JP3791122B2 - garbage bag - Google Patents

garbage bag Download PDF

Info

Publication number
JP3791122B2
JP3791122B2 JP14315297A JP14315297A JP3791122B2 JP 3791122 B2 JP3791122 B2 JP 3791122B2 JP 14315297 A JP14315297 A JP 14315297A JP 14315297 A JP14315297 A JP 14315297A JP 3791122 B2 JP3791122 B2 JP 3791122B2
Authority
JP
Japan
Prior art keywords
weight
melting point
polylactic acid
acid
aliphatic polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14315297A
Other languages
Japanese (ja)
Other versions
JPH10316739A (en
Inventor
義和 近藤
宏史 梶山
秀樹 日名子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP14315297A priority Critical patent/JP3791122B2/en
Publication of JPH10316739A publication Critical patent/JPH10316739A/en
Application granted granted Critical
Publication of JP3791122B2 publication Critical patent/JP3791122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Bag Frames (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自然分解性であるため自然環境下で分解するので廃棄が容易であり、且つ自然環境の保護に貢献する新規ごみ袋に関する。
【0002】
【従来の技術】
合成樹脂や合成繊維からなるごみ袋や水切り袋など(以下ごみ袋と記す)は、家庭のごみ、生ごみ、産業ごみなどを集め廃棄するために多量に用いられている。しかし合成樹脂は自然環境下では分解しにくいため、使用後の廃棄が困難で、燃焼時の発熱も大きいため環境汚染の原因にもなっている。このため、自然環境下で分解する脂肪族ポリエステルからなる樹脂を用いたごみ袋や水切り袋が、例えば特開平4−362080号公報、特開平6−32357号公報、特開平8−188706号公報などに提案されている。
【0003】
これらの公報では、自然分解性樹脂の最も好ましい例(実施例など)として、ポリカプロラクトン及びポリブチレンサクシネートが示されている。しかし、ポリカプロラクトン及びポリブチレンサクシネートは、融点が低いため溶融紡糸や溶融製膜に問題がある上に、性能や耐熱性にも劣り、しかも原料が石油に依存するため地球環境保護の見地から問題が多い。
【0004】
本発明者等の知見では、繊維やフィルム性能及び耐熱性に優れるのでごみ袋の材料として特に好ましいと期待される分解性ポリマーとして、ポリ乳酸が挙げられる。更にポリ乳酸は、原料が農産物(澱粉など)であるから、地球環境保護の見地からも好ましい(なお上記公報にも、列挙された多数の脂肪族ポリエステルの中の一つとしてポリ乳酸が示されているが、特に好適であるとは記されていない)。しかし、ポリ乳酸のホモポリマーは(1)融点(175〜185℃)が高すぎて分解温度に近く、溶融重合、溶融紡糸および溶融製膜が困難である、(2)ポリマーが硬く脆く紡糸や延伸が困難で、フィルムも固く脆く使用中破れるなど取扱い難く実用性に乏しい、(3)さらに自然環境下での分解速度が遅いため廃棄が困難、などの多くの問題がある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、上記ポリ乳酸の長所を生かし且つ問題点を改良した新規なポリマー組成物からなる自然分解性のごみ袋を提供することにある。
【0006】
【課題を解決するための手段】
本発明の目的は「融点150℃以上の結晶性ポリ乳酸(A)及び/又は鎖状ジオールと脂肪族ジカルボン酸を主成分とし融点140℃以下の脂肪族ポリエステル(B)と、上記ポリ乳酸(A)と上記脂肪族ポリエステル(B)とのブロック共重合物(C)との混合物であって、かつ、乳酸由来の成分の比率が50〜99重量%であり、脂肪族ポリエステル由来の成分の比率が50〜99重量%であるポリマー組成物から製造された繊維及び/又はフィルムを50重量%以上含有する自然分解性ごみ袋によって達成される。
【0007】
【発明の実施の形態】
ここで融点150℃以上の結晶性ポリ乳酸(A)の例としては、ポリL−乳酸、ポリD−乳酸、及びそれらに少量(50重量%以下、特に30重量%以下、多くの場合20重量%以下)の異種ポリエステル重合原料を、融点を150℃以上に保つように留意しつつ、共重合したものが挙げられる。結晶性ポリ乳酸(A)の融点は、耐熱性の見地からは高いことが好ましく、160℃以上が特に好ましく、170℃以上が最も好ましい。このような高融点のポリ乳酸を用いても、上記低融点の脂肪族ポリエステルと組み合わせるため、溶融流動性や柔軟性などが改善されるので何ら問題はなく、むしろ耐熱性などの点で好ましい結果が得られることが多い。
【0008】
鎖状ジオールとは芳香族環状構造を持たないジオールで、直鎖及び側鎖を持つ脂肪族ジオール、エーテル結合を持つジオール、カーボネート結合を持つジオール等が挙げられる。脂肪族ジオールの例としては、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、ネオペンチルグリコール、オクタンジオール等の他、不飽和結合を持つものなどが挙げられ、エーテル結合を持つジオールとしては、ジエチレングリコール、トリエチレングリコール、エチレン/プロピレングリコール、ジプロピレングリコール、ジヒドロキシエトキシブタン、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレン/フロピレングリコールなどのようなポリアルキレンエーテルのオリゴマー及びポリマーが挙げられる。カーボネート結合を持つジオールとしては、ポリプロピレンカーボネート、ポリブチレンカーボネート、ポリヘキサンカーボネートなどの脂肪族ポリカーボネートのオリゴマーおよびポリマーが挙げられる。
【0009】
脂肪族ジカルボン酸の例としては、サクシン酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸などの他、側鎖を持つものや不飽和結合を持つものも挙げられる。
【0010】
上記鎖状ジオール及び脂肪族ジカルボン酸は、結晶性ポリ乳酸の共重合原料としても用いられる。それら以外の脂肪族ポリエステル原料、例えばグリコール酸、グリコリド、乳酸の光学異性体、ラクチドの光学異性体、ブチロラクトン、カプロラクトン、ヒドロキシブチルカルボン酸などのヒドロキシアルキルカルボン酸及びその環状エステルも共重合原料として利用可能である。又、少量(10重量%程度以下)ならば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、スルホイソフタル酸などの芳香族原料も応用可能である。
【0011】
ポリマーの融点は、十分に熱処理したり延伸した乾燥試料を用い、示差熱量計(以下DSCと記す)を用い、試料10mg、窒素雰囲気中、昇温速度10℃/分で測定した時の、ポリマーの結晶の溶融による吸熱ピークのピーク値温度とする。純粋なポリ乳酸(ポリL−乳酸、ポリD−乳酸)の融点は185℃前後とされるが、通常は若干の光学異性体が反応中のラセミ化現象などで生成して共重合体化されるため、融点は175〜180℃を示すことが多い。
【0012】
脂肪族ジオールと脂肪族ジカルボン酸とを組み合わせたポリエステルの多くは、融点が140℃以下、ガラス転移点も常温以下で、上記(低融点)脂肪族ポリエステル(B)として本発明に用いることが出来る。その具体例としては、ポリエチレンサクシネート(融点約102℃)、ポリエチレンアジペート(同49℃)、ポリエチレンスベレート(同65℃)、ポリエチレンスベレート(同65℃)、ポリエチレンアゼレート(同52℃)、ポリエチレンセバケート(同72℃)、ポリブチレンサクシネート(同116℃)、ポリブチレンアジペート(同72℃)、ポリブチレンセバケート(同66℃)、ポリブチレンアゼレート(同52℃)、ポリヘキサンセバケート(同74℃)などが挙げられる。これらはホモポリマーの例だが、勿論共重合体も用いられる。なお共重合体等で非結晶性のものは、ガラス転移点を融点と見なす。
【0013】
本発明のごみ袋に用いる特定の繊維及びフィルムを形成する組成物は、上記の比較的融点の高いポリ乳酸(A)と、低融点の脂肪族ポリエステル(B)とを成分とする下記の5種類に大別される。
【0014】
1.(A)と(B)との混合物。混合比率としては、好ましくは(A)が70重量%以上、更に好ましくは85重量%以上である。85重量%未満では、(A)と(B)との相溶性が乏しく、成型物が脆かったり、或いは不透明になりがちである。
2.(A)と(B)とのブロック共重合物(C)。(A)と(B)との反応比率は、(A)が50〜99重量%、(B)が1〜50重量%の範囲であれば、大きな問題はないが(B)の比率が大きいところでは、耐熱性や結晶性が低下し用途、目的によっては制限を受けるために、(B)の比率は、高々40重量%が好ましく、更に好ましくは30重量%である。
3.(A)と(C)との混合物。ここで使用する(C)としては、(B)を高々50重量%含有するブロック共重合体が使用できるが、(A)と(C)との混合物の中での脂肪族ポリエステル由来の成分比率としては、高々50重量%、好ましくは高々40重量%、更に好ましくは、高々30重量%である。
4.(B)と(C)との混合物。ここで使用する(C)も上記3の組成と同じで良く、又混合物中の脂肪族ポリエステル由来の成分量も同様である。
5.(A)、(B)及び(C)の3成分混合物。ここで使用する(C)の量も、上記3の組成と同じで良い。更に、三者混合系での脂肪族ポリエステル由来の成分比率は、高々50重量%、好ましくは高々40重量%である。更に好ましくは、(B)/(A)+(B)=0.1〜0.5よりなる(C)を3成分混合系中の(B)の量の0.2〜0.7程度使用するのがよい。
【0015】
勿論、本発明のごみ袋にもちいる繊維やフィルムは一種類に限らず、組成の異なる複数の繊維やフィルムが混合使用されていても良い。同様に、複数のポリマー組成物が複合された複合繊維や複合フィルムも応用可能であり、本発明に包含される。
【0016】
ポリ乳酸(A)と脂肪族ポリエステル(B)との混合方法は特に限定されないが、両者を溶液状態で機械的に攪拌してもよく、又流れの分割と合流を多段的に繰り返す静止混合装置を応用してもよく、両者を併用してもよい。溶融混合は能率的で好ましいが、ポリマー同志が反応してランダム共重合体化するのを防ぐため、短時間(例えば20分以内、特に10分以内)に混合可能な装置、例えば2軸押出機などを用いることが好ましい。同様に、一方のポリマー(例えば(B))の末端を封鎖し反応性を抑制したものを、他方のポリマー(例えば(A))の重合中に添加混合することも出来る。
【0017】
ポリ乳酸(A)と脂肪族ポリエステル(B)のブロック共重合方法も特に限定されない。例えば、L又はDラクチドを溶融重合してポリ乳酸を製造する際に、重合系に分子末端の一方又は双方に水酸基を持つ脂肪族ポリエステル(B)を添加混合すれば、その末端水酸基からラクチドの重合が開始され、容易にブロック共重合体が得られる。仮に両者が未反応であれば、両者の混合物が得られ、一部が反応し一部が未反応であれば、「両者のブロック共重合物」と「両者の混合物」との混合物が得られる。しかし、反応が過度に進行し完全なランダム共重合体にまで至らぬように注意が必要である。
【0018】
同様に、共に末端に水酸基を持つポリ乳酸(A)と脂肪族ポリエステルを混合し、それにジイソシアナートやジカルボン酸クロリドなどの多官能反応剤(鎖伸長剤)を添加、反応せしめて、両成分を連結しブロック共重合体化することが出来る。両成分の溶融混合時のエステル交換反応によるブロック共重合体化については、既に記した通りである。両成分が反応しているかどうかは、GPC分析などでかなり判定出来る。過度にランダム共重合が進行すると、DSC分析により融点の急激な低下と溶融吸熱量(結晶性)の著しい減少が見られる。ブロック共重合による融点の低下は、比較的緩やかである。
【0019】
前述の組成物の中でも、特にポリ乳酸(A)と脂肪族ポリエステル(B)のブロック共重合体(C)は、溶融流動性および混和性にすぐれ、均一なものが得られやすく、製造が容易であるという特徴を有する。更に上記ブロック共重合体(C)は、成分(A)及び成分(B)との混和性に優れるので、(A)と(C)との混合物、(B)と(C)との混合物、(A)、(B)及び(C)の3成分混合物は、本発明の目的に特に好ましい。
【0020】
本発明のごみ袋を形成する主要な材料である繊維及びフィルムは、ポリ乳酸(A)と、低融点の脂肪族ポリエステル(B)の2つを主要な構成成分とする。低融点の脂肪族ポリエステル(B)の導入により、前記のポリ乳酸の問題点、即ち製品が硬く脆いこと、溶融流動性が低く溶融重合や溶融成型が困難、自然分解速度が低いことなどが大幅に改善され、流動性、柔軟性、耐衝撃性、自然分解性なども改善され、しかも紡糸性や製膜性の良さ、耐熱性や強度に優れることなどのポリ乳酸の長所が十分に発揮される。
【0021】
ごみ処理では、堆肥化可能な有機物ごみは堆肥にして再利用することが最も好ましく、ごみ袋は堆肥(コンポスト)化工程で十分に分解(少なくとも細片化)することが望まれる。しかし、ポリ乳酸ホモポリマーは、温度60℃の堆肥の中で、ようやく10日後に分解による炭酸ガスの発生が顕著(セルロースと同等)になり、完全に分解するには約30日を要する。もっと低温の堆肥中ではもっと分解が遅くなる。実用的には40〜50℃の堆肥中で10〜30日間程度で堆肥化することが最も望ましいが、本発明によりそれが可能となった。
【0022】
これらの改善又は変性は、低融点の脂肪族ポリエステル(B)の導入量(重量比率)が大きいほど顕著である。例えば堆肥化速度をかなり早くするには、脂肪族ポリエステル(B)の導入量を10重量%以上、特に20重量%以上にすれば効果的である。しかし、低融点の脂肪族ポリエステル(B)の量が過度になると、ポリ乳酸の好ましい物性(耐熱性、紡糸性、製膜性などの良さ)が失われるため、また石油由来の成分を抑制するため、組成物中の乳酸由来の成分は、50〜99重量%の範囲である必要があり、特に60〜95重量%の範囲が好ましく、65〜92重量%の範囲が最も広く用いられる。同様に、組成物中の低融点の脂肪族ポリエステル由来の成分は、1〜50重量%の範囲である必要があり、5〜40重量%が好ましく、8〜35重量%の範囲が最も広く用いられる。
【0023】
本発明のごみ袋に用いる組成物には、主成分である上記の(A)及び(B)のほかに例えば流動性改善剤、可塑剤、離型剤、はっ水剤、酸化防止剤、安定剤、相溶化剤、着色剤、分散剤(界面活性剤など)、分解促進剤、その他の添加剤や改良のための成分、充填剤、増量材、その他の成分を導入や混合することが出来る。充填材の例としては、無機化合物の粒子などが挙げられ、増量材の例としては、澱粉、変成澱粉、セルロース粉、変成セルロース粉などがあげられる。添加量は目的に応じて選択すればよいが、増量材の場合は比較的大きな添加量、例えば10〜49重量%、特に15〜45重量%程度とされることが比較的多く、添加剤や充填材の場合は、通常20重量%程度以下、特に0.1〜10重量%程度の場合が多い。
【0024】
本発明に用いる組成物を形成するポリ乳酸成分(A)の分子量は特に限定されないが、通常3万以上、特に5〜30万の範囲が好適であり、7〜20万の範囲が最も広く用いられる。低融点の脂肪族ポリエステル成分(B)の分子量も特に限定されないが、通常2万以上、特に3〜30万の範囲が好適であり、5〜20万の範囲が最も広く用いられる。分子量は、試料の0.1%クロロホルム溶液のGPC分析に於いて、分子量1000以下の成分を除く高分子成分の分散の重量平均分子量とする。
【0025】
本発明のごみ袋は、上記のポリ乳酸(A)と低融点の脂肪族ポリエステル(B)とを主成分とする組成物からなる繊維やフィルムを50重量%以上含む。即ち50重量%以下の他の成分を含んでいてもよい。しかし本発明の特徴を強く発揮するためには、他の成分の使用率は抑制することが好ましく、例えば30%重量以下が好ましく、20%重量以下が特に好ましく、10重量%以下が最も好ましい。
【0026】
他成分の混合の例としては、木綿、羊毛、セルロース及び再生セルロース等の天然繊維及びセルロース系の繊維、セルロース系のフィルムなどが挙げられる。またアクリル酸金属塩基等を多量に持つ高吸水合成繊維やフィルム等を少量(例えば10重量%程度以下)混合することにより、廃棄したときの自然分解速度を上げることが出来る。混合の方法としては、通常の混紡や混繊により行うことが出来る。例えば、本願繊維のステープルとコットン、ウール、レーヨン等のステープルを所定の比率でカードに掛け混紡することが最も簡単な方法である。天然繊維やレーヨン等と混合使用することにより、吸湿性や分解性の制御が容易となる。又、適度の硬さや風合いも調整が可能である。
【0027】
高吸水材料を使用した時は、例えば廃棄時に炭酸ソーダなどの弱アルカリ水溶液を噴霧などで付与すれば、吸水材料がそのアルカリを吸着し、周辺の脂肪族ポリエステルを急速に分解し、袋が細片化され、処理が容易になる。又繊維やフィルム相互の結合や接着のため、接着剤を用いることも出来るが、接着剤も自然分解性であることが好ましい。本発明に用いるポリエステル組成物の数平均分子量は特に限定されないが、5万以上が好ましく、7万〜30万の範囲が更に好ましく、8万〜20万が特に好ましいことが多い。
【0028】
本発明のごみ袋は、上記特定のポリマー組成物を主成分とするもので、構造は特に限定されないが、不織布、織物、編物、その他の繊維からなるシート状構造物、フィルム、繊維とフィルムの複合体等が広く用いられる。
【0029】
繊維としては、連続フィラメントや、短繊維(ステープル)を用いることが出来、両者を併用することも出来る。繊維は溶融紡糸、乾式紡糸、湿式紡糸、乾湿式紡糸などの公知方法によるものが多く用いられ、不織布では、フラッシュ紡糸法、スパンボンド法、ステープルの乾式ウェブ(カード法)、湿式ウェブ、その他の周知の製造方法が応用可能であり、繊維相互の交絡法ではニードルパンチ法、水や空気などの流体の高速ジェット流を利用したもの、接着剤の応用、比較的低融点の繊維や低融点ポリマーと高融点ポリマーが複合された熱接着繊維(自己接着繊維)を混合したウェブを加熱する方法、エンボス加工する方法などあらゆる方法が応用可能である。
【0030】
同様に、本発明のごみ袋に用いるフィルムは溶融製膜法、湿式製膜法、乾式製膜法など周知の方法が応用可能であり、繊維とフィルムの複合体の製造にはラミネート法、コーティング法、浸漬法などが応用可能である。上記の本発明に用いる特定の組成物は、組成によって熱融着温度が異なるので、その1種又は2種以上を用いて単成分繊維や2成分複合繊維を製造し、熱接着繊維とすることも可能である。例えば、熱接着温度が20℃以上、好ましくは30℃以上異なる2種の組成物を芯/鞘又は並列関係に複合し、熱接着繊維を製造することが出来る。
【0031】
又、低融点ポリマーから熱接着に好適なフィルムを製造することが出来、同じく複数のポリマーから多層フィルムやその他の複合フィルムを製造することが出来る。袋の構造や大きさは特に限定されないが、接合部分は接着または縫い合わせるのが一般的である。
【0032】
本発明のごみ袋で多孔構造のものや適宜孔を設けたものは水切り袋として、台所ごみや生ごみなど水分を持つごみの袋として好適である。例えば円周上に多数の押し出しノズルを設けた内外2個の口金板を相互に回転させて得た、繊維が網状に接着された筒状の構造物(編み物の一種)は、製造が容易で効率的であり、水切り袋として特に好ましい。この他、種々の構造の袋や水切り袋を目的に応じて用いるとよい。
【0033】
本発明のごみ袋を構成する繊維やフィルムの太さや厚み特に限定されない。通常は、繊維の単糸繊度は0.5〜500デニール程度のもの、特に1〜200デニール程度の繊維が広く用いられ、フィルムの厚さは5〜500μm程度、特に10〜200μm程度のものが多く用いられる。
【0034】
【実施例】
以下の実施例において、%、部は特に断らない限り重量比である。
【0035】
まず、実施例で使用されるポリL−乳酸ホモポリマーP1〜P4を製造した。
すなわち、L−ラクチドに対しオクチル酸錫を200ppm混合し、窒素雰囲気中188℃で8分間、2軸混練押出機中で重合し、冷却チップ化後、140℃の窒素雰囲気中で処理(固相重合)してポリL−乳酸ホモポリマーP1を得た。P1の融点は176℃、分子量は18.1万であった。
【0036】
P1に対して、2軸押出機を用い、分子量12.8万のポリブチレンサクシネート(以下PBSと記す、融点116℃)を10%添加して190℃で3分間混合し、ポリ乳酸/PBS=9/1の混合ポリマーP2を得た。ポリマーP2の融点は176℃、分子量は14.7万であった。同様にして、但し混合比率をポリ乳酸/PBS=75/25として、混合ポリマーP3を得た。混合ポリマーP3の融点は173℃、分子量は12.9万であった。
【0042】
次に、L−ラクチド91部、分子量12.8万のPBS10部、オクチル酸錫200ppmを混合し窒素雰囲気中188℃で9分間、2軸押出機中で重合し、冷却チップ化後、140℃の窒素雰囲気中で処理(固相重合)して、ポリ乳酸/PBS(約10%)ブロック共重合物P4を得た。P4の融点は173℃、分子量は16.4万である。
【0043】
P4とほぼ同様にして、但しPBSの添加量を20%として、融点170℃、分子量13.9万のポリ乳酸/PBS(20%)ブロック共重合物P5を得た
【0046】
実施例及び比較例
前記P1とL−ラクチド70部、分子量12.8万のPBS30部、オクチル酸錫200ppmを混合し窒素雰囲気中190℃で12分間、2軸押出機中で溶融攪拌・重合し、押し出しガット化後、冷却チップ化後、ポリ乳酸/PBS=70/30のブロック共重合物P6を得た。
【0047】
P6とP1及び分子量12.8万のPBSをそれぞれ20/60/20の比率で予備的に混合した後、225℃に設定したスクリュー押出機で溶融・混合し、ネット成型機、すなわち、直径10cmの円周上に2mm間隔で直径0.2mmの半円形のオリフィスを配列し、密着状態で互いに逆方向に回転する内外二つの口金板より、230℃で空気中に押し出し、直ちに常温の水中に導き冷却し、辺の長さが約2mmの菱形の網目を持ち繊維の太さ約0.2mmの筒状ネットを成形した。230℃で220℃のT型ダイより押し出し、冷却ロールで冷却した後80℃で立て方向に3.3倍、横方向に2.7倍延伸し110℃でヒートセットして厚さ0.12mmのフィルムF3を得た。
【0048】
145℃に設定したヒートシール機により、長さ15cmの長さにヒートシール部を作り次いでカッターにて切断して台所用の水切りネット(B7)を得た。同ネットは比較的柔らかくて、丈夫なものであり、台所の生ごみを入れるには特に支障がなかった。
【0049】
本ごみ袋を家庭の台所の排水孔に設置し通常発生する生ごみを回収した。比較的大きなごみはもちろん、茶葉、コーヒー粉等も回収できた。従って、排水として下水に流す有機物の量を大きく削減することができた。ごみが一杯になった時点で取り出し、コンポスト試験を行なった。すなわち、水切り袋B7に、野菜屑、さつまいもの屑(細片)および紙屑の1/1/1の混合物をそれぞれ1kg入れ、入口を麻縄で縛り、さらにその上をポリプロピレンの同様な筒状の網の袋に入れて封をした上で、野菜屑、さつまいもの屑(細片)及びおが屑の1/1/10の混合物50kgと共に小型コンポスト試験機(ステンレス回転タンク)に投入した。その上からEM発酵菌(EM発酵ぼかし:宮崎クリーン・ファーム製)1Kgを用いた。初めは内部温度を40℃に保つよう加熱し、3日目より発酵による発熱で温度が50〜55℃に上昇したがそのまま運転した。20日目ごろから、また温度が40℃前後に低下したがそのまま運転を続け、30日間後に運転を停止し、内部の様子を観察した。その結果、ネットは粉々になり大部分は消滅していた。又、生ごみの大部分は堆肥化していた。一方、市販のポリオレフィン製の水切りネット(B8)は生ごみがコンポスト化した時点でも尚、原形をとどめており全く分解しておらずコンポストしない事を確認した。
【0050】
P1とP6、P7(分子量13.0万のPBS)とを、表1の様に混合し、実施例と同じ方法にてネット成形しごみ袋(B9〜B17)を作成した。
【0051】
【表1】

Figure 0003791122
【0058】
【発明の効果】
本発明によって、柔軟で取扱い易く、しかも自然環境下での分解速度が改善され廃棄やコンポスト化が容易なごみ袋が提供可能となり、環境保護に大きく貢献することが期待される。また本発明品は原料樹脂、繊維及びフィルムの生産性が改善されるため、工業生産が容易でコストが低くなるという利点もあげられる。さらに本発明品の主要な原料は空気中の炭酸ガスを固定し得たでんぷんが粗原料である為に、廃棄時に焼却したとしても、現行の石油系原料からなるポリオレフィン、ポリエステル製のごみ袋の焼却と異なり、空気中の炭酸ガスを増加させることが少なく、地球の温暖化防止にも貢献することが期待される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a new garbage bag that is naturally degradable and therefore decomposes in a natural environment and thus can be easily discarded and contributes to the protection of the natural environment.
[0002]
[Prior art]
Garbage bags and draining bags made of synthetic resin and synthetic fibers (hereinafter referred to as garbage bags) are used in large quantities to collect and dispose of household waste, garbage, industrial waste, and the like. However, since synthetic resins are difficult to decompose in the natural environment, they are difficult to dispose of after use, and the heat generated during combustion is large, causing environmental pollution. For this reason, garbage bags and draining bags using an aliphatic polyester resin that decomposes in a natural environment are disclosed in, for example, JP-A-4-362080, JP-A-6-32357, and JP-A-8-188706. Has been proposed.
[0003]
In these publications, polycaprolactone and polybutylene succinate are shown as the most preferred examples (such as examples) of naturally degradable resins. However, polycaprolactone and polybutylene succinate have problems with melt spinning and film formation due to their low melting point, and are inferior in performance and heat resistance, and because the raw material depends on petroleum, from the viewpoint of protecting the global environment. There are many problems.
[0004]
According to the knowledge of the present inventors, polylactic acid is mentioned as a degradable polymer that is expected to be particularly preferable as a material for a garbage bag because of its excellent fiber and film performance and heat resistance. Furthermore, since polylactic acid is an agricultural product (starch or the like) as a raw material, it is also preferable from the viewpoint of protecting the global environment (note that polylactic acid is also shown as one of many listed aliphatic polyesters in the above publication). But not particularly preferred). However, polylactic acid homopolymers (1) have a melting point (175 to 185 ° C.) that is too high and close to the decomposition temperature, making it difficult to perform melt polymerization, melt spinning, and melt film formation. (2) The polymer is hard and brittle. There are a number of problems such as difficulty in stretching, difficult handling such as the film is hard and brittle and torn during use and poor practicality, and (3) disposal is difficult due to the slow degradation rate in the natural environment.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a spontaneously decomposable garbage bag made of a novel polymer composition that takes advantage of the above-mentioned polylactic acid and has improved the problems.
[0006]
[Means for Solving the Problems]
The object of the present invention is to provide : “A crystalline polylactic acid (A) having a melting point of 150 ° C. or higher and / or an aliphatic polyester (B) having a chain diol and an aliphatic dicarboxylic acid as main components and a melting point of 140 ° C. or lower; A mixture of (A) and the block copolymer (C) of the aliphatic polyester (B), wherein the ratio of the component derived from lactic acid is 50 to 99% by weight, and the component derived from the aliphatic polyester It is achieved by a naturally decomposable garbage bag containing 50% by weight or more of fibers and / or films produced from a polymer composition having a ratio of 50 to 99% by weight.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Examples of crystalline polylactic acid (A) having a melting point of 150 ° C. or higher include poly L-lactic acid, poly D-lactic acid, and a small amount thereof (50 wt% or less, particularly 30 wt% or less, in many cases 20 wt%). %) Of different polyester polymerization raw materials while copolymerizing them while keeping the melting point at 150 ° C. or higher. The melting point of the crystalline polylactic acid (A) is preferably high from the viewpoint of heat resistance, particularly preferably 160 ° C. or higher, and most preferably 170 ° C. or higher. Even if such a high melting point polylactic acid is used, since it is combined with the above low melting point aliphatic polyester, there is no problem because melt flowability and flexibility are improved, but rather favorable results in terms of heat resistance, etc. Is often obtained.
[0008]
The chain diol is a diol having no aromatic cyclic structure, and examples thereof include an aliphatic diol having a straight chain and a side chain, a diol having an ether bond, and a diol having a carbonate bond. Examples of aliphatic diols include ethylene glycol, propylene glycol, butane diol, hexane diol, neopentyl glycol, octane diol, and the like, as well as those having an unsaturated bond, and diols having an ether bond include diethylene glycol. , Oligomers and polymers of polyalkylene ethers such as triethylene glycol, ethylene / propylene glycol, dipropylene glycol, dihydroxyethoxybutane, polyethylene glycol, polypropylene glycol, polyethylene / propylene glycol and the like. Examples of the diol having a carbonate bond include oligomers and polymers of aliphatic polycarbonates such as polypropylene carbonate, polybutylene carbonate, and polyhexane carbonate.
[0009]
Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid and the like, as well as those having side chains and unsaturated bonds.
[0010]
The chain diol and the aliphatic dicarboxylic acid are also used as a raw material for copolymerization of crystalline polylactic acid. Other aliphatic polyester raw materials such as glycolic acid, glycolide, optical isomers of lactic acid, optical isomers of lactide, hydroxyalkylcarboxylic acids such as butyrolactone, caprolactone, hydroxybutylcarboxylic acid and cyclic esters thereof are also used as copolymerization raw materials. Is possible. In addition, if the amount is small (about 10% by weight or less), aromatic raw materials such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and sulfoisophthalic acid can be applied.
[0011]
The melting point of the polymer is a polymer obtained by using a dry sample that has been sufficiently heat-treated or stretched, and using a differential calorimeter (hereinafter referred to as DSC), and measuring the sample at 10 mg in a nitrogen atmosphere at a heating rate of 10 ° C./min. The peak temperature of the endothermic peak due to melting of the crystal. Pure polylactic acid (poly-L-lactic acid, poly-D-lactic acid) has a melting point of around 185 ° C., but usually some optical isomers are produced by the racemization phenomenon during the reaction and are copolymerized. Therefore, the melting point often shows 175 to 180 ° C.
[0012]
Many of polyesters in which aliphatic diols and aliphatic dicarboxylic acids are combined can be used in the present invention as the above (low melting point) aliphatic polyester (B) having a melting point of 140 ° C. or lower and a glass transition point of normal temperature or lower. . Specific examples thereof include polyethylene succinate (melting point: about 102 ° C.), polyethylene adipate (49 ° C.), polyethylene suberate (65 ° C.), polyethylene suberate (65 ° C.), polyethylene azelate (52 ° C.) , Polyethylene sebacate (72 ° C), polybutylene succinate (116 ° C), polybutylene adipate (72 ° C), polybutylene sebacate (66 ° C), polybutylene azelate (52 ° C), poly And hexane sebacate (74 ° C.). These are examples of homopolymers, but of course, copolymers are also used. In the case of a non-crystalline copolymer or the like, the glass transition point is regarded as the melting point.
[0013]
The composition which forms the specific fiber and film used for the garbage bag of the present invention includes the following 5 components containing the above-mentioned polylactic acid (A) having a relatively high melting point and aliphatic polyester (B) having a low melting point. Broadly divided into types.
[0014]
1. A mixture of (A) and (B). As a mixing ratio, (A) is preferably 70% by weight or more, more preferably 85% by weight or more. If it is less than 85% by weight, the compatibility between (A) and (B) is poor, and the molded product tends to be brittle or opaque.
2. Block copolymer (C) of (A) and (B). If the reaction ratio of (A) and (B) is in the range of 50 to 99% by weight of (A) and 1 to 50% by weight of (B), there is no significant problem, but the ratio of (B) is large. By the way, in order to reduce heat resistance and crystallinity and to be restricted depending on applications and purposes, the ratio of (B) is preferably at most 40% by weight, more preferably 30% by weight.
3. A mixture of (A) and (C). As (C) used here, a block copolymer containing at most 50% by weight of (B) can be used, but the component ratio derived from the aliphatic polyester in the mixture of (A) and (C). Is at most 50% by weight, preferably at most 40% by weight, more preferably at most 30% by weight.
4). A mixture of (B) and (C). (C) used here may be the same as the composition of 3 above, and the amount of components derived from the aliphatic polyester in the mixture is also the same.
5. A three-component mixture of (A), (B) and (C). The amount of (C) used here may also be the same as the above composition 3. Furthermore, the proportion of the component derived from the aliphatic polyester in the ternary mixed system is at most 50% by weight, preferably at most 40% by weight. More preferably, (C) comprising (B) / (A) + (B) = 0.1 to 0.5 is used in an amount of about 0.2 to 0.7 of the amount of (B) in the three-component mixed system. It is good to do.
[0015]
Of course, the fibers and films used in the garbage bag of the present invention are not limited to one type, and a plurality of fibers and films having different compositions may be mixed and used. Similarly, composite fibers and composite films in which a plurality of polymer compositions are combined are also applicable and are included in the present invention.
[0016]
The mixing method of the polylactic acid (A) and the aliphatic polyester (B) is not particularly limited, but both may be mechanically stirred in a solution state, and a static mixing device that repeats the flow division and merging in multiple stages. May be applied, or both may be used in combination. Melt mixing is efficient and preferable, but in order to prevent the polymers from reacting and forming a random copolymer, an apparatus capable of mixing in a short time (for example, within 20 minutes, particularly within 10 minutes), such as a twin screw extruder Etc. are preferably used. Similarly, a polymer whose end is blocked by suppressing the end of one polymer (for example, (B)) can be added and mixed during the polymerization of the other polymer (for example, (A)).
[0017]
The block copolymerization method of polylactic acid (A) and aliphatic polyester (B) is not particularly limited. For example, when poly (lactic acid) is produced by melt polymerization of L or D-lactide, if an aliphatic polyester (B) having a hydroxyl group at one or both molecular ends is added to and mixed with the polymerization system, lactide can be converted from the terminal hydroxyl group. Polymerization is started and a block copolymer is easily obtained. If both are unreacted, a mixture of both is obtained, and if some are reacted and some are unreacted, a mixture of “a block copolymer of both” and “a mixture of both” is obtained. . However, care must be taken so that the reaction does not proceed excessively to reach a complete random copolymer.
[0018]
Similarly, polylactic acid (A) having a hydroxyl group at the terminal and an aliphatic polyester are mixed together, and a polyfunctional reagent (chain extender) such as diisocyanate or dicarboxylic acid chloride is added and reacted to both components. Can be linked to form a block copolymer. The block copolymerization by transesterification during the melt mixing of both components is as already described. Whether or not both components are reacting can be judged considerably by GPC analysis or the like. When random copolymerization proceeds excessively, DSC analysis shows a sharp decrease in melting point and a significant decrease in melt endotherm (crystallinity). The decrease in melting point due to block copolymerization is relatively gradual.
[0019]
Among the aforementioned compositions , in particular, the block copolymer (C) of polylactic acid (A) and aliphatic polyester (B) is excellent in melt fluidity and miscibility, and can be easily obtained and easily manufactured. It has the characteristic of being. Furthermore, since the block copolymer (C) is excellent in miscibility with the component (A) and the component (B), a mixture of (A) and (C), a mixture of (B) and (C), The ternary mixture of (A), (B) and (C) is particularly preferred for the purposes of the present invention.
[0020]
The fiber and film, which are the main materials forming the garbage bag of the present invention, have two main components, polylactic acid (A) and low melting point aliphatic polyester (B). The introduction of the low melting point aliphatic polyester (B) greatly reduces the problems of the above-mentioned polylactic acid, that is, the product is hard and brittle, the melt flowability is low, melt polymerization and melt molding are difficult, and the natural decomposition rate is low. The advantages of polylactic acid such as fluidity, flexibility, impact resistance, and natural degradability, as well as excellent spinnability, film-forming property, heat resistance and strength are fully demonstrated. The
[0021]
In the waste treatment, it is most preferable to reuse compostable organic waste as compost, and it is desirable that the waste bag is sufficiently decomposed (at least broken down) in the composting process. However, polylactic acid homopolymers, in compost at a temperature of 60 ° C., finally generate carbon dioxide due to decomposition (equivalent to cellulose) after 10 days, and it takes about 30 days to completely decompose. Decomposition is slower in cooler compost. Practically, it is most desirable to compost in 40 to 50 ° C. compost in about 10 to 30 days, but this is made possible by the present invention.
[0022]
These improvements or modifications are more conspicuous as the introduction amount (weight ratio) of the low-melting point aliphatic polyester (B) increases. For example, in order to increase the composting rate considerably, it is effective to make the amount of the aliphatic polyester (B) introduced 10% by weight or more, particularly 20% by weight or more. However, if the amount of the low-melting point aliphatic polyester (B) becomes excessive, the preferred physical properties of polylactic acid (good heat resistance, spinnability, film-forming properties, etc.) are lost, and the components derived from petroleum are also suppressed. Therefore, the component derived from lactic acid in the composition needs to be in the range of 50 to 99% by weight, particularly preferably in the range of 60 to 95% by weight, and most preferably in the range of 65 to 92% by weight. Similarly, the component derived from the low melting point aliphatic polyester in the composition should be in the range of 1-50% by weight, preferably 5-40% by weight, most widely used in the range of 8-35% by weight. It is done.
[0023]
In the composition used for the garbage bag of the present invention, in addition to the main components (A) and (B), for example, a fluidity improver, a plasticizer, a release agent, a water repellent, an antioxidant, Introducing or mixing stabilizers, compatibilizers, colorants, dispersants (surfactants, etc.), decomposition accelerators, other additives and improving components, fillers, extenders, and other components I can do it. Examples of the filler include inorganic compound particles, and examples of the filler include starch, modified starch, cellulose powder, and modified cellulose powder. The addition amount may be selected according to the purpose. However, in the case of an extender, a relatively large addition amount, for example, about 10 to 49% by weight, particularly about 15 to 45% by weight is relatively high. In the case of a filler, it is usually about 20% by weight or less, particularly about 0.1 to 10% by weight.
[0024]
The molecular weight of the polylactic acid component (A) forming the composition used in the present invention is not particularly limited, but is usually 30,000 or more, particularly preferably in the range of 50,000 to 300,000, and most preferably in the range of 70,000 to 200,000. It is done. The molecular weight of the low-melting point aliphatic polyester component (B) is not particularly limited, but is usually 20,000 or more, particularly preferably in the range of 3 to 300,000, and the range of 5 to 200,000 is most widely used. The molecular weight is the weight average molecular weight of the dispersion of the polymer component excluding the component having a molecular weight of 1000 or less in the GPC analysis of the 0.1% chloroform solution of the sample.
[0025]
The garbage bag of this invention contains 50 weight% or more of fibers and films which consist of a composition which has the above-mentioned polylactic acid (A) and low melting point aliphatic polyester (B) as a main component. That is, it may contain other components of 50% by weight or less. However, in order to exert the characteristics of the present invention strongly, it is preferable to suppress the usage rate of other components, for example, preferably 30% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less.
[0026]
Examples of the mixing of other components include cotton, wool, natural fibers such as cellulose and regenerated cellulose, cellulosic fibers, cellulosic films, and the like. In addition, by mixing a small amount (for example, about 10% by weight or less) of a highly water-absorbing synthetic fiber or film having a large amount of metal acrylate or the like, the natural decomposition rate when discarded can be increased. As a mixing method, it can be performed by ordinary blending or fiber mixing. For example, the simplest method is to apply a staple of the present fiber staple and a staple of cotton, wool, rayon or the like to a card at a predetermined ratio and mix. Mixing with natural fibers or rayon makes it easy to control hygroscopicity and degradability. Also, moderate hardness and texture can be adjusted.
[0027]
When using a highly water-absorbing material, for example, by applying a weakly alkaline aqueous solution such as sodium carbonate by spraying at the time of disposal, the water-absorbing material adsorbs the alkali, rapidly decomposes the surrounding aliphatic polyester, and the bag becomes thin. It is separated and becomes easy to process. In addition, an adhesive can be used for bonding and adhesion between fibers and films, but the adhesive is also preferably naturally degradable. The number average molecular weight of the polyester composition used in the present invention is not particularly limited, but is preferably 50,000 or more, more preferably in the range of 70,000 to 300,000, and particularly preferably 80,000 to 200,000.
[0028]
The garbage bag of the present invention is mainly composed of the above-mentioned specific polymer composition, and the structure is not particularly limited. However, the sheet-like structure composed of nonwoven fabric, woven fabric, knitted fabric and other fibers, film, fiber and film Complexes and the like are widely used.
[0029]
As the fibers, continuous filaments and short fibers (staples) can be used, and both can be used in combination. Fibers are often used by known methods such as melt spinning, dry spinning, wet spinning, and dry and wet spinning. For nonwoven fabrics, flash spinning, spunbonding, staple dry web (card method), wet web, etc. Well-known manufacturing methods can be applied, and the fiber entanglement method uses needle punching, high-speed jet flow of fluid such as water and air, application of adhesives, relatively low melting point fibers and low melting point polymers Any method can be applied, such as a method of heating a web in which a heat-bonding fiber (self-adhesive fiber) in which a high melting point polymer is combined and a method of embossing.
[0030]
Similarly, the film used in the garbage bag of the present invention can be applied by a well-known method such as a melt film forming method, a wet film forming method, or a dry film forming method. The method and the immersion method can be applied. The specific composition used in the present invention has different heat fusion temperatures depending on the composition. Therefore, one or two or more of the specific compositions are used to produce single component fibers or two component composite fibers to form heat bonded fibers. Is also possible. For example, two types of compositions having different thermal bonding temperatures of 20 ° C. or more, preferably 30 ° C. or more can be combined in a core / sheath or parallel relationship to produce a thermal bonding fiber.
[0031]
Moreover, a film suitable for heat bonding can be produced from a low-melting polymer, and a multilayer film and other composite films can be produced from a plurality of polymers. The structure and size of the bag are not particularly limited, but the joint portion is generally bonded or stitched together.
[0032]
The garbage bag of the present invention having a porous structure or appropriately provided with a hole is suitable as a draining bag or as a garbage bag having moisture such as kitchen garbage or kitchen garbage. For example, a cylindrical structure (a type of knitting) in which fibers are bonded in a net-like shape, obtained by mutually rotating two base plates with a large number of extrusion nozzles on the circumference, is easy to manufacture. It is efficient and is particularly preferable as a draining bag. In addition, bags having various structures and draining bags may be used according to the purpose.
[0033]
The thickness and thickness of the fiber and film constituting the garbage bag of the present invention are not particularly limited. Usually, fibers having a single yarn fineness of about 0.5 to 500 denier, particularly fibers of about 1 to 200 denier are widely used, and the thickness of the film is about 5 to 500 μm, particularly about 10 to 200 μm. Often used.
[0034]
【Example】
In the following examples,% and parts are by weight unless otherwise specified.
[0035]
First, poly L-lactic acid homopolymers P1 to P4 used in Examples were produced.
That is, 200 ppm of tin octylate was mixed with L-lactide, polymerized in a twin-screw kneader / extruder at 188 ° C. for 8 minutes in a nitrogen atmosphere, formed into a cooled chip, and then treated in a nitrogen atmosphere at 140 ° C. (solid phase Polymerization) to obtain a poly L-lactic acid homopolymer P1. P1 had a melting point of 176 ° C. and a molecular weight of 181,000.
[0036]
For P1, using a twin-screw extruder, add 10% polybutylene succinate (hereinafter referred to as PBS, melting point 116 ° C.) having a molecular weight of 120,000 and mix at 190 ° C. for 3 minutes. = 9/1 mixed polymer P2 was obtained. Polymer P2 had a melting point of 176 ° C. and a molecular weight of 17,000. Similarly, a mixed polymer P3 was obtained with a mixing ratio of polylactic acid / PBS = 75/25. The melting point of the mixed polymer P3 was 173 ° C., and the molecular weight was 1290,000.
[0042]
Next, 91 parts of L-lactide, 10 parts of PBS with a molecular weight of 128,000 and 200 ppm of tin octylate were mixed and polymerized in a twin screw extruder at 188 ° C. for 9 minutes in a nitrogen atmosphere. Was treated in a nitrogen atmosphere (solid phase polymerization) to obtain a polylactic acid / PBS (about 10%) block copolymer P4. P4 has a melting point of 173 ° C. and a molecular weight of 164,000.
[0043]
Almost the same as P4, except that the addition amount of PBS was 20%, and a polylactic acid / PBS (20%) block copolymer P5 having a melting point of 170 ° C. and a molecular weight of 130,000 was obtained .
[0046]
Example 1 and Comparative Example 1
After mixing P1 with 70 parts of L-lactide, 30 parts of PBS with a molecular weight of 1280,000 and 200 ppm of tin octylate, melt and stir and polymerize in a twin screw extruder at 190 ° C. for 12 minutes in a nitrogen atmosphere, and after extrusion After forming a cooling chip, a block copolymer P6 of polylactic acid / PBS = 70/30 was obtained.
[0047]
P6 and were mixed preliminarily with P1 and a ratio of molecular weight 128,000 of PBS respectively 20/60/20, melted and mixed at the set screw extruder 225 ° C., nets molding machine, i.e., A semicircular orifice with a diameter of 0.2 mm is arranged on the circumference of a diameter of 10 cm at intervals of 2 mm, and is extruded into air at 230 ° C. from two inner and outer base plates rotating in opposite directions in close contact with each other. The tube was led into water and cooled to form a cylindrical net having a rhombus mesh having a side length of about 2 mm and a fiber thickness of about 0.2 mm . Extruded from a T-die at 220 ° C at 230 ° C, cooled with a cooling roll, stretched 3.3 times in the vertical direction and 2.7 times in the horizontal direction at 80 ° C, heat-set at 110 ° C and 0.12 mm thick Film F3 was obtained.
[0048]
Using a heat sealing machine set at 145 ° C., a heat sealing part having a length of 15 cm was made and then cut with a cutter to obtain a kitchen draining net (B7). The net was relatively soft and durable, and there was no particular problem in putting kitchen garbage.
[0049]
This garbage bag was installed in the drain hole of the household kitchen to collect the normal garbage. In addition to relatively large garbage, tea leaves and coffee powder could be recovered. Therefore, it was possible to greatly reduce the amount of organic matter flowing into sewage as waste water. Taken out when dust is full and subjected to composting test. That is, 1 kg each of a 1/1/1 mixture of vegetable scraps, sweet potato scraps (strips) and paper scraps is put into the draining bag B7, the entrance is tied with a hemp rope, and the top is similar to polypropylene in the same cylindrical shape. After putting it in a net bag and sealing it, it was put into a small compost tester (stainless steel rotating tank) together with 50 kg of a 1 / 10th mixture of vegetable waste, sweet potato waste (strip) and sawdust. From that, 1 kg of EM fermenting bacteria (EM fermentation blur: manufactured by Miyazaki Clean Farm) was used. Initially, the internal temperature was heated to be kept at 40 ° C, and the temperature rose to 50 to 55 ° C due to heat generated by fermentation from the third day, but the operation was continued. From around the 20th day, the temperature dropped to around 40 ° C., but the operation was continued as it was. The operation was stopped after 30 days, and the inside was observed. As a result, the net was shattered and most of it disappeared. Most of the garbage was composted. On the other hand, it was confirmed that the commercially available drainage net (B8) made of polyolefin remained in its original form even when the garbage was composted and was not decomposed and not composted.
[0050]
P1, P6, and P7 (PBS having a molecular weight of 1330,000) were mixed as shown in Table 1, and net-molded garbage bags (B9 to B17) were prepared in the same manner as in Example 1 .
[0051]
[Table 1]
Figure 0003791122
[0058]
【The invention's effect】
According to the present invention, it is possible to provide a garbage bag that is flexible and easy to handle, has an improved decomposition rate in a natural environment, and can be easily discarded and composted, and is expected to greatly contribute to environmental protection. In addition, since the product of the present invention improves the productivity of raw resin, fiber and film, there are also advantages that industrial production is easy and the cost is low. Furthermore, since the main raw material of the present invention is a crude raw material of starch obtained by fixing carbon dioxide in the air, even if it is incinerated at the time of disposal, polyolefin and polyester waste bags made of current petroleum-based materials are used. Unlike incineration , carbon dioxide in the air is rarely increased, and is expected to contribute to the prevention of global warming.

Claims (1)

融点150℃以上の結晶性ポリ乳酸(A)及び/又は鎖状ジオールと脂肪族ジカルボン酸を主成分とし融点140℃以下の脂肪族ポリエステル(B)と、上記ポリ乳酸(A)と上記脂肪族ポリエステル(B)とのブロック共重合物(C)との混合物であって、かつ、乳酸由来の成分の比率が50〜99重量%であり、脂肪族ポリエステル由来の成分の比率が1〜50重量%であるポリマー組成物から製造された繊維及び/又はフィルムを50重量%以上含有する自然分解性ごみ袋。A crystalline polylactic acid (A) having a melting point of 150 ° C. or higher and / or an aliphatic polyester (B) having a chain diol and an aliphatic dicarboxylic acid as main components and a melting point of 140 ° C. or lower, the polylactic acid (A) and the aliphatic It is a mixture with the block copolymer (C) with the polyester (B), the ratio of the component derived from lactic acid is 50 to 99% by weight, and the ratio of the component derived from the aliphatic polyester is 1 to 50% by weight. % Naturally-decomposable garbage bags containing 50% by weight or more of fibers and / or films produced from the polymer composition.
JP14315297A 1997-05-16 1997-05-16 garbage bag Expired - Lifetime JP3791122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14315297A JP3791122B2 (en) 1997-05-16 1997-05-16 garbage bag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14315297A JP3791122B2 (en) 1997-05-16 1997-05-16 garbage bag

Publications (2)

Publication Number Publication Date
JPH10316739A JPH10316739A (en) 1998-12-02
JP3791122B2 true JP3791122B2 (en) 2006-06-28

Family

ID=15332142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14315297A Expired - Lifetime JP3791122B2 (en) 1997-05-16 1997-05-16 garbage bag

Country Status (1)

Country Link
JP (1) JP3791122B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167497A (en) * 2000-11-30 2002-06-11 Dainippon Ink & Chem Inc Lactic acid based polymer composition
JP2003082140A (en) * 2001-09-10 2003-03-19 Unitika Ltd Biodegradable porous film and its production process
JP2006045300A (en) * 2004-08-03 2006-02-16 Sekisui Seikei Ltd Sheet material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3316972B2 (en) * 1993-10-22 2002-08-19 大日本インキ化学工業株式会社 Lactic acid based polymer composition
JP3464085B2 (en) * 1994-11-17 2003-11-05 三井化学株式会社 Method for producing degradable polymer
JP3423094B2 (en) * 1995-01-19 2003-07-07 三井化学株式会社 Biodegradable polymer composition

Also Published As

Publication number Publication date
JPH10316739A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US5171308A (en) Polyesters and their use in compostable products such as disposable diapers
EP1280948B1 (en) Copolyesters and fibrous materials formed therefrom
JP3440915B2 (en) Polylactic acid resin and molded products
JP4757040B2 (en) Nonwoven fabric made of fibers made of polylactic acid composition
JPH06505040A (en) Novel polyesters and their use in compostable products such as disposable diapers
MXPA03008883A (en) Fibers comprising polyhydroxyalkanoate copolymer/polylactic acid polymer or copolymer blends.
JP2000017163A (en) Polylactic acid stereocomplex polymer composition
DE60116127T2 (en) PLASTIC ARTICLES FROM BIODEGRADABLE POLYESTER MIXED COMPOSITIONS
TW201937021A (en) Biodegradation-enhanced synthetic fiber and methods of making the same
JP5873317B2 (en) Antibacterial nonwoven fabric formed from biodegradable aliphatic polyester fiber and antibacterial method
JP2001335626A (en) Aliphatic polyester resin and molding
JP4873979B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP2001323056A (en) Aliphatic polyester resin and molded article
JP4219207B2 (en) Biodegradable complex
JP3329350B2 (en) Degradable nonwoven fabric and method for producing the same
JP3791122B2 (en) garbage bag
JP2006207105A (en) Polylactic acid-based filament nonwoven fabric and method for producing the same
JP2589908B2 (en) Polyester non-woven fabric
JPH0693516A (en) Decomposable conjugate fiber
JP2004142766A (en) Biodegradable bag-shaped article
DE60129252T2 (en) BIOABCABLE POLYESTER MIXTURE COMPOSITIONS AND METHOD FOR THE PRODUCTION THEREOF
JPH10262474A (en) Agricultural sheet
JP3261028B2 (en) Self-adhesive composite fiber
JP3694117B2 (en) Self-adhesive composite fiber and its application products
JP2004011037A (en) Polylactic acid filament nonwoven fabric and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

EXPY Cancellation because of completion of term