic shield material such as metal (for example, aluminum alloy or stainless steel). And the to-be-inspected object W is conveyed with a conveyance conveyor, and the inside of the inspection space S is allowed to pass through.
[0006]
In the above configuration, the difference between the induced voltages V1 and V2 in the receiving coils 32 and 33 in the non-detected state may not be zero in the non-detected state due to manufacturing and assembly errors, and the balance of the induced voltages may be out of order. For this reason, the metal M cannot be detected accurately. Therefore, balance adjustment is necessary. As shown in FIG. 4, in the conventional balance adjustment, a metal plate 36 that is a magnetic body and a non-magnetic body is attached to a portion of the inspection space S of the housing 35, or a magnetic body and a non-magnetic body are provided on the outer side. The balance was adjusted by inserting a metal rod 37 (for example, a screw). Adjustment with the metal plate 36 is performed at a position where the induced voltage is balanced by changing the attachment position with respect to the housing 35. The adjustment with the metal rod 37 is fixed at a position where the induced voltage is balanced by changing the insertion depth with respect to the housing 35.
[0007]
[Problems to be solved by the invention]
By the way, in the coaxial detection head 30 used in the above-described conventional metal detector, for example, with respect to the needle-shaped or thin-plate-shaped metal M, the magnetic body that is the metal M having the above-described shape is disposed substantially orthogonal to the magnetic flux. Alternatively, in the case where a non-magnetic material, which is the metal M having the above shape, is mixed in the test object W in an arrangement parallel to the magnetic flux, since the change in the magnetic flux is small, the difference between the induced voltages V1 and V2 is small and the detection sensitivity is lowered. End up. That is, there is a possibility that the metal M mixed in the inspection subject W cannot be detected.
[0008]
Therefore, as shown in FIG. 5, a two-axis two-set metal detector using a detection head 40 having a magnetic flux direction orthogonal to the detection head 30 together with the detection head 30 can be considered. As shown in FIG. 5, the detection head 40 has, for example, a transmission coil 41 disposed above the detection head 30, and adjacent reception coils 42 and 43 disposed below the detection head 30 facing the transmission coil 41. The head type is a counter type in which a head coil is arranged to generate a magnetic force line perpendicular to the passing direction of the object to be inspected W (A direction in FIG. 3). The detection head 40 generates induced voltages V3 and V4 having opposite phases in the transmission coils 42 and 43 that intersect the magnetic flux generated by the alternating magnetic field of the transmission coil 41 in the inspection space S, respectively. The receiving coils 42 and 43 are arranged at an equal distance from the transmitting coil 41, and the induced voltages V3 and V4 have the same magnitude and a difference of 0 in the non-detected state.
[0009]
In this metal detector, as shown in FIG. 5, the detection head 30 generates a magnetic flux in the horizontal direction, and the detection head 40 generates a magnetic flux in the vertical direction. Even if the magnetic body, which is a needle-shaped or thin-plate-shaped metal M, is arranged substantially perpendicular to the magnetic flux with respect to the magnetic flux of the detection head 30, the detection head 40 is arranged parallel to the magnetic flux. Therefore, the change in magnetic flux increases, the difference between the induced voltages V3 and V4 is large, and the detection sensitivity is good. Further, even if the non-magnetic material that is a needle-shaped or thin-plate-shaped metal M with respect to the magnetic flux of the detection head 30 is arranged parallel to the magnetic flux, the detection head 40 is arranged so as to be orthogonal to the magnetic flux. Therefore, the change in magnetic flux increases, the difference between the induced voltages V3 and V4 is large, and the detection sensitivity is good. In this manner, the detection head 40 detects the metal M that is difficult to detect with the detection head 30, and conversely, the detection head 30 detects the metal M that is difficult to detect with the detection head 40.
[0010]
However, even if the above-described two-axis two-piece metal detector attempts to obtain the balance of the induced voltage of the detection head 30 by the balance adjustment, the balance of the induced voltage in the detection head 40 cannot be obtained due to the influence. . On the contrary, when it is attempted to obtain the balance of the induced voltage of the detection head 40 by the balance adjustment, the balance of the induced voltage at the detection head 30 cannot be obtained due to the influence. As described above, in the two-axis two-set metal detector, there is a problem that it is difficult to obtain the balance of the induced voltages of both the detection heads 30 and 40.
[0011]
Therefore, in order to solve the above-described problems, the present invention provides a metal detector that can easily adjust the balance of the induced voltage of each detection head in the metal detector that forms each pair of detection heads in two axes. It is intended to provide.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a metal detector according to claim 1 of the present invention comprises:
A metal detector having both detection heads 30 and 40 that generate two perpendicular magnetic fields in the inspection space S in which the object to be inspected W is conveyed,
A first adjusting member 11 made of a thin plate-like magnetic body, arranged in parallel with the magnetic flux generated by the one detection head 30 and movable with respect to the magnetic flux of the one detection head 30;
A second adjustment member 12 made of a thin non-magnetic material, arranged so as to be orthogonal to the magnetic flux generated by the one detection head 30, and movable with respect to the magnetic flux of the one detection head 30;
A third adjusting member 13 made of a thin plate-like magnetic body, arranged in parallel with the magnetic flux generated by the other detection head 40, and movable with respect to the magnetic flux of the other detection head 40;
A fourth adjusting member 14 made of a thin non-magnetic material, arranged so as to be orthogonal to the magnetic flux generated by the other detection head 40, and movable with respect to the magnetic flux of the other detection head 40;
It is provided with.
[0013]
The metal detector according to claim 2 is the metal detector according to claim 1,
The first adjustment member 11, the second adjustment member 12, the third adjustment member 13, and the fourth adjustment member 14 are each a rectangular support that does not affect the magnetic field that is movable in the movement direction. It is attached to the member 20.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings.
FIG. 1 is a schematic view showing a detection head of a metal detector of the present invention, and FIG. 2 is a perspective view showing a balance adjusting mechanism.
In the embodiments described below, the same or equivalent parts as those in the conventional technique described above are denoted by the same reference numerals.
[0015]
As shown in FIG. 1, the metal detector has two sets of detection heads 30 and 40 that generate biaxial magnetic fields orthogonal to each other in the inspection space S in which the inspection object W is conveyed. In the present embodiment, one detection head 30 is configured as a coaxial detection head 30, and the other detection head 40 is configured as a counter-type detection head 40.
[0016]
The coaxial type detection head 30 is arranged in the center on the same axis before and after the transmission coil 31 with each of the reception coils 32 and 33 wound in reverse, respectively, with respect to the passing direction of the object to be inspected W (direction A in FIG. 1). A head coil arrangement that generates parallel lines of magnetic force is formed. The coaxial detection head 30 forms an inspection space S that is continuous inside the coils 31, 32, and 33. The coaxial detection head 30 generates a magnetic flux in the left-right direction in FIG. 1 (see FIG. 5) by the alternating magnetic field of the transmission coil 31 in the inspection space S, so that the phase is applied to each of the transmission coils 32 and 33 that intersect this magnetic flux. Generates opposite induced voltages V1 and V2. The receiving coils 32 and 33 are arranged at an equal distance from the transmitting coil 31, and the induced voltages V1 and V2 have the same magnitude and the difference is zero in the non-detected state.
[0017]
In the opposed detection head 40, a transmission coil 41 is disposed on one side (upper side) of the coaxial detection head 30, and each reception is performed on the other side (lower side) of the coaxial detection head 30 so as to face the transmission coil 41. The coils 42 and 43 are disposed side by side to form a head coil that generates magnetic field lines that are orthogonal to the direction of passage of the object W to be inspected (direction A in FIG. 3). The counter-type detection head 40 forms the inspection space S between the transmission coil 41 and the reception coils 42 and 43. The counter-type detection head 40 generates a magnetic flux in the vertical direction in FIG. 1 (see FIG. 5) by the alternating magnetic field of the transmission coil 41 in the inspection space S, so that the phase is applied to each of the transmission coils 42 and 43 that intersect this magnetic flux. Generates opposite induced voltages V3 and V4. The receiving coils 42 and 43 are arranged at an equal distance from the transmitting coil 41, and the induced voltages V3 and V4 have the same magnitude and a difference of 0 in the non-detected state. The opposing detection head 40 generates a magnetic flux orthogonal to the magnetic flux of the coaxial detection head 30 in the inspection space S.
[0018]
Each of the detection heads 30 and 40 is disposed so that a conveying means such as a conveyor (not shown) passes through the inspection space S, and is accommodated in a substantially square-shaped casing 35 shown in FIG. The housing 35 is formed of a magnetic shield material such as metal (for example, aluminum alloy or stainless steel). And the to-be-inspected object W is conveyed with a conveyance conveyor, and the inside of the inspection space S is allowed to pass through.
[0019]
In the metal detector having the above configuration, in the coaxial detection head 30, when the inspection object W mixed with the metal M travels in the direction A in FIG. The magnetic flux density inside increases, and conversely, the magnetic flux density inside the receiving coil 33 decreases. For this reason, the induced voltage V1 of the receiving coil 32 becomes larger than the induced voltage V2 of the receiving coil 33. Next, when the inspected object W advances to the inside of the receiving coil 33, the magnetic flux density in the receiving coil 33 becomes larger than that in the receiving coil 32. Therefore, the induced voltage V2 becomes larger than the induced voltage V1. In this way, the metal M is mixed into the inspection object W that has passed through the inspection space S based on the change in the difference between the induced voltages V1 and V2 output from the coaxial detection head 30 (magnetic field fluctuation). It can be determined whether or not.
[0020]
Further, in the counter-type detection head 40, when the object W into which the metal M is mixed advances in the direction A in FIG. 1 by the conveying means and moves between the transmission coil 41 and the front reception coil 42, the transmission coil 41. -The magnetic flux density between the receiving coils 42 increases, and conversely, the magnetic flux density between the transmitting coils 41 and the receiving coils 43 decreases. For this reason, the induced voltage V3 of the receiving coil 42 is larger than the induced voltage V4 of the receiving coil 43. Next, when the advanced object W moves between the transmission coil 41 and the reception coil 43, the magnetic flux density between the transmission coil 41 and the reception coil 43 becomes larger than between the transmission coil 41 and the reception coil. Therefore, the induced voltage V4 is larger than the induced voltage V3. In this way, based on the change in the difference between the induced voltages V3 and V4 output from the coaxial detection head 40 (magnetic field fluctuation), the metal M is mixed into the inspection object W that has passed through the inspection space S. It can be determined whether or not.
[0021]
That is, in the metal detector according to the present embodiment, when the metal M mixed in the object to be inspected W has a needle shape or a thin plate shape and is a magnetic body, it is substantially orthogonal to the magnetic flux generated in the coaxial detection head 30. When arranged, the arrangement is parallel to the magnetic flux generated by the opposed detection head 40. As a result, in the coaxial detection head 30, the change in magnetic flux is small and the difference between the induced voltages V1 and V2 is small, so the detection sensitivity of the metal M is lowered. However, in the opposed detection head 40, the change in magnetic flux is large and the induced voltages V3 and V4 are reduced. Since the difference is large, the detection sensitivity of the metal M is good. On the other hand, when the magnetic metal M is arranged parallel to the magnetic flux generated by the coaxial detection head 30, it is substantially orthogonal to the magnetic flux generated by the opposed detection head 40. It becomes arrangement to do. As a result, in the opposed detection head 40, the change in the magnetic flux is small and the difference between the induced voltages V3 and V4 is small, so the detection sensitivity of the metal M is lowered. However, in the coaxial detection head 30, the change in the magnetic flux is large and the induced voltages V1, V2 are reduced. Since the difference is large, the detection sensitivity of the metal M is good.
[0022]
Furthermore, in the metal detector according to the present embodiment, when the metal M mixed in the object to be inspected W has a needle shape or a thin plate shape and is a non-magnetic material, it is parallel to the magnetic flux generated in the coaxial detection head 30. When arranged, the arrangement is substantially orthogonal to the magnetic flux generated by the opposed detection head 40. As a result, in the coaxial detection head 30, the change in magnetic flux is small and the difference between the induced voltages V1 and V2 is small, so the detection sensitivity of the metal M is lowered. However, in the opposed detection head 40, the change in magnetic flux is large and the induced voltages V3 and V4 are reduced. Since the difference is large, the detection sensitivity of the metal M is good. On the other hand, when the non-magnetic metal M is arranged in the shape of a needle or a thin plate and substantially perpendicular to the magnetic flux generated in the coaxial detection head 30, the magnetic flux generated in the opposed detection head 40 is reduced. Parallel arrangement. As a result, in the opposed detection head 40, the change in the magnetic flux is small and the difference between the induced voltages V3 and V4 is small, so the detection sensitivity of the metal M is lowered. However, in the coaxial detection head 30, the change in the magnetic flux is large and the induced voltages V1, V2 are reduced. Since the difference is large, the detection sensitivity of the metal M is good.
[0023]
In this way, the above-described metal detector uses the coaxial detection head 30 and the opposed detection head 40 in which the magnetic fluxes are orthogonal to each other, so that the metal M (magnetic material or The non-magnetic material is detected by the other detection head, and the metal M mixed in the object to be inspected W is detected without exception.
[0024]
In the metal detector having the above-described configuration, the difference between the induced voltages V1 and V2 in the receiving coils 32 and 33 does not become zero in the coaxial detection head 30 in a non-detected state due to errors in manufacturing and assembly, etc. In the detection head 40, the difference between the induced voltages V3 and V4 in the receiving coils 42 and 43 does not become zero, and the balance of the induced voltages may be out of order. As a result, the metal M cannot be detected accurately and balance adjustment is required.
[0025]
The metal detector of the present embodiment includes the following balance adjustment mechanism. As shown in FIGS. 1 and 2, the balance adjustment mechanism includes a first adjustment member 11, a second adjustment member 12, a third adjustment member 13, and a fourth adjustment member 14.
[0026]
The first adjustment member 11 and the third adjustment member 13 are made of a thin plate-like magnetic metal body (for example, iron). The 2nd adjustment member 12 and the 4th adjustment member 14 consist of a thin plate-like nonmagnetic metal body (for example, aluminum alloy, stainless steel, etc.). Each adjustment member 11, 12, 13, 14 is attached to each support member 20. Each support member 20 is formed by molding, for example, a synthetic resin material in a rectangular shape, which is a transparent body against electromagnetism that does not affect the magnetic field.
[0027]
The first adjustment member 11 is attached to the upper surface of the support member 20 so as to be parallel to the magnetic flux generated in the left-right direction in FIG. 1 (see FIG. 5) generated by the coaxial detection head 30. The second adjustment member 12 is attached to the side surface of the support member 20 so as to be orthogonal to the magnetic flux in the left-right direction in FIG. 1 (see FIG. 5) generated by the coaxial detection head 30. The third adjustment member 13 is attached to the side surface of the support member 20 so as to be parallel to the magnetic flux generated in the up-down direction in FIG. 1 (see FIG. 5) generated by the opposed detection head 30. Further, the fourth adjustment member 14 is attached to the upper surface of the support member 20 so as to be orthogonal to the magnetic flux in the vertical direction in FIG. 1 (see FIG. 5) generated by the opposed detection head 30. Thereby, the said arrangement | positioning with respect to the magnetic flux of each detection head 30,40 of each adjustment member 11,12,13,14 can be obtained easily.
[0028]
Each support member 20 to which each adjustment member 11, 12, 13, 14 is attached is disposed on a base 21 that is housed and fixed in a recess 35 a on the bottom surface of the housing 35. As shown in FIG. 2, each supporting member 20 is engaged with a fixing piece 21 a erected on a base 21 by being screwed with an adjusting screw 22 that is rotatably provided. Move on the base 21. That is, the adjustment members 11 and 12 are movable with respect to the magnetic flux of the coaxial detection head 30 by the rotation of the adjustment screws 22, and the adjustment members 13 and 14 are opposed to each other by the rotation of the adjustment screws 22. The head 40 is movable with respect to the magnetic flux. The base 21, the fixing piece 21 a, and the adjustment screw 22 are made of, for example, a synthetic resin material that is an electromagnetic transparent body that does not affect the magnetic field, like the support member 20.
[0029]
In the balance adjustment, for example, first, the coaxial detection head 30 is applied, and the adjustment members 11 and 12 are moved. Next, the opposing detection head 40 is moved to move the adjusting members 13 and 14.
[0030]
The first adjusting member 11, which is a magnetic metal body parallel to the magnetic flux of the coaxial detection head 30, changes the magnetic flux of the coaxial detection head 30 by its movement, but is orthogonal to the magnetic flux of the opposing detection head 40. So do not give a big change. Further, the second adjusting member 12, which is a nonmagnetic metal body orthogonal to the magnetic flux of the coaxial detection head 30, changes the magnetic flux of the coaxial detection head 30 by its movement, but the magnetic flux of the opposed detection head 40. It does not give a big change. As a result, when the adjustment members 11 and 12 are moved, only the coaxial detection head 30 is adjusted in balance, and the coaxial detection head 30 is induced without affecting the magnetic flux of the opposed detection head 40. It is possible to obtain a voltage balance.
[0031]
Further, the third adjusting member 13, which is a magnetic metal body parallel to the magnetic flux of the opposed detection head 40, changes the magnetic flux of the opposed detection head 40 due to its movement. Because it is orthogonal, it does not give a big change. Further, the fourth adjusting member 14, which is a nonmagnetic metal body orthogonal to the magnetic flux of the opposed detection head 40, changes the magnetic flux of the opposed detection head 40 due to its movement, but the magnetic flux of the coaxial detection head 30. It does not give a big change. As a result, when the adjustment members 13 and 14 are moved, only the counter-type detection head 40 is adjusted in balance, and the counter-type detection head 40 is induced without affecting the magnetic flux of the coaxial type detection head 30. It is possible to obtain a voltage balance.
[0032]
Note that it is not necessary to move all the adjustment members 11, 12, 13, and 14 for the balance adjustment of the detection heads 30 and 40, and the appropriate adjustment members 11, 12, 13, and 14 are selected and moved. Just do it.
[0033]
Moreover, in embodiment mentioned above, the structure which moves each support member 20 to which each adjustment member 11,12,13,14 was attached is not restricted to the above-mentioned structure, For example, although not shown, each support member 20 is not shown. Various configurations are conceivable, such as fixing with screws through long holes or large holes provided in the base 21 and moving the screws by loosening them.
[0034]
【The invention's effect】
As described above, the metal detector according to the present invention includes a first adjustment member that is a magnetic body parallel to the magnetic flux of one detection head and a second adjustment member that is a non-magnetic body orthogonal to the magnetic flux of one detection head. By the movement, the balance adjustment of only one detection head is performed without affecting the magnetic flux of the other detection head. Further, the movement of the third adjustment member, which is a magnetic body parallel to the magnetic flux of the other detection head, and the fourth adjustment member, which is a non-magnetic body orthogonal to the magnetic flux of the other detection head, affect the magnetic flux of one detection head. The balance adjustment of only the other detection head is performed without giving any value. Thereby, it is possible to easily adjust the balance of the induced voltages of the two-axis and two-set detection heads.
[0035]
Further, if the first adjustment member, the second adjustment member, the third adjustment member, and the fourth adjustment member are attached to each support member that does not affect the movable magnetic field, each detection head of each adjustment member The above arrangement with respect to the magnetic flux can be easily obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a detection head of a metal detector of the present invention.
FIG. 2 is a perspective view showing a balance adjustment mechanism.
FIG. 3 is a schematic view showing a detection head of a conventional metal detector.
FIG. 4 is a perspective view showing a conventional balance adjustment mechanism.
FIG. 5 is a schematic view showing two pairs of detection heads;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... 1st adjustment member, 12 ... 2nd adjustment member, 13 ... 3rd adjustment member, 14 ... 4th adjustment member, 20 ... Support member, 30 ... Coaxial type detection head (one detection head), 31 ... Transmission coil , 32... Reception coil, 33... Reception coil, 40... Opposing detection head (the other detection head), 41... Transmission coil, 42.

Claims (2)

被検査体(W)が搬送される検査空間(S)内に直交する二軸の磁界を生成する各検出ヘッド(30,40)を共に有した金属検出機であって、
薄板状の磁性体からなり、前記一方の検出ヘッドが発生する磁束に平行に配置されて前記一方の検出ヘッドの磁束に対して移動可能とされた第一調整部材(11)と、
薄板状の非磁性体からなり、前記一方の検出ヘッドが発生する磁束に直交するように配置されて前記一方の検出ヘッドの磁束に対して移動可能とされた第二調整部材(12)と、
薄板状の磁性体からなり、前記他方の検出ヘッドが発生する磁束に平行に配置されて前記他方の検出ヘッドの磁束に対して移動可能とされた第三調整部材(13)と、
薄板状の非磁性体からなり、前記他方の検出ヘッドが発生する磁束に直交するように配置されて前記他方の検出ヘッドの磁束に対して移動可能とされた第四調整部材(14)と、
を備えたことを特徴とする金属検出機。
A metal detector having both detection heads (30, 40) that generate two perpendicular magnetic fields in an inspection space (S) in which an object to be inspected (W) is conveyed,
A first adjusting member (11) made of a thin plate-like magnetic body, arranged in parallel to the magnetic flux generated by the one detection head and movable with respect to the magnetic flux of the one detection head;
A second adjusting member (12) made of a thin non-magnetic material, arranged so as to be orthogonal to the magnetic flux generated by the one detection head, and movable with respect to the magnetic flux of the one detection head;
A third adjustment member (13) made of a thin plate-like magnetic body, arranged in parallel with the magnetic flux generated by the other detection head, and movable with respect to the magnetic flux of the other detection head;
A fourth adjustment member (14) made of a thin non-magnetic material, arranged so as to be orthogonal to the magnetic flux generated by the other detection head, and movable with respect to the magnetic flux of the other detection head;
A metal detector characterized by comprising:
前記第一調整部材(11)、前記第二調整部材(12)、前記第三調整部材(13)および前記第四調整部材(14)は、それぞれ前記移動方向に移動可能とされた磁界に影響を及ぼさない各支持部材(20)に対して取り付けられていることを特徴とする請求項1記載の金属検出機。The first adjusting member (11), the second adjusting member (12), the third adjusting member (13), and the fourth adjusting member (14) each affect a magnetic field that is movable in the moving direction. The metal detector according to claim 1, wherein the metal detector is attached to each support member (20) that does not affect the metal.
JP2001279899A 2001-09-14 2001-09-14 Metal detector Expired - Lifetime JP4511086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279899A JP4511086B2 (en) 2001-09-14 2001-09-14 Metal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279899A JP4511086B2 (en) 2001-09-14 2001-09-14 Metal detector

Publications (2)

Publication Number Publication Date
JP2003084071A JP2003084071A (en) 2003-03-19
JP4511086B2 true JP4511086B2 (en) 2010-07-28

Family

ID=19103993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279899A Expired - Lifetime JP4511086B2 (en) 2001-09-14 2001-09-14 Metal detector

Country Status (1)

Country Link
JP (1) JP4511086B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116493A (en) * 1990-09-07 1992-04-16 Anritsu Corp Metal detector
JPH0528984U (en) * 1991-09-29 1993-04-16 アンリツ株式会社 Detection head of metal detector
JPH0875866A (en) * 1994-09-09 1996-03-22 Nippon Cement Co Ltd Detection head of metal detecting apparatus
JP2001124862A (en) * 1999-10-22 2001-05-11 Nisshin Denshi Kogyo Kk Needle detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116493A (en) * 1990-09-07 1992-04-16 Anritsu Corp Metal detector
JPH0528984U (en) * 1991-09-29 1993-04-16 アンリツ株式会社 Detection head of metal detector
JPH0875866A (en) * 1994-09-09 1996-03-22 Nippon Cement Co Ltd Detection head of metal detecting apparatus
JP2001124862A (en) * 1999-10-22 2001-05-11 Nisshin Denshi Kogyo Kk Needle detector

Also Published As

Publication number Publication date
JP2003084071A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
CN102954807B (en) Magnetic position sensor, system and method
US6850053B2 (en) Device for measuring the motion of a conducting body through magnetic induction
US7467057B2 (en) Material property estimation using non-orthogonal responsive databases
US11519752B2 (en) Coupler element shapes for inductive position sensors
EP3184954A1 (en) Dual z-axis magnetoresistive angle sensor
CN108603920B (en) Magnetic field measuring method and magnetic field measuring apparatus
JP2002523751A (en) Method of measuring current without generation of potential difference and current measuring device without generation of potential difference
US5705924A (en) Hall effect sensor for detecting an induced image magnet in a smooth material
BR102017010197B1 (en) METAL DETECTION DEVICE
CA2795702C (en) Magnet module for a nuclear magnetic flow meter
US20050140363A1 (en) Sensor for detection of the orientation of a magnetic field
KR101500870B1 (en) Magnetic switch device and position sensing apparatus of elevator car using the same
US10371549B2 (en) Magnetic sensor system
US20150145506A1 (en) Magnetic sensor
US20170102250A1 (en) Magnetic field measuring device
JP4511086B2 (en) Metal detector
WO2018199067A1 (en) Magnetic sensor
CN109655767A (en) A kind of integrated magnetic structure
JP5783361B2 (en) Current measuring device
JP4460199B2 (en) Metal detector and method for adjusting balance of metal detector
US3487459A (en) Induced magnetic compensation for misalignment of magnetic gradiometer sensors
JP6031505B2 (en) Electromagnetic force balance type weighing device
Belyayev et al. Minimization of nanosatellite low frequency magnetic fields
JP2009258091A (en) Magnetic position sensor
JP2005189097A (en) Position detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4511086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term