JP2000036637A - Surface emitting laser element and surface emitting laser element array - Google Patents

Surface emitting laser element and surface emitting laser element array

Info

Publication number
JP2000036637A
JP2000036637A JP10203850A JP20385098A JP2000036637A JP 2000036637 A JP2000036637 A JP 2000036637A JP 10203850 A JP10203850 A JP 10203850A JP 20385098 A JP20385098 A JP 20385098A JP 2000036637 A JP2000036637 A JP 2000036637A
Authority
JP
Japan
Prior art keywords
active layer
emitting laser
electrode
surface emitting
laser element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10203850A
Other languages
Japanese (ja)
Other versions
JP3791193B2 (en
Inventor
Akemi Murakami
朱実 村上
Izumi Iwasa
泉 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP20385098A priority Critical patent/JP3791193B2/en
Publication of JP2000036637A publication Critical patent/JP2000036637A/en
Application granted granted Critical
Publication of JP3791193B2 publication Critical patent/JP3791193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a surely stabilized constant polarized state regardless of the temperature of a substrate, the quantity of the current injected into an active layer, etc. SOLUTION: In a surface emitting laser element 12 which is formed so that an active layer and mirror layers positioned on the under the active layer may be laminated upon another on a semiconductor substrate 10 and emits light in the direction perpendicular to the active layer, the active layer and mirror layers are formed on the inclined surface of the substrate 10 which is inclined against a plane containing the basis crystal axis of the substrate 10 and, in addition, an electrode 14 for injecting current into the active layer through the mirror layer formed on the active layer and the wiring for guiding the current to the electrode 14 are also formed on the inclined surface. In addition, the wire 16 of the wiring which is connected directly to the electrode 14 is formed in such a way that the wire 16 is long and the longitudinal direction of the wire 16 becomes nearly parallel with the direction of inclination of the inclined surface of the substrate 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は面発光レーザ素子及
び面発光レーザ素子アレイに係り、特に偏光制御が可能
な面発光レーザ素子及び面発光レーザ素子アレイに関す
る。
The present invention relates to a surface emitting laser device and a surface emitting laser device array, and more particularly to a surface emitting laser device and a surface emitting laser device array capable of controlling polarization.

【0002】[0002]

【従来の技術】面発光レーザ素子では、活性層に対して
発光ビームが垂直に射出されるので偏光が不規則になり
やすい。特に面発光レーザ素子より射出された光ビーム
の光スポットを円形にするため、面発光レーザ素子の光
導波路の断面構造を円形や正方形などの対称性の高い形
状にすると素子ごとに様々な偏光特性を示し全く制御で
きない。例えば、図14に示すVCSEL (垂直キャビティ
面発光レーザ)素子100は行方向、列方向にそれぞれ
8個、配列された8 ×8VCSELアレイを構成するプロトン
注入型のVCSEL 素子であり、プロトン注入径約15μm、
出射窓径約6.7 μmと横断面が出射窓の中心に対し対称
な導波路構造となっている。図14において、102は
上部電極(p型電極)に接続されている上部電極用配
線、104はボンディングワイヤ、106は導体端子で
ある。導波路上部に形成された電極も正方形であり、こ
のような対称性の高い構成では、各ピクセルに対応する
VCSEL素子から射出される光ビームの偏光状態は図1
5、図16に示すように種々の方向を示す。図15、1
6は8 ×8VCSELアレイ2個についての各VCSEL 素子の偏
光状態の測定結果を示している。例えば、図15におい
てピクセルP1に対応するVCSEL 素子の偏光面の角度を
θ1 で示している。
2. Description of the Related Art In a surface emitting laser device, since a light emitting beam is emitted perpendicularly to an active layer, polarization tends to be irregular. In particular, in order to make the light spot of the light beam emitted from the surface emitting laser element circular, if the cross-sectional structure of the optical waveguide of the surface emitting laser element is made to have a highly symmetrical shape such as a circle or a square, various polarization characteristics will be obtained for each element. Shows no control. For example, a VCSEL (vertical cavity surface emitting laser) device 100 shown in FIG. 14 is a proton-injection type VCSEL device constituting an 8 × 8 VCSEL array in which eight are arranged in each of a row direction and a column direction. 15 μm,
The exit window diameter is about 6.7 μm and the cross section is a symmetric waveguide structure with respect to the center of the exit window. In FIG. 14, reference numeral 102 denotes an upper electrode wiring connected to an upper electrode (p-type electrode), 104 denotes a bonding wire, and 106 denotes a conductor terminal. The electrode formed on the upper part of the waveguide is also square, and in such a highly symmetric configuration, each electrode corresponds to each pixel.
Figure 1 shows the polarization state of the light beam emitted from the VCSEL device.
5, various directions are shown as shown in FIG. FIG. 15, 1
6 shows the measurement results of the polarization state of each VCSEL element for two 8 × 8 VCSEL arrays. For example, it illustrates the angle of the polarization plane of the VCSEL device corresponding to the pixel P1 in FIG. 15 in theta 1.

【0003】また、注入電流によってスイッチングを起
こすこともある。このため偏光を制御するためのいくつ
かの方法が提案されている。例えば、特開平4-242989号
公報には、活性層に電流を注入するための電極を異方形
状にする方法が提案されている。また特開平5-110198号
公報には、(110)基板に量子井戸構造を形成する方
法が、特開平6-302911号公報には、矩形や十字構造の光
導波路を用いることが提案されている。
In some cases, switching is caused by an injection current. For this reason, several methods for controlling polarization have been proposed. For example, Japanese Patent Application Laid-Open No. Hei 4-242989 proposes a method in which an electrode for injecting a current into an active layer is made anisotropic. JP-A-5-110198 proposes a method for forming a quantum well structure on a (110) substrate, and JP-A-6-302911 proposes to use an optical waveguide having a rectangular or cross structure. .

【0004】更に、IEEE Photonic technoloy lett
ers,vol.5 pp133-135(1993) には、Mukaihara らによ
り、半導体基板の(001)面内に1軸性の応力を加え
る方法が提案されており、またNumai らによって、(0
01)オフ基板を用いる方法も公知である(電子情報通
信学会 信学技報OQE-93-104,p43-48(1993) )。ここに
オフ基板とは半導体基板材のある基準となる結晶軸から
傾斜した方向に切り出した基板をいい、オフ方向とはそ
の傾斜方向をいう。
Further, IEEE Photonic technoloy lett
ers, vol.5 pp133-135 (1993), a method of applying a uniaxial stress to the (001) plane of a semiconductor substrate has been proposed by Mukaihara et al.
01) A method using an off substrate is also known (IEICE Technical Report OQE-93-104, p43-48 (1993)). Here, the off-substrate refers to a substrate cut out in a direction inclined from a reference crystal axis of a semiconductor substrate material, and the off-direction refers to the inclination direction.

【0005】[0005]

【発明が解決しようとする課題】面発光レーザ素子の射
出光の偏光を制御する方法として、光導波路を異方的な
形状にして偏光の制御を行うと、面発光レーザ素子の光
ビームの断面形状が楕円になるおそれがあるという問題
がある。
As a method for controlling the polarization of the light emitted from the surface emitting laser element, if the polarization is controlled by forming the optical waveguide in an anisotropic shape, the cross section of the light beam of the surface emitting laser element can be obtained. There is a problem that the shape may be elliptical.

【0006】また活性層に電流を注入する電極を異方形
状にすることで、電流密度分布を異方的にして偏光を制
御する試みに関しては、電極から注入された電荷はその
後、拡散していくので、光導波路内に所望の電流密度分
布を維持できないという問題がある。
As for an attempt to control the polarization by making the current density distribution anisotropic by making the electrode into which the current is injected into the active layer anisotropic, the charge injected from the electrode is then diffused. Therefore, there is a problem that a desired current density distribution cannot be maintained in the optical waveguide.

【0007】さらにオフ基板による偏光の制御は、オフ
基板を用いることで導波路内部にオフ方向の応力が発生
し、これによって偏光が揃うというものであるが、論文
(電子情報通信学会 信学技報OQE-93-104,p43-48(199
3) )に見られるように、すべての素子において完全に
制御できておらず、2つの偏光状態におけるスイッチン
グが生じたり、偏光方向が相互に90度、異なる方向に
偏光が揃ってしまっている素子もある。
[0007] Further, in the control of polarization by the off-substrate, the use of an off-substrate causes stress in the off-direction to be generated inside the waveguide, which causes the polarization to be uniform. OQE-93-104, p43-48 (199
As can be seen in 3))), all the elements cannot be completely controlled, switching occurs in two polarization states, or the polarization directions are 90 degrees from each other and the polarizations are aligned in different directions. There is also.

【0008】偏光は、光導波路の状態や電極からの電流
の注入量や電流密度分布、基板温度などさまざまな因子
の影響を受けやすいので、単に活性層に電流を注入する
電極を異方形状にしただけ、もしくはオフ基板を使用し
ただけでは、偏光が制御されるポイントがあるとして
も、注入電流量の変化や基板温度などの変動によって、
偏光の特性が不安定になりやすい。例えば、図17に示
すようなオフ基板10上に形成された3つのVCSEL 素子
110の偏光特性を測定したところ、偏光制御されてい
なかった。図17に示すオフ基板10は、図18に示す
ように[001]方向を含み、かつ(100)面に対し
て−2°(∠CAC’=2 ゜) 傾斜した基板である。
このオフ基板10上に、上部電極112に接続される配
線114を[00−1]方向に長くなるように配設した
VCSEL 素子110の偏光特性を測定した結果を図19に
示す。
Since polarized light is easily affected by various factors such as the state of the optical waveguide, the amount of current injected from the electrode, the current density distribution, and the substrate temperature, the electrode for simply injecting the current into the active layer has an anisotropic shape. Even if there is a point where polarization is controlled simply by using the off-substrate or by using the off-substrate, the change in the amount of injected current or the fluctuation of the substrate temperature will cause
Polarization characteristics tend to be unstable. For example, when the polarization characteristics of three VCSEL elements 110 formed on the off-substrate 10 as shown in FIG. 17 were measured, the polarization was not controlled. The off-substrate 10 shown in FIG. 17 is a substrate that includes the [001] direction and is inclined at −2 ° ({CAC ′ = 2}) with respect to the (100) plane as shown in FIG.
On the off-substrate 10, the wiring 114 connected to the upper electrode 112 is disposed so as to be longer in the [00-1] direction.
FIG. 19 shows the result of measuring the polarization characteristics of the VCSEL device 110.

【0009】図19(A),(B),(C)に示すよう
に、比較的、良好な偏光特性を有する素子もあるが、そ
の偏光特性は素子ごとに異っており、この条件ですべて
の素子において偏光を制御することはできなかった。こ
のようにオフ基板を使用しただけでは、偏光を確実に制
御することはできない。
As shown in FIGS. 19 (A), 19 (B) and 19 (C), some devices have relatively good polarization characteristics, but the polarization characteristics are different for each device. Polarization could not be controlled in all devices. The use of an off-substrate alone cannot reliably control the polarization.

【0010】また図17に示すVCSEL 素子110は[0
1−1]方向に長い長方形の上部電極(p型電極)11
2を有しているが、その偏光特性は、上部電極112の
長手方向(または長手方向と直交する方向)には全く依
存性がなかった。
The VCSEL element 110 shown in FIG.
1-1] Rectangular upper electrode (p-type electrode) 11 long in the direction
2, but the polarization characteristics did not depend at all on the longitudinal direction of the upper electrode 112 (or the direction perpendicular to the longitudinal direction).

【0011】本発明は、 このような事情に鑑みてなされ
たものであり、基板温度や活性層への注入電流量等に関
係なく、確実に安定した一定の偏光状態を得ることがで
きる面発光レーザ素子及び面発光レーザ素子アレイを提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been developed in consideration of the above problem, and is capable of reliably obtaining a stable and constant polarization state regardless of the substrate temperature or the amount of current injected into the active layer. It is an object to provide a laser device and a surface emitting laser device array.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に請求項1に記載の発明は、半導体基板上に活性層と該
活性層の上下部に位置するミラー層とが積層されるよう
に形成され、該活性層の垂直方向に光を放出する面発光
レーザ素子において、前記活性層及びミラー層が前記半
導体基板の基準となる結晶軸を含む面に対して所定角度
傾斜した前記半導体基板の傾斜面上に形成され、前記活
性層の上部に形成された前記ミラー層を介して前記活性
層へ電流を注入するための電極と、前記電極へ電流を導
くための配線とが前記傾斜面上に形成され、前記配線の
うち前記電極に直接接続される配線が長尺状で、かつ該
長手方向が前記傾斜面の傾斜方向に略一致するように形
成されていることを特徴とする。
According to a first aspect of the present invention, there is provided a semiconductor device having an active layer and a mirror layer located above and below the active layer. In the surface-emitting laser element formed and emitting light in a direction perpendicular to the active layer, the active layer and the mirror layer may be inclined at a predetermined angle with respect to a plane including a crystal axis that is a reference of the semiconductor substrate. An electrode formed on the inclined surface, for injecting a current into the active layer through the mirror layer formed on the active layer, and a wiring for guiding the current to the electrode are formed on the inclined surface. Wherein the wiring directly connected to the electrode among the wirings is long and formed such that its longitudinal direction substantially coincides with the inclination direction of the inclined surface.

【0013】請求項2に記載の発明は、請求項1に記載
の面発光レーザ素子において、前記半導体基板材の基準
となる結晶軸を含む面は(100)面であることを特徴
とする。
According to a second aspect of the present invention, in the surface emitting laser element according to the first aspect, a plane including a crystal axis serving as a reference of the semiconductor substrate material is a (100) plane.

【0014】請求項3に記載の発明は、請求項2に記載
の面発光レーザ素子において、前記傾斜面は、[00
1]方向を含みかつ(100)面にに対して−5°から
+5°の範囲で傾斜するように形成され、前記電極に直
接接続される配線が[010]方向を前記傾斜面に投影
した投影方向に長尺状に形成されていることを特徴とす
る。
According to a third aspect of the present invention, in the surface emitting laser device according to the second aspect, the inclined surface is [00
1] is formed so as to be inclined in the range of −5 ° to + 5 ° with respect to the (100) plane with respect to the (100) plane, and the wiring directly connected to the electrode projects the [010] direction on the inclined plane. It is characterized by being formed in a long shape in the projection direction.

【0015】請求項4に記載の発明は、請求項1乃至3
のいずれかに記載の面発光素子において、前記活性層及
び該活性層の上下部に形成されるミラー層を含むレーザ
素子領域がエアポスト構造に形成され、該エアポスト上
面に前記活性層へ電流を注入するための電極が形成さ
れ、前記電極に直接接続される配線がエアポストの側面
に絶縁膜を介して形成されていることを特徴とする。
The invention described in claim 4 is the first to third aspects of the present invention.
In the surface emitting device according to any one of the above, a laser element region including the active layer and a mirror layer formed above and below the active layer is formed in an air post structure, and a current is injected into the active layer on an upper surface of the air post. And a wiring directly connected to the electrode is formed on a side surface of the air post via an insulating film.

【0016】請求項5に記載の発明は、半導体基板上に
活性層と該活性層の上下部に位置するミラー層とが積層
されるように形成され、少なくとも前記活性層がエピタ
キシャル成長によって形成され、プロトン注入によって
電流狭窄された活性層の垂直方向に光を放出する利得導
波路型の面発光レーザ素子において、[001]方向を
含みかつ(100)面に対して−5°から+5°の範囲
で傾斜した前記半導体基板の傾斜面上に形成され、前記
活性層及び該活性層の上下部に形成されるミラー層を含
むレーザ素子領域がエアポスト構造に形成され、該エア
ポストの上面に前記活性層へ電流を注入するための電極
が形成され、該エアポストの[010]方向と交差する
側面に絶縁膜を介して、前記電極へ電流を導くための配
線が[010]方向を前記傾斜面に投影した投影方向に
長尺状で前記電極に直接接続されるように形成されてい
ることを特徴とする。
According to a fifth aspect of the present invention, an active layer and a mirror layer located above and below the active layer are formed on a semiconductor substrate so that at least the active layer is formed by epitaxial growth. In a gain waveguide type surface emitting laser device which emits light in a direction perpendicular to an active layer whose current is confined by proton injection, a range of -5 ° to + 5 ° with respect to the (100) plane, including the [001] direction. A laser element region formed on an inclined surface of the semiconductor substrate inclined in the above and including the active layer and a mirror layer formed above and below the active layer is formed in an air post structure, and the active layer is formed on an upper surface of the air post. An electrode for injecting a current into the air post is formed, and a wiring for guiding a current to the electrode is provided on the side surface intersecting the [010] direction of the air post via an insulating film in the [010] direction. Is elongated in the direction of projection onto the inclined surface and is formed so as to be directly connected to the electrode.

【0017】請求項6に記載の発明は、請求項1乃至5
のいずれかに記載の面発光レーザ素子を複数個、2次元
状に配列し、各面発光素子にマトリクス配線を施したこ
とを特徴とする。
[0017] The invention according to claim 6 is the invention according to claims 1 to 5.
A plurality of the surface emitting laser elements according to any one of the above is two-dimensionally arranged, and a matrix wiring is applied to each surface emitting element.

【0018】請求項1乃至5に記載の発明によれば、半
導体基板のオフ方向と活性層に電流を注入する電極に直
接接続される配線のその電極近傍における形状を長尺状
に形成し、かつその長手方向と半導体基板のオフ方向と
が一致するようにしたので、オフ基板を用いたことによ
る光導波路内に応力が発生する方向と、光導波路内部に
注入される電流の電流密度の大きい部位とを一致させる
ことができ、それ故偏光が制御され、活性層への注入電
流量や基板温度が変化しても安定した偏光特性を維持す
ることができる。
According to the first to fifth aspects of the present invention, the shape of the wiring directly connected to the off direction of the semiconductor substrate and the electrode for injecting current into the active layer in the vicinity of the electrode is formed to be long. In addition, since the longitudinal direction thereof and the off direction of the semiconductor substrate match, the direction in which stress occurs in the optical waveguide due to the use of the off substrate and the current density of the current injected into the optical waveguide are large. The position can be matched, and therefore the polarization can be controlled, and a stable polarization characteristic can be maintained even if the amount of current injected into the active layer or the substrate temperature changes.

【0019】また請求項4及び5に記載の発明によれ
ば、レーザ素子領域がエアポスト構造に形成され、活性
層に電流を注入する電極に直接接続される配線が絶縁膜
を介して半導体基板のオフ方向に沿ってエアポストの側
面に付着するように形成したので、オフ基板を用いたこ
とによる光導波路内に応力が発生する方向とエアポスト
に配線を付着させたことによるエアポストへの応力の作
用する方向とが一致し、その結果更に強固に偏光が制御
され、活性層への注入電流量や基板温度が変化しても安
定した偏光特性を維持することができる。
According to the fourth and fifth aspects of the present invention, the laser element region is formed in an air post structure, and the wiring directly connected to the electrode for injecting current into the active layer is formed on the semiconductor substrate via the insulating film. Since it was formed so as to adhere to the side surface of the air post along the off direction, the direction in which stress is generated in the optical waveguide due to the use of the off-substrate and the effect on the air post due to the attachment of wiring to the air post act The direction coincides with the direction. As a result, the polarization is more strongly controlled, and a stable polarization characteristic can be maintained even when the amount of current injected into the active layer or the substrate temperature changes.

【0020】更に請求項6に記載の発明によれば、請求
項1乃至5に記載の発明により得られる複数個の面発光
レーザ素子を2次元状に配列するようにしたので、面発
光レーザ素子の活性層への注入電流や基板温度等の変動
に対しても安定な偏光特性を有するプリンタ、複写機等
の画像形成装置や、画像表示装置等の光源として好適
な、面発光レーザ素子アレイが得られる。
According to a sixth aspect of the present invention, the plurality of surface emitting laser elements obtained by the first to fifth aspects are arranged two-dimensionally. A surface emitting laser element array suitable as a light source for an image forming apparatus such as a printer, a copying machine, and an image display apparatus, which has a stable polarization characteristic with respect to fluctuations in the injection current into the active layer and fluctuations in the substrate temperature, etc. can get.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0022】本発明の第1の実施の形態 本発明の第1の実施の形態に係る面発光レーザ素子の構
成について説明する。まず本発明が適用される面発光レ
ーザ素子アレイの構成を図1に示す。同図において、半
導体基板としてのn-GaAs基板10は図2に示すように
(100)面(点A,B,C,Dを通る面)に対して
[010]方向に−2°(∠CAC’=2 ゜)傾斜する
ように切り出した(100)面のオフ基板であり、n-Ga
As基板10の傾斜面SI (点A,B’,C’,D’を通
る面)上には、レーザ素子の活性層に電流を注入する
[01−1]方向を傾斜面SI に投影した投影方向(以
下、投影方向は便宜上、投影前の方向で表示することに
する。)に延びたp型電極14に直接接続される長尺状
の上部配線(p型電極配線)16が形成された複数の面
発光レーザ素子(VCSEL )12が形成されている。上部
配線16は長手方向が[010]方向と略一致するよう
に形成されている。図3乃至図5に面発光レーザ素子ア
レイの構造を示す。図3は面発光レーザアレイにおける
単一の面発光レーザ素子の平面構造を示す平面図、図4
は図3におけるX−X’線による断面図、図5は図3に
おけるY−Y’線による断面図である。これらの図にお
いて、n-GaAs基板10の傾斜面上に有機金属気相成長
(MOCVD )法を用いて、n + -GaAs バッファ層20と、
n-Al0.3Ga0.7As/Al0.9Ga0.1As からなる下部分布ブラッ
グ反射膜(DBR )ミラー22と、p-Al0.3Ga0.7As/Al0.9
Ga0.1As からなる上部分布ブラッグ反射膜(DBR )ミラ
ー26とを積層する。上部DBR ミラー26と下部DBR ミ
ラー22との間には、Al0.6Ga0.4Asスペーサ層28、2
8と、さらにAl0.6Ga0.4Asスペーサ層28、28の中央
部に活性層24(Al0.12Ga0.88Asで形成された厚さ90Å
の量子井戸層を3層と、Al0.3Ga0.7Asで形成された厚さ
50Åの障壁層を4層とにより三重量子井戸構造を形成し
た。)とが設けられている。電流狭窄のため上部DBR ミ
ラー26に10μm径の領域を残してプロトンを注入
し、プロトン注入域30を形成する。次に表面からn +
-GaAs バッファ層20に到達するまでエッチングを行う
ことにより、20×35μmの[01−1]方向に長いエア
ポスト(メサ)を形成する。エアポストの側面をポリイ
ミド34で絶縁した後、p型電極14となる金属を蒸着
する。n-GaAs基板10裏面には蒸着法によって、n型電
極32を全面に形成した。上部に形成するp型電極14
は、出射光を取り出すため、約6μm径の出射窓11が
設られている。p型電極14は、図3に示すように[0
10]方向に細長い長尺状のp型電極配線16に直接接
続され、p型電極配線16は電極パッド18(図3には
図示せず、図1参照。)に接続されるように形成されて
いる。
First Embodiment of the Present Invention The structure of a surface emitting laser device according to a first embodiment of the present invention will be described. First, the configuration of a surface emitting laser element array to which the present invention is applied is shown in FIG. 2, an n-GaAs substrate 10 as a semiconductor substrate is -2 [deg.] In the [010] direction with respect to a (100) plane (a plane passing through points A, B, C, and D) as shown in FIG. CAC '= 2 ゜) Off-substrate of (100) plane cut out to be inclined, and n-Ga
The inclined surface S I of As substrate 10 on (point A, B ', C', the plane passing through the D ') is to inject current into the active layer of the laser element 01-1] direction on the inclined surface S I An elongated upper wiring (p-type electrode wiring) 16 directly connected to the p-type electrode 14 extending in the projected projection direction (hereinafter, the projection direction is referred to as a direction before the projection for convenience). A plurality of formed surface emitting laser elements (VCSEL) 12 are formed. The upper wiring 16 is formed such that its longitudinal direction substantially coincides with the [010] direction. 3 to 5 show the structure of the surface emitting laser element array. FIG. 3 is a plan view showing a planar structure of a single surface emitting laser element in the surface emitting laser array, and FIG.
3 is a sectional view taken along line XX 'in FIG. 3, and FIG. 5 is a sectional view taken along line YY' in FIG. In these figures, an n + -GaAs buffer layer 20 is formed on an inclined surface of an n-GaAs substrate 10 by using a metal organic chemical vapor deposition (MOCVD) method.
a lower distributed Bragg reflector (DBR) mirror 22 made of n-Al 0.3 Ga 0.7 As / Al 0.9 Ga 0.1 As, and p-Al 0.3 Ga 0.7 As / Al 0.9
An upper distributed Bragg reflector (DBR) mirror 26 made of Ga 0.1 As is laminated. Between the upper DBR mirror 26 and the lower DBR mirror 22, an Al 0.6 Ga 0.4 As spacer layer 28,
8 and an active layer 24 (thickness of 90 mm formed of Al 0.12 Ga 0.88 As) in the center of the Al 0.6 Ga 0.4 As spacer layers 28, 28.
With three quantum well layers and a thickness of Al 0.3 Ga 0.7 As
A triple quantum well structure was formed with four 50-degree barrier layers. ) Are provided. Protons are injected into the upper DBR mirror 26 while leaving a 10 μm diameter region due to current constriction, thereby forming a proton injection region 30. Then from the surface n +
By performing etching until reaching the -GaAs buffer layer 20, a 20 × 35 μm long air post (mesa) in the [01-1] direction is formed. After insulating the side surface of the air post with the polyimide 34, a metal to be the p-type electrode 14 is deposited. An n-type electrode 32 was formed on the entire back surface of the n-GaAs substrate 10 by vapor deposition. P-type electrode 14 formed on top
Is provided with an emission window 11 having a diameter of about 6 μm for extracting the emitted light. As shown in FIG. 3, the p-type electrode 14 has [0
10]. The p-type electrode wiring 16 is formed so as to be connected directly to the electrode pad 18 (not shown in FIG. 3; see FIG. 1). ing.

【0023】このようにして[010]方向に対して傾
斜したオフ基板10の傾斜面上にp型電極配線16の長
手方向が[010]方向と一致する面発光レーザ素子1
2が形成される。このような構造を有する複数の面発光
レーザ素子12を作製したところ、すべての面発光レー
ザ素子12がn-GaAs基板10のオフ方向であり、かつp
型電極配線16の長手方向である[010]方向に直線
偏光したレーザ光を放出した。
The surface emitting laser device 1 in which the longitudinal direction of the p-type electrode wiring 16 coincides with the [010] direction on the inclined surface of the off-substrate 10 inclined with respect to the [010] direction.
2 are formed. When a plurality of surface emitting laser elements 12 having such a structure were manufactured, all of the surface emitting laser elements 12 were in the off direction of the n-GaAs substrate 10 and p
Laser light linearly polarized in the [010] direction, which is the longitudinal direction of the mold electrode wiring 16, was emitted.

【0024】図6に面発光レーザ素子12におけるp型
電極14より活性層24に注入する注入電流Iとレーザ
出力Pとの関係を示す。図6に示すように、活性層24
への注入電流Iを増加してもレーザ出力特性は安定であ
り、偏光が完全に[010]方向に制御されていた。
FIG. 6 shows the relationship between the injection current I injected from the p-type electrode 14 into the active layer 24 in the surface emitting laser element 12 and the laser output P. As shown in FIG.
The laser output characteristics were stable even when the injection current I was increased, and the polarization was completely controlled in the [010] direction.

【0025】また基板温度を10〜60℃まで変化させて
も、その偏光方向は一定であり、偏光方向のスイッチン
グの発生や[010]方向以外に偏光された光の発振は
生じなかった。勿論、p型電極14の長軸方向[01−
1]と一致して発振する光も生じなかった。
Further, even when the substrate temperature was changed from 10 to 60 ° C., the polarization direction was constant, and switching of the polarization direction did not occur, and oscillation of light polarized in directions other than the [010] direction did not occur. Of course, the long axis direction of the p-type electrode 14 [01-
No light was emitted which coincided with [1].

【0026】本発明の第1の実施の形態に係る面発光レ
ーザ素子によれば、半導体基板のオフ方向と活性層に電
流を注入する電極に直接接続される配線のその電極近傍
における形状を長尺状に形成し、かつその長手方向と半
導体基板のオフ方向が一致するようにしたので、オフ基
板を用いたことによる光導波路内に応力が発生する方向
と、光導波路内部に注入される電流の電流密度の大きい
部位とを一致させることができ、それ故偏光が制御さ
れ、活性層への注入電流量や基板温度が変化しても安定
した偏光特性を維持することができる。
According to the surface emitting laser device according to the first embodiment of the present invention, the wiring in the off direction of the semiconductor substrate and the wiring directly connected to the electrode for injecting current into the active layer have a long shape near the electrode. It is formed in the shape of a scale, and the longitudinal direction thereof is made to coincide with the off direction of the semiconductor substrate. Therefore, the direction in which stress is generated in the optical waveguide due to the use of the off substrate, and the current injected into the optical waveguide Can be made to coincide with a portion having a large current density, and therefore, the polarization is controlled, and a stable polarization characteristic can be maintained even if the amount of current injected into the active layer or the substrate temperature changes.

【0027】また本発明の第1の実施の形態によれば、
レーザ素子領域がエアポスト構造に形成され、活性層に
電流を注入する電極に直接、接続される配線が絶縁膜を
介して半導体基板のオフ方向に沿ってエアポストの側面
に付着するように形成したので、オフ基板を用いたこと
による光導波路内に応力が発生する方向とエアポストに
配線を付着させたことによるエアポストへの応力の作用
する方向とが一致し、その結果更に強固に偏光が制御さ
れ、活性層への注入電流量や基板温度が変化しても安定
した偏光特性を維持することができる。
According to the first embodiment of the present invention,
The laser element region was formed in an air post structure, and the wiring connected directly to the electrode for injecting current into the active layer was formed so as to adhere to the side surface of the air post along the off direction of the semiconductor substrate via the insulating film. The direction in which the stress occurs in the optical waveguide due to the use of the off-substrate matches the direction in which the stress acts on the air post due to the wiring attached to the air post, and as a result, the polarization is more strongly controlled. Even if the amount of current injected into the active layer or the substrate temperature changes, stable polarization characteristics can be maintained.

【0028】尚、本実施の形態ではエアポスト構造の面
発光レーザ素子について説明したが、これに限定され
ず、例えば、フラット構造の面発光レーザ素子に適用し
ても同様の効果が得られる。
In this embodiment, the surface emitting laser device having the air post structure has been described. However, the present invention is not limited to this. For example, the same effect can be obtained by applying the present invention to a surface emitting laser device having a flat structure.

【0029】本発明の第2の実施の形態 次に本発明の第2の実施の形態に係る面発光レーザ素子
アレイの構成について説明する。図7に本発明の第2の
実施の形態に係る面発光レーザ素子アレイの平面構造を
図7に示す。同図において、半導体基板としてのGaAs基
板10’は、図8に示すように[001]方向(矢印
B’D’方向)を含みかつ(100)面(点A,B,
C,Dを通る面)に対して−2°(∠CAC’=2°)
傾斜するように切り出した(100)面の半絶縁性GaAs
のオフ基板であり、この半絶縁性基板10’の傾斜面S
I (点A,B’,C’,D’を通る面)上にはレーザ素
子の活性層に電流を注入するp型電極14’に直接、
[010]方向に延びた長尺状の上部配線16’が接続
されるように形成されており、このように構成された面
発光レーザ素子(VCSEL )12’が3行3列に3×3
個、配列されように形成されている。32’はn 型電極
配線である。図9乃至図11に面発光レーザ素子アレイ
の構造を示す。図9は面発光レーザアレイにおける単一
の面発光レーザ素子の平面構造を示す平面図、図10は
図9におけるX−X’線による断面図、図11は図9に
おけるY−Y’線による断面図である。これらの図にお
いて、半絶縁性基板10’の傾斜面上に有機金属気相成
長(MOCVD )法を用いて、n + -GaAs バッファ層20’
と、n-Al0.3Ga0.7As/Al0.9Ga0.1As からなる下部分布ブ
ラッグ反射膜(DBR )ミラー22’と、p-Al0. 3Ga0.7As
/Al0.9Ga0.1As からなる上部分布ブラッグ反射膜(DBR
)ミラー26’とを積層する。上部DBR ミラー26’
と下部DBR ミラー22’との間には、Al0. 6Ga0.4Asスペ
ーサ層28’、28’と、さらにAl0.6Ga0.4Asスペーサ
層28’、28’の中央部に活性層24 ’(Al0.12Ga
0.88Asで形成された厚さ90Åの量子井戸層を3層と、Al
0.3Ga0.7Asで形成された厚さ50Åの障壁層を4層とによ
り三重量子井戸構造を形成した。)を設けた。電流狭窄
のため上部DBR ミラー26’に10μm径の領域を残し
てプロトンを注入し、プロトン注入域を形成する。次に
表面からn + -GaAs バッファ層20’に到達するまでエ
ッチングを行うことにより、20×35μmの[01−1]
に長いエアポスト(メサ)を形成する。蒸着法を用いて
n 型電極配線32’をエアポスト近傍に設け、さらにエ
アポストの側面をポリイミド34’で絶縁した後、p型
電極14’となる金属を蒸着する。n 型電極配線32’
は、図9から明らかなようにエアポストの長軸[01−
1]に沿って形成されている。エアポストの上部に形成
するp型電極14’は、出射光を取り出すため、約6μ
m径の出射窓11’が設けられている。p型電極14’
は、図9に示すように[010]方向に長いp型電極配
線16’によって、電極パッド(図示せず)に接続され
るように形成されている。
Second Embodiment of the Present Invention Next, the configuration of a surface emitting laser element array according to a second embodiment of the present invention will be described. FIG. 7 shows a plan structure of a surface emitting laser element array according to the second embodiment of the present invention. 8, a GaAs substrate 10 'as a semiconductor substrate includes a [001] direction (arrow B'D' direction) and a (100) plane (points A, B,
−2 ° to the plane passing C and D) (面 CAC ′ = 2 °)
(100) semi-insulating GaAs cut out to be inclined
Of the semi-insulating substrate 10 '.
On I (the plane passing through points A, B ', C', and D '), directly on the p-type electrode 14' for injecting current into the active layer of the laser device,
The long upper wiring 16 'extending in the [010] direction is formed so as to be connected. The surface emitting laser element (VCSEL) 12' thus configured is 3 × 3 in three rows and three columns.
Are formed so as to be arranged. 32 'is an n-type electrode wiring. 9 to 11 show the structure of the surface emitting laser element array. 9 is a plan view showing a planar structure of a single surface emitting laser element in the surface emitting laser array, FIG. 10 is a sectional view taken along line XX 'in FIG. 9, and FIG. 11 is a sectional view taken along line YY' in FIG. It is sectional drawing. In these figures, an n + -GaAs buffer layer 20 ′ is formed on an inclined surface of a semi-insulating substrate 10 ′ by using a metal organic chemical vapor deposition (MOCVD) method.
When, n-Al 0.3 Ga 0.7 As / Al 0.9 Ga 0.1 and lower distributed Bragg reflection film (DBR) mirror 22 'consisting of As, p-Al 0. 3 Ga 0.7 As
/ Al 0.9 Ga 0.1 As upper distributed Bragg reflector (DBR
) The mirror 26 'is laminated. Upper DBR mirror 26 '
And 'Between the, Al 0. 6 Ga 0.4 As spacer layer 28' lower DBR mirror 22 'and the further Al 0.6 Ga 0.4 As spacer layer 28' 28, 28 'the active layer 24 in the central part of the' ( Al 0.12 Ga
Three quantum well layers with a thickness of 0.88 As and a thickness of 90 °
A triple quantum well structure was formed by four barrier layers each formed of 0.3 Ga 0.7 As and having a thickness of 50 °. ). Protons are injected into the upper DBR mirror 26 'to leave a 10 μm diameter region due to current confinement, thereby forming a proton injection region. Next, etching is performed until the n + -GaAs buffer layer 20 ′ is reached from the surface to obtain a 20 × 35 μm [01-1].
A long air post (mesa) is formed on the substrate. Using the evaporation method
An n-type electrode wiring 32 'is provided in the vicinity of the air post, and the side surface of the air post is insulated with polyimide 34', and then a metal for the p-type electrode 14 'is deposited. n-type electrode wiring 32 '
Is the major axis of the air post [01-
1]. The p-type electrode 14 'formed on the air post has a thickness of about 6 μ
An emission window 11 'having an m diameter is provided. p-type electrode 14 '
Is formed so as to be connected to an electrode pad (not shown) by a p-type electrode wiring 16 'long in the [010] direction as shown in FIG.

【0030】このようにして[010]方向に対して傾
斜したオフ基板10’上にp型電極配線16’の長手方
向が[010]方向と一致する面発光レーザ素子が形成
される。このような構造を有する図7に示すような3行
3列に配列された面発光レーザ素子アレイを作製したと
ころ、すべての面発光レーザ素子が半絶縁性基板10’
のオフ方向であり、かつp型電極配線16’の長手方向
である[010]方向に直線偏光したレーザ光を放出し
た。図12(A),(B)に2個の面発光レーザ素子1
2’についてp型電極14’より活性層24’に注入す
る注入電流Iとレーザ出力Pとの関係を示す。
In this manner, a surface emitting laser element in which the longitudinal direction of the p-type electrode wiring 16 'coincides with the [010] direction is formed on the off substrate 10' inclined with respect to the [010] direction. When a surface emitting laser device array having such a structure and arranged in three rows and three columns as shown in FIG. 7 was manufactured, all the surface emitting laser devices were semi-insulating substrate 10 ′.
Then, laser light linearly polarized in the [010] direction, which is the off direction of the p-type electrode wiring 16 ′, was emitted. FIGS. 12A and 12B show two surface emitting laser elements 1.
2 shows the relationship between the injection current I injected from the p-type electrode 14 'into the active layer 24' and the laser output P.

【0031】図12に示すように、2個の面発光レーザ
素子12’とも注入電流Iを増加してもレーザ出力特性
は安定であり、偏光が完全に[010]方向へ制御され
ていた。
As shown in FIG. 12, the laser output characteristics of both surface emitting laser elements 12 'were stable even when the injection current I was increased, and the polarization was completely controlled in the [010] direction.

【0032】また基板温度を10〜60℃まで変化させて
も、その偏光方向は一定であり、偏光方向のスイッチン
グの発生や[010]方向以外に偏光された光の発振は
生じなかった。更にp型電極14’の長手方向[01−
1]と一致して発振する光も生じなかった。
Even when the substrate temperature was changed from 10 to 60 ° C., the polarization direction was constant, and switching of the polarization direction did not occur, and oscillation of light polarized in directions other than the [010] direction did not occur. Further, the longitudinal direction of the p-type electrode 14 '[01-
No light was emitted which coincided with [1].

【0033】尚、本発明の実施の形態では、半導体基板
のオフ方向とp型電極配線方向を[010]方向とした
が、これに限定されることなく例えば半導体基板のオフ
方向とp型電極配線方向を[011]、[01−1]方
向にあわせても何ら問題はない。本発明では半導体基板
のオフ方向と面発光レーザ素子の活性層に電流を注入す
るp-型配線の長手方向とを一致させることが肝要であ
る。
In the embodiment of the present invention, the off direction of the semiconductor substrate and the p-type electrode wiring direction are set to the [010] direction. However, the present invention is not limited to this. There is no problem even if the wiring direction is aligned with the [011] and [01-1] directions. In the present invention, it is important that the off direction of the semiconductor substrate coincides with the longitudinal direction of the p-type wiring for injecting current into the active layer of the surface emitting laser element.

【0034】また本発明の第1、第2の実施の形態では
利得波路型の面発光レーザ素子において活性層が、(1
00)面に対して[001]方向を含む面内において−
2°傾斜した半導体基板面上に形成されたオフ基板につ
いて説明したが、これに限定されず、活性層を、(10
0)面に対して[001]方向を含む面内において−5
°から+5°の範囲で傾斜した半導体基板面上に形成し
た場合においても同様の効果が得られた。
In the first and second embodiments of the present invention, the active layer in the gain waveguide type surface emitting laser device is (1)
00) In the plane including the [001] direction with respect to the plane,
Although the off-substrate formed on the semiconductor substrate surface inclined at 2 ° has been described, the present invention is not limited to this.
0) −5 in the plane including the [001] direction with respect to the plane
The same effect was obtained when the semiconductor device was formed on a semiconductor substrate surface inclined at an angle of from + 5 ° to + 5 °.

【0035】また本発明に係る面発光レーザ素子及び面
発光レーザアレイは、第1、第2の実施の形態に示した
以外の構造にも有効である。例えばエアポストの断面形
状を円や正方形等の対称形状にしてもよく、エアポスト
の長手方向をオフ方向にあわせてもよい。この例を図1
3に示す。図13において第1、第2の実施の形態と同
様にオフ方向が[010]である半導体基板10上に断
面が円形状の面発光素子50、51と、断面が長方形状
の面発光素子52、54が形成されている。面発光素子
50、51、52、54の上部電極(p型電極)50
A,51A,52A,54Aはそれぞれ、半導体基板1
0のオフ方向と同じ[010]方向に形成された配線6
0、61、62、63に接続されており、これらの配線
60、61、62、63は電極パッド70にそれぞれ、
接続されている。各電極パッド70より各p型電極50
A,51A,52A,54Aに電流が供給され、各面発
光レーザ素子の活性層に電流が注入されるようになって
いる。
The surface emitting laser device and the surface emitting laser array according to the present invention are also effective for structures other than those shown in the first and second embodiments. For example, the cross-sectional shape of the air post may be a symmetrical shape such as a circle or a square, and the longitudinal direction of the air post may be aligned with the off direction. This example is shown in FIG.
3 is shown. In FIG. 13, similarly to the first and second embodiments, surface light emitting devices 50 and 51 having a circular cross section and surface light emitting devices 52 having a rectangular cross section are formed on a semiconductor substrate 10 whose off direction is [010]. , 54 are formed. Upper electrode (p-type electrode) 50 of surface light emitting elements 50, 51, 52, 54
A, 51A, 52A and 54A are the semiconductor substrates 1 respectively.
Wiring 6 formed in the same [010] direction as the 0 off direction
0, 61, 62, and 63, and these wirings 60, 61, 62, and 63 are connected to the electrode pads 70, respectively.
It is connected. Each p-type electrode 50 from each electrode pad 70
A current is supplied to A, 51A, 52A, and 54A, and the current is injected into the active layer of each surface emitting laser element.

【0036】本発明の第2の実施の形態にによれば、本
発明により得られる複数個の面発光レーザ素子を2次元
状に配列するようにしたので、面発光レーザ素子の活性
層への注入電流や基板温度等の変動に対しても安定な偏
光特性を有する、プリンタ、複写機等の画像形成装置
や、画像表示装置等の光源として好適な面発光レーザ素
子アレイが得られる。
According to the second embodiment of the present invention, a plurality of surface emitting laser elements obtained by the present invention are arranged two-dimensionally, so that the surface emitting laser element A surface-emitting laser element array having stable polarization characteristics with respect to fluctuations in injection current, substrate temperature, and the like and suitable as a light source for an image forming apparatus such as a printer or a copying machine or an image display apparatus can be obtained.

【0037】[0037]

【発明の効果】請求項1乃至5に記載の発明によれば、
半導体基板のオフ方向と活性層に電流を注入する電極に
直接接続される配線のその電極近傍における形状を長尺
状に形成し、かつその長手方向と半導体基板のオフ方向
とが一致するようにしたので、オフ基板を用いたことに
よる光導波路内に応力が発生する方向と、光導波路内部
に注入される電流の電流密度の大きい部位とを一致させ
ることができ、それ故偏光が制御され、活性層への注入
電流量や基板温度が変化しても安定した偏光特性を維持
することができる。
According to the first to fifth aspects of the present invention,
The shape of the wiring directly connected to the electrode for injecting current into the active layer and the off direction of the semiconductor substrate is formed in a long shape in the vicinity of the electrode, and the longitudinal direction and the off direction of the semiconductor substrate coincide with each other. Therefore, the direction in which the stress is generated in the optical waveguide due to the use of the off-substrate can be matched with the portion where the current density of the current injected into the optical waveguide is large, and therefore the polarization is controlled. Even if the amount of current injected into the active layer or the substrate temperature changes, stable polarization characteristics can be maintained.

【0038】また請求項4及び5に記載の発明によれ
ば、レーザ素子領域がエアポスト構造に形成され、活性
層に電流を注入する電極に直接接続される配線が絶縁膜
を介して半導体基板のオフ方向に沿ってエアポストの側
面に付着するように形成したので、オフ基板を用いたこ
とによる光導波路内に応力が発生する方向とエアポスト
に配線を付着させたことによるエアポストへの応力の作
用する方向とが一致し、その結果更に強固に偏光が制御
され、活性層への注入電流量や基板温度が変化しても安
定した偏光特性を維持することができる。
According to the fourth and fifth aspects of the present invention, the laser element region is formed in an air post structure, and the wiring directly connected to the electrode for injecting current into the active layer is formed on the semiconductor substrate via the insulating film. Since it was formed so as to adhere to the side surface of the air post along the off direction, the direction in which stress is generated in the optical waveguide due to the use of the off-substrate and the effect on the air post due to the attachment of wiring to the air post act The direction coincides with the direction. As a result, the polarization is more strongly controlled, and a stable polarization characteristic can be maintained even when the amount of current injected into the active layer or the substrate temperature changes.

【0039】更に請求項6に記載の発明によれば、請求
項1乃至6に記載の発明により得られる複数個の面発光
レーザ素子を2次元状に配列するようにしたので、面発
光レーザ素子の活性層への注入電流や基板温度等の変動
に対しても安定な偏光特性を有するプリンタ、複写機等
の画像形成装置や、画像表示装置等の光源として好適
な、面発光レーザ素子アレイが得られる。
According to a sixth aspect of the present invention, a plurality of surface emitting laser elements obtained by the first to sixth aspects of the present invention are arranged two-dimensionally. A surface emitting laser element array suitable as a light source for an image forming apparatus such as a printer, a copying machine, and an image display apparatus, which has a stable polarization characteristic with respect to fluctuations in the injection current into the active layer and fluctuations in the substrate temperature, etc. can get.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る面発光レーザ
素子の構成を示す説明図。
FIG. 1 is an explanatory diagram showing a configuration of a surface emitting laser device according to a first embodiment of the present invention.

【図2】図1に示すオフ基板の傾斜方向を示す説明図。FIG. 2 is an explanatory view showing an inclination direction of an off-substrate shown in FIG. 1;

【図3】本発明の第1の実施の形態に係る面発光レーザ
素子の平面構造を示す平面図。
FIG. 3 is a plan view showing a planar structure of the surface emitting laser device according to the first embodiment of the present invention.

【図4】図3におけるX−X’線による断面図。FIG. 4 is a sectional view taken along line X-X ′ in FIG. 3;

【図5】図3におけるY−Y’線による断面図。FIG. 5 is a sectional view taken along line Y-Y ′ in FIG. 3;

【図6】本発明の第1の実施の形態に係る面発光レーザ
素子の活性層への注入電流に対するレーザ出力の関係の
測定例を示す特性図。
FIG. 6 is a characteristic diagram showing a measurement example of a relationship between a laser output and an injection current into an active layer of the surface emitting laser element according to the first embodiment of the present invention.

【図7】本発明の第2の実施の形態に係る面発光レーザ
素子アレイの平面構造を示す平面図。
FIG. 7 is a plan view showing a planar structure of a surface emitting laser element array according to a second embodiment of the present invention.

【図8】図7に示すオフ基板の傾斜方向を示す説明図。FIG. 8 is an explanatory view showing an inclination direction of the off-substrate shown in FIG. 7;

【図9】図7に示す面発光レーザアレイにおける単一の
面発光レーザ素子の平面構造を示す平面図。
FIG. 9 is a plan view showing a planar structure of a single surface emitting laser element in the surface emitting laser array shown in FIG. 7;

【図10】図9におけるX−X’線による断面図。FIG. 10 is a sectional view taken along line X-X ′ in FIG. 9;

【図11】図9におけるY−Y’線による断面図。FIG. 11 is a sectional view taken along line Y-Y ′ in FIG. 9;

【図12】2個の面発光レーザ素子について活性層に注
入する注入電流Iに対するレーザ出力Pの関係の測定例
を示す特性図。
FIG. 12 is a characteristic diagram showing a measurement example of a relationship between a laser output P and an injection current I injected into an active layer for two surface emitting laser elements.

【図13】本発明に係る面発光レーザ素子の変形例の平
面構造を示す平面図。
FIG. 13 is a plan view showing a planar structure of a modification of the surface emitting laser element according to the present invention.

【図14】従来の面発光レーザ素子アレイの具体的な平
面構成を示す平面図。
FIG. 14 is a plan view showing a specific plan configuration of a conventional surface emitting laser element array.

【図15】従来の面発光レーザ素子アレイの各面発光レ
ーザ素子の偏光状態の測定結果を示す説明図。
FIG. 15 is an explanatory view showing a measurement result of a polarization state of each surface emitting laser element of the conventional surface emitting laser element array.

【図16】従来の面発光レーザ素子アレイの各面発光レ
ーザ素子の偏光状態の測定結果を示す説明図。
FIG. 16 is an explanatory view showing a measurement result of a polarization state of each surface emitting laser element of the conventional surface emitting laser element array.

【図17】従来のオフ基板上に形成された面発光レーザ
素子アレイの平面構造を示す平面図。
FIG. 17 is a plan view showing a planar structure of a conventional surface emitting laser element array formed on an off substrate.

【図18】図17に示すオフ基板の傾斜方向を示す説明
図。
FIG. 18 is an explanatory view showing an inclination direction of the off-substrate shown in FIG. 17;

【図19】図17に示す面発光レーザ素子アレイの各面
発光レーザ素子の偏光特性の測定結果を示す特性図。
FIG. 19 is a characteristic diagram showing measurement results of polarization characteristics of each surface emitting laser element of the surface emitting laser element array shown in FIG.

【符号の説明】[Explanation of symbols]

10 n-GaAS 基板 11 射出窓 12 面発光レーザ素子 14 p型電極 16 上部配線(p型電極用配線) 18 p型電極パッド 20 n + GaAsバッファ層 22 下部分布ブラッグ反射膜(DBR )ミラー 24 活性層 26 上部分布ブラッグ反射膜(DBR )ミラー 28 スペーサ層 30 プロトン注入域 32 n型配線 34 絶縁膜Reference Signs List 10 n-GaAS substrate 11 emission window 12 surface emitting laser element 14 p-type electrode 16 upper wiring (wiring for p-type electrode) 18 p-type electrode pad 20 n + GaAs buffer layer 22 lower distributed Bragg reflection film (DBR) mirror 24 active Layer 26 Upper distributed Bragg reflection film (DBR) mirror 28 Spacer layer 30 Proton injection region 32 N-type wiring 34 Insulating film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に活性層と該活性層の上下
部に位置するミラー層とが積層されるように形成され、
該活性層の垂直方向に光を放出する面発光レーザ素子に
おいて、 前記活性層及びミラー層が前記半導体基板の基準となる
結晶軸を含む面に対して所定角度傾斜した前記半導体基
板の傾斜面上に形成され、前記活性層の上部に形成され
た前記ミラー層を介して前記活性層へ電流を注入するた
めの電極と、前記電極へ電流を導くための配線とが前記
傾斜面上に形成され、 前記配線のうち前記電極に直接接続される配線が長尺状
で、かつ該長手方向が前記傾斜面の傾斜方向に略一致す
るように形成されていることを特徴とする面発光レーザ
素子。
An active layer is formed on a semiconductor substrate so that a mirror layer located above and below the active layer is stacked,
A surface emitting laser device that emits light in a direction perpendicular to the active layer, wherein the active layer and the mirror layer are inclined at a predetermined angle with respect to a plane including a crystal axis that is a reference of the semiconductor substrate. An electrode for injecting a current into the active layer through the mirror layer formed on the active layer, and a wiring for leading a current to the electrode are formed on the inclined surface. A surface-emitting laser element, wherein a wire directly connected to the electrode among the wires is formed in a long shape, and the longitudinal direction thereof is substantially coincident with the inclination direction of the inclined surface.
【請求項2】 前記半導体基板材の基準となる結晶軸を
含む面は(100)面であることを特徴とする請求項1
に記載の面発光レーザ素子。
2. The semiconductor device according to claim 1, wherein a plane including a crystal axis as a reference of the semiconductor substrate material is a (100) plane.
4. The surface emitting laser device according to item 1.
【請求項3】 前記傾斜面は、[001]方向を含みか
つ(100)面に対して−5°から+5°の範囲で傾斜
するように形成され、前記電極に直接接続される配線が
[010]方向を前記傾斜面に投影した投影方向に長尺
状に形成されていることを特徴とする請求項2に記載の
面発光レーザ素子。
3. The inclined surface is formed so as to include a [001] direction and to be inclined in a range of −5 ° to + 5 ° with respect to a (100) plane, and a wiring directly connected to the electrode is [ The surface emitting laser device according to claim 2, wherein the surface emitting laser device is formed to be elongated in a projection direction in which a [010] direction is projected onto the inclined surface.
【請求項4】 前記活性層及び該活性層の上下部に形成
されるミラー層を含むレーザ素子領域がエアポスト構造
に形成され、該エアポスト上面に前記活性層へ電流を注
入するための電極が形成され、前記電極に直接接続され
る配線がエアポストの側面に絶縁膜を介して形成されて
いることを特徴とする請求項1乃至3のいずれかに記載
の面発光レーザ素子。
4. A laser element region including the active layer and a mirror layer formed above and below the active layer is formed in an air post structure, and an electrode for injecting a current into the active layer is formed on an upper surface of the air post. 4. The surface emitting laser device according to claim 1, wherein a wiring directly connected to the electrode is formed on a side surface of the air post via an insulating film.
【請求項5】 半導体基板上に活性層と該活性層の上下
部に位置するミラー層とが積層されるように形成され、
少なくとも前記活性層がエピタキシャル成長によって形
成され、プロトン注入によって電流狭窄された活性層の
垂直方向に光を放出する利得導波路型の面発光レーザ素
子において、 [001]方向を含みかつ(100)面に対して−5°
から+5°の範囲で傾斜した前記半導体基板の傾斜面上
に形成され、前記活性層及び該活性層の上下部に形成さ
れるミラー層を含むレーザ素子領域がエアポスト構造に
形成され、該エアポストの上面に前記活性層へ電流を注
入するための電極が形成され、該エアポストの[01
0]方向と交差する側面に絶縁膜を介して、前記電極へ
電流を導くための配線が[010]方向を前記傾斜面に
投影した投影方向に長尺状で前記電極に直接接続される
ように形成されていることを特徴とする面発光レーザ素
子。
5. An active layer formed on a semiconductor substrate and a mirror layer located above and below the active layer are stacked.
At least the active layer is formed by epitaxial growth and emits light in the vertical direction of the active layer confined by proton injection. The gain waveguide type surface emitting laser element includes a [001] direction and has a (100) plane. -5 °
A laser element region formed on an inclined surface of the semiconductor substrate inclined in a range of from + 5 ° to the active region and a mirror layer formed above and below the active layer is formed in an air post structure; An electrode for injecting current into the active layer is formed on the upper surface, and [01] of the air post is formed.
A wiring for guiding a current to the electrode through an insulating film on a side surface intersecting the [0] direction is directly connected to the electrode in a long shape in a projection direction in which the [010] direction is projected onto the inclined surface. A surface emitting laser element formed on a substrate.
【請求項6】 請求項1乃至5のいずれかに記載の面発
光レーザ素子を複数個、2次元状に配列し、各面発光素
子にマトリクス配線を施したことを特徴とする面発光レ
ーザ素子アレイ。
6. A surface-emitting laser device comprising a plurality of surface-emitting laser devices according to claim 1 arranged two-dimensionally, and each surface-emitting device provided with a matrix wiring. array.
JP20385098A 1998-07-17 1998-07-17 Surface emitting laser element and surface emitting laser element array Expired - Fee Related JP3791193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20385098A JP3791193B2 (en) 1998-07-17 1998-07-17 Surface emitting laser element and surface emitting laser element array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20385098A JP3791193B2 (en) 1998-07-17 1998-07-17 Surface emitting laser element and surface emitting laser element array

Publications (2)

Publication Number Publication Date
JP2000036637A true JP2000036637A (en) 2000-02-02
JP3791193B2 JP3791193B2 (en) 2006-06-28

Family

ID=16480740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20385098A Expired - Fee Related JP3791193B2 (en) 1998-07-17 1998-07-17 Surface emitting laser element and surface emitting laser element array

Country Status (1)

Country Link
JP (1) JP3791193B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6898443B2 (en) 2001-02-28 2005-05-24 Sanyo Electric Co., Ltd. Portable telephone device
JP2006245488A (en) * 2005-03-07 2006-09-14 Ricoh Co Ltd Two-dimensional face emission laser array, optical scanning device, and image formation device
JP2007027362A (en) * 2005-07-15 2007-02-01 Ricoh Co Ltd Surface emitting semiconductor laser array
JP2008098338A (en) * 2006-10-11 2008-04-24 Furukawa Electric Co Ltd:The Surface emitting laser element and surface emitting laser element array
JP2008177430A (en) * 2007-01-19 2008-07-31 Sony Corp Light-emitting element and its fabrication process, light-emitting element assembly and its fabrication process
JP2009259857A (en) * 2008-04-11 2009-11-05 Furukawa Electric Co Ltd:The Surface emitting laser element and surface emitting laser element array
JP2011066457A (en) * 2002-07-31 2011-03-31 Osram Opto Semiconductors Gmbh Surface emitting semiconductor laser chip and method of manufacturing the same
JP2012033915A (en) * 2010-07-06 2012-02-16 Ricoh Co Ltd Surface-emitting laser, surface-emitting laser array, optical scanner, and image-forming device
JP2012156541A (en) * 2012-04-09 2012-08-16 Furukawa Electric Co Ltd:The Surface emission-type laser device and surface emission-type laser device array
CN102891434A (en) * 2011-07-22 2013-01-23 富士施乐株式会社 Laser array, laser device, optical transmission apparatus, and information processing apparatus
JP2013030735A (en) * 2011-06-24 2013-02-07 Ricoh Co Ltd Plane emission laser array and image formation apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2131458B1 (en) 2008-06-03 2017-08-16 Ricoh Company, Ltd. Vertical cavity surface emitting laser (VCSEL), VCSEL array device, optical scanning apparatus, and image forming apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6898443B2 (en) 2001-02-28 2005-05-24 Sanyo Electric Co., Ltd. Portable telephone device
JP2011066457A (en) * 2002-07-31 2011-03-31 Osram Opto Semiconductors Gmbh Surface emitting semiconductor laser chip and method of manufacturing the same
JP2006245488A (en) * 2005-03-07 2006-09-14 Ricoh Co Ltd Two-dimensional face emission laser array, optical scanning device, and image formation device
JP2007027362A (en) * 2005-07-15 2007-02-01 Ricoh Co Ltd Surface emitting semiconductor laser array
JP2008098338A (en) * 2006-10-11 2008-04-24 Furukawa Electric Co Ltd:The Surface emitting laser element and surface emitting laser element array
JP2008177430A (en) * 2007-01-19 2008-07-31 Sony Corp Light-emitting element and its fabrication process, light-emitting element assembly and its fabrication process
US8183074B2 (en) 2007-01-19 2012-05-22 Sony Corporation Light emitting element, method for manufacturing light emitting element, light emitting element assembly, and method for manufacturing light emitting element assembly
JP2009259857A (en) * 2008-04-11 2009-11-05 Furukawa Electric Co Ltd:The Surface emitting laser element and surface emitting laser element array
JP2012033915A (en) * 2010-07-06 2012-02-16 Ricoh Co Ltd Surface-emitting laser, surface-emitting laser array, optical scanner, and image-forming device
JP2013030735A (en) * 2011-06-24 2013-02-07 Ricoh Co Ltd Plane emission laser array and image formation apparatus
CN102891434A (en) * 2011-07-22 2013-01-23 富士施乐株式会社 Laser array, laser device, optical transmission apparatus, and information processing apparatus
JP2013026487A (en) * 2011-07-22 2013-02-04 Fuji Xerox Co Ltd Plane emission-type semiconductor laser array, plane emission-type semiconductor laser device, optical transmission device and information processor
JP2012156541A (en) * 2012-04-09 2012-08-16 Furukawa Electric Co Ltd:The Surface emission-type laser device and surface emission-type laser device array

Also Published As

Publication number Publication date
JP3791193B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP3791584B2 (en) Surface emitting semiconductor laser and surface emitting semiconductor laser array
US5317170A (en) High density, independently addressable, surface emitting semiconductor laser/light emitting diode arrays without a substrate
US6208681B1 (en) Highly compact vertical cavity surface emitting lasers
US5068869A (en) Surface-emitting laser diode
US20060187991A1 (en) Laterally oxidized vertical cavity surface emitting lasers
US5309468A (en) Laser diode for producing an output optical beam in a direction substantially perpendicular to epitaxial layers
US8059689B2 (en) Vertical cavity surface emitting laser, vertical cavity surface emitting laser device, optical transmission device, and information processing apparatus
JP3791193B2 (en) Surface emitting laser element and surface emitting laser element array
JPH01264285A (en) Surface light-emitting type semiconductor laser
US20080019410A1 (en) Surface emitting semiconductor device
US4797890A (en) Semiconductor light emitting device with vertical light emission
CN102891434A (en) Laser array, laser device, optical transmission apparatus, and information processing apparatus
US4977570A (en) Semiconductor laser array with stripe electrodes having pads for wire bonding
JPH055391B2 (en)
JPS63199480A (en) Semiconductor laser scanning device
US6744798B2 (en) Surface-type light amplifer device and method of manufacture thereof
JP2006269988A (en) Semiconductor laser
JPH06103775B2 (en) Semiconductor laser array device
JP3546628B2 (en) Surface-emitting type semiconductor laser device
JPH0786691A (en) Light emitting device
US4360920A (en) Terraced substrate semiconductor laser
JP2000133876A (en) Surface-emitting laser device
JPH09139547A (en) Surface light emitting device and its manufacture
KR100428253B1 (en) Surface emitting semiconductor laser array and method for manufacturing the same
JPS62269381A (en) Manufacture of semiconductor laser device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees