JP3790502B2 - Circulating fluidized bed furnace - Google Patents
Circulating fluidized bed furnace Download PDFInfo
- Publication number
- JP3790502B2 JP3790502B2 JP2002229564A JP2002229564A JP3790502B2 JP 3790502 B2 JP3790502 B2 JP 3790502B2 JP 2002229564 A JP2002229564 A JP 2002229564A JP 2002229564 A JP2002229564 A JP 2002229564A JP 3790502 B2 JP3790502 B2 JP 3790502B2
- Authority
- JP
- Japan
- Prior art keywords
- cyclone
- furnace
- fluidized bed
- height
- freeboard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Incineration Of Waste (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、サイクロンにより流動砂と排ガス(飛灰等も含む)とを分離しながら流動砂の外部循環を行う循環型流動層炉に係り、特に脱水汚泥、下水汚泥、都市ゴミ、し渣汚泥、産業廃棄物、石炭等の固形炭素質系を焼却する流動層焼却装置に適用される循環型流動層炉に関する。
【0002】
従来、産業廃棄物や都市ゴミ、下水汚泥等の焼却処理には、流動床焼却炉が広く用いられており、該流動層焼却炉は汚泥供給の瞬時の変動にも安定して流動層中に直接補助燃料を供給することができ、また流動層の熱吸収力が強いため一般燃焼装置のように火炎による局部高温を発生しない等の利点により、特に、含水率の高い汚泥の焼却に多用される傾向にある。
【0003】
前記流動層焼却炉には気泡流動層炉と循環流動層炉とに分類され、前記気泡流動層炉は、炉床に砂等の流動砂を敷き、1次空気の吹き込みにより砂を流動化して層内を沸騰状態にさせ、該流動層中に汚泥等の廃棄物を投入し燃焼させる装置である。
【0004】
しかし、前記気泡流動層炉では、汚泥の燃焼をフリーボードに頼っている部分があり、フリーボードの過熱を招く場合がある。また、下水汚泥等のように高含水廃棄物を焼却する場合には炉床面積を増大するか、若しくは供給空気量を増やす等の対策をとる必要が生じ、排ガス量が増大する問題がある。そこで、炉内温度差が小さく、かつ流動砂を循環させることによる排ガス量の低減や設備のコンパクト化が可能である循環流動層炉が普及しつつある。
【0005】
前記循環流動層炉の構成は図2の符号1に示すように、フリーボード3と流動層2とからなるライザ1aと、該フリーボード3に吹き上げられた流動砂を出口ダクト3Aを介して捕集するサイクロン4と、流動砂を返送するダウンカマー5と、炉内未燃ガスのサイクロン4への吹き抜けを防止するシールポット6と戻し管7とから構成される。(図2は本発明の比較例であり、従来技術部分のみを取り出して説明する。)
【0006】
このような循環流動層炉の特徴としては、炉床部が物理的に活発な運動をしており、定常的に炉床部が均一に高温に保持されて十分に蓄熱されており、また燃焼空気が十分に分散されている、等が挙げられ、これにより特に燃焼工学上含有水分が高く、難燃性の汚泥処理に対する優れた燃焼特性をもつ。
都市ゴミや産業廃棄物、特に高含水率かつ水分変動の大きい汚泥やし渣混焼の等の焼却処理においても、炉高を高くすることなくサイクロンの力を有効に利用して被燃焼物の完全燃焼を図ることにより炉口付近での未燃ガス濃度を低減し、CO、ダイオキシン類等の有害ガスの排出を抑制し、ひいては設置コストの低減を可能とした。
【0007】
しかしながら一方で、不均質で高含水率である廃棄物の流動層を用いた焼却処理には多くの問題点も内蔵している。なかでも、近年特に着目されているのは、流動層炉の最大の特徴の一つである燃焼速度の速さと瞬時燃焼特性による排ガス中の未燃ガス濃度の増加の問題である。汚泥のような廃棄物は定量供給が難しく、また被燃焼物中の含水率の変動により燃焼過程に要する時間の変動も大きい。したがって、上記のような廃棄物が投入されると流動層内では一時的に空気不足状態となり、一部燃焼、一部ガス化状態が部分的に発生し、流動層上方空間のフリーボードで二次空気の供給を得て燃焼されるとき、空気の過不足を生じ易くなり、炉出口での未燃ガス濃度が増加し、CO、ダイオキシン類等の有害ガスが排出されることになる。
【0008】
そこで、燃焼の完結化を図り炉出口での未燃ガス濃度を低減することにより有害ガスの炉外排出を防止するとともに、安定した燃焼反応を行うことの可能な流動層炉が求められている。ここで、前記循環流動層炉における廃棄物の燃焼過程を説明するに、略700〜850℃に保持された炉内流動層に被燃焼物を投入すると、該流動層内にて被燃焼物は流動媒体と激しく混合されて昇温し、被燃焼物中の水分は短時間で蒸発し乾燥する。乾燥した被燃焼物は熱分解によりガス化した後、流動層内若しくは流動層の上部空間のフリーボードで燃焼する。該フリーボードは略750〜900℃に維持されており、未燃ガスや軽いごみはフリーボードで燃焼されることが多い。かかる燃焼過程は極めて短時間で行われ、例えば含水率の高い汚泥の場合、流動層炉に投入された汚泥が昇温するのに要する時間は略0.4s、昇温された汚泥中の水分が蒸発し乾燥するまで略2.7s、乾燥汚泥がガス化するまで略0.5s、さらにガス化から燃焼までは0.9sと、全ての燃焼過程が終了するまでには略4.5s程しか必要としないことがわかっている。
【0009】
しかしながら、前記循環流動層炉は一次空気及び二次空気の導入により高速で流動媒体を循環させているため、上記した時間以上の滞留時間を確保することは困難である。前記燃焼過程を流動層炉内で全て完結させようとすると、炉内の空塔速度を略5m/sとしたとき通常の循環流動層炉では単純計算で略22.5mの炉高が必要となる。これにより、未燃ガスを減少させるための対策として流動層炉の炉高を高くする方法が考えられるが、設置コストや、炉を高温に保つための助燃剤の燃料コストが増加し、また炉の運転制御の面でも困難を伴う。さらにまた、汚泥の高カロリー化に伴い、フリーボードが受け持つ燃焼率の増加により該フリーボードの局部高温状態が発生し易くなり炉の耐久性が低下するとともに、炉内温度差が大となり炉の安定運転が困難となる。
【0010】
そこで、前記技術にかわる方法として、二次空気の導入を改善することによりフリーボード内に乱気流をおこして混合状態を良好に保つとともに被燃焼物の炉内滞留時間を長くする技術や、ライザ1a炉壁部に設ける汚泥の投入口位置の改善により炉内滞留時間を増加させる方法等が提案されている。しかし、これらの対策によりある程度の未燃ガスの排出抑制は図られるが、被燃焼物の炉内滞留時間は不十分であり、炉の運転制御も複雑化してしまう。
また、汚泥等の比重の大きい被燃焼物の場合は、被燃焼物投入口を前記流動層上方に設けてもその比重のために投入直後に炉床部に沈降し、滞留時間を稼ぐことができるが、燃焼を完結化させるには十分でなく、高効率な有害ガスの排出抑制方法が望まれている。
【0011】
【発明が解決しようとする課題】
かかる従来技術においては、循環流動層炉の最大の特徴の一つである燃焼速度の速さと瞬時燃焼特性による排ガス中の未燃ガス濃度増大の問題を解決するために、上述した炉高を高くするような炉形状の改善をしていた。例えば下水汚泥循環流動炉において、
完全燃焼に必要なフリーボードの滞留時間が(二次空気投入以降):3.5〜4.0秒必要であり、一方砂循環に必要なフリーボード空塔速度は4.5〜5m/S必要であり、従って、フリーボード必要高さ=3.5秒×4.5m/S=約16mとなり、一方二次空気ポート下部の流動床部の高さ2mも含めると、ライザ1a燃焼部で約18mとなり、非常に炉高の高いものとなる。このため、ライザ1aや架構の物量が大きくなってしまうという問題がある。
【0012】
そこで、本発明は上記課題に鑑みなされたもので、都市ゴミや産業廃棄物、特に高含水率かつ水分変動の大きい汚泥やし渣混焼の等の焼却処理においても、炉高を高くすることなくサイクロンの力を有効に利用して被燃焼物の完全燃焼を図ることにより炉口付近での未燃ガス濃度を低減し、CO、ダイオキシン類等の有害ガスの排出を抑制し延いては設置コストの低減を可能とした高効率な循環流動層炉の提供を目的とする。
より具体的には、基準炉と同等の排ガス性状を得ながら、炉本体のコンパクト化を図ることを目的とする。
【0013】
【課題を解決するための手段】
本発明者は循環流動床炉に付設したサイクロンの場合、サイクロン内部は旋回流の効果により、燃焼ガスの混合攪拌効果が高く、フリーボード部より燃焼効率が高いことが知見された。
例えば後記実施例における実証炉におけるCO濃度減少率のデータによると、サイクロンでの滞留時間1秒分におけるCO濃度減少率はフリーボード部の2秒分以上に相当する。
【0014】
従って、例えばサイクロンの直胴部高さH(図5参照)を直胴部直径Dに対し、H/Dを1.2以上、好ましくは1.35以上に設定し、サイクロン直胴部を延長し滞留時間を0.5秒増加させると、フリーボード滞留時間を1秒減少させることが可能となり、これは、フリーボード高さ4.5m〜5.0m分に相当する。そこで本発明では、同じ炉出口排ガス性状を保証する場合、サイクロンの直胴部高さHを直胴部直径Dに対し、H/Dを1.35以上に設定し直胴部の長いサイクロンを採用することで、フリーボード高さを低減することが出来、炉全体及び架構の物量を抑えることが可能となるとともに、更にフリーボード高さと無関係に直胴部の長いサイクロンを採用することで、燃焼排ガスの清浄化が可能(CO、ダイオキシン類等低減)となる。
尚、前記サイクロンには軸流型と接線型(渦巻き型)があるが、いずれもが本発明に適用可能である。
【0015】
更に本発明を説明する。例えば含水率が85〜90%以上と高い、例えばし渣混合汚泥の場合、フリーボード下方(二次空気投入口下方)の流動床域で助燃料を投入しながら、前記流動層炉に投入された汚泥が昇温され、更に昇温された汚泥の蒸発乾燥までおこなわれるために、フリーボード域では乾燥汚泥のガス化するまで略0.5s、さらにガス化から燃焼までの0.9sと略1.5〜2秒は必要であると考えられる。塔速が5m/Sだとするとフリーボードは少なくとも7〜10mは必要であるが、この場合二次空気を予熱しておけばフリーボード滞留時間が前記範囲でも好ましい。
【0016】
かかる知見より、本発明は流動砂と被燃焼物を混合しながら燃焼するライザより飛び出した流動砂と排ガス(飛灰等も含む)とをサイクロンで分離した後、ライザ内に戻す循環型流動層炉において、
前記ライザに投入される被燃焼物が高含水率である廃棄物であり、サイクロン内の混合攪拌効果によりフリーボードより排出された未燃ガスを燃焼させるともに、前記サイクロンの直胴部高さHを直胴部直径Dに対し、H/Dを1.2以上、好ましくは1.35以上に設定し且つサイクロンの滞留時間hsをフリーボード滞留時間hfのhs/hfを80%〜200%に、好ましくはhs/hfを1〜2に設定したことにある。
そして本発明において脱水下水汚泥のように含水率が70〜90%以上と高い場合は、フリーボード温度を850℃以上で、二次空気を予熱するのがよい。
又サイクロンには予熱回収用のボイラを付けると本発明の効果が得られない。
【0017】
又サイクロンの直胴部高さHを直胴部直径Dに対し、H/Dを、好ましくは1.35以上に設定しサイクロン直胴部の長さを充分取れるように且つ炉高全体の長さを極力少なくするために、サイクロン下部に設けるダウンカマー長さを5m以下(小数点以下を四捨五入換算)以下、好ましくは0にするのがよい。
さらに本発明の具体的な構成として 前記流動炉のフリーボード高さが7〜15m、サイクロン直胴部高さを3.0〜5.0mに夫々設定した場合に、フリーボード滞留時間が1.5〜3秒でサイクロン滞留時間が0.5〜1.0秒に入るように、ダウンカマー高さを5m以下好ましくは略2m以下、及び前記H/Dを1.2以上、好ましくは1.35以上に夫々調整して設定するのがよい。
【0018】
かかる発明は、サイクロンの直胴部高さHを直胴部直径Dに対し、H/Dを1.2以上好ましくは、1.35以上に設定しサイクロンの滞留時間を長くし更にサイクロンを800℃以上の高温に維持することで、フリーボード高さを極力低くし、全体としての炉高を低くしても、被燃焼物の完全燃焼が達成でき、CO、ダイオキシン類等の未燃ガスの排出を低減することができる。又下水汚泥のように水分が70%以上の被燃焼物であっても、効率の良い燃焼が可能となる。
【0019】
更にサイクロンの直胴部高さHを直胴部直径Dに対し、H/Dを1.2以上好ましくは1.35以上に設定してCO、ダイオキシン類等の未燃ガスの排出を低減をサイクロン側で持たせることによりフリーボードの高さを極力低くする事により、燃焼炉全体の物量が低減され、設置コストや設置スペースの低減が可能となる。
さらに、サイクロン側で燃焼工程一部の機能を受け持つことが出来るため、フリーボードの受け持つ燃焼率が低減し、該フリーボードが過大の燃焼反応により必要以上に加熱されることなく炉内温度が均一に保たれ、流動層炉の安定運転が可能となるとともに、局所的な温度異常がなくなり炉の耐久性が向上する。
【0020】
更に炉全体の炉高が低くなることで、設置コストや設置面積の削減が図れる。さらに、本発明は、前記被燃焼物が含水率の高い下水汚泥やし渣混焼汚泥にも有効であり、このような含水率が高く、水分変動の大きい汚泥の処理にも安定した運転が可能でかつ未燃ガスの排出の少ない汚泥循環流動層炉を提供できる。
さらに、下水汚泥にし渣や沈砂を混焼する場合など、焼却対象物の性状が不安定な場合にも、前記と同様に高性能の汚泥循環流動層炉を提供できる。
【0021】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0022】
先ず本発明と比較例に適用されるサイクロン4の構成について説する。
前記サイクロン4には軸流型と接線型(渦巻き型)とが存在するが、分離性能の面から接線型が多く用いられる。接線型は図5の概略図(本発明に用いるサイクロン4)で示されるように、外筒50頂部の天板58中心軸上に、分離後の排気ガスを排出する排気筒52を挿設するとともに、該外筒50の天板58に隣接する側壁上部に導入口53を開設する。又前記外筒50の底部には分離された流動砂を排出するコーン部57が連接されている。そして前記導入口53は、円形でも方形でも良いがいずれにしてもライザ1aと連接する導入筒を設けている。そしてかかるサイクロン4の各部寸法の代表例を図5の下部に示す。
本図に示すよう本発明(比較例)は外筒部高さHが外筒部径Dに対して1.4以上(比較例1倍)倍であり、これに対応して排気筒he高さも外筒部径Dに対して1(比較例0.7倍)倍以上と長くしている。そしてコーン部高さは外筒部径Dに対して1倍と一定のために、サイクロン全体の長さは外筒部径Dに対して2.5倍(比較例2.1倍)と総延長も長くなっている。
【0023】
次に前記比較例と本発明の実施例にかかる循環流動層炉を比較しながら本発明を説明する。
図2は本発明の比較例にかかる循環流動層炉の全体の概略の構成を示す模式図である。同図に示すように、本比較例の循環流動層炉1は、主に燃焼反応を行うライザ1aと、遠心力沈降法等により排ガスと流動媒体とを固気分離するサイクロン4と、該サイクロン4の下方に位置する流動媒体の通路であるダウンカマー5と、炉内未燃ガスのサイクロン4への吹き抜けを防止するシールポット6と還流路7とから構成される。
またサイクロン4にはボイラを設けずにフリーボード炉3出口側の温度を維持し、具体的には800℃以上に維持させている。
【0024】
前記ライザ1aの下方には一次空気散気管10から供給される一次空気と助燃料ノズル8より供給された助燃料により高温の流動媒体が流動層2を形成しており、その上方空間には、該流動層2直上に位置する二次空気導入口9から供給される二次空気(必要に予熱される)により前記流動媒体が主に上昇気流を形成するフリーボード3が位置している。また、前記シールポット6は2つの連通するシールポット空間6a、6bよりなり、夫々、流動空気散気管12a、12bを具え、該散気管から導入される流動空気により、前記ライザ1a側に位置する下流側シールポット流動層、それに隣接する上流側シールポット流動層を形成している。夫々のシールポット空間6a、6bの流動層の空塔速度は流動空気で制御され、流動媒体が流動化される速度でかつ該流動媒体が飛散しない速度範囲で緩慢に流動している。上流側シールポット6aは流動空気を送気しない移動層としても良い。さらに、下流側シールポット空間6bには必要に応じて汚泥投入口8を開口させるとともに、被燃焼物の投入に備えて該シールポット空間に適切な容積を持たせてある。
【0025】
そしてかかる比較例を基準炉として、
フリーボード空塔速度:4.5m/Sに設定し、フリーボード高さ方向の検知位置を変化させてフリーボード滞留時間を1〜5secの間で、フリーボード滞留時間とCO濃度の関係を、脱水汚泥専焼(フリーボード温度900℃)、脱水汚泥/し渣混焼(フリーボード温度900℃)、脱水汚泥専焼(フリーボード温度850℃)、サイクロン4温度800℃以上の夫々について求めた。
【0026】
図3にかかる実証試験における炉内高さ方向の、フリーボード滞留時間とCO濃度の関係を示す。
本図よりフリーボード滞留時間の増加に対して指数的に減少する様子が分かる。し渣混焼時は傾きが緩やかであり減少率が小さいが、理由としてはフリーボードでの一部浮遊燃焼によるものと考えられる。
本図を見ると、汚泥専焼900℃の場合は、滞留時間3.5秒でCO濃度は15ppm程度と充分低くなり完全燃焼可能と言える。
しかし、し渣混焼時、又は汚泥専焼850℃の場合は、滞留時間が5〜6秒必要となることから、フリーボードの炉高は22m〜26m前後必要となる。
【0027】
次にサイクロン4滞留時間を約0.4secに設定した場合のサイクロン4における入口と出口のCO濃度の関係を図4に示す。
本図より理解されるとおり、サイクロン4通過により概ね1/2〜1/5までCO濃度が減少し、その減少率は入口濃度が高いほど大きい。
【0028】
次に図3と図4に基づいて、下記表1に、実証試験におけるサイクロン4でのCO減少率をフリーボード滞留時間に換算した結果を示す。
本表より明らかなように実証試験におけるサイクロン4滞留時間は約0.4secであるのに対し、CO濃度低減効果をフリーボード滞留時間に換算すると、条件により幅があるが0.8〜2.6secとなる。フリーボード3の1/2〜1/6.5の滞留時間で同等のCO低減効果が得られることになる。これは、サイクロン4内部の旋回流による混合攪拌効果によると考えられる。
【0029】
【表1】
【0030】
従って前記実証炉におけるCO濃度減少率のデータによると、サイクロン4での滞留時間1秒分はフリーボード部3の2秒分以上に相当する。
従って、例えばサイクロンの直胴部高さHを直胴部直径Dに対し、H/Dを1.35以上に設定しサイクロン直胴部Hを延長し滞留時間を0.5秒増加させると、フリーボード滞留時間を1秒以上減少させることが可能となる。
これは、循環流動層炉1の場合にフリーボード速度が4.5m〜5.0m/Sであるから1秒の減少は、フリーボード高さが4.5m〜5.0m減少することになる。
かかる見地に基づいて前記比較例を基準として、本発明の最も好適な実施形態を製作した。
前記したようにフリーボード3の1/2〜1/6.5の滞留時間で同等のCO低減効果が得られる理由は、サイクロン4直胴部H内部の旋回流による混合攪拌効果である。
【0031】
するとサイクロン4の直胴部高さHを直胴部直径Dに対し、H/Dを1.35以上に設定し直胴部の長いサイクロン4を採用することで、燃焼排ガスの清浄化が可能(CO、ダイオキシン類等低減)となることが理解できる。
そしてサイクロン4出口よりシールポット4入口までのダウンカマー5を短く、最大0に設定すればそのダウンカマー5長さ分だけ、フリーボード高さを短く出来、その短縮したフリーボード高さの1/2以上にサイクロン4直胴部を長くすれば基準炉と同等の排ガス性状を得ながら、炉全体のコンパクト化を図ることが出来る。
方法:ライザ1aの高さ短縮+サイクロン4の直胴部延長、し渣混焼時、又は汚泥専焼850℃の場合は、滞留時間が5〜6秒必要となることから、比較炉ではフリーボード3の炉高は22m〜26m前後必要となるが、本実施例では比較炉と同等の炉高で、サイクロンの直胴部高さHを直胴部直径Dに対し、H/Dを1.35以上に設定しサイクロン4直胴部延長するだけでし渣混焼時、又は汚泥専焼850℃においても排ガス性状を改善出来る循環流動床炉の製造が可能である。
【0032】
先ず図2に示す比較炉では、
処理能力:脱水汚泥200ton/日
排ガス量:24,035Nm3/h(at850℃)
フリーボード空塔速度:4.5m/S
フリーボード高さ(m)18.0m
サイクロン4直胴部高さH(m)3.7m
直胴部直径D(m)3.7m(H/D:1)
炉本体重量:287.6ton
ダウンカマー高さ(m)7.2m
の比較例を製造した。
そしてかかる比較例において、
フリーボード滞留時間:3.5sec
サイクロン4滞留時間:1.8sec
に設定した場合に、ダウンカマー高さを0mまで低減させ、比較例と同様な
サイクロン4出口CO濃度:20ppm (酸素濃度12%換算)
サイクロン4出口DXN濃度:0.1ngTEQ/Nm3(酸素濃度12%換算)
が得られる本発明の実験炉を製造する。
▲1▼ 試算条件は、サイクロン4はフリーボードの2倍の燃焼高率を得られるものとする。即ち、サイクロン4部の滞留時間0.5secはフリーボード部の滞留時間1secに相当すると、フリーボード1m低減するために必要な、サイクロン4直胴部の延長高さをHは、
フリーボード断面積=2.852π/4=6.4m2
サイクロン4断面積=3.72π/4=10.8m2
6.4m2×1m×1/2=10.8m2×H
H=0.3mとなる。
【0033】
この場合、ダウンカマー5の高さを0mまで低減したとき、もっともコンパクト化が可能であるのでダウンカマーをなくし、比較炉と同等な性能を得る本発明の実験炉を図1により製造した。
図1は本発明にかかる循環流動層炉の全体の概略の構成を示す模式図である。同図に示すように、本比較例の循環流動層炉1は、主に燃焼反応を行うライザ1aと、遠心力沈降法等により排ガスと流動媒体とを固気分離するサイクロン4と、これに直接接続された炉内未燃ガスのサイクロン4への吹き抜けを防止するシールポット6と還流路7とから構成されるが、サイクロン4の下方に位置する流動媒体の通路であるダウンカマ−5は設けていない。
フリーボード空塔速度:4.5m/S
フリーボード高さ(m)12.5m
サイクロン直胴部高さ(m)5.3m
直胴部直径D(m)3.7m(H/D:1・43)
炉本体重量:247.5ton
ダウンカマー高さ(m)0m
の実施例例を製造した。
そしてかかる実施例例において、
フリーボード高さ(m)が18/0m〜12.5mに、炉本体重量:287.6tonから247.5tonへと夫々大幅に減少し、その実験結果においてもフリーボード滞留時間は2.3secに減少したもののサイクロン滞留時間:2.4secと上昇したために、
サイクロン出口CO濃度は10ppm (酸素濃度12%換算)
サイクロン出口DXN濃度は0.1ngTEQ/Nm3 (酸素濃度12%換算)
以下と比較例に対し性能の高い実験炉が得られた。
【0034】
次に第2の実験炉として
フリーボード高さ(m)13.7m
サイクロン直胴部高さ(m)5.0m
直胴部直径D(m)3.7m(H/D:1・35)
ダウンカマー高さ(m)0.5m
の第2実施例例を製造した。
そしてかかる実施例例において、
フリーボード高さ(m)が18/0m〜13.7mに炉本体重量:287.6tonから256.2tonへと夫々大幅に減少し、その実験結果においてもフリーボード滞留時間は2.5secに減少したもののサイクロン滞留時間:2.3secと上昇したために、サイクロン出口CO濃度は15ppm (酸素濃度12%換算)サイクロン出口DXN濃度は0.1ngTEQ/Nm3 (酸素濃度12%換算)と比較例と同等以上の性能の実験炉が得られた。
【0035】
次に第2の比較炉として
フリーボード高さ(m)16.3m
サイクロン直胴部高さ(m)4.2m
直胴部直径D(m)3.7m(H/D:1・135)
ダウンカマー高さ(m)4.9m
の第2比較例を製造した。
そしてかかる比較例例において、
フリーボード高さ(m)が18/0m〜16.3mに炉本体重量:274.1tonから256.2tonへと僅かに減少し、その実験結果においてもフリーボード滞留時間は2.5secに減少したもののサイクロン滞留時間:2.3secと上昇したために、サイクロン出口CO濃度は20ppm (酸素濃度12%換算)サイクロン出口DXN濃度は0.1ngTEQ/Nm3 (酸素濃度12%換算)と比較例と同等の性能の実験炉が得られた。
【0036】
【発明の効果】
以上記載のごとく本発明によれば、都市ゴミや産業廃棄物、特に高含水率かつ水分変動の大きい汚泥やし渣混焼の等の焼却処理においても、炉高を高くすることなくサイクロンの力を有効に利用して被燃焼物の完全燃焼を図ることにより炉口付近での未燃ガス濃度を低減し、CO、ダイオキシン類等の有害ガスの排出を抑制し延いては設置コストの低減を可能とした。
【図面の簡単な説明】
【図1】 本発明の実施例に係る循環流動層炉の全体の概略の構成を示す模式図である。
【図2】 本発明の比較例にかかる循環流動層炉の全体の概略の構成を示す模式図である。
【図3】 実証試験における炉内高さ方向の、フリーボード滞留時間とCO濃度の関係を示す。
【図4】 サイクロン4滞留時間を約0.4secに設定した場合のサイクロン4における入口と出口のCO濃度の関係を示す。
【図5】 本発明と比較例に適用されるサイクロンの構成を示す断面図である。
【符号の説明】
1 循環流動層炉
1aライザ
2 流動層
3 フリーボード
4 サイクロン
5 ダウンカマ
6 シールポット
9 二次空気[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circulating fluidized bed furnace that performs external circulation of fluidized sand while separating fluidized sand and exhaust gas (including fly ash etc.) with a cyclone, and in particular, dewatered sludge, sewage sludge, municipal waste, and residue sludge. The present invention relates to a circulating fluidized bed furnace applied to a fluidized bed incinerator for incinerating solid carbonaceous materials such as industrial waste and coal.
[0002]
Conventionally, fluidized bed incinerators have been widely used for incineration of industrial waste, municipal waste, sewage sludge, etc., and the fluidized bed incinerator is stable in the fluidized bed even with instantaneous fluctuations in sludge supply. Auxiliary fuel can be supplied directly, and because the heat absorption capacity of the fluidized bed is strong, it is often used for incineration of sludge with a high water content, because it does not generate a local high temperature due to a flame like a general combustion device. Tend to.
[0003]
The fluidized bed incinerator is classified into a bubble fluidized bed furnace and a circulating fluidized bed furnace. The bubble fluidized bed furnace lays fluid sand such as sand on the hearth and fluidizes the sand by blowing primary air. It is an apparatus for bringing the inside of a bed to a boiling state and putting waste such as sludge into the fluidized bed and burning it.
[0004]
However, in the bubbling fluidized bed furnace, there is a part that relies on the freeboard for the combustion of sludge, which may cause the freeboard to overheat. Moreover, when incinerating a highly water-containing waste such as sewage sludge, it is necessary to take measures such as increasing the hearth area or increasing the amount of supplied air, resulting in an increase in the amount of exhaust gas. Accordingly, circulating fluidized bed furnaces that have a small temperature difference in the furnace and are capable of reducing the amount of exhaust gas and circulating equipment by circulating fluidized sand are becoming widespread.
[0005]
As shown by
[0006]
The characteristics of such a circulating fluidized bed furnace are that the hearth is in a physically active motion, the hearth is constantly maintained at a high temperature and sufficiently stored, and combustion The air is sufficiently dispersed, etc., and this makes the content particularly high in terms of combustion engineering, and has excellent combustion characteristics for flame-retardant sludge treatment.
Even in incineration treatments such as municipal waste and industrial waste, especially sludge with high moisture content and large moisture fluctuations, and mixed residue combustion, the cyclone force can be used effectively without increasing the furnace height, and the combusted material can be completely removed. Combustion reduces the concentration of unburned gas near the furnace port, suppresses the emission of harmful gases such as CO and dioxins, and thus reduces installation costs.
[0007]
On the other hand, however, many problems are built into the incineration process using a fluidized bed of waste that is heterogeneous and has a high water content. Among these, attention has been paid to the problem of increasing the unburned gas concentration in the exhaust gas due to the rapid combustion characteristics and the instantaneous combustion characteristics, which are one of the most important features of the fluidized bed furnace. Waste such as sludge is difficult to quantitatively supply, and the fluctuation in time required for the combustion process is large due to fluctuations in the moisture content in the combustibles. Therefore, when waste such as the above is introduced, the fluidized bed is temporarily in an air-deficient state, and partly combusted and partly gasified is partially generated. When combustion is performed with the supply of secondary air, excess and deficiency of air tends to occur, the concentration of unburned gas at the furnace outlet increases, and harmful gases such as CO and dioxins are discharged.
[0008]
Accordingly, there is a need for a fluidized bed furnace that can complete combustion and reduce the concentration of unburned gas at the furnace outlet to prevent harmful gases from being discharged outside the furnace and to perform a stable combustion reaction. . Here, in order to explain the combustion process of waste in the circulating fluidized bed furnace, when the combusted material is introduced into the fluidized bed in the furnace maintained at about 700 to 850 ° C., The mixture is violently mixed with the fluid medium and heated up, and the water in the combusted material evaporates and dries in a short time. The dried combustible material is gasified by thermal decomposition, and then burned in the freeboard in the fluidized bed or in the upper space of the fluidized bed. The free board is maintained at about 750 to 900 ° C., and unburned gas and light garbage are often burned by the free board. Such a combustion process is performed in a very short time. For example, in the case of sludge with a high water content, the time required for the temperature of the sludge charged into the fluidized bed furnace to rise is about 0.4 s, and the water in the heated sludge Is about 2.7 s until the gas is evaporated and dried, about 0.5 s until the dried sludge is gasified, 0.9 s from gasification to combustion, and about 4.5 s until all combustion processes are completed I know I only need it.
[0009]
However, since the circulating fluidized bed furnace circulates the fluidized medium at a high speed by introducing primary air and secondary air, it is difficult to ensure a residence time longer than the above-described time. If the combustion process is to be completed in the fluidized bed furnace, a normal circulating fluidized bed furnace requires a furnace height of about 22.5 m in a simple calculation when the superficial velocity in the furnace is about 5 m / s. Become. As a result, as a measure for reducing unburned gas, a method of increasing the furnace height of the fluidized bed furnace can be considered, but the installation cost and the fuel cost of the auxiliary combustor for keeping the furnace at a high temperature increase. This is also difficult in terms of operation control. Furthermore, with the increase in the calorie of sludge, the increase in the combustion rate of the freeboard is likely to cause a local high temperature condition of the freeboard, which decreases the durability of the furnace and increases the temperature difference in the furnace. Stable operation becomes difficult.
[0010]
Therefore, as an alternative to the above technique, a technique for improving the introduction of secondary air to generate a turbulent air flow in the freeboard to maintain a good mixing state and to increase the residence time of the combusted material in the furnace, or
Also, in the case of combustibles having a large specific gravity such as sludge, even if a combustible material inlet is provided above the fluidized bed, it can settle to the hearth immediately after charging due to its specific gravity and earn residence time. Although it is possible, it is not sufficient to complete the combustion, and a highly efficient method of suppressing harmful gas emission is desired.
[0011]
[Problems to be solved by the invention]
In such prior art, in order to solve the problem of increasing the unburned gas concentration in the exhaust gas due to the high combustion speed and the instantaneous combustion characteristics, which are one of the greatest features of the circulating fluidized bed furnace, the above-described furnace height is increased. The furnace shape was improved. For example, in a sewage sludge circulation flow furnace,
Freeboard residence time required for complete combustion (after secondary air input): 3.5-4.0 seconds are required, while freeboard superficial velocity required for sand circulation is 4.5-5 m / S Therefore, the required height of the free board = 3.5 seconds × 4.5 m / S = about 16 m. On the other hand, including the height of the fluidized bed 2 m below the secondary air port, It becomes about 18m, and the furnace height is very high. For this reason, there exists a problem that the quantity of the
[0012]
Therefore, the present invention has been made in view of the above problems, and incineration processing such as municipal waste and industrial waste, particularly sludge and mixed residue with high moisture content and large moisture fluctuations, without increasing the furnace height. Effectively using the power of the cyclone to reduce the unburned gas concentration near the furnace port by completely burning the combusted material, and controlling the emission of harmful gases such as CO and dioxins, and extending the installation cost The purpose is to provide a high-efficiency circulating fluidized bed furnace that can reduce the amount of gas.
More specifically, the object is to make the furnace body compact while obtaining exhaust gas properties equivalent to those of the reference furnace.
[0013]
[Means for Solving the Problems]
The present inventor has found that in the case of a cyclone attached to a circulating fluidized bed furnace, the inside of the cyclone has a high mixing and stirring effect of the combustion gas due to the effect of swirling flow, and the combustion efficiency is higher than that of the free board portion.
For example, according to the data on the CO concentration reduction rate in the demonstration furnace in the examples described later, the CO concentration reduction rate in the residence time of 1 second in the cyclone corresponds to 2 seconds or more in the free board portion.
[0014]
Therefore, for example, the height H (see FIG. 5) of the straight body of the cyclone is set to 1.2 or more, preferably 1.35 or more with respect to the straight body diameter D, and the cyclone straight body is extended. If the residence time is increased by 0.5 seconds, the freeboard residence time can be reduced by 1 second, which corresponds to a freeboard height of 4.5 m to 5.0 m minutes. Therefore, in the present invention, when the same furnace outlet exhaust gas properties are guaranteed, the cyclone straight body height H is set to 1.35 or more with respect to the straight body diameter D, and a cyclone having a long straight body is set to 1.35 or more. By adopting, it is possible to reduce the height of the free board, it is possible to suppress the amount of the whole furnace and the frame, and furthermore, by adopting a cyclone with a long straight trunk regardless of the free board height, Combustion exhaust gas can be purified (CO, dioxins, etc. reduced).
The cyclone is classified into an axial flow type and a tangential type (spiral type), both of which are applicable to the present invention.
[0015]
Further, the present invention will be described. For example, in the case of a sludge mixed sludge having a high water content of 85 to 90% or more, for example, the auxiliary fuel is introduced into the fluidized bed area below the free board (below the secondary air inlet) and then introduced into the fluidized bed furnace. Since the sludge is heated up and the heated sludge is further evaporated to dryness, in the freeboard area, it takes about 0.5 s until the dried sludge is gasified and further 0.9 s from gasification to combustion. 1.5-2 seconds is considered necessary. If the tower speed is 5 m / S, the freeboard needs to be at least 7 to 10 m. In this case, if the secondary air is preheated, the freeboard residence time is also within the above range.
[0016]
From this knowledge, the present invention is a circulating fluidized bed in which the fluidized sand and exhaust gas (including fly ash etc.) jumped out from the riser that burns while mixing the fluidized sand and the combustible are separated by a cyclone and then returned to the riser. In the furnace,
The combustible material thrown into the riser is a waste having a high water content, and burns the unburned gas discharged from the free board due to the mixing and stirring effect in the cyclone,The height H of the straight body of the cyclone is 1.2 or more with respect to the diameter D of the straight body.Preferably, it is set to 1.35 or more, and the cyclone residence time hs is set to 80% to 200% of the freeboard residence time hf.Preferably, hs / hf is set to 1-2.
And in this invention, when moisture content is as high as 70 to 90% or more like dewatered sewage sludge, it is good to pre-heat secondary air with a freeboard temperature of 850 degreeC or more.
If the cyclone is equipped with a preheat recovery boiler, the effect of the present invention cannot be obtained.
[0017]
Also, the height H of the straight body of the cyclone is set to H / D with respect to the diameter D of the straight body., Preferably 1.35 or moreIn order to ensure that the length of the straight body of the cyclone is sufficient and to reduce the overall length of the furnace as much as possible, the length of the downcomer provided at the bottom of the cyclone is set to5mBelow (rounded down to the nearest decimal place), preferably 0.
Furthermore, as a specific configuration of the present invention, when the freeboard height of the fluidized furnace is set to 7 to 15 m and the cyclone straight body portion height is set to 3.0 to 5.0 m, the freeboard residence time is 1. The downcomer height is 5 m or less, preferably about 2 m or less, and the H / D is 1.2 or more, preferably 1. It is better to adjust and set to 35 or more.
[0018]
In this invention, the height H of the straight body portion of the cyclone is set to 1.2 or more, preferably 1.35 or more with respect to the diameter D of the straight body portion, and the residence time of the cyclone is increased to further increase the cyclone to 800. Maintaining a high temperature of ℃ or higher keeps the freeboard height as low as possible, and even when the overall furnace height is lowered, complete combustion of the combustibles can be achieved, and the unburned gas such as CO and dioxins Emission can be reduced. In addition, even a combustible having a moisture content of 70% or more, such as sewage sludge, can be burned efficiently.
[0019]
Furthermore, the H / D is set to 1.2 or more, preferably 1.35 or more with respect to the diameter D of the straight body of the cyclone to reduce the emission of unburned gases such as CO and dioxins. By making the freeboard as low as possible by having it on the cyclone side, the quantity of the entire combustion furnace is reduced, and the installation cost and installation space can be reduced.
Furthermore, since the cyclone side can take part in the combustion process, the combustion rate of the freeboard is reduced, and the freeboard is heated more than necessary due to excessive combustion reaction, and the furnace temperature is uniform. Thus, the fluidized bed furnace can be stably operated, and there is no local temperature abnormality, and the durability of the furnace is improved.
[0020]
Furthermore, since the furnace height of the entire furnace is lowered, the installation cost and the installation area can be reduced. Furthermore, the present invention is also effective for sewage sludge and slag mixed combustion sludge having a high moisture content, and capable of stable operation even in the treatment of sludge having such a high moisture content and large moisture fluctuation. In addition, a sludge circulation fluidized bed furnace that emits less unburned gas can be provided.
Furthermore, a high-performance sludge circulating fluidized bed furnace can be provided in the same manner as described above even when the properties of the incineration object are unstable, such as when sewage sludge is mixed with sediment and sand.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified. Absent.
[0022]
First, the configuration of the
The
As shown in the figure, in the present invention (comparative example), the outer cylinder part height H is 1.4 or more (comparative example 1 time) times the outer cylinder part diameter D, and the exhaust cylinder he is correspondingly high. In addition, it is longer than 1 (comparative example 0.7 times) times the outer cylinder part diameter D. Since the height of the cone part is constant at 1 time with respect to the outer cylinder part diameter D, the total length of the cyclone is 2.5 times with respect to the outer cylinder part diameter D (comparative example 2.1 times). The extension is also longer.
[0023]
Next, the present invention will be described while comparing the circulating fluidized bed furnace according to the comparative example and the embodiment of the present invention.
FIG. 2 is a schematic diagram showing a schematic configuration of the entire circulating fluidized bed furnace according to a comparative example of the present invention. As shown in the figure, a circulating
Further, the
[0024]
Below the
[0025]
And this comparative example as a standard furnace
Freeboard superficial velocity: Set to 4.5 m / S, change the detection position in the freeboard height direction and set the freeboard residence time between 1 to 5 seconds, and the relationship between freeboard residence time and CO concentration, Dehydrated sludge-only firing (free board temperature 900 ° C.), dehydrated sludge / sludge mixed firing (free board temperature 900 ° C.), dehydrated sludge exclusive firing (free board temperature 850 ° C.), and
[0026]
FIG. 4 shows the relationship between the freeboard residence time and the CO concentration in the furnace height direction in the demonstration test according to FIG. 3.
From this figure, it can be seen that it decreases exponentially with increasing freeboard residence time. At the time of mixed residue, the slope is gradual and the rate of decrease is small. The reason is considered to be partly floating combustion on the free board.
As can be seen from the figure, in the case of 900 ° C. only for sludge, the CO concentration is sufficiently low at about 15 ppm with a residence time of 3.5 seconds, and it can be said that complete combustion is possible.
However, when the residue is mixed or when the sludge is exclusively burned at 850 ° C., the residence time of 5 to 6 seconds is required, so the furnace height of the free board is required to be approximately 22 to 26 m.
[0027]
Next, FIG. 4 shows the relationship between the CO concentration at the inlet and outlet of the
As understood from the figure, the CO concentration is reduced to about 1/2 to 1/5 by passing the
[0028]
Next, based on FIG. 3 and FIG. 4, Table 1 below shows the result of converting the CO reduction rate in the
As can be seen from this table, the
[0029]
[Table 1]
[0030]
Therefore, according to the data on the CO concentration reduction rate in the demonstration furnace, the residence time of 1 second in the
Therefore, for example, when the straight body height H of the cyclone is set to 1.35 or more with respect to the straight body diameter D and the cyclone straight body H is extended to increase the residence time by 0.5 seconds, The freeboard residence time can be reduced by 1 second or more.
This is because in the case of the circulating
Based on this viewpoint, the most preferred embodiment of the present invention was manufactured based on the comparative example.
As described above, the reason why an equivalent CO reduction effect can be obtained with a residence time of 1/2 to 1 / 6.5 of the
[0031]
Then, by setting the H / D to 1.35 or more with respect to the straight body height D of the
And if the
Method: When shortening the height of the
[0032]
First, in the comparative furnace shown in FIG.
Treatment capacity: 200ton / day of dewatered sludge
Exhaust gas amount: 24,035 Nm3/ H (at 850 ° C)
Freeboard sky speed: 4.5m / S
Freeboard height (m) 18.0m
Straight body diameter D (m) 3.7m (H / D: 1)
Furnace body weight: 287.6 ton
Downcomer height (m) 7.2m
The comparative example was manufactured.
And in such a comparative example,
Freeboard residence time: 3.5 sec
When down is set, the downcomer height is reduced to 0 m, which is the same as the comparative example.
The experimental furnace according to the present invention is obtained.
(1) The trial calculation condition is that the
Free board cross-sectional area = 2.852π / 4 = 6.4m2
6.4m2× 1m × 1/2 = 10.8m2× H
H = 0.3 m.
[0033]
In this case, when the height of the
FIG. 1 is a schematic diagram showing a general configuration of a circulating fluidized bed furnace according to the present invention. As shown in the figure, the circulating
Freeboard sky speed: 4.5m / S
Freeboard height (m) 12.5m
Cyclone straight body height (m) 5.3m
Straight body diameter D (m) 3.7m (H / D: 1.43)
Furnace body weight: 247.5 ton
Downcomer height (m) 0m
An example of this was prepared.
And in such an example embodiment:
Freeboard height (m) is reduced from 18 / 0m to 12.5m, furnace body weight: 287.6ton to 247.5ton, respectively. Even in the experimental results, the freeboard residence time is 2.3sec. Although decreased, the cyclone residence time increased to 2.4 sec.
The cyclone outlet CO concentration is 10ppm (oxygen concentration 12% conversion)
The cyclone outlet DXN concentration is 0.1 ngTEQ / NmThree (Oxygen concentration 12% conversion)
A high-performance experimental furnace was obtained for the following and comparative examples.
[0034]
Next, as a second experimental furnace
Freeboard height (m) 13.7m
Cyclone straight body height (m) 5.0m
Straight body diameter D (m) 3.7m (H / D: 1.35)
Downcomer height (m) 0.5m
A second example was prepared.
And in such an example embodiment:
Freeboard height (m) from 18 / 0m to 13.7m, the furnace body weight: 287.6ton to 256.2ton, respectively, and the freeboard residence time also decreased to 2.5sec in the experimental results However, since the cyclone residence time rose to 2.3 sec, the cyclone outlet CO concentration was 15 ppm (converted to an oxygen concentration of 12%) and the cyclone outlet DXN concentration was 0.1 ngTEQ / Nm.Three An experimental furnace (with an oxygen concentration of 12% equivalent) and a performance equal to or higher than that of the comparative example was obtained.
[0035]
Next, as a second comparison furnace
Freeboard height (m) 16.3m
Cyclone straight body height (m) 4.2m
Straight body diameter D (m) 3.7m (H / D: 1.135)
Downcomer height (m) 4.9m
A second comparative example was produced.
And in such a comparative example,
Freeboard height (m) is 18 / 0m to 16.3m, furnace body weight: slightly decreased from 274.1 ton to 256.2 ton, and even in the experimental results, the freeboard residence time was reduced to 2.5 sec. Cyclone residence time of the object: Since it increased to 2.3 sec, the cyclone outlet CO concentration was 20 ppm (oxygen concentration 12% conversion), and the cyclone outlet DXN concentration was 0.1 ngTEQ / NmThree An experimental furnace having a performance equivalent to that of the comparative example (with an oxygen concentration of 12%) was obtained.
[0036]
【The invention's effect】
As described above, according to the present invention, the power of the cyclone can be increased without increasing the furnace height even in incineration processing such as municipal waste and industrial waste, particularly sludge and sludge mixed combustion with high moisture content and large moisture fluctuation. Effectively used to reduce the unburned gas concentration near the furnace opening by completely burning the combusted material, and to suppress the emission of harmful gases such as CO and dioxins, thereby reducing the installation cost It was.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a general configuration of a circulating fluidized bed furnace according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing the overall configuration of a circulating fluidized bed furnace according to a comparative example of the present invention.
FIG. 3 shows the relationship between freeboard residence time and CO concentration in the furnace height direction in the demonstration test.
FIG. 4 shows the relationship between the CO concentration at the inlet and outlet of the
FIG. 5 is a cross-sectional view showing a configuration of a cyclone applied to the present invention and a comparative example.
[Explanation of symbols]
1 Circulating fluidized bed furnace
1a riser
2 Fluidized bed
3 Free board
4 Cyclone
5 Downcomer
6 Seal pot
9 Secondary air
Claims (4)
前記ライザに投入される被燃焼物が高含水率である廃棄物であり、サイクロン内の混合攪拌効果によりフリーボードより排出された未燃ガスを燃焼させるともに、前記サイクロンの直胴部高さHを直胴部直径Dに対し、H/Dを1.2以上に設定し且つサイクロンの滞留時間hsをフリーボード滞留時間hfのhs/hfを80%〜200%に設定したことを特徴とする循環型流動層炉。After combustion with the combustion product or mixed with the fluidized sand and the pyrolysis gas (hereinafter referred to as a mixed gas) at the free board space of the riser upper space from the furnace wall intermediate position of the riser introducing secondary air, said riser In the circulating fluidized bed furnace, the fluidized sand and exhaust gas (including fly ash etc.) that jumped out are separated by a cyclone and then returned to the riser through a seal pot.
The combustible material thrown into the riser is a waste having a high water content, and burns the unburned gas discharged from the free board due to the mixing and stirring effect in the cyclone, and the straight body height H of the cyclone The H / D is set to 1.2 or more with respect to the straight body diameter D, and the dwell time hs of the cyclone is set to 80% to 200% of hs / hf of the freeboard dwell time hf. Circulating fluidized bed furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002229564A JP3790502B2 (en) | 2002-08-07 | 2002-08-07 | Circulating fluidized bed furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002229564A JP3790502B2 (en) | 2002-08-07 | 2002-08-07 | Circulating fluidized bed furnace |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004069189A JP2004069189A (en) | 2004-03-04 |
JP2004069189A5 JP2004069189A5 (en) | 2005-10-13 |
JP3790502B2 true JP3790502B2 (en) | 2006-06-28 |
Family
ID=32015896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002229564A Expired - Lifetime JP3790502B2 (en) | 2002-08-07 | 2002-08-07 | Circulating fluidized bed furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3790502B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5361449B2 (en) | 2008-02-28 | 2013-12-04 | 三菱重工環境・化学エンジニアリング株式会社 | Circulating fluidized bed furnace and method of operating the circulating fluidized bed furnace |
-
2002
- 2002-08-07 JP JP2002229564A patent/JP3790502B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004069189A (en) | 2004-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2298785A1 (en) | Reburn process | |
Duan et al. | Pollutant emission characteristics of rice husk combustion in a vortexing fluidized bed incinerator | |
JP2006300501A (en) | Downward moving bed type furnace | |
US6709636B1 (en) | Method and apparatus for gasifying fluidized bed | |
JP3790502B2 (en) | Circulating fluidized bed furnace | |
JP2895469B1 (en) | Method and apparatus for reducing dioxins in a melting furnace | |
CA1290988C (en) | Method of combustion for fluidized bed incinerators | |
JP2007163132A (en) | Method and apparatus for gasifying fluidized bed | |
JP2870675B2 (en) | How to operate the pyrolytic combustion zone | |
WO2018067078A1 (en) | Multi chamber incinerator for turbulent combustion of solid and biomass fuel | |
JP3831567B2 (en) | Circulating fluidized bed furnace | |
JP3790418B2 (en) | Operating method of external circulating fluidized bed furnace for waste incinerator with high water content and high volatility such as sewage sludge | |
JP2009085572A (en) | Combustion boiler for combustible material containing powder and particulate | |
JPH11325424A (en) | Waste-gasifying furnace and apparatus for gasifying, burning, and treating waste provided with the same | |
JP3442521B2 (en) | Combined fluidized bed waste combustion boiler | |
JP3030016B2 (en) | Operating method of fluidized bed incinerator and its incinerator | |
JP2941785B1 (en) | Operating method of fluidized bed incinerator and its incinerator | |
JPH03125808A (en) | Fluidized-bed type refuse incinerator | |
JPH10169944A (en) | Fluidized layer control method in waste thermal decomposition furnace | |
RU2718729C1 (en) | Flare combustion method of sorting solid municipal waste in a fire tube boiler | |
JPH1114029A (en) | Circulating fluidized bed combustion equipment and method of operation | |
CN1438448A (en) | Garbage coal-powder compound burning-incinerating furnace | |
JPH09210331A (en) | Circulation fluidized bed boiler | |
JP3763656B2 (en) | Circulating fluidized bed combustor | |
JP3030025B1 (en) | Operating method of fluidized bed incinerator and its incinerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060331 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3790502 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130407 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140407 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |