JP2004011037A - Polylactic acid filament nonwoven fabric and method for producing the same - Google Patents

Polylactic acid filament nonwoven fabric and method for producing the same Download PDF

Info

Publication number
JP2004011037A
JP2004011037A JP2002162942A JP2002162942A JP2004011037A JP 2004011037 A JP2004011037 A JP 2004011037A JP 2002162942 A JP2002162942 A JP 2002162942A JP 2002162942 A JP2002162942 A JP 2002162942A JP 2004011037 A JP2004011037 A JP 2004011037A
Authority
JP
Japan
Prior art keywords
component
polylactic acid
nonwoven fabric
melting point
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002162942A
Other languages
Japanese (ja)
Other versions
JP3966768B2 (en
Inventor
Atsushi Matsunaga
松永 篤
Ryuhei Taniyama
谷山 竜平
Katsunori Suzuki
鈴木 克昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2002162942A priority Critical patent/JP3966768B2/en
Publication of JP2004011037A publication Critical patent/JP2004011037A/en
Application granted granted Critical
Publication of JP3966768B2 publication Critical patent/JP3966768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polylactic acid filament nonwoven fabric which can efficiently be produced from fibers having good productivity and openability, scarcely shrunk and the like, when subjected to a thermal adhesion treatment, can thermally, stably and easily be processed, and has a heat-sealing property. <P>SOLUTION: This polylactic acid filament nonwoven fabric produced by a spun bond method comprising accumulating conjugated filaments comprising a polylactic acid polymer (component A) and a polylactic acid polymer/biodegradable aliphatic-aromatic copolyester blend (component B) is characterized in that the polymers constituting the conjugated filaments satisfy the following melting characteristics (1), (2), that the component B forms at least one part of the fiber surfaces, and that the component B is melted or softened to thermally adhere the fibers each other, thus holding their shapes. (1) The melting points of the polylactic acid polymers used for the components A and B are ≥150°C, respectively. (2) The melting point of the biodegradable aliphatic-aromatic copolyester is lower by ≥50°C than the melting point of the component A. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、生分解性があり、優れた機械的物性とヒートシール特性とを併せ持つポリ乳酸系長繊維不織布およびその製造方法に関するものである。
【0002】
【従来の技術】
従来より、機能性のある長繊維不織布の1つに自己接着性繊維からなる長繊維不織布がある。この自己接着性繊維からなる長繊維不織布は、加熱によって繊維の一部が溶融して繊維相互が接着一体化してなるもので、ヒートシール特性をも有するものである。
【0003】
近年、石油を原料とする合成繊維は、焼却時の発熱量が多いため、自然環境保護の見地から見直しが必要とされ、自然界において生分解する脂肪族ポリエステルからなる繊維が開発されており、環境保護への貢献が期待されている。脂肪族ポリエステルの中でも、ポリ乳酸系重合体は、比較的高い融点を有することから、広い分野に使用されることが期待されている。
【0004】
ポリ乳酸系重合体において、ポリ−L−乳酸もしくはポリ−D−乳酸は、結晶性で融点が180℃程度と高い融点を有しており、また、L−乳酸とD−乳酸とが共重合してなる共重合体は、共重合比を適宜選択することにより融点を変更することができる。例えば、L−乳酸にD−乳酸を1モル%共重合させると融点が170℃、D−乳酸を3モル%共重合させると融点が150℃、D−乳酸を8モル%共重合させると融点が120℃といった具合に、ポリ乳酸の融点のコントロールが可能である。しかし、共重合量を増加させると、それにつれて結晶性が失われて、熱的安定性に劣る傾向となる。
【0005】
ポリ乳酸系重合体を用いて自己接着性長繊維不織布を得ようとした際に、芯部にポリ−L−乳酸、鞘部にL−乳酸とD−乳酸との共重合体を配した芯鞘型複合繊維により構成させることが考えられる。熱加工安定性を考慮すると、芯部と鞘部の融点差は大きい方が好ましいため、鞘部の共重合体は融点が低いもの(120℃程度の共重合体)を選択することがよいと考ええる。しかし、D、L−乳酸の共重合体において、融点120℃程度のものは結晶性が低いため、熱接着工程において収縮する、熱ロールに絡みつく等のトラブルが発生しやすく、また、得られる不織布は、耐熱性に劣るものとなる。一方、前記問題を考慮して、D、L−乳酸の共重合体として結晶性が高い融点150℃程度のものを選択すると、前記問題は解消するものの、ヒートシールの際、芯部と鞘部の融点差が大きくないため、芯部の重合体までが熱の影響を受けるため、ヒートシール強力が向上せず、優れたヒートシール性を有するものを得ることはできない。
【0006】
【発明が解決しようとする課題】
本発明は、製糸性、開繊性が良好で、スパンボンド法により効率よく製造することが可能であり、かつ熱接着処理の際に収縮等が少なく、また、熱処理加工を安定して容易に行うことができ、さらには、ヒートシール性を併せもつポリ乳酸系長繊維不織布を提供することを課題とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、鋭意検討の結果、ポリ乳酸系長繊維不織布において、特定の重合体をブレンドして接着成分とすることにより、上記課題を達成することができるという知見を得、本発明に到達した。
【0008】
すなわち、本発明は、ポリ乳酸系重合体(A成分)と、ポリ乳酸系重合体と生分解性脂肪族−芳香族共重合ポリエステルとのブレンド体(B成分)とからなる複合長繊維が堆積されたスパンボンド法による不織布で、複合長繊維を構成する重合体は、下記(1)、(2)の溶融特性を満足するものであり、B成分が繊維表面の少なくとも一部を形成し、B成分が溶融または軟化することにより繊維同士を熱接着して形態保持していることを特徴とするポリ乳酸系長繊維不織布を要旨とするものである。
(1)A成分およびB成分に用いるポリ乳酸系重合体の融点が共に150℃以上であること。
(2)生分解性脂肪族−芳香族共重合ポリエステルの融点がA成分の融点よりも50℃以上低いこと。
【0009】
また、本発明は、下記(1)、(2)の溶融特性を満足するポリ乳酸系重合体(A成分)と、ポリ乳酸系重合体と生分解性脂肪族−芳香族共重合ポリエステルとのブレンド体(B成分)とを個別に溶融計量し、B成分が繊維表面の少なくとも一部を形成する複合型の紡糸口金より吐出し、この吐出糸条を吸引装置にて牽引細化した後に、移動式捕集面上に開繊させながら堆積してウエッブを形成し、その後、このウエッブを熱処理し、B成分を溶融または軟化させることによって繊維同士を熱接着することを特徴とするポリ乳酸系長繊維不織布の製造方法を要旨とするものである。
(1)A成分およびB成分に用いるポリ乳酸系重合体の融点が共に150℃以上であること。
(2)生分解性脂肪族−芳香族共重合ポリエステルの融点がA成分の融点よりも50℃以上低いこと。
【0010】
【発明の実施の形態】
本発明は、ポリ乳酸系重合体(A成分)と、ポリ乳酸系重合体と生分解性脂肪族−芳香族共重合ポリエステルとのブレンド体(B成分)とからなる複合長繊維が堆積されたスパンボンド法による不織布である。
【0011】
まず、A成分、B成分に用いるポリ乳酸系重合体について説明する。
【0012】
本発明に用いるポリ乳酸系重合体としては、ポリ−D−乳酸と、ポリ−L−乳酸と、D−乳酸とL−乳酸との共重合体と、D−乳酸とヒドロキシカルボン酸との共重合体と、L−乳酸とヒドロキシカルボン酸との共重合体と、D−乳酸とL−乳酸とヒドロキシカルボン酸との共重合体との群から選ばれる重合体、あるいはこれらのブレンド体が挙げられる。ヒドロキシカルボン酸を共重合する場合のヒドロキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸等が挙げられる。これらの中でも特に、ヒドロキシカプロン酸またはグリコール酸が、微生物分解性能および低コストの点から好ましい。
【0013】
本発明においては、上記ポリ乳酸系重合体であって、融点が150℃以上の重合体あるいはこれらのブレンド体を用いる。ポリ乳酸系重合体の融点が150℃以上であると、高い結晶性を有しているため、熱処理加工時の収縮が発生しにくく、また、熱処理加工を安定して行うことができ、さらには、得られる長繊維不織布は耐熱性に優れる。
【0014】
ポリ乳酸のホモポリマーであるポリ−L−乳酸やポリ−D−乳酸の融点は、約180℃である。ポリ乳酸系重合体として、ホモポリマーでなく、共重合体を用いる場合には、共重合体の融点が150℃以上となるようにモノマー成分の共重合比を決定する。L−乳酸とD−乳酸との共重合体の場合であると、L−乳酸とD−乳酸との共重合比が、モル比で、(L−乳酸)/(D−乳酸)=5/95〜0/100、あるいは(L−乳酸)/(D乳酸)=95/5〜100/0のものを用いる。共重合比が、前記範囲を外れると、共重合体の融点が150℃未満となり、非晶性が高くなり、本発明の目的を達成し得ないこととなる。
【0015】
なお、A成分に用いるポリ乳酸系重合体と、B成分に用いるポリ乳酸系重合体とは、同一のものであっても、異なるものであってもよい。
【0016】
B成分に用いる生分解性脂肪族−芳香族共重合ポリエステルとしては、脂肪族ジオールと芳香族ジカルボン酸および脂肪族ジカルボン酸を縮合して得られるものが使用できる。脂肪族ジオールとしては、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール等が挙げられる。芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等が挙げられる。脂肪族ジカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン酸等が挙げられる。これらを1種類以上選択して、重縮合することにより、目的とする生分解性脂肪族−芳香族共重合ポリエステルが得られ、必要に応じて多官能のイソシアネート化合物により架橋することもできる。
【0017】
生分解性脂肪族−芳香族共重合ポリエステルの融点は、A成分の融点よりも50℃以上低いことが必要であり、この融点差を満足するように生分解性脂肪族−芳香族共重合ポリエステルおよびA成分として用いるポリ乳酸系重合体を選択する。両者の融点差が50℃未満であると、熱処理加工を安定して容易に行うことができ、また、ヒートシール性に優れた長繊維不織布を得ようという本発明の目的を達成することができない。
【0018】
B成分において、ポリ乳酸系重合体/生分解性脂肪族−芳香族共重合ポリエステルのブレンド比率(質量比)は、95/5〜70/30であることが好ましい。生分解性脂肪族−芳香族共重合ポリエステルのブレンド比率が5質量%未満であると、熱接着性成分として寄与する成分が減少するため、接着性に劣る傾向となり、また、十分な機械的強力、優れたヒートシール性が得られにくい。一方、生分解性脂肪族−芳香族共重合ポリエステルのブレンド比率が30質量%を超えると、スパンボンド法により長繊維不織布を得る際に、製糸時の冷却性が劣り、紡糸・延伸した糸条同士が密着し、開繊できない傾向となる。この現象は、生分解性脂肪族−芳香族共重合ポリエステルのガラス転移温度(Tg)が極めて低いことに起因している。
【0019】
A成分とB成分のメルトフローレート(以下、MFRと略記する。)は、30〜100g/10分であることが好ましく、特にA成分においては、30〜80g/10分であることが好ましい。MFRが30g/10分未満であると、あまりにも粘性が高すぎて、製造工程において、紡出糸条の細化がスムーズに行うことができず、操業性を損なう。また、繊維が得られたとしても、単糸繊度が大きく、均斉度に劣るものとなる。一方、MFRが100g/10分を超えると、粘性が低すぎて、複合断面化が不安定となるばかりか、紡糸工程において糸切れが多発しやすく、操業性を損ない、得られた長繊維不織布は機械的特性が劣るものとなる。
ここで、MFRは、ASTM−D−1238に記載の方法に準じて、温度210℃で測定した値である。
【0020】
A成分およびB成分に用いる重合体には、各々必要に応じて、艶消し剤、顔料、結晶核剤等の各種添加剤を本発明の効果を損なわない範囲で添加してもよい。とりわけ、タルク、酸化チタン、炭酸カルシウム、炭酸マグネシウム等の結晶核剤を添加することは、紡出・冷却工程での糸条間の融着(ブロッキング)を防止するために、0.1〜3質量%の範囲で用いると有用である。
【0021】
本発明に用いる複合長繊維は、B成分が繊維表面の少なくとも一部を形成している。例えば、A成分とB成分とが貼り合わされたサイドバイサイド型複合断面、A成分が芯部を形成し、B成分が鞘部を形成してなる芯鞘型複合断面、A成分とB成分とが繊維表面に交互に存在する分割型複合断面や多葉型複合断面等が挙げられる。中でも、B成分の熱接着成分としての役割を考慮すると、芯鞘型複合断面であることが好ましい。なお、芯鞘型複合断面を採用する場合は、A成分とB成分の粘度は、A成分の方が高いもの(MFRの値が小さいもの)を採用すると、製造工程において、良好に溶融紡糸を行うことができる。
【0022】
複合長繊維が、芯鞘型複合断面である場合、芯部と鞘部の複合比(質量比)は、芯部/鞘部=5/1〜1/1であることが好ましい。芯部の比率が5/1を超えると、鞘部の比率が少なくなりすぎるため、熱接着性能に劣る傾向となり、長繊維不織布の形態保持性や機械的性能が劣る傾向となり、また、十分なヒートシール性を得にくい。一方、芯部の比率が1/1未満となると、製造工程において、紡出糸条の冷却性に劣り、製糸性・開繊性が悪く、紡糸・延伸した糸条同士が密着しやすい。
【0023】
本発明における複合長繊維の単糸繊度は、0.5〜11デシテックス程度であることが好ましい。単糸繊度が0.5デニール未満であると、紡糸・延伸工程において糸切れが頻繁に発生し、操業性が悪化するとともに、得られる長繊維不織布の機械的強度が劣るため、実用的でなくなる。一方、単糸繊度が11デシテックスを超えると、紡糸糸条の冷却性に劣り、糸条同士が密着しやすくなる。
【0024】
本発明は、前述した複合長繊維が堆積されたスパンボンド法による不織布であり、B成分が溶融または軟化することにより繊維同士が熱接着して形態保持している。ここで、熱接着の形態としては、繊維同士の接点において、溶融または軟化してなるB成分を介して熱接着したものであっても、また、熱エンボス装置を通すことにより、部分的熱接着部と非熱接着部とを有し、部分的熱接着部において、B成分が溶融または軟化して不織布として形態保持しているものであってもよい。
【0025】
本発明の長繊維不織布は、目付が10〜300g/mの範囲にあることが好ましい。目付が10g/m未満であると、地合および機械的強力に劣り実用的でない。一方、目付が300g/mを超えるとコスト面で不利である。
【0026】
本発明の長繊維不織布は、JIS−L−1906に準じて測定した縦方向(MD方向)の引張強力が、1.96N/(g/m)以上であることが好ましい。ここで引張強力は、経方向(MD方向)についての引張強力値を目付で除した値である。長繊維不織布の縦方向の引張強力が1.96N/(g/m)未満のものは、機械的強度に劣り、実用的と言い難い。引張強力は、以下の方法により求める。すなわち、試料長20cm、試料幅5cmの試料片各10点を作製し、各試料について、定速伸張型引張試験機(オリエンテック社製テンシロンUTM−4−1−100)を用い、つかみ間隔10cm、引張速度20cm/分で伸張し、得られた切断時荷重値(N/5cm幅)の平均値を目付で除した値を引張強力(N/(g/m))とした。
【0027】
次に、本発明のポリ乳酸系長繊維不織布の製造方法について説明する。本発明におけるポリ乳酸系長繊維不織布はいわゆるスパンボンド法によって効率よく製造することができる。
【0028】
A成分とするポリ乳酸系重合体、B成分とするポリ乳酸重合体、生分解性脂肪族−芳香族共重合ポリエステルを用意する。B成分のブレンド方法としては、ポリ乳酸系重合体チップと生分解性脂肪族−芳香族共重合ポリエステルチップとを用意し、チップ同士を計量混合し、エクスとルーダー内で溶融混合しながら溶融紡糸を行うドライブレンド法、また、予め両者を所定量ブレンドしたチップを作成して、そのブレンドチップを用いるコンパウンド法のいずれであってもよい。また、ブレンドチップにさらに一方のチップを混ぜ合わせてもよい。
【0029】
用意したA成分とB成分とを個別に溶融計量し、B成分が繊維表面の少なくとも一部を形成する複合型の紡糸口金より吐出させ、得られた紡出糸条を従来公知の横吹付や環状吹付等の冷却装置を用いて冷却せしめた後、吸引装置を用いて牽引細化して引き取る。
【0030】
このときの牽引速度は、4000〜6000m/分と設定することが好ましく、さらには5000〜6000m/分であることが好ましい。牽引速度が4000m/分未満であると、糸条において、十分に分子配向が促進されず、得られる長繊維不織布の寸法安定性が劣る。一方、牽引速度が高すぎると紡糸安定性に劣る。
【0031】
牽引・細化した長繊維は、公知の開繊器具にて開繊させながら、スクリーンからなるコンベアの如き移動式捕集面上に堆積させてウエッブとする。
【0032】
次いで、得られたウエッブに熱処理を施し、B成分を溶融または軟化させることにより、繊維同士を熱接着して、本発明のポリ乳酸系長繊維不織布を得る。
【0033】
熱処理方法としては、熱風を吹き付けによる方法、熱エンボス装置に通す方法等が挙げられる。柔軟性と機械的強力の両方に優れる点において、熱エンボス装置に通すことが好ましい。
【0034】
熱処理時の設定温度は、B成分における生分解性脂肪族−芳香族共重合ポリエステルが溶融または軟化する温度に設定するとよく、処理時間等に応じて適宜選択する。
【0035】
例えば、熱エンボス装置に通す場合、ロールの表面温度は、B成分における生分解性脂肪族−芳香族共重合ポリエステルの融点よりも10〜50℃低い温度に設定することが好ましい。生分解性脂肪族−芳香族共重合ポリエステルの融点よりも50℃を超えて、低い温度に設定すると、生分解性脂肪族−芳香族共重合ポリエステルが十分に溶融または軟化しないため、接着機能に劣り、長繊維不織布の機械的性能が劣り、毛羽立ちやすいものとなる。一方、生分解性脂肪族−芳香族共重合ポリエステルの融点よりも10℃低い温度を超えて高い温度に設定すると、ロールに溶融した重合体が固着し、操業性を著しく損なうことになる。
【0036】
【実施例】
以下、実施例により本発明を具体的に説明する。なお、本発明はこれらの実施例のみに限定されるものではない。下記の実施例および比較例における各物性値は、以下により求めた。
(1)重合体の融点(℃):パーキンエルマ社製示差走査型熱量計DSC−7型を用い、試料質量を5mg、昇温速度10℃/分として測定し、得られた融解吸熱曲線の吸熱ピークの極値を与える温度を融点Tm(℃)とした。
(2)目付(g/m):標準状態の試料から縦10cm×横10cmの試料片各10点を作製し、平衡水分に至らしめた後、各試料片の質量(g)を秤量し、得られた値の平均値を単位面積当たりに換算して、不織布の目付(g/m)とした。
【0037】
実施例1
A成分として、融点168℃、MFR70g/10分のL−乳酸/D−乳酸=98.6/1.4モル%のL−乳酸/D−乳酸共重合体(以下、P1と略記する。)を用意した。一方、B成分として、P1と融点110℃、MFR50g/10分のポリブチレンサクシネートテレフタレート重合体(イーストマンケミカル社製 商品名:イースターバイオ GB;以下、P2と略記する。)とを、質量比でP1/P2=80/20となるように溶融ブレンドし、P1とP2とがブレンドしてなるブレンド体(以下、P3と略記する。)を得た。
【0038】
P1を芯部、P3を鞘部とし、芯部/鞘部=4/1(質量比)となるように個別に計量した後、個別のエクストスーダー型押し出し機を用いて紡糸温度210℃で溶融し、芯鞘型複合断面となるように、単孔吐出量1.38g/分の条件下で溶融紡糸した。
【0039】
紡出糸条を公知の冷却装置にて冷却した後、引き続いて紡糸口金の下方に設けたエアーサッカーにて牽引速度5000m/分で牽引細化し、公知の開繊器具を用いて開繊し、移動するスクリーンコンベア上にウエッブとして捕集堆積させた。なお、堆積させた複合長繊維の単糸繊度は2.7デシテックスであった。
【0040】
次いで、このウエッブをエンボスロールと表面平滑な金属ロールとからなる熱エンボス装置に通して熱処理を施し、目付50g/mのポリ乳酸系長繊維不織布を得た。熱エンボス条件としては、両ロールの表面温度を90℃とし、エンボスロールは、個々の面積が0.6mmの円形の彫刻模様で、圧接点密度が20点/cm、圧接面積率が15%のものを用いた。
【0041】
得られたポリ乳酸系長繊維不織布の引張強力(目付で除す前の絶対値)を、不織布の縦方向(MD)、横方向(CD)ともに測定したところ、それぞれ173N/5cm幅、74N/5cm幅であった。目付で除した値については、表1に示した。
【0042】
実施例2
実施例1において、B成分として、P1とP2とを質量比が90/10となるように溶融ブレンドし、P1とP2とがブレンドしてなるブレンド体(以下、P4と略記する。)を用いたこと、芯部と鞘部との複合比を1/1としたこと以外は、実施例1と同様にして実施例2のポリ乳酸系長繊維不織布を得た。
【0043】
得られたポリ乳酸系長繊維不織布の引張強力(目付で除す前の絶対値)を、不織布の縦方向(MD)、横方向(CD)ともに測定したところ、それぞれ145N/5cm幅、60N/5cm幅であった。目付で除した値については、表1に示した。
【0044】
実施例3
実施例1において、B成分として、融点155℃、MFR70g/10分であるL−乳酸/D−乳酸=95.5/4.5モル%のL−乳酸/D−乳酸共重合体(以下、P5と略記する。)とP2とを、質量比がP5/P2=80/20となるように溶融ブレンドし、P5とP2とがブレンドしてなるブレンド体(以下、P6と略記する。)を用いたこと以外は、実施例1と同様にして、実施例3のポリ乳酸系長繊維不織布を得た。
【0045】
得られたポリ乳酸系長繊維不織布の引張強力(目付で除す前の絶対値)を、不織布の縦方向(MD)、横方向(CD)ともに測定したところ、それぞれ199N/5cm幅、83N/5cm幅であった。目付で除した値については、表1に示した。
【0046】
実施例4、5
実施例1において、目付を20g/mとしたこと(実施例4)、目付を100g/mとしたこと(実施例5)以外は実施例1と同様にしてポリ乳酸系長繊維不織布を得た。
【0047】
得られたポリ乳酸系長繊維不織布の引張強力(目付で除す前の絶対値)を、不織布の縦方向(MD)、横方向(CD)ともに測定したところ、実施例4は、それぞれ58N/5cm幅、22N/5cm幅、実施例5は、それぞれ327N/5cm幅、127N/5cm幅であった。目付で除した値については、表1に示した。
【0048】
実施例6
実施例1において、単孔吐出量を3.1g/分として単糸繊度を5.5デシテックスとしたこと、目付20g/mとしたこと以外は実施例1と同様にしてポリ乳酸系長繊維不織布を得た。
【0049】
得られたポリ乳酸系長繊維不織布の引張強力(目付で除す前の絶対値)を、不織布の縦方向(MD)、横方向(CD)ともに測定したところ、それぞれ130N/5cm幅、62N/5cm幅であった。目付で除した値については、表1に示した。
【0050】
実施例7
P1をベースとして茶色の顔料を20質量%練り込み含有したマスターバッチと、P1をベースとしてタルクを20質量%練り込み含有したマスターバッチとを用いて、顔料およびタルクが溶融重合体中にそれぞれ0.6質量%、0.4質量%となるように、芯部、鞘部共に計量配合して、単孔吐出量1.8g/分の条件下で芯鞘型口金より溶融紡糸した以外は、実施例1と同様にしてポリ乳酸系長繊維不織布を得た。
【0051】
得られたポリ乳酸系長繊維不織布の引張強力(目付で除す前の絶対値)を、不織布の縦方向(MD)、横方向(CD)ともに測定したところ、それぞれ178N/5cm幅、81N/5cm幅であった。目付で除した値については、表1に示した。
【0052】
実施例8
実施例1において、牽引速度4100m/分とし、単糸繊度3.3デシテックスとしたこと以外は実施例1と同様にしてポリ乳酸系長繊維不織布を得た。
【0053】
得られたポリ乳酸系長繊維不織布の引張強力(目付で除す前の絶対値)を、不織布の縦方向(MD)、横方向(CD)ともに測定したところ、それぞれ170N/5cm幅、70N/5cm幅であった。目付で除した値については、表1に示した。
【0054】
得られた実施例1〜8のポリ乳酸系長繊維不織布について、引張強力、ヒートシール性、生分解性について評価した。その結果を表1に示す。ヒートシール性、生分解性の評価は下記により行った。
【0055】
(ヒートシール性)
シールテスト機を用いて、処理条件(温度130℃、処理時間2秒、処理圧力19.6N/cm)を設定し、重ね合わせた2枚の不織布をシールし、そのシール部を手で剥がして剥離状態を下の3段階評価にて判定した。
○:剥離せず十分シールされている。
△:シール部はフィルム化するものの容易に剥離する。
×:殆どシールされない。または、シール部はフィルム化するものの、シートの収縮 がおこり寸法安定性が悪い。
【0056】
(生分解性)
約58℃に維持された熟成コンポスト中に不織布を埋設し、3ヶ月後に取り出し、不織布がその形態を保持していない場合、あるいは、その形態を保持していても引張強力が埋設前の強力初期値に対して50%以下に低下している場合に、生分解性が良好であると評価し○で示した。これに対し、強力が埋設前の強力初期値に対して50%を超える場合に、生分解性能が不良であると評価し×で示した。
【0057】
【表1】

Figure 2004011037
【0058】
実施例1〜8は、いずれも製糸性、開繊性は良好で、熱処理において、収縮やロールに絡みつくことがなく、良好に繊維同士を接着し、機械的強力に優れたものであった。また、優れたヒートシール性を示した。また、コンポスト中では3ヶ月後には、不織布の形態が保持していない程度に分解し、環境に対して優しく環境汚染をおこすことがないものであった。
【0059】
【発明の効果】
本発明は、ポリ乳酸系重合体(A成分)と、ポリ乳酸系重合体と生分解性脂肪族−芳香族共重合ポリエステルとのブレンド体(B成分)とからなる複合長繊維が堆積されたスパンボンド法による不織布である。そして、B成分が繊維表面の少なくとも一部を形成し、B成分が溶融または軟化することにより繊維同士を熱接着して形態保持している。
【0060】
A成分およびB成分に用いるポリ乳酸系重合体の融点が、共に150℃以上であることから、結晶性が高く、熱的安定性を有する。したがって、製糸性、開繊性が良好で、また、熱接着加工時に収縮等が発生することない。
【0061】
また、接着成分であるB成分には、A成分の融点よりも50℃以上低い融点を有する生分解性脂肪族−芳香族共重合ポリエステルをブレンドしているため、これが接着成分として寄与しており、融点差が大きいため、熱処理加工条件に細心の注意を払わずとも、加工を安定して容易に行うことが可能となる。また、ヒートシールにおいて、A成分は熱による影響を受けることなく、ヒートシール強力が向上し、優れたヒートシール性をも併せもつものとなる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polylactic acid-based long-fiber nonwoven fabric that is biodegradable and has excellent mechanical properties and heat sealing properties, and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a long-fiber nonwoven fabric made of self-adhesive fibers is one of functional long-fiber nonwoven fabrics. The long-fiber nonwoven fabric made of the self-adhesive fibers is obtained by melting a part of the fibers by heating and bonding and integrating the fibers with each other, and also has a heat sealing property.
[0003]
In recent years, synthetic fibers made from petroleum have a large calorific value when incinerated, so they need to be reviewed from the viewpoint of protecting the natural environment.Fibers made of aliphatic polyester that biodegrades in nature have been developed. Contribution to protection is expected. Among aliphatic polyesters, polylactic acid-based polymers are expected to be used in a wide range of fields because of their relatively high melting points.
[0004]
In the polylactic acid-based polymer, poly-L-lactic acid or poly-D-lactic acid is crystalline and has a melting point as high as about 180 ° C., and L-lactic acid and D-lactic acid are copolymerized. The melting point of the resulting copolymer can be changed by appropriately selecting the copolymerization ratio. For example, when 1 mol% of D-lactic acid is copolymerized with L-lactic acid, the melting point is 170 ° C., when 3 mol% of D-lactic acid is copolymerized, the melting point is 150 ° C., and when 8 mol% of D-lactic acid is copolymerized, the melting point is 170 ° C. , The melting point of polylactic acid can be controlled. However, when the copolymerization amount is increased, the crystallinity is accordingly lost, and the thermal stability tends to be poor.
[0005]
When trying to obtain a self-adhesive long-fiber nonwoven fabric using a polylactic acid-based polymer, a core in which poly-L-lactic acid is disposed in a core portion and a copolymer of L-lactic acid and D-lactic acid is disposed in a sheath portion It is conceivable to use a sheath type composite fiber. Considering the thermal processing stability, it is preferable that the difference in melting point between the core and the sheath is large. Therefore, it is preferable to select a copolymer having a low melting point (a copolymer at about 120 ° C.) for the sheath. I can think. However, among the copolymers of D and L-lactic acid, those having a melting point of about 120 ° C. have low crystallinity, so that troubles such as shrinkage in a heat bonding step and entanglement with a heat roll are liable to occur. Is inferior in heat resistance. On the other hand, if a copolymer having a high crystallinity and a melting point of about 150 ° C. is selected as the copolymer of D and L-lactic acid in consideration of the above problem, the above problem is solved, but the core and the sheath are not heat-sealed. Since the difference in melting point is not large, even the polymer in the core is affected by heat, the heat sealing strength is not improved, and a product having excellent heat sealing properties cannot be obtained.
[0006]
[Problems to be solved by the invention]
INDUSTRIAL APPLICABILITY The present invention has a good spinning property and spreadability, can be efficiently manufactured by a spun bond method, and has little shrinkage or the like at the time of a heat bonding treatment. It is another object of the present invention to provide a polylactic acid-based long-fiber nonwoven fabric having heat sealing properties.
[0007]
[Means for Solving the Problems]
The present inventors have earnestly studied and, as a result, obtained a finding that the above-mentioned object can be achieved by blending a specific polymer into an adhesive component in a polylactic acid-based long-fiber nonwoven fabric. Reached.
[0008]
That is, according to the present invention, a composite long fiber consisting of a polylactic acid-based polymer (component A) and a blend of a polylactic acid-based polymer and a biodegradable aliphatic-aromatic copolymerized polyester (component B) is deposited. The polymer constituting the composite continuous fiber is a nonwoven fabric obtained by the spunbonding method, which satisfies the following melting characteristics (1) and (2), and the B component forms at least a part of the fiber surface; The gist of the present invention is a polylactic acid-based long-fiber nonwoven fabric characterized in that fibers are thermally bonded to each other to maintain the form by melting or softening of the B component.
(1) The melting point of the polylactic acid-based polymer used for the component A and the component B is 150 ° C. or more.
(2) The melting point of the biodegradable aliphatic-aromatic copolymerized polyester is at least 50 ° C. lower than the melting point of the component A.
[0009]
Further, the present invention provides a polylactic acid-based polymer (component (A)) satisfying the following melting characteristics (1) and (2), and a polylactic acid-based polymer and a biodegradable aliphatic-aromatic copolymerized polyester. The blended product (component B) is individually melted and weighed, and the component B is discharged from a composite type spinneret forming at least a part of the fiber surface, and the discharged yarn is drawn and thinned by a suction device. A polylactic acid system characterized in that the fibers are thermally bonded to each other by heat-treating the web and melting or softening the B component by spreading the fibers while spreading the fibers on a movable collecting surface. A gist of the present invention is a method for producing a long-fiber nonwoven fabric.
(1) The melting point of the polylactic acid-based polymer used for the component A and the component B is 150 ° C. or more.
(2) The melting point of the biodegradable aliphatic-aromatic copolymerized polyester is at least 50 ° C. lower than the melting point of the component A.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a composite long fiber comprising a polylactic acid-based polymer (component A) and a blend of a polylactic acid-based polymer and a biodegradable aliphatic-aromatic copolymerized polyester (component B) is deposited. It is a nonwoven fabric by a spun bond method.
[0011]
First, the polylactic acid-based polymer used for the component A and the component B will be described.
[0012]
Examples of the polylactic acid-based polymer used in the present invention include poly-D-lactic acid, poly-L-lactic acid, a copolymer of D-lactic acid and L-lactic acid, and a copolymer of D-lactic acid and hydroxycarboxylic acid. A polymer selected from the group consisting of a polymer, a copolymer of L-lactic acid and hydroxycarboxylic acid, and a copolymer of D-lactic acid, L-lactic acid and hydroxycarboxylic acid, or a blend thereof. Can be Examples of the hydroxycarboxylic acid in the case of copolymerizing the hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid, and hydroxyoctanoic acid. Among these, hydroxycaproic acid or glycolic acid is particularly preferable from the viewpoint of microbial degradation performance and low cost.
[0013]
In the present invention, the above-mentioned polylactic acid-based polymer having a melting point of 150 ° C. or more or a blend thereof is used. When the melting point of the polylactic acid-based polymer is 150 ° C. or higher, since it has high crystallinity, shrinkage during heat treatment is less likely to occur, and the heat treatment can be performed stably. The resulting long-fiber nonwoven fabric has excellent heat resistance.
[0014]
The melting point of poly-L-lactic acid and poly-D-lactic acid, which are homopolymers of polylactic acid, is about 180 ° C. When using a copolymer instead of a homopolymer as the polylactic acid-based polymer, the copolymerization ratio of the monomer components is determined so that the melting point of the copolymer is 150 ° C. or higher. In the case of the copolymer of L-lactic acid and D-lactic acid, the copolymerization ratio of L-lactic acid and D-lactic acid is (L-lactic acid) / (D-lactic acid) = 5 / 95 to 0/100, or (L-lactic acid) / (D lactic acid) = 95/5 to 100/0. When the copolymerization ratio is out of the above range, the melting point of the copolymer becomes less than 150 ° C., the amorphousness becomes high, and the object of the present invention cannot be achieved.
[0015]
The polylactic acid-based polymer used for the component A and the polylactic acid-based polymer used for the component B may be the same or different.
[0016]
As the biodegradable aliphatic-aromatic copolymer polyester used for the component B, those obtained by condensing an aliphatic diol with an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid can be used. Examples of the aliphatic diol include ethylene glycol, propylene glycol, 1,4-butanediol, and 1,4-cyclohexanedimethanol. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid. Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, suberic acid, sebacic acid, dodecanoic acid and the like. By subjecting one or more of these to polycondensation, the desired biodegradable aliphatic-aromatic copolymerized polyester is obtained, and can be crosslinked with a polyfunctional isocyanate compound, if necessary.
[0017]
The melting point of the biodegradable aliphatic-aromatic copolymer polyester must be lower by at least 50 ° C. than the melting point of the component A, and the biodegradable aliphatic-aromatic copolymer polyester must satisfy the melting point difference. And a polylactic acid polymer used as the component A is selected. When the melting point difference between the two is less than 50 ° C., the heat treatment can be performed stably and easily, and the object of the present invention to obtain a long-fiber nonwoven fabric having excellent heat sealability cannot be achieved. .
[0018]
In the component B, the blend ratio (mass ratio) of the polylactic acid-based polymer / the biodegradable aliphatic-aromatic copolymerized polyester is preferably from 95/5 to 70/30. When the blend ratio of the biodegradable aliphatic-aromatic copolymerized polyester is less than 5% by mass, the component contributing as a heat-adhesive component is reduced, so that the adhesiveness tends to be inferior, and sufficient mechanical strength is obtained. It is difficult to obtain excellent heat sealability. On the other hand, when the blend ratio of the biodegradable aliphatic-aromatic copolymerized polyester exceeds 30% by mass, when a long-fiber nonwoven fabric is obtained by a spunbonding method, the cooling property at the time of spinning is inferior, and the spun and drawn yarn is inferior. They tend to adhere to each other and cannot be opened. This phenomenon is due to the extremely low glass transition temperature (Tg) of the biodegradable aliphatic-aromatic copolymerized polyester.
[0019]
The melt flow rate (hereinafter abbreviated as MFR) of the component A and the component B is preferably 30 to 100 g / 10 minutes, and particularly preferably 30 to 80 g / 10 minutes for the component A. If the MFR is less than 30 g / 10 minutes, the viscosity is too high, and the spun yarn cannot be smoothly reduced in the production process, resulting in impaired operability. Further, even if the fibers are obtained, the single yarn fineness is large and the uniformity is inferior. On the other hand, when the MFR exceeds 100 g / 10 minutes, the viscosity is too low, and not only the composite cross section becomes unstable, but also the yarn breakage is apt to occur frequently in the spinning process, and the operability is impaired. Has inferior mechanical properties.
Here, the MFR is a value measured at a temperature of 210 ° C. according to the method described in ASTM-D-1238.
[0020]
Various additives such as a matting agent, a pigment, and a crystal nucleating agent may be added to the polymers used for the component A and the component B as needed, as long as the effects of the present invention are not impaired. In particular, the addition of a crystal nucleating agent such as talc, titanium oxide, calcium carbonate, magnesium carbonate, or the like can prevent the fusion (blocking) between the yarns in the spinning / cooling step from 0.1 to 3%. It is useful to use it in the range of mass%.
[0021]
In the composite long fiber used in the present invention, the B component forms at least a part of the fiber surface. For example, a side-by-side composite cross section in which the A component and the B component are bonded, a core-sheath composite cross section in which the A component forms a core, and the B component forms a sheath, and the A component and the B component are fibers A split composite cross section or a multi-leaf composite cross section alternately present on the surface may be mentioned. Above all, in consideration of the role of the B component as a heat bonding component, a core-sheath composite cross section is preferable. When the core-in-sheath composite cross section is adopted, if the viscosity of the component A and the component B is higher for the component A (the value of the MFR is smaller), the melt spinning can be favorably performed in the production process. It can be carried out.
[0022]
When the composite long fiber has a core-in-sheath type composite cross section, the composite ratio (mass ratio) of the core and the sheath is preferably core / sheath = 5/1 to 1/1. When the ratio of the core portion exceeds 5/1, the ratio of the sheath portion becomes too small, so that the thermal bonding performance tends to be inferior, and the shape retention and mechanical performance of the long-fiber nonwoven fabric tend to be inferior. It is difficult to obtain heat sealability. On the other hand, when the ratio of the core portion is less than 1/1, in the manufacturing process, the cooling property of the spun yarn is inferior, the spinning property and the spreadability are poor, and the spun and drawn yarns are likely to adhere to each other.
[0023]
The single filament fineness of the composite long fiber in the present invention is preferably about 0.5 to 11 dtex. If the single-fiber fineness is less than 0.5 denier, yarn breakage frequently occurs in the spinning / drawing process, resulting in poor operability and poor mechanical strength of the obtained long-fiber nonwoven fabric, which is not practical. . On the other hand, if the single yarn fineness exceeds 11 decitex, the cooling property of the spun yarn is inferior, and the yarns tend to adhere to each other.
[0024]
The present invention is a nonwoven fabric formed by the spunbond method on which the above-mentioned composite long fibers are deposited. The fibers are thermally bonded to each other by melting or softening of the B component, thereby maintaining the form. Here, as a form of the thermal bonding, a thermal bonding may be performed even at a contact point between the fibers via a component B that is melted or softened, or may be partially thermally bonded by passing through a hot embossing device. And a non-heat-bonded portion, and in the partially heat-bonded portion, the B component may be melted or softened to retain its form as a nonwoven fabric.
[0025]
The long-fiber nonwoven fabric of the present invention preferably has a basis weight in the range of 10 to 300 g / m 2 . If the basis weight is less than 10 g / m 2 , formation and mechanical strength are inferior and not practical. On the other hand, if the basis weight exceeds 300 g / m 2 , it is disadvantageous in terms of cost.
[0026]
The long-fiber nonwoven fabric of the present invention preferably has a tensile strength in the machine direction (MD direction) of 1.96 N / (g / m 2 ) or more measured according to JIS-L-1906. Here, the tensile strength is a value obtained by dividing the tensile strength value in the warp direction (MD direction) by the basis weight. A long-fiber nonwoven fabric having a tensile strength in the longitudinal direction of less than 1.96 N / (g / m 2 ) has poor mechanical strength and is hardly practical. The tensile strength is determined by the following method. That is, 10 points each of a sample having a sample length of 20 cm and a sample width of 5 cm were prepared, and for each sample, a gripping interval of 10 cm was measured using a constant-speed extension-type tensile tester (Tensilon UTM-4-1-100 manufactured by Orientec). A tensile strength (N / (g / m 2 )) was obtained by dividing the average value of the obtained load values at cutting (N / 5 cm width) by the basis weight.
[0027]
Next, a method for producing the polylactic acid-based long-fiber nonwoven fabric of the present invention will be described. The polylactic acid-based long-fiber nonwoven fabric in the present invention can be efficiently produced by a so-called spunbond method.
[0028]
A polylactic acid-based polymer as the component A, a polylactic acid polymer as the component B, and a biodegradable aliphatic-aromatic copolymer polyester are prepared. As a method for blending the B component, a polylactic acid-based polymer chip and a biodegradable aliphatic-aromatic copolymerized polyester chip are prepared, and the chips are weighed and mixed, and melt-spun while melt-mixing in an extruder and a ruder. Or a compound method in which chips are prepared by blending both in a predetermined amount in advance and the blended chips are used. Further, one chip may be further mixed with the blend chip.
[0029]
The prepared A component and B component are individually melted and weighed, and the B component is discharged from a composite spinneret forming at least a part of the fiber surface, and the obtained spun yarn is subjected to a conventionally known horizontal spraying method. After cooling using a cooling device such as an annular sprayer, the material is drawn and thinned using a suction device and is taken up.
[0030]
The towing speed at this time is preferably set to 4000 to 6000 m / min, and more preferably 5000 to 6000 m / min. When the drawing speed is less than 4000 m / min, the molecular orientation of the yarn is not sufficiently promoted, and the dimensional stability of the obtained long-fiber nonwoven fabric is poor. On the other hand, if the drawing speed is too high, the spinning stability is poor.
[0031]
The drawn and thinned long fibers are deposited on a movable collection surface such as a conveyor made of a screen while being spread with a known spreader to form a web.
[0032]
Next, the obtained web is subjected to a heat treatment to melt or soften the B component, thereby thermally bonding the fibers to each other to obtain the polylactic acid-based long-fiber nonwoven fabric of the present invention.
[0033]
Examples of the heat treatment method include a method of blowing hot air, a method of passing through a hot embossing device, and the like. It is preferable to pass through a hot embossing device in terms of both excellent flexibility and mechanical strength.
[0034]
The temperature set during the heat treatment may be set to a temperature at which the biodegradable aliphatic-aromatic copolymerized polyester in component B melts or softens, and is appropriately selected according to the processing time and the like.
[0035]
For example, when the roll is passed through a hot embossing device, the surface temperature of the roll is preferably set to a temperature lower by 10 to 50 ° C. than the melting point of the biodegradable aliphatic-aromatic copolymerized polyester in the B component. If the temperature is set to a temperature lower than the melting point of the biodegradable aliphatic-aromatic copolyester by more than 50 ° C. and the biodegradable aliphatic-aromatic copolyester is not sufficiently melted or softened, the adhesive function is reduced. Inferior, the mechanical performance of the long-fiber nonwoven fabric is inferior, and the nonwoven fabric becomes easily fluffy. On the other hand, if the temperature is set to a temperature higher than the melting point of the biodegradable aliphatic-aromatic copolymerized polyester by more than 10 ° C., the melted polymer is fixed to the roll, and the operability is significantly impaired.
[0036]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. Note that the present invention is not limited to only these examples. Each physical property value in the following Examples and Comparative Examples was determined as follows.
(1) Melting point (° C.) of polymer: measured using a differential scanning calorimeter DSC-7 manufactured by Perkin Elmer Co., Ltd., at a sample mass of 5 mg and a heating rate of 10 ° C./min. The temperature giving the extreme value of the endothermic peak was defined as the melting point Tm (° C.).
(2) Basis weight (g / m 2 ): Ten points each of 10 cm × 10 cm sample pieces were prepared from a sample in the standard state, and after reaching equilibrium moisture, the mass (g) of each sample piece was weighed. The average value of the obtained values was converted into a unit area to obtain the basis weight (g / m 2 ) of the nonwoven fabric.
[0037]
Example 1
As the A component, an L-lactic acid / D-lactic acid copolymer having a melting point of 168 ° C. and an MFR of 70 g / 10 min = L-lactic acid / D-lactic acid = 98.6 / 1.4 mol% (hereinafter abbreviated as P1). Was prepared. On the other hand, as a B component, P1 and a polybutylene succinate terephthalate polymer having a melting point of 110 ° C. and an MFR of 50 g / 10 min (trade name: Easter Bio GB; manufactured by Eastman Chemical Company; hereinafter, abbreviated as P2) are mass ratios. And P1 / P2 = 80/20 to obtain a blend (hereinafter abbreviated as P3) obtained by blending P1 and P2.
[0038]
P1 is a core portion, P3 is a sheath portion, and individually weighed so that a core portion / sheath portion = 4/1 (mass ratio), and then, using a separate extruder type extruder, at a spinning temperature of 210 ° C. The mixture was melted and melt-spun under the condition of a single hole discharge rate of 1.38 g / min so as to have a core-in-sheath composite cross section.
[0039]
After the spun yarn is cooled by a known cooling device, it is subsequently drawn and thinned by an air soccer provided below the spinneret at a drawing speed of 5000 m / min, and is spread using a known opening device. It was collected and deposited as a web on a moving screen conveyor. The single fiber fineness of the deposited composite filament was 2.7 dtex.
[0040]
Next, the web was passed through a hot embossing device composed of an embossing roll and a metal roll having a smooth surface to perform a heat treatment to obtain a polylactic acid-based long-fiber nonwoven fabric having a basis weight of 50 g / m 2 . The hot embossing conditions were as follows: the surface temperature of both rolls was 90 ° C. The embossing roll was a circular engraved pattern having an individual area of 0.6 mm 2 , a press contact density of 20 points / cm 2 , and a press contact area ratio of 15 points. %.
[0041]
When the tensile strength (absolute value before dividing by the basis weight) of the obtained polylactic acid-based long-fiber nonwoven fabric was measured in both the longitudinal direction (MD) and the transverse direction (CD) of the nonwoven fabric, the width was 173 N / 5 cm and the width was 74 N /, respectively. It was 5 cm wide. Table 1 shows the values divided by the basis weight.
[0042]
Example 2
In Example 1, a blend (hereinafter abbreviated as P4) obtained by melt-blending P1 and P2 so that the mass ratio becomes 90/10 and blending P1 and P2 is used as the B component. A polylactic acid-based long-fiber nonwoven fabric of Example 2 was obtained in the same manner as in Example 1, except that the composite ratio of the core and the sheath was 1/1.
[0043]
The tensile strength (absolute value before the weight per unit area) of the obtained polylactic acid-based long-fiber nonwoven fabric was measured in both the longitudinal direction (MD) and the transverse direction (CD) of the nonwoven fabric. It was 5 cm wide. Table 1 shows the values divided by the basis weight.
[0044]
Example 3
In Example 1, as the B component, an L-lactic acid / D-lactic acid copolymer having a melting point of 155 ° C. and an MFR of 70 g / 10 minutes having an L-lactic acid / D-lactic acid ratio of 95.5 / 4.5 mol% (hereinafter, referred to as “B-component”) P5) and P2 are melt-blended so that the mass ratio becomes P5 / P2 = 80/20, and a blended body obtained by blending P5 and P2 (hereinafter abbreviated as P6). A polylactic acid-based long-fiber nonwoven fabric of Example 3 was obtained in the same manner as in Example 1, except for using the same.
[0045]
When the tensile strength (absolute value before removal by basis weight) of the obtained polylactic acid-based long-fiber nonwoven fabric was measured in both the longitudinal direction (MD) and the transverse direction (CD) of the nonwoven fabric, the width was 199 N / 5 cm and the width was 83 N /, respectively. It was 5 cm wide. Table 1 shows the values divided by the basis weight.
[0046]
Examples 4 and 5
In Example 1, a polylactic acid-based long-fiber nonwoven fabric was prepared in the same manner as in Example 1 except that the basis weight was 20 g / m 2 (Example 4) and the basis weight was 100 g / m 2 (Example 5). Obtained.
[0047]
When the tensile strength (absolute value before weight per unit area) of the obtained polylactic acid-based long-fiber nonwoven fabric was measured in both the longitudinal direction (MD) and the transverse direction (CD) of the nonwoven fabric, Example 4 showed 58 N / The 5 cm width, 22 N / 5 cm width, and Example 5 were 327 N / 5 cm width and 127 N / 5 cm width, respectively. Table 1 shows the values divided by the basis weight.
[0048]
Example 6
In Example 1, a polylactic acid-based long fiber was prepared in the same manner as in Example 1, except that the single-hole ejection amount was 3.1 g / min, the single-fiber fineness was 5.5 dtex, and the basis weight was 20 g / m 2. A non-woven fabric was obtained.
[0049]
When the tensile strength (absolute value before weight per unit area) of the obtained polylactic acid-based long-fiber nonwoven fabric was measured in both the machine direction (MD) and the cross direction (CD) of the nonwoven fabric, they were 130 N / 5 cm width and 62 N /, respectively. It was 5 cm wide. Table 1 shows the values divided by the basis weight.
[0050]
Example 7
Using a masterbatch containing 20% by mass of a brown pigment based on P1 and a masterbatch containing 20% by mass of talc based on P1, pigments and talc are each contained in a molten polymer in an amount of 0%. Except that the core and the sheath were weighed and blended so as to be 0.6% by mass and 0.4% by mass, respectively, and melt-spun from a core-sheath type die under the condition of a single hole discharge amount of 1.8 g / min. In the same manner as in Example 1, a polylactic acid-based long-fiber nonwoven fabric was obtained.
[0051]
When the tensile strength (absolute value before removal by basis weight) of the obtained polylactic acid-based long-fiber nonwoven fabric was measured in both the longitudinal direction (MD) and the transverse direction (CD) of the nonwoven fabric, the width was 178 N / 5 cm and the width was 81 N /, respectively. It was 5 cm wide. Table 1 shows the values divided by the basis weight.
[0052]
Example 8
A polylactic acid-based long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the drawing speed was 4100 m / min and the single-fiber fineness was 3.3 decitex.
[0053]
When the tensile strength (absolute value before the basis weight) of the obtained polylactic acid-based long-fiber nonwoven fabric was measured in both the longitudinal direction (MD) and the transverse direction (CD) of the nonwoven fabric, they were 170 N / 5 cm width and 70 N / cm, respectively. It was 5 cm wide. Table 1 shows the values divided by the basis weight.
[0054]
The obtained polylactic acid-based long-fiber nonwoven fabrics of Examples 1 to 8 were evaluated for tensile strength, heat sealability, and biodegradability. Table 1 shows the results. The heat sealability and biodegradability were evaluated as follows.
[0055]
(Heat sealability)
Using a seal test machine, processing conditions (temperature: 130 ° C., processing time: 2 seconds, processing pressure: 19.6 N / cm 2 ) are set, the two nonwoven fabrics stacked are sealed, and the seal is peeled off by hand. The peeled state was determined by the following three-step evaluation.
:: sufficiently sealed without peeling.
Δ: The seal portion is formed into a film, but easily peeled.
X: Almost no sealing. Alternatively, although the seal portion is formed into a film, the sheet shrinks and the dimensional stability is poor.
[0056]
(Biodegradable)
The nonwoven fabric is buried in the aged compost maintained at about 58 ° C. and taken out after 3 months. If the nonwoven fabric does not retain its form, or even if it retains its form, the tensile strength is reduced to the initial strength before embedding. When the value was reduced to 50% or less with respect to the value, the biodegradability was evaluated as good, and was indicated by ○. On the other hand, when the strength exceeded 50% of the strength initial value before embedding, the biodegradation performance was evaluated as poor and indicated by x.
[0057]
[Table 1]
Figure 2004011037
[0058]
In Examples 1 to 8, all of the yarn-forming properties and the fiber-opening properties were good, and the fibers did not shrink or become entangled with the roll during heat treatment, and the fibers were well bonded to each other and had excellent mechanical strength. In addition, excellent heat sealability was exhibited. After three months in the compost, the non-woven fabric was decomposed to such an extent that the form of the non-woven fabric was not retained, and it was environmentally friendly and did not cause environmental pollution.
[0059]
【The invention's effect】
In the present invention, a composite long fiber comprising a polylactic acid-based polymer (component A) and a blend of a polylactic acid-based polymer and a biodegradable aliphatic-aromatic copolymerized polyester (component B) is deposited. It is a nonwoven fabric by a spun bond method. The B component forms at least a part of the fiber surface, and the B component is melted or softened so that the fibers are thermally bonded to each other to maintain the form.
[0060]
Since the melting points of the polylactic acid-based polymers used for the component A and the component B are both 150 ° C. or higher, they have high crystallinity and thermal stability. Therefore, the yarn formability and the spreadability are good, and no shrinkage or the like occurs during the heat bonding process.
[0061]
In addition, since the component B, which is an adhesive component, is blended with a biodegradable aliphatic-aromatic copolymer polyester having a melting point at least 50 ° C. lower than the melting point of the component A, this contributes as an adhesive component. Since the melting point difference is large, the processing can be stably and easily performed without paying close attention to the heat treatment processing conditions. In the heat sealing, the component A is not affected by heat, the heat sealing strength is improved, and excellent heat sealing properties are also obtained.

Claims (5)

ポリ乳酸系重合体(A成分)と、ポリ乳酸系重合体と生分解性脂肪族−芳香族共重合ポリエステルとのブレンド体(B成分)とからなる複合長繊維が堆積されたスパンボンド法による不織布で、複合長繊維を構成する重合体は、下記(1)、(2)の溶融特性を満足するものであり、B成分が繊維表面の少なくとも一部を形成し、B成分が溶融または軟化することにより繊維同士を熱接着して形態保持していることを特徴とするポリ乳酸系長繊維不織布。
(1)A成分およびB成分に用いるポリ乳酸系重合体の融点が共に150℃以上であること。
(2)生分解性脂肪族−芳香族共重合ポリエステルの融点がA成分の融点よりも50℃以上低いこと。
A spunbond method in which a composite long fiber composed of a polylactic acid-based polymer (component A) and a blend of a polylactic acid-based polymer and a biodegradable aliphatic-aromatic copolymerized polyester (component B) is deposited. The polymer constituting the composite long fiber is a nonwoven fabric that satisfies the following melting characteristics (1) and (2). The B component forms at least a part of the fiber surface, and the B component melts or softens. A polylactic acid-based long-fiber nonwoven fabric characterized in that fibers are thermally bonded to each other to maintain the form.
(1) The melting point of the polylactic acid-based polymer used for the component A and the component B is 150 ° C. or more.
(2) The melting point of the biodegradable aliphatic-aromatic copolymerized polyester is at least 50 ° C. lower than the melting point of the component A.
B成分のプレンド比率(質量比)が、ポリ乳酸系重合体/生分解性脂肪族−芳香族共重合ポリエステル=95/5〜70/30であることを特徴とする請求項1記載のポリ乳酸系長繊維不織布。2. The polylactic acid according to claim 1, wherein the blend ratio (mass ratio) of the component B is polylactic acid-based polymer / biodegradable aliphatic-aromatic copolymerized polyester = 95/5 to 70/30. Long fiber nonwoven fabric. 複合長繊維が、A成分が芯部を形成し、B成分が鞘部を形成してなる芯鞘型複合長繊維であって、芯部と鞘部の複合比(質量比)が、芯部/鞘部=5/1〜1/1であることを特徴とする請求項1または2に記載のポリ乳酸系長繊維不織布。The composite long fiber is a core-sheath type composite long fiber in which the component A forms a core and the component B forms a sheath, and the composite ratio (mass ratio) of the core and the sheath is the core. 3. The polylactic acid-based long-fiber nonwoven fabric according to claim 1 or 2, wherein the ratio of / sheath portion is 5/1 to 1/1. 生分解性脂肪族−芳香族共重合ポリエステルが、ポリブチレンサクシネートテレフタレートであることを特徴とする請求項1〜3のいずれか1項に記載のポリ乳酸系長繊維不織布。The polylactic acid-based long-fiber nonwoven fabric according to any one of claims 1 to 3, wherein the biodegradable aliphatic-aromatic copolymer polyester is polybutylene succinate terephthalate. 下記(1)、(2)の溶融特性を満足するポリ乳酸系重合体(A成分)と、ポリ乳酸系重合体と生分解性脂肪族−芳香族共重合ポリエステルとのブレンド体(B成分)とを個別に溶融計量し、B成分が繊維表面の少なくとも一部を形成する複合型の紡糸口金より吐出し、この吐出糸条を吸引装置にて牽引細化した後に、移動式捕集面上に開繊させながら堆積してウエッブを形成し、その後、このウエッブを熱処理し、B成分を溶融または軟化させることによって繊維同士を熱接着することを特徴とするポリ乳酸系長繊維不織布の製造方法。
(1)A成分およびB成分に用いるポリ乳酸系重合体の融点が共に150℃以上であること。
(2)生分解性脂肪族−芳香族共重合ポリエステルの融点がA成分の融点よりも50℃以上低いこと。
A polylactic acid-based polymer (component A) satisfying the following melting characteristics (1) and (2), and a blend of a polylactic acid-based polymer and a biodegradable aliphatic-aromatic copolymerized polyester (component B) Are melted and weighed separately, and the B component is discharged from a composite spinneret forming at least a part of the fiber surface. A method for producing a polylactic acid-based long-fiber nonwoven fabric, comprising heat-bonding fibers by heat-treating the web to melt or soften the B component. .
(1) The melting point of the polylactic acid-based polymer used for the component A and the component B is 150 ° C. or more.
(2) The melting point of the biodegradable aliphatic-aromatic copolymerized polyester is at least 50 ° C. lower than the melting point of the component A.
JP2002162942A 2002-06-04 2002-06-04 Polylactic acid-based long fiber nonwoven fabric and method for producing the same Expired - Fee Related JP3966768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162942A JP3966768B2 (en) 2002-06-04 2002-06-04 Polylactic acid-based long fiber nonwoven fabric and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162942A JP3966768B2 (en) 2002-06-04 2002-06-04 Polylactic acid-based long fiber nonwoven fabric and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004011037A true JP2004011037A (en) 2004-01-15
JP3966768B2 JP3966768B2 (en) 2007-08-29

Family

ID=30431543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162942A Expired - Fee Related JP3966768B2 (en) 2002-06-04 2002-06-04 Polylactic acid-based long fiber nonwoven fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP3966768B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296271A (en) * 2005-04-19 2006-11-02 Unitica Fibers Ltd Biodegradable vegetation mat
JP2008069463A (en) * 2006-09-12 2008-03-27 Toray Ind Inc Method for producing nonwoven fabric and method for producing artificial leather substrate
JP2008214817A (en) * 2007-03-06 2008-09-18 Nippon Ester Co Ltd Binder fiber and nonwoven fabric obtained using the same
JP2010270407A (en) * 2009-05-20 2010-12-02 Unitika Ltd Polylactic acid-based latent crimped fiber
US7994078B2 (en) * 2002-12-23 2011-08-09 Kimberly-Clark Worldwide, Inc. High strength nonwoven web from a biodegradable aliphatic polyester
JP2013151769A (en) * 2012-01-26 2013-08-08 Unitika Ltd Polylactic acid-based filament nonwoven fabric

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994078B2 (en) * 2002-12-23 2011-08-09 Kimberly-Clark Worldwide, Inc. High strength nonwoven web from a biodegradable aliphatic polyester
JP2006296271A (en) * 2005-04-19 2006-11-02 Unitica Fibers Ltd Biodegradable vegetation mat
JP2008069463A (en) * 2006-09-12 2008-03-27 Toray Ind Inc Method for producing nonwoven fabric and method for producing artificial leather substrate
JP2008214817A (en) * 2007-03-06 2008-09-18 Nippon Ester Co Ltd Binder fiber and nonwoven fabric obtained using the same
JP2010270407A (en) * 2009-05-20 2010-12-02 Unitika Ltd Polylactic acid-based latent crimped fiber
JP2013151769A (en) * 2012-01-26 2013-08-08 Unitika Ltd Polylactic acid-based filament nonwoven fabric

Also Published As

Publication number Publication date
JP3966768B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
NZ501274A (en) Degradable polymer fibres comprising polylactide and material made from the fibres
JP5355225B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP4873979B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP2006207105A (en) Polylactic acid-based filament nonwoven fabric and method for producing the same
JP3966768B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP6652855B2 (en) Continuous fiber nonwoven fabric and method for producing the same
JP4338557B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP5361420B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP4312066B2 (en) Heat-resistant polylactic acid-based long fiber nonwoven fabric
JP2004142766A (en) Biodegradable bag-shaped article
JP4573622B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH08325916A (en) Biodegradable nonwoven fabric of long fiber and its production
JP2004162218A (en) Biodegradable nonwoven fabric
JP2005171408A (en) Biodegradable nonwoven fabric and its production method
JP4573647B2 (en) Heat seal structure and manufacturing method thereof
JP3791122B2 (en) garbage bag
JP2000282357A (en) Biodegradable filament nonwoven cloth and its production
JP5394667B2 (en) Primary fabric for tufted carpet
JP2006057197A (en) Polylactic acid-based nonwoven fabric
JP2005076142A (en) Nonwoven fabric and method for producing the same
JP5704875B2 (en) Method for producing heat-bondable polyester-based long-fiber nonwoven fabric and heat-bonding sheet material comprising the same
JPH1088426A (en) Self-bonding conjugated fiber and its application product
JP4117915B2 (en) Biodegradable nonwoven fabric and method for producing the same
JP2007270372A (en) Substrate cloth for tufted carpet and tufted carpet using the same
JP4117916B2 (en) Biodegradable nonwoven fabric and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees