JP3790865B2 -   Manufacturing method of engineering plastic crosslinked body - Google Patents

  Manufacturing method of engineering plastic crosslinked body Download PDF

Info

Publication number
JP3790865B2
JP3790865B2 JP2001070786A JP2001070786A JP3790865B2 JP 3790865 B2 JP3790865 B2 JP 3790865B2 JP 2001070786 A JP2001070786 A JP 2001070786A JP 2001070786 A JP2001070786 A JP 2001070786A JP 3790865 B2 JP3790865 B2 JP 3790865B2
Authority
JP
Japan
Prior art keywords
engineering plastic
engineering
crosslinked
temperature
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001070786A
Other languages
Japanese (ja)
Other versions
JP2002265630A (en
Inventor
敏明 八木
洋右 森田
甫 西
広男 草野
康彰 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001070786A priority Critical patent/JP3790865B2/en
Publication of JP2002265630A publication Critical patent/JP2002265630A/en
Application granted granted Critical
Publication of JP3790865B2 publication Critical patent/JP3790865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジニアリングプラスチック架橋体の製造方法に関し、特に、低線量の放射線照射でも架橋させることができ、耐熱性、寸法安定性、潤滑性に優れたエンジニアリングプラスチック架橋体の製造方法に関する。
【0002】
【従来の技術】
エンジニアリングプラスチックは、優れた力学的性質、耐熱性、耐久性を有しており、機械部品を中心に電気部品、住宅用材等のある程度の強度維持が必要な部分に使用されている。ふっ素樹脂は、耐熱性、耐薬品性、耐溶剤性に優れるため、近年その特徴を生かして、容器の内面コーティングの素材、電線被膜材、流体移送用チューブ等の用途に用いられており、エンジニアリングプラスチックに配合されて用いられる場合もある。
【0003】
しかし、エンジニアリングプラスチックは、ガラス転移点以上の高温における耐熱性や寸法安定性、動的部位に使用した場合の潤滑性が必ずしも十分とは言えないため、強度を向上させるために無機フィラー等の充填材を用いたり、潤滑性を付与するために低分子量化したふっ素樹脂(ルブリカント)を配合しているが、さらに高性能なエンジニアリングプラスチックのニーズが高まってきている。
【0004】
このようなニーズに鑑みてなされた従来のエンジニアリングプラスチック架橋体の製造方法として、例えば、エンジニアリングプラスチックを照射処理して架橋させるものが知られている。この方法によれば、耐熱性、寸法安定性、潤滑性に優れたエンジニアリングプラスチック架橋体を得ることができる。
【0005】
【発明が解決しようとする課題】
しかし、従来のエンジニアリングプラスチック架橋体の製造方法によれば、耐放射線に優れるエンジニアリングプラスチックを用いた場合は、架橋が非常に起こりにくく、架橋を起こすための高総量照射により逆に劣化が促進されるという問題がある。
【0006】
従って、本発明の目的は、低線量の放射線照射でも架橋させることができ、耐熱性、寸法安定性、潤滑性に優れたエンジニアリングプラスチック架橋体の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するため、エンジニアリングプラスチックをその融点の近傍あるいはそれ以上に加熱し、加熱された状態の前記エンジニアリングプラスチックに酸素濃度10torr以下の雰囲気の下で1kGy〜10MGyの電離性放射線を照射することを特徴とするエンジニアリングプラスチック架橋体の製造方法を提供する。上記構成によれば、エンジニアリングプラスチックをその融点の近傍あるいはそれ以上に加熱した状態で放射線を照射することにより、低線量の放射線照射でも架橋させることができる。
【0009】
【発明の実施の形態】
<第1の実施の形態>
本発明の第1の実施の形態に係るエンジニアリングプラスチック架橋体の製造方法について説明する。まず、エンジニアリングプラスチックを準備する。エンジニアリングプラスチックとしては、熱可塑性ポリイミド(以下「TPI」という。)、ポリエーテルエーテルケトン(以下「PEEK」という。)、ポリフェニレンサルファイド(以下「PPS」という。)、ポリアミドイミド(以下「PAI」という。)、ポリフェニレンオキサイド(以下「PPO」という。)、改良ポリフェニレンオキサイド(以下「PPE」という。)、ポリスルフォン(以下「PSF」という。)、ポリエーテルスルフォン(以下「PES」という。)、液晶ポリマー(以下「LCP」という。)か挙げられる。上記PPEは、溶融成形性を向上させるため、PPOにポリスチレンを加えた材料である。なお、エンジニアリングプラスチックは、それぞれ単独あるいは2種以上の混合で使用してもよい。
【0010】
次に、エンジニアリングプラスチックをその融点の近傍あるいはそれ以上に加熱する。例えば、エンジニアリングプラスチックとしてPEEKを使用する場合には、この材料の融点である343℃の近傍あるいはそれ以上の温度にPEEKを加熱する。但し、過度の加熱は逆に分子主鎖の切断と分解を招くようになるので、樹脂の劣化を抑え、架橋の効率を良くするために、加熱温度はエンジニアリングプラスチックの融点よりも−10〜30℃高い範囲に抑えることが望ましい。なお、融点は示差走査熱量計(DSC)により20℃/分で昇温したときの吸熱ピークから求められる。
【0011】
次に、加熱された状態のエンジニアリングプラスチックに電離性放射線を照射する。電離性放射線としては、γ綿、電子線、X線、中性子線、あるいは高エネルギーイオン等が使用される。電離性放射線の照射は、材料の酸化劣化防止のため、酸素濃度が10torr以下の雰囲気で行うことが望ましく、その照射総量は材料の劣化を抑えるために、1kGy〜10MGyの範囲内であることが望ましい。高温雰囲気下で電離性放射線を照射することにより、エンジニアリングプラスチックの主鎖の分子運動を活発にさせ、分子間で架橋が起こりやすい状態になり、特に融点以上の照射では樹脂内の全領域で分子運動が活発になり、ラジカル同士の結合が起こり易くなる。
【0012】
このようにしてエンジニアリングプラスチック架橋体が得られる。なお、エンジニアリングプラスチック架橋体は、充填剤、着色剤、補強剤等を添加したものを含む。
【0013】
第1の実施の形態によれば、エンジニアリングプラスチックをその融点の近傍あるいはそれ以上に加熱した状態で電離性放射線を照射することにより、分子間の架橋反応を効率よく促進させることが可能となる。
【0019】
【実施例】
<実施例1〜2,参考例1〜5
フレーク状のPEEKパウダ(ビクトレックス・エムシー社製、450P)にテトラフルオロエチレン系重合体(以下「PTFE」という。)ルブリカント(喜多村社製、KTL−610)の0重量部(実施例1、2)、11重量部(参考例1)、25重量部(参考例2、3)、67重量部(参考例4)、改質PTFE(旭硝子社製のPTFEモールディングパウダG163に、酸素濃度0.5torr以下の真空下、350℃の加熱温度の下で吸収線量50kGyの電子線を照射し、平均粒径20μmになるまで粉砕したパウダ)の25重量部(参考例5)をブラベンダ社製のミキサーにより、350℃・スクリュー回転数30rpmで3分間混練し、PEEK/PTFEの混合樹脂を得た。
【0020】
次に、PEEK単体およびPEEK/PTFEの混合樹脂を400℃、150kgf/cm2で5分間保持した後、300℃になるまで保圧して圧縮プレスし、0.5mm×100mm×100mmのシートを作成した。
【0021】
さらに、酸素濃度0.5torrの真空下、335℃(実施例1、参考例1、2、4、5)、355℃(実施例2、参考例3)の加熱温度(照射温度)の下で、吸収線量100kGy(実施例1、参考例2)、50kGy(実施例2、参考例1、3、4、5)のγ線を照射し、厚さ0.5mmの試験用サンプルシートを作成した。
【0022】
<比較例1〜5>
比較例1として、PEEK単体、比較例2、3、4として、前述のPTFEルブリカント25重量部(比較例2、3)、167重量部(比較例4)をPEEKにブレンドした混合樹脂、比較例5として、PTFEモールディングパウダG163を25重量部PEEKにブレンドした混合樹脂を圧縮プレスし、サンプルシートを得た。
【0023】
比較例3のサンプルシートには、さらに、酸素濃度0.5torrの真空下、365℃の加熱温度の下で、吸収線量50kGyのγ線を照射した。
【0024】
表1に実施例1〜2,参考例1〜5、表2に比較例1〜5によって得られたサンプルシートを対象にして行つた融点、溶融粘度、ガラス転移点、線膨張係数、摺動特性および引張特性の測定結果を示す。
【表1】

Figure 0003790865
【表2】
Figure 0003790865
【0025】
融点は、示差走査熱量計(DSC)により、20℃/分で昇温したときの吸熱ピークから求めた。溶融粘度測定は、フローテスタ(ダイの長さ8mm、直径2mm)を使用し、測定温度400℃、荷重10kgfで行った。ガラス転移点、線膨張係数の測定は、熱機械分析(TMA)により、10℃/分で昇温して行った。線膨張係数は90〜110℃の係数が直線的になる部分から求めた。摺動試験は、リングオンディスク型摩擦摩耗試験機(JIS K 7218)を使用し、相手材には表面粗さ0.2μmのSUS304を用いた。また、測定条件は面圧0.098MPa、周速60m/分、室温で行った。引張試験は、ISO R 527に準じて、クロスヘッド速度50mm/分で行った。
【0026】
表1、2における実施例と比較例から明らかなように、ガラス転移温度に関して、実施例ではガラス転移温度が高温側にシフトしており、架橋により耐熱性が向上していることが分かる。線膨張係数に関しては、実施例では線膨張係数が小さく、寸法安定性に優れている。特にPEEK単体の照射品は、金属並みの線膨張係数である。これに対し、比較例では線膨張係数が大きい。また、摺動特性に関しては、PTFEのブレンド量の多い共架橋体で、耐摩耗性と低摩擦係数が実現されている。一方、比較例ではPTFEの分子量が大き過ぎて分散が悪くなったり、ブレンド量が多過ぎることによって材料が脆くなり(比較例4、5)、折り曲げによって簡単に割れてしまった。比較例3では、照射温度が高すぎて材料の劣化が起こり、著しい発泡が見られた。
【0027】
【発明の効果】
以上説明した通り、本発明のエンジニアリングプラスチック架橋体の製造方法によれば、エンジニアリングプラスチックの融点の近傍あるいはそれ以上に加熱した状態で放射線を照射することにより、従来、架橋が非常に困難であったエンジニアリングプラスチックを低線量で架橋させることが可能となる。また、この製造方法により得られるエンジニアリングブラスチック架橋体は、耐熱性、寸法安定性、摺動特性に優れており、この工業的価値は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production how engineering plastics crosslinked, in particular, be a radiation of a low dose can be crosslinked, heat resistance, dimensional stability, in the manufacture how lubricious excellent engineering plastics crosslinked Related.
[0002]
[Prior art]
Engineering plastics have excellent mechanical properties, heat resistance, and durability, and are used in parts that require a certain level of strength maintenance, such as electrical parts and housing materials, mainly mechanical parts. Fluorine resin has excellent heat resistance, chemical resistance, and solvent resistance, and has recently been used for applications such as container inner coating materials, wire coating materials, fluid transfer tubes, etc. In some cases, it is blended with plastic.
[0003]
However, engineering plastics cannot be said to have sufficient heat resistance at high temperatures above the glass transition point, dimensional stability, and lubricity when used in dynamic parts, so filling with inorganic fillers to improve strength The use of materials and blended with a low molecular weight fluororesin (lubricant) in order to impart lubricity, the need for higher performance engineering plastics is increasing.
[0004]
As a conventional method for producing a cross-linked engineering plastic made in view of such needs, for example, a method of cross-linking an engineering plastic by irradiation treatment is known. According to this method, a crosslinked engineering plastic having excellent heat resistance, dimensional stability, and lubricity can be obtained.
[0005]
[Problems to be solved by the invention]
However, according to the conventional method for producing a crosslinked engineering plastic, when an engineering plastic having excellent radiation resistance is used, crosslinking is very unlikely, and deterioration is accelerated by irradiation with a high total amount for causing crosslinking. There is a problem.
[0006]
Accordingly, an object of the present invention, even irradiation of low dose can be crosslinked to provide heat resistance, dimensional stability, a production how lubricious excellent engineering plastics crosslinked.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention heats an engineering plastic close to or above its melting point, and ionizing radiation of 1 kGy to 10 MGy in the heated engineering plastic in an atmosphere having an oxygen concentration of 10 torr or less. The manufacturing method of the engineering plastic crosslinked body characterized by irradiating is provided. According to the said structure, it can bridge | crosslink by irradiation of a low dose of radiation by irradiating a radiation in the state which heated the engineering plastic to the vicinity of the melting | fusing point or more.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
<First Embodiment>
The manufacturing method of the engineering plastic crosslinked body which concerns on the 1st Embodiment of this invention is demonstrated. First, prepare engineering plastic. As engineering plastics, thermoplastic polyimide (hereinafter referred to as “TPI”), polyether ether ketone (hereinafter referred to as “PEEK”), polyphenylene sulfide (hereinafter referred to as “PPS”), and polyamideimide (hereinafter referred to as “PAI”). ), Polyphenylene oxide (hereinafter referred to as “PPO”), improved polyphenylene oxide (hereinafter referred to as “PPE”), polysulfone (hereinafter referred to as “PSF”), polyether sulfone (hereinafter referred to as “PES”), liquid crystal polymer. (Hereinafter referred to as “LCP”). The PPE is a material obtained by adding polystyrene to PPO in order to improve melt moldability. In addition, you may use an engineering plastic individually or in mixture of 2 or more types, respectively.
[0010]
The engineering plastic is then heated to near or above its melting point. For example, when PEEK is used as an engineering plastic, PEEK is heated to a temperature close to or higher than 343 ° C., which is the melting point of this material. However, excessive heating leads to the cleavage and decomposition of the molecular main chain, so that the heating temperature is −10 to 30 higher than the melting point of the engineering plastic in order to suppress the deterioration of the resin and improve the crosslinking efficiency. It is desirable to keep it within a high range. The melting point is obtained from an endothermic peak when the temperature is raised at 20 ° C./min by a differential scanning calorimeter (DSC).
[0011]
Next, the heated engineering plastic is irradiated with ionizing radiation. As the ionizing radiation, γ cotton, electron beam, X-ray, neutron beam, high energy ion, or the like is used. Irradiation with ionizing radiation is preferably performed in an atmosphere having an oxygen concentration of 10 torr or less in order to prevent oxidative deterioration of the material, and the total irradiation amount is within a range of 1 kGy to 10 MGy in order to suppress deterioration of the material. desirable. By irradiating ionizing radiation in a high-temperature atmosphere, the molecular motion of the main chain of engineering plastics becomes active and cross-linking occurs easily between molecules. The movement becomes active and the bonds between radicals easily occur.
[0012]
In this way, a crosslinked engineering plastic is obtained. The engineering plastic crosslinked body includes those to which a filler, a colorant, a reinforcing agent and the like are added.
[0013]
According to the first embodiment, it is possible to efficiently promote the cross-linking reaction between molecules by irradiating ionizing radiation while the engineering plastic is heated to the vicinity of the melting point or higher.
[0019]
【Example】
<Examples 1 and 2, Reference Examples 1 to 5 >
Flakes of PEEK powder (Victrex MC, 450P) and tetrafluoroethylene polymer (hereinafter referred to as “PTFE”) lubricant (Kitamura, KTL-610) 0 parts by weight (Examples 1 and 2) ), 11 parts by weight ( Reference Example 1 ), 25 parts by weight ( Reference Examples 2 and 3 ), 67 parts by weight ( Reference Example 4 ), modified PTFE (PTFE molding powder G163 manufactured by Asahi Glass Co., Ltd., oxygen concentration 0.5 torr) 25 parts by weight ( Reference Example 5 ) of 25 parts by weight of a powder pulverized to an average particle size of 20 μm by irradiation with an electron beam with an absorbed dose of 50 kGy under a heating temperature of 350 ° C. under the following vacuum using a mixer manufactured by Brabender. The mixture was kneaded for 3 minutes at 350 ° C. and a screw speed of 30 rpm to obtain a mixed resin of PEEK / PTFE.
[0020]
Next, PEEK alone and a mixed resin of PEEK / PTFE were held at 400 ° C. and 150 kgf / cm 2 for 5 minutes, and then held at 300 ° C. and compressed and pressed to create a sheet of 0.5 mm × 100 mm × 100 mm did.
[0021]
Furthermore, under a vacuum at an oxygen concentration of 0.5 torr, under a heating temperature (irradiation temperature) of 335 ° C. (Example 1, Reference Examples 1 , 2 , 4 , 5 ) and 355 ° C. (Example 2, Reference Example 3 ). , Irradiated with γ rays of 100 kGy (Example 1, Reference Example 2 ) and 50 kGy (Example 2, Reference Examples 1, 3, 4, 5 ) to prepare a test sample sheet having a thickness of 0.5 mm .
[0022]
<Comparative Examples 1-5>
As Comparative Example 1, PEEK alone, as Comparative Examples 2, 3 and 4, 25 wt parts (Comparative Examples 2 and 3) and 167 parts by weight (Comparative Example 4) of the above-mentioned PTFE lubricant were mixed with PEEK, Comparative Example No. 5, a mixed resin obtained by blending PTFE molding powder G163 with 25 parts by weight of PEEK was compression-pressed to obtain a sample sheet.
[0023]
The sample sheet of Comparative Example 3 was further irradiated with γ rays having an absorbed dose of 50 kGy under a vacuum with an oxygen concentration of 0.5 torr and a heating temperature of 365 ° C.
[0024]
Examples 1 and 2, Reference Examples 1 to 5 in Table 1 , and melting points, melt viscosities, glass transition points, linear expansion coefficients, and sliding performed on sample sheets obtained in Comparative Examples 1 to 5 in Table 2 The measurement results of properties and tensile properties are shown.
[Table 1]
Figure 0003790865
[Table 2]
Figure 0003790865
[0025]
The melting point was determined from the endothermic peak when the temperature was raised at 20 ° C./min with a differential scanning calorimeter (DSC). The melt viscosity was measured using a flow tester (die length 8 mm, diameter 2 mm) at a measurement temperature of 400 ° C. and a load of 10 kgf. The glass transition point and the linear expansion coefficient were measured by thermomechanical analysis (TMA) by raising the temperature at 10 ° C./min. The linear expansion coefficient was determined from the portion where the coefficient of 90 to 110 ° C. was linear. For the sliding test, a ring-on-disk friction and wear tester (JIS K 7218) was used, and SUS304 having a surface roughness of 0.2 μm was used as the mating material. The measurement conditions were a surface pressure of 0.098 MPa, a peripheral speed of 60 m / min, and room temperature. The tensile test was performed at a crosshead speed of 50 mm / min according to ISO R 527.
[0026]
As is clear from the examples and comparative examples in Tables 1 and 2, regarding the glass transition temperature, in the examples, the glass transition temperature is shifted to the high temperature side, and it can be seen that the heat resistance is improved by crosslinking. Regarding the linear expansion coefficient, in the examples, the linear expansion coefficient is small, and the dimensional stability is excellent. In particular, the irradiated product of PEEK alone has a linear expansion coefficient comparable to that of metal. In contrast, the comparative example has a large linear expansion coefficient. In terms of sliding characteristics, a co-crosslinked body with a large amount of PTFE blend realizes wear resistance and a low coefficient of friction. On the other hand, in the comparative example, the molecular weight of PTFE was too large, resulting in poor dispersion or too much blending amount (comparative examples 4 and 5), and the material was easily broken by bending. In Comparative Example 3, the irradiation temperature was too high, the material deteriorated, and significant foaming was observed.
[0027]
【The invention's effect】
As described above, according to the manufacturing how engineering plastics crosslinked product of the present invention, by irradiating the radiation while heating to near or above the melting point of engineering plus chip click, conventionally, crosslinking is very difficult The existing engineering plastic can be crosslinked at a low dose. In addition, the engineering plastic cross-linked product obtained by this production method is excellent in heat resistance, dimensional stability and sliding properties, and its industrial value is extremely large.

Claims (2)

エンジニアリングプラスチックをその融点の近傍あるいはそれ以上に加熱し、
加熱された状態の前記エンジニアリングプラスチックに酸素濃度10torr以下の雰囲気の下で1kGy〜10MGyの電離性放射線を照射することを特徴とするエンジニアリングプラスチック架橋体の製造方法。
Heating the engineering plastic to near or above its melting point,
A method for producing a crosslinked engineering plastic, characterized by irradiating the heated engineering plastic with ionizing radiation of 1 kGy to 10 MGy in an atmosphere having an oxygen concentration of 10 torr or less.
前記エンジニアリングプラスチックは、熱可塑性ポリイミド、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリアミドイミド、ポリフェニレンオキサイド、ポリスルフォン、ポリエーテルスルフォン、又は液晶ポリマーである構成の請求項1記載のエンジニアリングプラスチック架橋体の製造方法。The engineering plastics, thermoplastic polyimide, polyether ether ketone, polyphenylene sulfide, polyamideimide, polyphenylene oxide, Po Risurufon, polyether sulfone, or method for producing engineering plastics crosslinked product of claim 1, wherein the structure is a liquid crystal polymer.
JP2001070786A 2001-03-13 2001-03-13   Manufacturing method of engineering plastic crosslinked body Expired - Lifetime JP3790865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001070786A JP3790865B2 (en) 2001-03-13 2001-03-13   Manufacturing method of engineering plastic crosslinked body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001070786A JP3790865B2 (en) 2001-03-13 2001-03-13   Manufacturing method of engineering plastic crosslinked body

Publications (2)

Publication Number Publication Date
JP2002265630A JP2002265630A (en) 2002-09-18
JP3790865B2 true JP3790865B2 (en) 2006-06-28

Family

ID=18928591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001070786A Expired - Lifetime JP3790865B2 (en) 2001-03-13 2001-03-13   Manufacturing method of engineering plastic crosslinked body

Country Status (1)

Country Link
JP (1) JP3790865B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713345A (en) * 2014-12-05 2016-06-29 黑龙江鑫达企业集团有限公司 Method for improving compatibility of PPS/PEEK composite material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137363A (en) 2002-10-17 2004-05-13 Nissan Motor Co Ltd Resin composition, resin material and sliding member using the same, chain system for internal combustion engine, and seal ring for use in vehicle
US9266984B2 (en) 2008-09-30 2016-02-23 Raytech Corporation Polytetrafluoroethylene resins that can be processed by shaping, shaped products thereof, and processes for producing the resins and shaped products
EP2818516B1 (en) * 2012-02-22 2020-11-04 AGC Inc. Fluorine-containing copolymer composition, molded article, and electric wire
JP2015067645A (en) * 2013-09-26 2015-04-13 住友電工ファインポリマー株式会社 Mixed resin composition, mixed resin molding, and mixed resin coated material
WO2023022085A1 (en) * 2021-08-17 2023-02-23 Agc株式会社 Composition and method for producing composition
JP2023162618A (en) * 2022-04-27 2023-11-09 株式会社リケン Aromatic polyether ketone molded body and production method therefor
CN115806724B (en) * 2022-11-16 2024-01-12 中广核俊尔(浙江)新材料有限公司 PEEK heat-shrinkable tube with high shrinkage ratio and preparation method thereof
JP2024138821A (en) * 2023-03-27 2024-10-09 株式会社リケン Aromatic polyether ketone molded body and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713345A (en) * 2014-12-05 2016-06-29 黑龙江鑫达企业集团有限公司 Method for improving compatibility of PPS/PEEK composite material

Also Published As

Publication number Publication date
JP2002265630A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
JP3566805B2 (en) Sliding member
JP5472689B2 (en) Modified fluororesin composition and molded body
JP7002547B2 (en) Use of Polyetherketone Ketone-based Polymeric Materials to Reduce Abrasion
JP3790865B2 (en)   Manufacturing method of engineering plastic crosslinked body
CN109722025B (en) Polyarylethersulfone composite material and application thereof
US6465575B1 (en) Product having reduced friction and improved abrasion resistance
JP2004137363A (en) Resin composition, resin material and sliding member using the same, chain system for internal combustion engine, and seal ring for use in vehicle
JP3235223B2 (en) Method for producing polyphenylene sulfide resin composition
JP3948313B2 (en) Sliding member
JP5104475B2 (en) Rubber or plastic composition
JP3672428B2 (en)   Modified fluoroplastic molding
JP4844739B2 (en) Modified fluororesin composition and molded body
JP5193083B2 (en) Engineering plastic composition and molded article thereof
JPH07304925A (en) Melt-moldable resin composition filled with burnt polytetrafluoroethylene
JP2004331814A (en) Modified fluororesin composition and modified fluororesin molded product
JPH0631624B2 (en) Scroll type compressor seal member
JP2002323044A (en) Molding material for bearing
JP3672429B2 (en)   Modified fluororesin powder
JP2589714B2 (en) Sliding material composition
JP4956505B2 (en) MODIFIED FLUORINE RESIN COMPOSITION AND MODIFIED FLUORINE RESIN MOLDED BODY
JP2005036127A (en) Phenol resin molding material and molded product thereof
JP3646678B2 (en) Polyphenylene sulfide resin composition
JP2009013402A (en) Modified fluoropolymer composition and modified fluoropolymer molding
JP2002080672A (en) Modified fluororesin molding
JP4645453B2 (en) Modified fluororesin composition and molded article comprising the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3790865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term