JP3791193B2 - Surface emitting laser element and surface emitting laser element array - Google Patents

Surface emitting laser element and surface emitting laser element array Download PDF

Info

Publication number
JP3791193B2
JP3791193B2 JP20385098A JP20385098A JP3791193B2 JP 3791193 B2 JP3791193 B2 JP 3791193B2 JP 20385098 A JP20385098 A JP 20385098A JP 20385098 A JP20385098 A JP 20385098A JP 3791193 B2 JP3791193 B2 JP 3791193B2
Authority
JP
Japan
Prior art keywords
active layer
emitting laser
laser element
electrode
surface emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20385098A
Other languages
Japanese (ja)
Other versions
JP2000036637A (en
Inventor
朱実 村上
泉 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP20385098A priority Critical patent/JP3791193B2/en
Publication of JP2000036637A publication Critical patent/JP2000036637A/en
Application granted granted Critical
Publication of JP3791193B2 publication Critical patent/JP3791193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は面発光レーザ素子及び面発光レーザ素子アレイに係り、特に偏光制御が可能な面発光レーザ素子及び面発光レーザ素子アレイに関する。
【0002】
【従来の技術】
面発光レーザ素子では、活性層に対して発光ビームが垂直に射出されるので偏光が不規則になりやすい。特に面発光レーザ素子より射出された光ビームの光スポットを円形にするため、面発光レーザ素子の光導波路の断面構造を円形や正方形などの対称性の高い形状にすると素子ごとに様々な偏光特性を示し全く制御できない。例えば、図14に示すVCSEL (垂直キャビティ面発光レーザ)素子100は行方向、列方向にそれぞれ8個、配列された8 ×8VCSELアレイを構成するプロトン注入型のVCSEL 素子であり、プロトン注入径約15μm、出射窓径約6.7 μmと横断面が出射窓の中心に対し対称な導波路構造となっている。図14において、102は上部電極(p型電極)に接続されている上部電極用配線、104はボンディングワイヤ、106は導体端子である。導波路上部に形成された電極も正方形であり、このような対称性の高い構成では、各ピクセルに対応するVCSEL 素子から射出される光ビームの偏光状態は図15、図16に示すように種々の方向を示す。図15、16は8 ×8VCSELアレイ2個についての各VCSEL 素子の偏光状態の測定結果を示している。例えば、図15においてピクセルP1に対応するVCSEL 素子の偏光面の角度をθ1 で示している。
【0003】
また、注入電流によってスイッチングを起こすこともある。このため偏光を制御するためのいくつかの方法が提案されている。例えば、特開平4-242989号公報には、活性層に電流を注入するための電極を異方形状にする方法が提案されている。また特開平5-110198号公報には、(110)基板に量子井戸構造を形成する方法が、特開平6-302911号公報には、矩形や十字構造の光導波路を用いることが提案されている。
【0004】
更に、IEEE Photonic technoloy letters,vol.5 pp133-135(1993) には、Mukaihara らにより、半導体基板の(001)面内に1軸性の応力を加える方法が提案されており、またNumai らによって、(001)オフ基板を用いる方法も公知である(電子情報通信学会 信学技報OQE-93-104,p43-48(1993) )。ここにオフ基板とは半導体基板材のある基準となる結晶軸から傾斜した方向に切り出した基板をいい、オフ方向とはその傾斜方向をいう。
【0005】
【発明が解決しようとする課題】
面発光レーザ素子の射出光の偏光を制御する方法として、光導波路を異方的な形状にして偏光の制御を行うと、面発光レーザ素子の光ビームの断面形状が楕円になるおそれがあるという問題がある。
【0006】
また活性層に電流を注入する電極を異方形状にすることで、電流密度分布を異方的にして偏光を制御する試みに関しては、電極から注入された電荷はその後、拡散していくので、光導波路内に所望の電流密度分布を維持できないという問題がある。
【0007】
さらにオフ基板による偏光の制御は、オフ基板を用いることで導波路内部にオフ方向の応力が発生し、これによって偏光が揃うというものであるが、論文(電子情報通信学会 信学技報OQE-93-104,p43-48(1993) )に見られるように、すべての素子において完全に制御できておらず、2つの偏光状態におけるスイッチングが生じたり、偏光方向が相互に90度、異なる方向に偏光が揃ってしまっている素子もある。
【0008】
偏光は、光導波路の状態や電極からの電流の注入量や電流密度分布、基板温度などさまざまな因子の影響を受けやすいので、単に活性層に電流を注入する電極を異方形状にしただけ、もしくはオフ基板を使用しただけでは、偏光が制御されるポイントがあるとしても、注入電流量の変化や基板温度などの変動によって、偏光の特性が不安定になりやすい。例えば、図17に示すようなオフ基板10上に形成された3つのVCSEL 素子110の偏光特性を測定したところ、偏光制御されていなかった。図17に示すオフ基板10は、図18に示すように[001]方向を含み、かつ(100)面に対して−2°(∠CAC’=2 ゜) 傾斜した基板である。このオフ基板10上に、上部電極112に接続される配線114を[00−1]方向に長くなるように配設したVCSEL 素子110の偏光特性を測定した結果を図19に示す。
【0009】
図19(A),(B),(C)に示すように、比較的、良好な偏光特性を有する素子もあるが、その偏光特性は素子ごとに異っており、この条件ですべての素子において偏光を制御することはできなかった。このようにオフ基板を使用しただけでは、偏光を確実に制御することはできない。
【0010】
また図17に示すVCSEL 素子110は[01−1]方向に長い長方形の上部電極(p型電極)112を有しているが、その偏光特性は、上部電極112の長手方向(または長手方向と直交する方向)には全く依存性がなかった。
【0011】
本発明は、 このような事情に鑑みてなされたものであり、基板温度や活性層への注入電流量等に関係なく、確実に安定した一定の偏光状態を得ることができる面発光レーザ素子及び面発光レーザ素子アレイを提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために請求項1に記載の発明は、半導体基板上に活性層と該活性層の上下部に位置するミラー層とが積層されるように形成され、該活性層の垂直方向に光を放出する面発光レーザ素子において、前記活性層及びミラー層が前記半導体基板の基準となる結晶軸を含む面に対して所定角度傾斜した前記半導体基板の傾斜面上に形成され、前記活性層の上部に形成された前記ミラー層を介して前記活性層へ電流を注入するための電極と、前記電極へ電流を導くための配線とが前記傾斜面上に形成され、前記配線のうち前記電極に直接接続される配線が長尺状で、かつ該長手方向が前記傾斜面の傾斜方向に略一致するように形成されていることを特徴とする。
【0013】
請求項2に記載の発明は、請求項1に記載の面発光レーザ素子において、前記半導体基板材の基準となる結晶軸を含む面は(100)面であることを特徴とする。
【0014】
請求項3に記載の発明は、請求項2に記載の面発光レーザ素子において、前記傾斜面は、[001]方向を含みかつ(100)面に対して−5°から+5°の範囲で傾斜するように形成され、前記電極に直接接続される配線が[010]方向を前記傾斜面に投影した方向に長尺状に形成されていることを特徴とする。
【0015】
請求項4に記載の発明は、請求項1乃至3のいずれかに記載の面発光素子において、前記活性層及び該活性層の上下部に形成されるミラー層を含むレーザ素子領域がエアポスト構造に形成され、該エアポスト上面に前記活性層へ電流を注入するための電極が形成され、前記電極に直接接続される配線がエアポストの側面に絶縁膜を介して形成されていることを特徴とする。
【0016】
請求項5に記載の発明は、半導体基板上に活性層と該活性層の上下部に位置するミラー層とが積層されるように形成され、少なくとも前記活性層がエピタキシャル成長によって形成され、プロトン注入によって電流狭窄された活性層の垂直方向に光を放出する利得導波路型の面発光レーザ素子において、[001]方向を含みかつ(100)面に対して−5°から+5°の範囲で傾斜した前記半導体基板の傾斜面上に形成され、前記活性層及び該活性層の上下部に形成されるミラー層を含むレーザ素子領域がエアポスト構造に形成され、該エアポストの上面に前記活性層へ電流を注入するための電極が形成され、該エアポストの[010]方向と交差する側面に絶縁膜を介して、前記電極へ電流を導くための配線が[010]方向を前記傾斜面に投影した方向に長尺状で前記電極に直接接続されるように形成されていることを特徴とする。
【0017】
請求項6に記載の発明は、請求項1乃至5のいずれかに記載の面発光レーザ素子を複数個、2次元状に配列し、各面発光素子にマトリクス配線を施したことを特徴とする。
【0018】
請求項1乃至5に記載の発明によれば、半導体基板のオフ方向と活性層に電流を注入する電極に直接接続される配線のその電極近傍における形状を長尺状に形成し、かつその長手方向と半導体基板のオフ方向とが一致するようにしたので、オフ基板を用いたことによる光導波路内に応力が発生する方向と、光導波路内部に注入される電流の電流密度の大きい部位とを一致させることができ、それ故偏光が制御され、活性層への注入電流量や基板温度が変化しても安定した偏光特性を維持することができる。
【0019】
また請求項4及び5に記載の発明によれば、レーザ素子領域がエアポスト構造に形成され、活性層に電流を注入する電極に直接接続される配線が絶縁膜を介して半導体基板のオフ方向に沿ってエアポストの側面に付着するように形成したので、オフ基板を用いたことによる光導波路内に応力が発生する方向とエアポストに配線を付着させたことによるエアポストへの応力の作用する方向とが一致し、その結果更に強固に偏光が制御され、活性層への注入電流量や基板温度が変化しても安定した偏光特性を維持することができる。
【0020】
更に請求項6に記載の発明によれば、請求項1乃至5に記載の発明により得られる複数個の面発光レーザ素子を2次元状に配列するようにしたので、面発光レーザ素子の活性層への注入電流や基板温度等の変動に対しても安定な偏光特性を有するプリンタ、複写機等の画像形成装置や、画像表示装置等の光源として好適な、面発光レーザ素子アレイが得られる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
【0022】
本発明の第1の実施の形態
本発明の第1の実施の形態に係る面発光レーザ素子の構成について説明する。まず本発明が適用される面発光レーザ素子アレイの構成を図1に示す。同図において、半導体基板としてのn-GaAs基板10は図2に示すように(100)面(点A,B,C,Dを通る面)に対して[010]方向に−2°(∠CAC’=2 ゜)傾斜するように切り出した(100)面のオフ基板であり、n-GaAs基板10の傾斜面SI (点A,B’,C’,D’を通る面)上には、レーザ素子の活性層に電流を注入する[01−1]方向を傾斜面SI に投影した投影方向(以下、投影方向は便宜上、投影前の方向で表示することにする。)に延びたp型電極14に直接接続される長尺状の上部配線(p型電極配線)16が形成された複数の面発光レーザ素子(VCSEL )12が形成されている。上部配線16は長手方向が[010]方向と略一致するように形成されている。図3乃至図5に面発光レーザ素子アレイの構造を示す。図3は面発光レーザアレイにおける単一の面発光レーザ素子の平面構造を示す平面図、図4は図3におけるX−X’線による断面図、図5は図3におけるY−Y’線による断面図である。これらの図において、n-GaAs基板10の傾斜面上に有機金属気相成長(MOCVD )法を用いて、n + -GaAs バッファ層20と、n-Al0.3Ga0.7As/Al0.9Ga0.1As からなる下部分布ブラッグ反射膜(DBR )ミラー22と、p-Al0.3Ga0.7As/Al0.9Ga0.1As からなる上部分布ブラッグ反射膜(DBR )ミラー26とを積層する。上部DBR ミラー26と下部DBR ミラー22との間には、Al0.6Ga0.4Asスペーサ層28、28と、さらにAl0.6Ga0.4Asスペーサ層28、28の中央部に活性層24(Al0.12Ga0.88Asで形成された厚さ90Åの量子井戸層を3層と、Al0.3Ga0.7Asで形成された厚さ50Åの障壁層を4層とにより三重量子井戸構造を形成した。)とが設けられている。
電流狭窄のため上部DBR ミラー26に10μm径の領域を残してプロトンを注入し、プロトン注入域30を形成する。次に表面からn + -GaAs バッファ層20に到達するまでエッチングを行うことにより、20×35μmの[01−1]方向に長いエアポスト(メサ)を形成する。エアポストの側面をポリイミド34で絶縁した後、p型電極14となる金属を蒸着する。n-GaAs基板10裏面には蒸着法によって、n型電極32を全面に形成した。上部に形成するp型電極14は、出射光を取り出すため、約6μm径の出射窓11が設られている。p型電極14は、図3に示すように[010]方向に細長い長尺状のp型電極配線16に直接接続され、p型電極配線16は電極パッド18(図3には図示せず、図1参照。)に接続されるように形成されている。
【0023】
このようにして[010]方向に対して傾斜したオフ基板10の傾斜面上にp型電極配線16の長手方向が[010]方向と一致する面発光レーザ素子12が形成される。このような構造を有する複数の面発光レーザ素子12を作製したところ、すべての面発光レーザ素子12がn-GaAs基板10のオフ方向であり、かつp型電極配線16の長手方向である[010]方向に直線偏光したレーザ光を放出した。
【0024】
図6に面発光レーザ素子12におけるp型電極14より活性層24に注入する注入電流Iとレーザ出力Pとの関係を示す。図6に示すように、活性層24への注入電流Iを増加してもレーザ出力特性は安定であり、偏光が完全に[010]方向に制御されていた。
【0025】
また基板温度を10〜60℃まで変化させても、その偏光方向は一定であり、偏光方向のスイッチングの発生や[010]方向以外に偏光された光の発振は生じなかった。勿論、p型電極14の長軸方向[01−1]と一致して発振する光も生じなかった。
【0026】
本発明の第1の実施の形態に係る面発光レーザ素子によれば、半導体基板のオフ方向と活性層に電流を注入する電極に直接接続される配線のその電極近傍における形状を長尺状に形成し、かつその長手方向と半導体基板のオフ方向が一致するようにしたので、オフ基板を用いたことによる光導波路内に応力が発生する方向と、光導波路内部に注入される電流の電流密度の大きい部位とを一致させることができ、それ故偏光が制御され、活性層への注入電流量や基板温度が変化しても安定した偏光特性を維持することができる。
【0027】
また本発明の第1の実施の形態によれば、レーザ素子領域がエアポスト構造に形成され、活性層に電流を注入する電極に直接、接続される配線が絶縁膜を介して半導体基板のオフ方向に沿ってエアポストの側面に付着するように形成したので、オフ基板を用いたことによる光導波路内に応力が発生する方向とエアポストに配線を付着させたことによるエアポストへの応力の作用する方向とが一致し、その結果更に強固に偏光が制御され、活性層への注入電流量や基板温度が変化しても安定した偏光特性を維持することができる。
【0028】
尚、本実施の形態ではエアポスト構造の面発光レーザ素子について説明したが、これに限定されず、例えば、フラット構造の面発光レーザ素子に適用しても同様の効果が得られる。
【0029】
本発明の第2の実施の形態
次に本発明の第2の実施の形態に係る面発光レーザ素子アレイの構成について説明する。図7に本発明の第2の実施の形態に係る面発光レーザ素子アレイの平面構造を図7に示す。同図において、半導体基板としてのGaAs基板10’は、図8に示すように[001]方向(矢印B’D’方向)を含みかつ(100)面(点A,B,C,Dを通る面)に対して−2°(∠CAC’=2°)傾斜するように切り出した(100)面の半絶縁性GaAsのオフ基板であり、この半絶縁性基板10’の傾斜面SI (点A,B’,C’,D’を通る面)上にはレーザ素子の活性層に電流を注入するp型電極14’に直接、[010]方向に延びた長尺状の上部配線16’が接続されるように形成されており、このように構成された面発光レーザ素子(VCSEL )12’が3行3列に3×3個、配列されように形成されている。32’はn 型電極配線である。
図9乃至図11に面発光レーザ素子アレイの構造を示す。図9は面発光レーザアレイにおける単一の面発光レーザ素子の平面構造を示す平面図、図10は図9におけるX−X’線による断面図、図11は図9におけるY−Y’線による断面図である。これらの図において、半絶縁性基板10’の傾斜面上に有機金属気相成長(MOCVD )法を用いて、n + -GaAs バッファ層20’と、n-Al0.3Ga0.7As/Al0.9Ga0.1As からなる下部分布ブラッグ反射膜(DBR )ミラー22’と、p-Al0.3Ga0.7As/Al0.9Ga0.1As からなる上部分布ブラッグ反射膜(DBR )ミラー26’とを積層する。上部DBR ミラー26’と下部DBR ミラー22’との間には、Al0.6Ga0.4Asスペーサ層28’、28’と、さらにAl0.6Ga0.4Asスペーサ層28’、28’の中央部に活性層24 ’(Al0.12Ga0.88Asで形成された厚さ90Åの量子井戸層を3層と、Al0.3Ga0.7Asで形成された厚さ50Åの障壁層を4層とにより三重量子井戸構造を形成した。)を設けた。
電流狭窄のため上部DBR ミラー26’に10μm径の領域を残してプロトンを注入し、プロトン注入域を形成する。次に表面からn + -GaAs バッファ層20’に到達するまでエッチングを行うことにより、20×35μmの[01−1]に長いエアポスト(メサ)を形成する。蒸着法を用いてn 型電極配線32’をエアポスト近傍に設け、さらにエアポストの側面をポリイミド34’で絶縁した後、p型電極14’となる金属を蒸着する。n 型電極配線32’は、図9から明らかなようにエアポストの長軸[01−1]に沿って形成されている。エアポストの上部に形成するp型電極14’は、出射光を取り出すため、約6μm径の出射窓11’が設けられている。p型電極14’は、図9に示すように[010]方向に長いp型電極配線16’によって、電極パッド(図示せず)に接続されるように形成されている。
【0030】
このようにして[010]方向に対して傾斜したオフ基板10’上にp型電極配線16’の長手方向が[010]方向と一致する面発光レーザ素子が形成される。このような構造を有する図7に示すような3行3列に配列された面発光レーザ素子アレイを作製したところ、すべての面発光レーザ素子が半絶縁性基板10’のオフ方向であり、かつp型電極配線16’の長手方向である[010]方向に直線偏光したレーザ光を放出した。図12(A),(B)に2個の面発光レーザ素子12’についてp型電極14’より活性層24’に注入する注入電流Iとレーザ出力Pとの関係を示す。
【0031】
図12に示すように、2個の面発光レーザ素子12’とも注入電流Iを増加してもレーザ出力特性は安定であり、偏光が完全に[010]方向へ制御されていた。
【0032】
また基板温度を10〜60℃まで変化させても、その偏光方向は一定であり、偏光方向のスイッチングの発生や[010]方向以外に偏光された光の発振は生じなかった。更にp型電極14’の長手方向[01−1]と一致して発振する光も生じなかった。
【0033】
尚、本発明の実施の形態では、半導体基板のオフ方向とp型電極配線方向を[010]方向としたが、これに限定されることなく例えば半導体基板のオフ方向とp型電極配線方向を[011]、[01−1]方向にあわせても何ら問題はない。本発明では半導体基板のオフ方向と面発光レーザ素子の活性層に電流を注入するp-型配線の長手方向とを一致させることが肝要である。
【0034】
また本発明の第1、第2の実施の形態では利得波路型の面発光レーザ素子において活性層が、(100)面に対して[001]方向を含む面内において−2°傾斜した半導体基板面上に形成されたオフ基板について説明したが、これに限定されず、活性層を、(100)面に対して[001]方向を含む面内において−5°から+5°の範囲で傾斜した半導体基板面上に形成した場合においても同様の効果が得られた。
【0035】
また本発明に係る面発光レーザ素子及び面発光レーザアレイは、第1、第2の実施の形態に示した以外の構造にも有効である。例えばエアポストの断面形状を円や正方形等の対称形状にしてもよく、エアポストの長手方向をオフ方向にあわせてもよい。この例を図13に示す。図13において第1、第2の実施の形態と同様にオフ方向が[010]である半導体基板10上に断面が円形状の面発光素子50、51と、断面が長方形状の面発光素子52、54が形成されている。面発光素子50、51、52、54の上部電極(p型電極)50A,51A,52A,54Aはそれぞれ、半導体基板10のオフ方向と同じ[010]方向に形成された配線60、61、62、63に接続されており、これらの配線60、61、62、63は電極パッド70にそれぞれ、接続されている。各電極パッド70より各p型電極50A,51A,52A,54Aに電流が供給され、各面発光レーザ素子の活性層に電流が注入されるようになっている。
【0036】
本発明の第2の実施の形態にによれば、本発明により得られる複数個の面発光レーザ素子を2次元状に配列するようにしたので、面発光レーザ素子の活性層への注入電流や基板温度等の変動に対しても安定な偏光特性を有する、プリンタ、複写機等の画像形成装置や、画像表示装置等の光源として好適な面発光レーザ素子アレイが得られる。
【0037】
【発明の効果】
請求項1乃至5に記載の発明によれば、半導体基板のオフ方向と活性層に電流を注入する電極に直接接続される配線のその電極近傍における形状を長尺状に形成し、かつその長手方向と半導体基板のオフ方向とが一致するようにしたので、オフ基板を用いたことによる光導波路内に応力が発生する方向と、光導波路内部に注入される電流の電流密度の大きい部位とを一致させることができ、それ故偏光が制御され、活性層への注入電流量や基板温度が変化しても安定した偏光特性を維持することができる。
【0038】
また請求項4及び5に記載の発明によれば、レーザ素子領域がエアポスト構造に形成され、活性層に電流を注入する電極に直接接続される配線が絶縁膜を介して半導体基板のオフ方向に沿ってエアポストの側面に付着するように形成したので、オフ基板を用いたことによる光導波路内に応力が発生する方向とエアポストに配線を付着させたことによるエアポストへの応力の作用する方向とが一致し、その結果更に強固に偏光が制御され、活性層への注入電流量や基板温度が変化しても安定した偏光特性を維持することができる。
【0039】
更に請求項6に記載の発明によれば、請求項1乃至6に記載の発明により得られる複数個の面発光レーザ素子を2次元状に配列するようにしたので、面発光レーザ素子の活性層への注入電流や基板温度等の変動に対しても安定な偏光特性を有するプリンタ、複写機等の画像形成装置や、画像表示装置等の光源として好適な、面発光レーザ素子アレイが得られる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る面発光レーザ素子の構成を示す説明図。
【図2】図1に示すオフ基板の傾斜方向を示す説明図。
【図3】本発明の第1の実施の形態に係る面発光レーザ素子の平面構造を示す平面図。
【図4】図3におけるX−X’線による断面図。
【図5】図3におけるY−Y’線による断面図。
【図6】本発明の第1の実施の形態に係る面発光レーザ素子の活性層への注入電流に対するレーザ出力の関係の測定例を示す特性図。
【図7】本発明の第2の実施の形態に係る面発光レーザ素子アレイの平面構造を示す平面図。
【図8】図7に示すオフ基板の傾斜方向を示す説明図。
【図9】図7に示す面発光レーザアレイにおける単一の面発光レーザ素子の平面構造を示す平面図。
【図10】図9におけるX−X’線による断面図。
【図11】図9におけるY−Y’線による断面図。
【図12】2個の面発光レーザ素子について活性層に注入する注入電流Iに対するレーザ出力Pの関係の測定例を示す特性図。
【図13】本発明に係る面発光レーザ素子の変形例の平面構造を示す平面図。
【図14】従来の面発光レーザ素子アレイの具体的な平面構成を示す平面図。
【図15】従来の面発光レーザ素子アレイの各面発光レーザ素子の偏光状態の測定結果を示す説明図。
【図16】従来の面発光レーザ素子アレイの各面発光レーザ素子の偏光状態の測定結果を示す説明図。
【図17】従来のオフ基板上に形成された面発光レーザ素子アレイの平面構造を示す平面図。
【図18】図17に示すオフ基板の傾斜方向を示す説明図。
【図19】図17に示す面発光レーザ素子アレイの各面発光レーザ素子の偏光特性の測定結果を示す特性図。
【符号の説明】
10 n-GaAS 基板
11 射出窓
12 面発光レーザ素子
14 p型電極
16 上部配線(p型電極用配線)
18 p型電極パッド
20 n + GaAsバッファ層
22 下部分布ブラッグ反射膜(DBR )ミラー
24 活性層
26 上部分布ブラッグ反射膜(DBR )ミラー
28 スペーサ層
30 プロトン注入域
32 n型配線
34 絶縁膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface emitting laser element and a surface emitting laser element array, and more particularly to a surface emitting laser element and a surface emitting laser element array capable of controlling polarization.
[0002]
[Prior art]
In the surface emitting laser element, since the emitted light beam is emitted perpendicular to the active layer, the polarization tends to be irregular. In particular, in order to make the light spot of the light beam emitted from the surface emitting laser element circular, the cross-sectional structure of the optical waveguide of the surface emitting laser element is made to have a highly symmetrical shape such as a circle or a square. Indicates no control at all. For example, a VCSEL (vertical cavity surface emitting laser) device 100 shown in FIG. 14 is a proton injection type VCSEL device that forms an 8 × 8 VCSEL array in which 8 elements are arranged in the row direction and the column direction, respectively. The waveguide structure is 15 μm, the exit window diameter is about 6.7 μm, and the cross section is symmetrical with respect to the center of the exit window. In FIG. 14, reference numeral 102 denotes an upper electrode wiring connected to the upper electrode (p-type electrode), 104 denotes a bonding wire, and 106 denotes a conductor terminal. The electrodes formed on the waveguide are also square, and in such a highly symmetric configuration, the polarization state of the light beam emitted from the VCSEL element corresponding to each pixel varies as shown in FIGS. Indicates the direction. 15 and 16 show the measurement results of the polarization state of each VCSEL element for two 8 × 8 VCSEL arrays. For example, in FIG. 15, the angle of the polarization plane of the VCSEL element corresponding to the pixel P1 is indicated by θ 1 .
[0003]
Moreover, switching may be caused by the injected current. For this reason, several methods for controlling the polarization have been proposed. For example, Japanese Patent Laid-Open No. 4-242989 proposes a method in which an electrode for injecting a current into an active layer has an anisotropic shape. Japanese Patent Laid-Open No. 5-110198 proposes a method of forming a quantum well structure on a (110) substrate, and Japanese Patent Laid-Open No. 6-302911 proposes to use an optical waveguide having a rectangular or cross structure. .
[0004]
Furthermore, IEEE Photonic technoloy letters, vol.5 pp133-135 (1993) proposed a method of applying uniaxial stress in the (001) plane of a semiconductor substrate by Mukaihara et al., And by Numai et al. (001) A method using an off-substrate is also known (The Institute of Electronics, Information and Communication Engineers IEICE Technical Report OQE-93-104, p43-48 (1993)). Here, the off substrate refers to a substrate cut out in a direction inclined from a crystal axis serving as a reference of the semiconductor substrate material, and the off direction refers to the inclined direction.
[0005]
[Problems to be solved by the invention]
As a method of controlling the polarization of the light emitted from the surface emitting laser element, if the polarization is controlled by making the optical waveguide anisotropic, the cross-sectional shape of the light beam of the surface emitting laser element may be elliptical. There's a problem.
[0006]
In addition, by making the electrode for injecting current into the active layer anisotropic, the charge injected from the electrode diffuses afterwards, in an attempt to control the polarization by making the current density distribution anisotropic. There is a problem that a desired current density distribution cannot be maintained in the optical waveguide.
[0007]
Furthermore, the polarization control by the off-substrate is that the off-direction stress is generated inside the waveguide by using the off-substrate, and this causes the polarization to be aligned, but the paper (The Institute of Electronics, Information and Communication Engineers IEICE Technical Report OQE-) 93-104, p43-48 (1993)), it is not fully controlled in all elements, switching in two polarization states occurs, or the polarization directions are 90 degrees different from each other. Some elements have the same polarization.
[0008]
Polarized light is easily affected by various factors such as the state of the optical waveguide, the amount of current injected from the electrode, the current density distribution, and the substrate temperature, so the electrode that injects current into the active layer is simply made anisotropic. Alternatively, even if an off-substrate is used, even if there is a point where polarization is controlled, the polarization characteristics are likely to be unstable due to changes in the amount of injected current and substrate temperature. For example, when the polarization characteristics of three VCSEL elements 110 formed on the off-substrate 10 as shown in FIG. 17 were measured, the polarization was not controlled. The off-substrate 10 shown in FIG. 17 is a substrate that includes the [001] direction and is inclined by −2 ° (∠CAC ′ = 2 °) with respect to the (100) plane as shown in FIG. FIG. 19 shows the result of measuring the polarization characteristics of the VCSEL element 110 in which the wiring 114 connected to the upper electrode 112 is disposed on the off-substrate 10 so as to be long in the [00-1] direction.
[0009]
As shown in FIGS. 19A, 19B, and 19C, there is an element having relatively good polarization characteristics, but the polarization characteristics are different for each element. The polarization could not be controlled. Thus, the polarization cannot be reliably controlled only by using the off-substrate.
[0010]
The VCSEL element 110 shown in FIG. 17 has a rectangular upper electrode (p-type electrode) 112 that is long in the [01-1] direction. The polarization characteristics of the VCSEL element 110 are the longitudinal direction of the upper electrode 112 (or the longitudinal direction). There was no dependence on the orthogonal direction.
[0011]
The present invention has been made in view of such circumstances, and a surface emitting laser element capable of reliably obtaining a stable and constant polarization state regardless of the substrate temperature, the amount of current injected into the active layer, and the like. An object of the present invention is to provide a surface emitting laser element array.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is formed such that an active layer and a mirror layer positioned above and below the active layer are stacked on a semiconductor substrate, and the vertical direction of the active layer is formed. In the surface emitting laser element that emits light, the active layer and the mirror layer are formed on an inclined surface of the semiconductor substrate inclined at a predetermined angle with respect to a surface including a crystal axis serving as a reference of the semiconductor substrate. An electrode for injecting a current into the active layer through the mirror layer formed on the top of the layer and a wiring for guiding a current to the electrode are formed on the inclined surface, The wiring directly connected to the electrode has a long shape and is formed so that the longitudinal direction thereof substantially coincides with the inclined direction of the inclined surface.
[0013]
According to a second aspect of the present invention, in the surface emitting laser element according to the first aspect, the plane including the crystal axis serving as a reference of the semiconductor substrate material is a (100) plane.
[0014]
According to a third aspect of the invention, the surface-emission laser device according to claim 2, wherein the inclined surface is in the range of contain and (100) plane vs. to + 5 ° from -5 ° to the [001] direction is formed so as to be inclined, the wiring that is directly connected to said electrode, characterized in that it is formed in an elongated shape in the direction obtained by projecting the [010] direction on the inclined surface.
[0015]
According to a fourth aspect of the present invention, in the surface light emitting device according to any one of the first to third aspects, a laser element region including the active layer and mirror layers formed above and below the active layer has an air post structure. An electrode for injecting current into the active layer is formed on the upper surface of the air post, and wiring directly connected to the electrode is formed on the side surface of the air post via an insulating film.
[0016]
According to a fifth aspect of the present invention, an active layer and a mirror layer positioned above and below the active layer are stacked on a semiconductor substrate, and at least the active layer is formed by epitaxial growth, and by proton implantation. In a gain waveguide type surface emitting laser element that emits light in a direction perpendicular to a current confined active layer, it includes the [001] direction and is tilted in a range of −5 ° to + 5 ° with respect to the (100) plane A laser element region formed on the inclined surface of the semiconductor substrate and including the active layer and a mirror layer formed above and below the active layer is formed in an air post structure, and current is supplied to the active layer on the upper surface of the air post. An electrode for injection is formed, and a wiring for guiding current to the electrode via the insulating film on the side surface intersecting the [010] direction of the air post has the [010] direction on the inclined surface. It is characterized in being formed so as to be directly connected to the electrode with elongated in the direction projected on.
[0017]
A sixth aspect of the present invention is characterized in that a plurality of the surface emitting laser elements according to any one of the first to fifth aspects are arranged two-dimensionally and a matrix wiring is applied to each of the surface emitting elements. .
[0018]
According to the first to fifth aspects of the present invention, the shape near the electrode of the wiring directly connected to the off-direction of the semiconductor substrate and the electrode for injecting current into the active layer is formed in a long shape, and the length thereof The direction in which the off-direction of the semiconductor substrate matches the direction in which the stress is generated in the optical waveguide due to the use of the off-substrate, and the portion where the current density of the current injected into the optical waveguide is large. Therefore, the polarization is controlled, and stable polarization characteristics can be maintained even if the amount of current injected into the active layer and the substrate temperature change.
[0019]
According to the invention described in claims 4 and 5, the laser element region is formed in an air post structure, and the wiring directly connected to the electrode for injecting current into the active layer is provided in the off direction of the semiconductor substrate through the insulating film. The direction in which the stress is generated in the optical waveguide due to the use of the off-substrate and the direction in which the stress is applied to the air post due to the wiring being attached to the air post are formed. As a result, the polarization is controlled more firmly, and stable polarization characteristics can be maintained even if the amount of current injected into the active layer and the substrate temperature change.
[0020]
Further, according to the invention described in claim 6, since the plurality of surface emitting laser elements obtained by the invention described in claims 1 to 5 are two-dimensionally arranged, the active layer of the surface emitting laser element is obtained. A surface-emitting laser element array suitable as a light source for an image forming apparatus such as a printer or a copier, or an image display apparatus having stable polarization characteristics with respect to fluctuations in the injection current to the substrate and the substrate temperature can be obtained.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0022]
First embodiment of the present invention A configuration of a surface emitting laser element according to a first embodiment of the present invention will be described. First, FIG. 1 shows the configuration of a surface emitting laser element array to which the present invention is applied. In this figure, an n-GaAs substrate 10 as a semiconductor substrate is -2 ° (2) in the [010] direction with respect to the (100) plane (plane passing through points A, B, C, D) as shown in FIG. CAC ′ = 2 °) is a (100) -plane off-substrate cut out so as to be inclined, and on the inclined surface S I (surface passing through points A, B ′, C ′, D ′) of the n-GaAs substrate 10. It is to inject current into the active layer of the laser element 01-1] projection direction obtained by projecting the direction the inclined surface S I (hereinafter, projection direction for convenience, be. to be displayed in the direction of the front projection) extends A plurality of surface-emitting laser elements (VCSEL) 12 in which long upper wirings (p-type electrode wirings) 16 directly connected to the p-type electrode 14 are formed. The upper wiring 16 is formed so that the longitudinal direction substantially coincides with the [010] direction. 3 to 5 show the structure of the surface emitting laser element array. 3 is a plan view showing a planar structure of a single surface emitting laser element in the surface emitting laser array, FIG. 4 is a sectional view taken along line XX ′ in FIG. 3, and FIG. 5 is taken along line YY ′ in FIG. It is sectional drawing. In these figures, an n + -GaAs buffer layer 20 and n-Al 0.3 Ga 0.7 As / Al 0.9 Ga 0.1 As are formed on the inclined surface of the n-GaAs substrate 10 by using a metal organic chemical vapor deposition (MOCVD) method. A lower distributed Bragg reflecting film (DBR) mirror 22 made of and an upper distributed Bragg reflecting film (DBR) mirror 26 made of p-Al 0.3 Ga 0.7 As / Al 0.9 Ga 0.1 As are laminated. Between the upper DBR mirror 26 and the lower DBR mirror 22, Al 0.6 Ga 0.4 As spacer layers 28 and 28, and an active layer 24 (Al 0.12 Ga 0.88 at the center of the Al 0.6 Ga 0.4 As spacer layers 28 and 28). A triple quantum well structure is formed by three quantum well layers of 90 mm thick formed of As and four layers of barrier layers of 50 mm thick formed of Al 0.3 Ga 0.7 As. ing.
In order to confine the current, protons are injected into the upper DBR mirror 26 leaving a region having a diameter of 10 μm to form a proton injection region 30. Next, etching is performed from the surface until reaching the n + -GaAs buffer layer 20 to form an air post (mesa) long in the [01-1] direction of 20 × 35 μm. After the side surface of the air post is insulated with the polyimide 34, a metal to be the p-type electrode 14 is deposited. An n-type electrode 32 was formed on the entire back surface of the n-GaAs substrate 10 by vapor deposition. The p-type electrode 14 formed on the upper portion is provided with an emission window 11 having a diameter of about 6 μm in order to extract emitted light. As shown in FIG. 3, the p-type electrode 14 is directly connected to an elongated p-type electrode wiring 16 elongated in the [010] direction, and the p-type electrode wiring 16 is connected to an electrode pad 18 (not shown in FIG. (See FIG. 1).
[0023]
In this way, the surface emitting laser element 12 in which the longitudinal direction of the p-type electrode wiring 16 coincides with the [010] direction is formed on the inclined surface of the off substrate 10 inclined with respect to the [010] direction. When a plurality of surface-emitting laser elements 12 having such a structure are manufactured, all the surface-emitting laser elements 12 are in the off direction of the n-GaAs substrate 10 and in the longitudinal direction of the p-type electrode wiring 16 [010] ] Laser light linearly polarized in the direction was emitted.
[0024]
FIG. 6 shows the relationship between the injection current I injected into the active layer 24 from the p-type electrode 14 and the laser output P in the surface emitting laser element 12. As shown in FIG. 6, even when the injection current I to the active layer 24 is increased, the laser output characteristics are stable, and the polarization is completely controlled in the [010] direction.
[0025]
Further, even when the substrate temperature was changed from 10 to 60 ° C., the polarization direction was constant, and the switching of the polarization direction and the oscillation of light polarized in directions other than the [010] direction did not occur. Of course, no light was generated that oscillated with the long axis direction [01-1] of the p-type electrode 14.
[0026]
According to the surface-emitting laser device according to the first embodiment of the present invention, the shape in the vicinity of the electrode of the wiring directly connected to the off-direction of the semiconductor substrate and the electrode for injecting current into the active layer is elongated. Since the length direction and the off direction of the semiconductor substrate coincide with each other, the direction in which stress is generated in the optical waveguide by using the off substrate and the current density of the current injected into the optical waveguide Therefore, the polarization can be controlled, and stable polarization characteristics can be maintained even if the amount of current injected into the active layer or the substrate temperature changes.
[0027]
Further, according to the first embodiment of the present invention, the laser element region is formed in the air post structure, and the wiring directly connected to the electrode for injecting current into the active layer is in the off direction of the semiconductor substrate via the insulating film. The direction in which the stress is generated in the optical waveguide due to the use of the off-substrate and the direction in which the stress is applied to the air post due to the attachment of the wiring to the air post As a result, the polarization is controlled more firmly, and stable polarization characteristics can be maintained even when the amount of current injected into the active layer and the substrate temperature change.
[0028]
In the present embodiment, the surface emitting laser element having the air post structure has been described. However, the present invention is not limited to this. For example, the same effect can be obtained even when applied to a surface emitting laser element having a flat structure.
[0029]
Second embodiment of the present invention Next, the configuration of a surface emitting laser element array according to a second embodiment of the present invention will be described. FIG. 7 shows a planar structure of a surface emitting laser element array according to the second embodiment of the present invention. In FIG. 8, a GaAs substrate 10 ′ as a semiconductor substrate includes a [001] direction (arrow B′D ′ direction) and passes through a (100) plane (points A, B, C, D) as shown in FIG. (100) plane semi-insulating GaAs off-substrate cut so as to be inclined by −2 ° (∠CAC ′ = 2 °) with respect to the surface), and the inclined surface S I ( On the surface passing through the points A, B ′, C ′, and D ′), the long upper wiring 16 extending in the [010] direction directly to the p-type electrode 14 ′ for injecting current into the active layer of the laser element. The surface emitting laser elements (VCSEL) 12 ′ thus configured are formed so as to be arranged in 3 × 3 in 3 rows and 3 columns. 32 'is an n-type electrode wiring.
9 to 11 show the structure of the surface emitting laser element array. 9 is a plan view showing a planar structure of a single surface emitting laser element in the surface emitting laser array, FIG. 10 is a sectional view taken along line XX ′ in FIG. 9, and FIG. 11 is taken along line YY ′ in FIG. It is sectional drawing. In these figures, an n + -GaAs buffer layer 20 ′ and n-Al 0.3 Ga 0.7 As / Al 0.9 Ga are formed on the inclined surface of the semi-insulating substrate 10 ′ by using a metal organic chemical vapor deposition (MOCVD) method. A lower distributed Bragg reflecting film (DBR) mirror 22 ′ made of 0.1 As and an upper distributed Bragg reflecting film (DBR) mirror 26 ′ made of p-Al 0.3 Ga 0.7 As / Al 0.9 Ga 0.1 As are laminated. Between the upper DBR mirror 26 ′ and the lower DBR mirror 22 ′, Al 0.6 Ga 0.4 As spacer layers 28 ′ and 28 ′ and an active layer at the center of the Al 0.6 Ga 0.4 As spacer layers 28 ′ and 28 ′. A triple quantum well structure is formed by 3 layers of 90Å thick quantum well layers made of 24 '(Al 0.12 Ga 0.88 As) and 4 layers of 50Å thick barrier layers made of Al 0.3 Ga 0.7 As. Was provided.
For current confinement, protons are implanted leaving a 10 μm diameter region in the upper DBR mirror 26 ′ to form a proton implantation region. Next, etching is performed from the surface until reaching the n + -GaAs buffer layer 20 ′, thereby forming a long air post (mesa) of [01-1] of 20 × 35 μm. An n-type electrode wiring 32 ′ is provided in the vicinity of the air post using a vapor deposition method, and further, the side surface of the air post is insulated with polyimide 34 ′, and then a metal to be the p-type electrode 14 ′ is vapor-deposited. As apparent from FIG. 9, the n-type electrode wiring 32 ′ is formed along the long axis [01-1] of the air post. The p-type electrode 14 ′ formed on the upper part of the air post is provided with an exit window 11 ′ having a diameter of about 6 μm in order to extract the emitted light. As shown in FIG. 9, the p-type electrode 14 ′ is formed so as to be connected to an electrode pad (not shown) by a p-type electrode wiring 16 ′ that is long in the [010] direction.
[0030]
In this way, the surface emitting laser element in which the longitudinal direction of the p-type electrode wiring 16 ′ coincides with the [010] direction is formed on the off-substrate 10 ′ inclined with respect to the [010] direction. When the surface emitting laser element array arranged in 3 rows and 3 columns as shown in FIG. 7 having such a structure is manufactured, all the surface emitting laser elements are in the off direction of the semi-insulating substrate 10 ′, and Laser light linearly polarized in the [010] direction, which is the longitudinal direction of the p-type electrode wiring 16 ', was emitted. FIGS. 12A and 12B show the relationship between the injection current I injected into the active layer 24 ′ from the p-type electrode 14 ′ and the laser output P for the two surface emitting laser elements 12 ′.
[0031]
As shown in FIG. 12, the laser output characteristics are stable even when the injection current I is increased in both the surface emitting laser elements 12 ′, and the polarization is completely controlled in the [010] direction.
[0032]
Further, even when the substrate temperature was changed from 10 to 60 ° C., the polarization direction was constant, and the switching of the polarization direction and the oscillation of light polarized in directions other than the [010] direction did not occur. Furthermore, no light oscillated in accordance with the longitudinal direction [01-1] of the p-type electrode 14 ′ was generated.
[0033]
In the embodiment of the present invention, the off direction and the p-type electrode wiring direction of the semiconductor substrate are the [010] direction. However, the present invention is not limited to this. There is no problem even if it is aligned with the [011] and [01-1] directions. In the present invention, it is important to match the off direction of the semiconductor substrate with the longitudinal direction of the p-type wiring for injecting current into the active layer of the surface emitting laser element.
[0034]
In the first and second embodiments of the present invention, in the gain waveguide surface emitting laser element, the active layer is inclined by −2 ° in a plane including the [001] direction with respect to the (100) plane. Although the off-substrate formed on the surface has been described, the present invention is not limited to this, and the active layer is inclined in a range of −5 ° to + 5 ° in a plane including the [001] direction with respect to the (100) plane. The same effect was obtained when it was formed on the semiconductor substrate surface.
[0035]
The surface-emitting laser element and the surface-emitting laser array according to the present invention are also effective for structures other than those shown in the first and second embodiments. For example, the cross-sectional shape of the air post may be a symmetrical shape such as a circle or a square, and the longitudinal direction of the air post may be aligned with the off direction. An example of this is shown in FIG. In FIG. 13, as in the first and second embodiments, the surface light emitting elements 50 and 51 having a circular cross section and the surface light emitting element 52 having a rectangular cross section on the semiconductor substrate 10 whose off direction is [010]. , 54 are formed. The upper electrodes (p-type electrodes) 50A, 51A, 52A, 54A of the surface light emitting elements 50, 51, 52, 54 are wirings 60, 61, 62 formed in the same [010] direction as the off direction of the semiconductor substrate 10, respectively. 63, and these wirings 60, 61, 62, 63 are connected to the electrode pad 70, respectively. A current is supplied from each electrode pad 70 to each p-type electrode 50A, 51A, 52A, 54A, and a current is injected into the active layer of each surface emitting laser element.
[0036]
According to the second embodiment of the present invention, since the plurality of surface emitting laser elements obtained by the present invention are arranged two-dimensionally, the injection current into the active layer of the surface emitting laser element and the A surface emitting laser element array suitable for light sources such as an image forming apparatus such as a printer or a copier, or an image display apparatus having stable polarization characteristics with respect to fluctuations in the substrate temperature or the like can be obtained.
[0037]
【The invention's effect】
According to the first to fifth aspects of the present invention, the shape near the electrode of the wiring directly connected to the off-direction of the semiconductor substrate and the electrode for injecting current into the active layer is formed in a long shape, and the length thereof The direction in which the off-direction of the semiconductor substrate matches the direction in which the stress is generated in the optical waveguide due to the use of the off-substrate, and the portion where the current density of the current injected into the optical waveguide is large. Therefore, the polarization is controlled, and stable polarization characteristics can be maintained even if the amount of current injected into the active layer and the substrate temperature change.
[0038]
According to the invention described in claims 4 and 5, the laser element region is formed in an air post structure, and the wiring directly connected to the electrode for injecting current into the active layer is provided in the off direction of the semiconductor substrate through the insulating film. The direction in which the stress is generated in the optical waveguide due to the use of the off-substrate and the direction in which the stress is applied to the air post due to the wiring being attached to the air post are formed. As a result, the polarization is controlled more firmly, and stable polarization characteristics can be maintained even if the amount of current injected into the active layer and the substrate temperature change.
[0039]
Further, according to the invention described in claim 6, since the plurality of surface emitting laser elements obtained by the invention described in claims 1 to 6 are arranged two-dimensionally, the active layer of the surface emitting laser element A surface-emitting laser element array suitable as a light source for an image forming apparatus such as a printer or a copier, or an image display apparatus having stable polarization characteristics with respect to fluctuations in the injection current to the substrate and the substrate temperature can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of a surface emitting laser element according to a first embodiment of the present invention.
FIG. 2 is an explanatory view showing an inclination direction of the off-substrate shown in FIG.
FIG. 3 is a plan view showing a planar structure of the surface emitting laser element according to the first embodiment of the invention.
4 is a cross-sectional view taken along line XX ′ in FIG.
5 is a cross-sectional view taken along line YY ′ in FIG.
FIG. 6 is a characteristic diagram showing a measurement example of the relationship between the laser output and the injection current into the active layer of the surface emitting laser element according to the first embodiment of the invention.
FIG. 7 is a plan view showing a planar structure of a surface emitting laser element array according to a second embodiment of the present invention.
8 is an explanatory diagram showing an inclination direction of the off-substrate shown in FIG.
9 is a plan view showing a planar structure of a single surface emitting laser element in the surface emitting laser array shown in FIG.
10 is a cross-sectional view taken along line XX ′ in FIG.
11 is a cross-sectional view taken along line YY ′ in FIG. 9;
FIG. 12 is a characteristic diagram showing a measurement example of the relationship between the laser output P and the injection current I injected into the active layer for two surface emitting laser elements.
FIG. 13 is a plan view showing a planar structure of a modification of the surface emitting laser element according to the present invention.
FIG. 14 is a plan view showing a specific planar configuration of a conventional surface emitting laser element array.
FIG. 15 is an explanatory view showing a measurement result of a polarization state of each surface emitting laser element of a conventional surface emitting laser element array.
FIG. 16 is an explanatory view showing a measurement result of a polarization state of each surface emitting laser element of a conventional surface emitting laser element array.
FIG. 17 is a plan view showing a planar structure of a surface emitting laser element array formed on a conventional off-substrate.
18 is an explanatory diagram showing an inclination direction of the off-substrate shown in FIG.
FIG. 19 is a characteristic diagram showing a measurement result of polarization characteristics of each surface emitting laser element of the surface emitting laser element array shown in FIG. 17;
[Explanation of symbols]
10 n-GaAS substrate 11 exit window 12 surface emitting laser element 14 p-type electrode 16 upper wiring (p-type electrode wiring)
18 p-type electrode pad 20 n + GaAs buffer layer 22 Lower distributed Bragg reflector (DBR) mirror 24 Active layer 26 Upper distributed Bragg reflector (DBR) mirror 28 Spacer layer 30 Proton injection region 32 N-type wiring 34 Insulating film

Claims (6)

半導体基板上に活性層と該活性層の上下部に位置するミラー層とが積層されるように形成され、該活性層の垂直方向に光を放出する面発光レーザ素子において、
前記活性層及びミラー層が前記半導体基板の基準となる結晶軸を含む面に対して所定角度傾斜した前記半導体基板の傾斜面上に形成され、前記活性層の上部に形成された前記ミラー層を介して前記活性層へ電流を注入するための電極と、前記電極へ電流を導くための配線とが前記傾斜面上に形成され、
前記配線のうち前記電極に直接接続される配線が長尺状で、かつ該長手方向が前記傾斜面の傾斜方向に略一致するように形成されていることを特徴とする面発光レーザ素子。
In a surface-emitting laser device that is formed so that an active layer and mirror layers positioned above and below the active layer are stacked on a semiconductor substrate and emits light in a direction perpendicular to the active layer,
The active layer and the mirror layer are formed on an inclined surface of the semiconductor substrate inclined at a predetermined angle with respect to a surface including a crystal axis serving as a reference of the semiconductor substrate, and the mirror layer formed on the active layer An electrode for injecting a current through the active layer and a wiring for guiding the current to the electrode are formed on the inclined surface,
A surface-emitting laser element characterized in that a wire directly connected to the electrode among the wires is elongated and formed such that the longitudinal direction thereof substantially coincides with the inclined direction of the inclined surface.
前記半導体基板材の基準となる結晶軸を含む面は(100)面であることを特徴とする請求項1に記載の面発光レーザ素子。  2. The surface emitting laser element according to claim 1, wherein a plane including a crystal axis serving as a reference of the semiconductor substrate material is a (100) plane. 前記傾斜面は、[001]方向を含みかつ(100)面に対して−5°から+5°の範囲で傾斜するように形成され、前記電極に直接接続される配線が[010]方向を前記傾斜面に投影した方向に長尺状に形成されていることを特徴とする請求項2に記載の面発光レーザ素子。The inclined surface includes the [001] direction and is formed to be inclined in a range of −5 ° to + 5 ° with respect to the (100) plane, and the wiring directly connected to the electrode extends in the [010] direction. surface-emitting laser element according to claim 2, characterized in that it is formed in an elongated shape in the direction projected on the inclined surface. 前記活性層及び該活性層の上下部に形成されるミラー層を含むレーザ素子領域がエアポスト構造に形成され、該エアポスト上面に前記活性層へ電流を注入するための電極が形成され、前記電極に直接接続される配線がエアポストの側面に絶縁膜を介して形成されていることを特徴とする請求項1乃至3のいずれかに記載の面発光レーザ素子。  A laser element region including the active layer and a mirror layer formed above and below the active layer is formed in an air post structure, and an electrode for injecting current into the active layer is formed on the upper surface of the air post. 4. The surface emitting laser element according to claim 1, wherein the directly connected wiring is formed on the side surface of the air post via an insulating film. 半導体基板上に活性層と該活性層の上下部に位置するミラー層とが積層されるように形成され、少なくとも前記活性層がエピタキシャル成長によって形成され、プロトン注入によって電流狭窄された活性層の垂直方向に光を放出する利得導波路型の面発光レーザ素子において、
[001]方向を含みかつ(100)面に対して−5°から+5°の範囲で傾斜した前記半導体基板の傾斜面上に形成され、前記活性層及び該活性層の上下部に形成されるミラー層を含むレーザ素子領域がエアポスト構造に形成され、該エアポストの上面に前記活性層へ電流を注入するための電極が形成され、該エアポストの[010]方向と交差する側面に絶縁膜を介して、前記電極へ電流を導くための配線が[010]方向を前記傾斜面に投影した方向に長尺状で前記電極に直接接続されるように形成されていることを特徴とする面発光レーザ素子。
An active layer and a mirror layer positioned above and below the active layer are stacked on a semiconductor substrate, and at least the active layer is formed by epitaxial growth, and a vertical direction of the active layer in which current is confined by proton implantation In a gain waveguide surface emitting laser element that emits light to
Formed on the inclined surface of the semiconductor substrate including the [001] direction and inclined in a range of −5 ° to + 5 ° with respect to the (100) plane, and formed on the active layer and the upper and lower portions of the active layer. A laser element region including a mirror layer is formed in an air post structure, an electrode for injecting current into the active layer is formed on an upper surface of the air post, and an insulating film is provided on a side surface crossing the [010] direction of the air post. Te, wiring for directing current to the electrode is characterized in that it is formed so as to be connected [010] in the direction of the direction projected onto the inclined surface directly to the electrodes in the elongate faces Light emitting laser element.
請求項1乃至5のいずれかに記載の面発光レーザ素子を複数個、2次元状に配列し、各面発光素子にマトリクス配線を施したことを特徴とする面発光レーザ素子アレイ。  6. A surface-emitting laser element array, wherein a plurality of surface-emitting laser elements according to claim 1 are arranged two-dimensionally, and matrix wiring is applied to each surface-emitting element.
JP20385098A 1998-07-17 1998-07-17 Surface emitting laser element and surface emitting laser element array Expired - Fee Related JP3791193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20385098A JP3791193B2 (en) 1998-07-17 1998-07-17 Surface emitting laser element and surface emitting laser element array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20385098A JP3791193B2 (en) 1998-07-17 1998-07-17 Surface emitting laser element and surface emitting laser element array

Publications (2)

Publication Number Publication Date
JP2000036637A JP2000036637A (en) 2000-02-02
JP3791193B2 true JP3791193B2 (en) 2006-06-28

Family

ID=16480740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20385098A Expired - Fee Related JP3791193B2 (en) 1998-07-17 1998-07-17 Surface emitting laser element and surface emitting laser element array

Country Status (1)

Country Link
JP (1) JP3791193B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2131458A2 (en) 2008-06-03 2009-12-09 Ricoh Company, Ltd. Vertical cavity surface emitting laser (vcsel), vcsel array device, optical scanning apparatus, and image forming apparatus
US9046808B2 (en) 2011-06-24 2015-06-02 Ricoh Company, Ltd. Surface emitting laser array and image forming apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261922A (en) 2001-02-28 2002-09-13 Sanyo Electric Co Ltd Portable telephone
DE10234976B4 (en) * 2002-07-31 2012-05-03 Osram Opto Semiconductors Gmbh Surface emitting semiconductor laser chip and method for its production
JP2006245488A (en) * 2005-03-07 2006-09-14 Ricoh Co Ltd Two-dimensional face emission laser array, optical scanning device, and image formation device
JP4969066B2 (en) * 2005-07-15 2012-07-04 株式会社リコー Surface emitting semiconductor laser array
JP5117028B2 (en) * 2006-10-11 2013-01-09 古河電気工業株式会社 Surface emitting laser element and surface emitting laser element array
JP2008177430A (en) 2007-01-19 2008-07-31 Sony Corp Light-emitting element and its fabrication process, light-emitting element assembly and its fabrication process
JP2009259857A (en) * 2008-04-11 2009-11-05 Furukawa Electric Co Ltd:The Surface emitting laser element and surface emitting laser element array
JP5909897B2 (en) * 2010-07-06 2016-04-27 株式会社リコー Surface emitting laser, surface emitting laser array, optical scanning device, and image forming apparatus
JP5874227B2 (en) * 2011-07-22 2016-03-02 富士ゼロックス株式会社 Surface emitting semiconductor laser array, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP2012156541A (en) * 2012-04-09 2012-08-16 Furukawa Electric Co Ltd:The Surface emission-type laser device and surface emission-type laser device array

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2131458A2 (en) 2008-06-03 2009-12-09 Ricoh Company, Ltd. Vertical cavity surface emitting laser (vcsel), vcsel array device, optical scanning apparatus, and image forming apparatus
US7991033B2 (en) 2008-06-03 2011-08-02 Ricoh Company, Ltd. Vertical cavity surface emitting laser (VCSEL), VCSEL array device, optical scanning apparatus, and image forming apparatus
US9046808B2 (en) 2011-06-24 2015-06-02 Ricoh Company, Ltd. Surface emitting laser array and image forming apparatus

Also Published As

Publication number Publication date
JP2000036637A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
US6751242B2 (en) Surface emitting semiconductor laser and surface emitting semiconductor laser array
US5317170A (en) High density, independently addressable, surface emitting semiconductor laser/light emitting diode arrays without a substrate
US7596161B2 (en) Laterally oxidized vertical cavity surface emitting lasers
JP3791193B2 (en) Surface emitting laser element and surface emitting laser element array
US6546034B2 (en) Semiconductor laser device, semiconductor laser array device and optical fiber transmission system
JPH0239583A (en) Array of semiconductor lasers which can be addressed individually
US8111727B2 (en) High power semiconductor opto-electronic device
US7668219B2 (en) Surface emitting semiconductor device
WO2007116659A1 (en) Surface light-emitting laser
CN102891434A (en) Laser array, laser device, optical transmission apparatus, and information processing apparatus
US5319659A (en) Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching
US6480516B1 (en) Surface semiconductor optical amplifier with transparent substrate
JP2705409B2 (en) Semiconductor distributed feedback laser device
WO2021140871A1 (en) Vertical-resonator-type light-emitting element
KR940011107B1 (en) Semiconductor laser apparatus
JP2622143B2 (en) Distributed feedback semiconductor laser and method of manufacturing distributed feedback semiconductor laser
US4759025A (en) Window structure semiconductor laser
JPH055391B2 (en)
JP3546628B2 (en) Surface-emitting type semiconductor laser device
JP2006269988A (en) Semiconductor laser
US6744798B2 (en) Surface-type light amplifer device and method of manufacture thereof
JP2004128524A (en) Manufacturing method for surface emitting semiconductor laser device
JPH1070336A (en) Semiconductor laser array
JP3700308B2 (en) Surface emitting semiconductor laser device and driving method thereof
JP2875929B2 (en) Semiconductor laser device and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees