JP3790017B2 - Fuel tank - Google Patents

Fuel tank Download PDF

Info

Publication number
JP3790017B2
JP3790017B2 JP20396997A JP20396997A JP3790017B2 JP 3790017 B2 JP3790017 B2 JP 3790017B2 JP 20396997 A JP20396997 A JP 20396997A JP 20396997 A JP20396997 A JP 20396997A JP 3790017 B2 JP3790017 B2 JP 3790017B2
Authority
JP
Japan
Prior art keywords
fuel tank
fuel
internal pressure
tank
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20396997A
Other languages
Japanese (ja)
Other versions
JPH1134675A (en
Inventor
武 鈴木
芳雄 縫谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP20396997A priority Critical patent/JP3790017B2/en
Publication of JPH1134675A publication Critical patent/JPH1134675A/en
Application granted granted Critical
Publication of JP3790017B2 publication Critical patent/JP3790017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関を搭載した車輌の燃料タンクに関し、特に燃料タンク内の蒸発燃料の大気中への放出を抑制することが可能な燃料タンクに関する。
【0002】
【従来の技術】
従来、内燃機関を搭載した車輌においては、燃料タンク内部と外部とを連通させる連通路を設け、燃料タンク内の液体燃料の蒸発量の増大に伴うタンク内圧力の上昇によりタンク内圧力が所定の設定上限圧を越えたときに、上記連通路を介して燃料タンク内の蒸発燃料(以下、ベーパと云う)を外部に放出するようにしていた。このとき、タンク内ベーパを直接大気中に放出すると大気汚染が引き起こされるので、上記連通路に活性炭を内蔵するキャニスタを設け、車輌の駐車時には、この活性炭にベーパを吸着させると共に、エンジン運転時には、燃料タンク内のベーパをキャニスタを介してエンジンに供給し燃焼させることにより、ベーパが大気中に放出されるのを防止するようにしていた。
【0003】
ところが、例えば車輌を駐車したまま長期間放置しておいた場合等にはベーパの放出量がキャニスタのベーパ吸着能力を越えることがあり、このような場合にはベーパがキャニスタに吸着されることなく大気中に放出され大気汚染を引き起こすことになる。このため、ベーパの燃料タンク内部から外部への放出量を減少させるために、ベーパの発生量の増減に応じてタンク容積が変化するようにしたブラダ式燃料タンクが提案されている。
【0004】
具体的には、燃料タンクを容積可変の袋状の容器とし、この容器の周側部に金属バネを設け、ベーパの発生量の増減に応じてタンク容積が変化するようにしたものや、このような構成の袋状の容器を通常の容積一定のタンク内部に内装するようにしたブラダ式燃料タンクが知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、このような従来のブラダ式燃料タンクはいずれも燃料を貯蔵する容器自体が容積可変のブラダ構造とされていたため、貯蔵燃料の重量を支えるために容器の周側部に設ける金属バネの弾性力をある程度大きくする必要があった。
【0006】
このため、ベーパが発生したときに燃料液面上方に生じ得る気相の最大圧力が大きくなって、例えば給油のためにフィラーキャップを外した場合等に燃料タンク内からベーパが大気中に噴出してしまうのを防止するのが困難であった。
【0007】
また、上述したとおり、従来、エンジン運転時には燃料タンク内で発生したベーパはキャニスタを介してエンジンに供給され燃焼されていたが、例えば外気温が高く機関の運転に伴う発熱量が極めて大きいような状態においては、キャニスタを介してエンジンに供給し得る範囲を越えてベーパが発生する場合がある。このような場合には、ベーパはキャニスタに吸着しきれなくなると大気中に放出されることになり、大気汚染を引き起こす原因となっていた。
【0008】
本発明は、上記問題点を解決するためになされたもので、燃料タンク内の蒸発燃料の外部への放出を抑制することができる燃料タンクを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明に係る燃料タンクは、液体燃料を貯蔵する燃料タンク本体と、該燃料タンク本体内の燃料液面よりも上方に設けられ、連通路を介して前記燃料タンク本体の内部と接続され前記燃料タンク本体内の燃料の蒸発量に応じて容積が変化する容積可変容器と、所定の内圧で前記容積可変容器の容積を拡縮させるバネ部材とを備えたことを特徴とする。
【0010】
燃料タンク本体内の蒸発燃料量が増減し、燃料タンク内圧力が変動したとき、連通路を介して燃料タンク本体の内部と接続されている容積可変容器の容積が変化するので、燃料タンク内圧力の変動が小さくなる。この結果、燃料タンク内の蒸発燃料の外部への放出が抑制されるため、蒸発燃料が大気中に放出され大気汚染を引き起こすのを防止することが容易になる。
【0011】
また、燃料タンク本体内の燃料液面よりも上方に燃料タンク本体とは別に容積可変容器を設けたので、燃料タンク本体自体を容積可変の容器とした場合のように貯蔵燃料の重量を支えるために弾性力の大きい金属バネを容積可変容器に設ける必要がない。このため、ベーパが発生したときに燃料液面上方に生じ得る気相の最大圧力を小さくできるので、例えば給油の際にフィラーキャップを外したときに給油口から蒸発燃料が噴出するのを防止できる。
【0012】
また、請求項2記載の発明は、請求項1記載の燃料タンクにおいて、前記容積可変容器及び前記連通路の少なくとも一方を冷却する冷却手段を設けたことを特徴とする。
【0013】
この構成によって、燃料タンク本体内の蒸発燃料は、容積可変容器または連通路において冷却手段により冷却され液化されるので、例えば外気温が高く機関の運転に伴う発熱量が極めて大きいような状態においても蒸発燃料量を低減し、燃料タンク内圧力の上昇を緩和することができるため、蒸発燃料が大気中に放出され大気汚染を引き起こすのを防止する効果をより一層高めることができる。
【0014】
また、請求項3記載の発明は、請求項1又は2記載の燃料タンクにおいて、前記燃料タンク本体は断熱構造を有することを特徴とする。
【0015】
この構成によって、燃料タンク本体内部と外部との間の熱の伝達量が減少するので、燃料タンク内の蒸発燃料量の変化が抑制され、燃料タンク内圧力の変動が小さくなる。この結果、燃料タンク内の蒸発燃料の外部への放出が抑制されるので、蒸発燃料が大気中に放出され大気汚染を引き起こすのを防止する効果を更に一層高めることができる。
また、請求項4記載の発明は、請求項1乃至3のいずれか1項に記載の燃料タンクにおいて、大気に連通する配管及び該配管に設けられた弁機構をさらに備え、前記弁機構が開弁作動する第1の内圧の範囲は、前記バネ部材が前記容積可変容器の容積を拡縮させる第2の内圧の範囲と重なり合わないように設定されることを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳述する。
【0017】
図1は、本発明の実施の一形態に係る燃料タンクとその周辺要素を示す全体構成図である。
【0018】
燃料タンク1は、燃料タンク本体1aと、ベローズから成るブラダ式の容積可変容器としての副室1bと、燃料タンク本体1aと副室1bとを接続する連通路1cと、該連通路1cに設けられた冷却装置1dとから構成されている。
【0019】
燃料タンク本体1aは、フィラーパイプ1fを介して図示しない給油口と接続されている。また、燃料タンク本体1aは、該本体1a内部と外部との間の熱伝達量を減少させるために、外壁が、例えばグラスウールから成る断熱層1eにより被われている。副室1bは、燃料タンク本体1a内の燃料液面より上方に設けられ、連通路1cを介して燃料タンク本体1a内の燃料液面より上方の内部空間と接続されると共に、燃料タンク本体1a内の圧力Pがタンク本体内の蒸発燃料量の増減に応じて変化するとき、容積が拡縮するように金属バネ1b’が周側部に設けられたブラダ構造とされている。また副室1bは、タンク内圧Pが例えば18.6mmHg(ゲージ圧)以下の範囲で容積が拡縮するように設計されている(現行法の規制ではタンク内圧Pが18.6mmHg以下であれば給油口からの蒸発燃料の大気中への放出が許容されているからである)。
【0020】
冷却装置1dは、例えば熱電冷却素子(2つの異種の金属の接合部を通って電流を流したとき熱が吸収されると云うペルチエ効果(Peltier effect)に基づいて作られた電子熱ポンプ)から成り、内燃エンジンの発熱量が増大する高回転運転時等の所定の運転状態において電力が供給され、連通路1cを通過する蒸発燃料(以下、ベーパと云う)を冷却するように構成されている。
【0021】
また、燃料タンク本体1aは、燃料供給管2を介して図示しない内燃エンジンの燃料ポンプに接続されると共に、チャージ通路3を介してキャニスタ4に接続されている。チャージ通路3には、二方向弁5及びタンク本体1a内の圧力Pを検出するタンク内圧センサ6が設けられている。二方向弁5はタンク内圧センサ6により検出されたタンク内圧Pが大気圧より所定圧(例えば、20mmHg)高くなったとき及びタンク内圧Pが二方向弁5のキャニスタ4側の圧力より所定圧(例えば、10mmHg)だけ低くなったときに開弁作動するように構成されている。この二方向弁5が開弁作動するタンク内圧Pの範囲(P>20mmHg,P<−10mmHg)は、副室1bの容積が拡縮するときのタンク内圧Pの範囲と重なり合わないように設定される(即ち、副室1bは、−10mmHg<P<20mmHg(18.6mmHg)の範囲でのみ容積が拡縮する)。
【0022】
キャニスタ4は燃料タンク本体1aからチャージ通路3を介して放出されたベーパを吸着するための活性炭を内蔵すると共に、通路7を介して大気に連通する吸気口(図示せず)に接続されている。また、キャニスタ4はパージ通路8を介して図示しない吸気管のスロットル弁の下流側に接続されている。パージ通路8には電磁弁から成るパージ制御弁9が設けられており、該パージ制御弁9の開閉によりキャニスタ4からパージされる燃料空気混合気の流量が制御される。
【0023】
次に、図2を参照して、本実施の形態の燃料タンクの動作を説明する。
【0024】
図2は、外気温Tと車輌駐車時のタンク内圧Pの関係を示すグラフである。
【0025】
同図において、曲線Aは外気温Tの1日(時刻tSから時刻tEが1日を示す)の変化を示し、曲線Bは本実施の形態に係る燃料タンクのタンク内圧Pの変化(冷却装置1dは不作動とする)を示す。また、曲線Cは従来の容積一定の燃料タンクにおけるタンク内圧Pの変化を示す。
【0026】
タンク内圧Pは時刻tSにおいて大気圧と等しく、この状態から外気温Tが上昇すると、ベーパの発生量が増大しタンク内圧Pが上昇する。
【0027】
曲線Bに示すように、本実施の形態に係る燃料タンクでは、タンク内圧Pの上昇に応じて副室1bの容積が拡大するので、タンク内圧Pの上昇が緩和される。この結果、図示例においては、外気温Tが最高温TUとなる時刻tUにおいてもタンク内圧Pが二方向弁5の上側作動圧PMAX(例えば、20mmHg)に達しないので、燃料タンク1内のベーパはキャニスタ4に放出されない。このため、車輌を長期間運転することなく放置した場合にも、燃料タンク本体1aからキャニスタ4への累計のベーパ放出量を抑制することができるので、キャニスタ4のベーパ吸着能力を増大させる等の特別の措置を講じることなく、ベーパの大気中への放出を防止することができる。
【0028】
時刻tUから外気温Tが下降し、これに伴ってタンク内圧Pが下降すると副室1bの容積が縮小する。時刻tNにタンク内圧Pが大気圧まで下降すると副室1b周側部に設けられた金属バネ1b’が略自然長となり、副室1bの容積は時刻tSの状態に戻る。その後、更に外気温Tが下降し、タンク内圧Pが大気圧を下回ると副室1bの容積は時刻tSの状態よりも縮小する。これにより、タンク内圧Pの下降が緩和され、図示例においては、外気温Tが最低温TLとなる時刻tLにおいても、タンク内圧Pが二方向弁5の下側作動圧PMIN(例えば、−10mmHg)に達しないので、燃料タンク1内にキャニスタ4から混合気は吸入されない。このため、再び外気温Tが上昇しベーパの発生量が増大したときにも副室1bの容積が拡大し得る余地が残される。
【0029】
曲線Cに示すように、従来の燃料タンクでは、時刻tSからの外気温Tの上昇に伴ってタンク内圧Pが上昇し、時刻t1にタンク内圧Pが二方向弁5の上側作動圧PMAXに達すると、二方向弁5が開弁し、燃料タンク内ベーパがキャニスタ4に放出される。時刻t1から時刻t2の期間は二方向弁5が断続的に開弁作動して、タンク内圧PはPMAX値を越えないように制御される。このとき、燃料タンク本体1aから放出されたベーパはキャニスタ4において活性炭に吸着され、ベーパの放出量が活性炭の吸着能力を越えたときには、その時点からベーパは大気中に放出される。
【0030】
時刻tUから外気温Tが下降すると、これに伴ってタンク内圧Pが下降する。時刻tNにタンク内圧Pが大気圧まで下降し、更に時刻t3にタンク内圧Pが二方向弁5の下側作動圧PMINまで下降すると、キャニスタ4を介して燃料タンク本体1aに外気を吸入すべく二方向弁5が断続的に開弁作動し、このとき、キャニスタ4の活性炭に吸着されたベーパは再び蒸気化して燃料タンク本体1aに取り込まれる。
【0031】
このように、従来の容積一定の燃料タンクにおいては、外気温Tの変化に伴って蒸発燃料量が増減すると、この蒸発燃料量の増減が直接タンク内圧Pの変動につながるため、タンク内圧Pの変動が大きく、この結果、燃料タンク内ベーパの外部への放出量が大きくなる。これに対して、本実施の形態の燃料タンクにおいては、ベーパの発生量の増減に応じて副室1bの容積が拡縮することにより、タンク内圧Pの変動が小さくなるので、燃料タンク内ベーパを外部に放出すべき場合が少なくなる。この結果、燃料タンク内ベーパの外部への放出量を抑制することができるので、キャニスタ4のベーパ吸着能力を向上させる等の特別の措置を構ずることなく、燃料タンク内ベーパが大気中に放出されるのを防止できる。
【0032】
また、本実施の形態の燃料タンクは、容積可変の副室1bを燃料タンク本体1aとは別に燃料タンク本体1a内の燃料液面よりも上方に設けたので、例えば燃料タンク本体1a自体を容積可変のブラダ構造とした場合には貯蔵燃料の重量を支えるためにある程度弾性力の大きい金属バネを燃料タンク本体1aに設ける必要があるのと比較して、副室1bに特に弾性力の大きい金属バネを設ける必要がなく、このため、ベーパが発生したときに燃料液面上方に生じ得る気相の最大圧力を小さくできるので、給油時等にベーパが給油口から噴出してしまうことを防止できる。
【0033】
更にまた、本実施の形態の燃料タンクによれば、燃料タンク1内のベーパ発生量が特に増大するような状態、例えば外気温が高温であり且つエンジンの運転による発熱量が大きい状態においては冷却装置1dに電力を供給し、該冷却装置1dにより燃料タンク内ベーパを冷却し液化することによって、燃料タンク内のベーパ量を低減し、タンク内圧Pの上昇を緩和することができる。これにより、上述したような状態においても燃料タンク内ベーパの放出量をキャニスタ4を介してエンジンに供給し得る範囲に抑えることができる。
【0034】
更にまた、本実施の形態の燃料タンクによれば、燃料タンク本体1aの外壁は断熱層1eによって被われているため、燃料タンク本体1aの外壁を介した熱の伝達量が減少され、燃料タンク1内の温度変化が抑制されるので、タンク内圧Pの変動が抑制され、この結果、燃料タンク内ベーパの外部への放出量を抑制できる。
【0035】
また、燃料タンク本体1aの外壁を介した熱の伝達量は断熱層1eの断熱仕様に応じて変化するので、副室1bの大きさは、断熱層1eの断熱仕様に応じて設定すればよい。例えば、断熱層1eの断熱効果が高い場合は副室1bは小さいものでよく、断熱層1eの断熱効果が低い場合は副室1bは大きいものを用いるのが好ましい。
【0036】
尚、冷却装置1dは熱電冷却素子に限らず、例えばカーエアコンを稼働させることにより得られる冷風によって、連通路1cを冷却するようにしてもよい。また、冷却装置1dは副室1bを冷却するようにしてもよく、連通路1cと副室1bを共に冷却するようにしてもよい。
【0037】
また、冷却装置1dの稼働はエンジン運転時に限らず、例えば太陽電池を車輌に取り付け、該太陽電池が発電した電力を用いて、車輌の駐車中にも冷却装置1dによって燃料タンク内ベーパを冷却するようにしてもよい。
【0038】
【発明の効果】
請求項1記載の副室付燃料タンクによれば、燃料タンク本体内の蒸発燃料量が増減し、燃料タンク内圧力が変動したとき、連通路を介して燃料タンク本体の内部と接続されている容積可変容器の容積が変化するので、燃料タンク内圧力の変動幅が小さくなる。この結果、燃料タンク内の蒸発燃料の外部への放出が抑制されるため、蒸発燃料が大気中に放出され大気汚染を引き起こすのを防止することが容易になる。
【0039】
また、燃料タンク本体内の燃料液面よりも上方に燃料タンク本体とは別に容積可変容器を設けたので、燃料タンク本体自体を容積可変の容器とした場合のように貯蔵燃料の重量を支えるために弾性力の大きい金属バネを容積可変容器に設ける必要がない。このため、ベーパが発生したときに燃料液面上方に生じ得る気相の最大圧力を小さくできるので、例えば給油の際にフィラーキャップを外したときに給油口から蒸発燃料が噴出するのを防止できる。
【0040】
請求項2記載の副室付燃料タンクによれば、燃料タンク内の蒸発燃料は、容積可変容器または連通路において冷却手段により冷却され液化されるので、例えば外気温が高く機関の運転に伴う発熱量が極めて大きいような運転状態においても蒸発燃料量を低減し、燃料タンク内圧力の上昇を緩和することができるため、蒸発燃料が大気中に放出され大気汚染を引き起こすのを防止する効果をより一層高めることができる。
【0041】
請求項3記載の副室付燃料タンクによれば、燃料タンク本体内部と外部との間の熱の伝達量が減少するので、燃料タンク内の蒸発燃料量の変化が抑制され、燃料タンク内圧力の変動が小さくなる。この結果、燃料タンク内の蒸発燃料の外部への放出が抑制されるので、蒸発燃料が大気中に放出され大気汚染を引き起こすのを防止する効果を更に一層高めることができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係る副室付燃料タンクの全体構成図である。
【図2】同副室付燃料タンクにおけるタンク内圧Pと外気温Tとの関係を示すグラフ図である。
【符号の説明】
1 燃料タンク
1a タンク本体
1b 副室
1c 連通路
1d 冷却装置
1e 断熱層
4 キャニスタ
5 二方向弁
6 タンク内圧センサ
9 パージバルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel tank of a vehicle equipped with an internal combustion engine, and more particularly to a fuel tank capable of suppressing release of evaporated fuel in the fuel tank into the atmosphere.
[0002]
[Prior art]
Conventionally, in a vehicle equipped with an internal combustion engine, a communication passage that communicates the inside and outside of a fuel tank is provided, and the tank pressure increases to a predetermined level due to an increase in the tank pressure accompanying an increase in the evaporation amount of liquid fuel in the fuel tank. When the set upper limit pressure is exceeded, the evaporated fuel (hereinafter referred to as vapor) in the fuel tank is discharged to the outside through the communication passage. At this time, if the vapor in the tank is directly released into the atmosphere, air pollution is caused.Therefore, a canister containing activated carbon is provided in the communication path, and when the vehicle is parked, the activated carbon is adsorbed to the activated carbon, The vapor in the fuel tank is supplied to the engine via the canister and burned to prevent the vapor from being released into the atmosphere.
[0003]
However, for example, when the vehicle is left parked for a long time, the amount of vapor discharged may exceed the vapor adsorption capacity of the canister. In such a case, the vapor is not adsorbed by the canister. Released into the atmosphere, causing air pollution. For this reason, in order to reduce the amount of vapor discharged from the inside of the fuel tank to the outside, a bladder type fuel tank has been proposed in which the tank volume changes in accordance with the increase or decrease in the amount of vapor generated.
[0004]
Specifically, the fuel tank is a variable volume bag-like container, and a metal spring is provided on the peripheral side of the container so that the tank volume changes according to the increase or decrease in the amount of vapor generated. There is known a bladder type fuel tank in which a bag-like container having such a structure is installed inside a normal tank having a constant volume.
[0005]
[Problems to be solved by the invention]
However, since all of these conventional bladder fuel tanks have a bladder structure in which the volume of the fuel storage container itself is variable, the elasticity of the metal spring provided on the peripheral side portion of the container to support the weight of the stored fuel. It was necessary to increase the power to some extent.
[0006]
For this reason, when the vapor is generated, the maximum pressure in the gas phase that can be generated above the fuel level increases. For example, when the filler cap is removed for refueling, the vapor is ejected from the fuel tank into the atmosphere. It was difficult to prevent it.
[0007]
Further, as described above, the vapor generated in the fuel tank at the time of engine operation is conventionally supplied to the engine via the canister and burned. For example, the outside air temperature is high and the amount of heat generated by the engine operation is extremely large. In the state, vapor may be generated beyond the range that can be supplied to the engine via the canister. In such a case, the vapor would be released into the atmosphere when it could not be adsorbed by the canister, causing air pollution.
[0008]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel tank that can suppress the release of evaporated fuel in the fuel tank to the outside.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a fuel tank according to a first aspect of the present invention is provided with a fuel tank main body for storing liquid fuel, a fuel tank surface above the fuel liquid level in the fuel tank main body, and via a communication passage. A variable volume container that is connected to the inside of the fuel tank main body and has a volume that changes in accordance with the amount of fuel evaporation in the fuel tank main body, and a spring member that expands and contracts the volume of the variable volume container with a predetermined internal pressure. It is characterized by that.
[0010]
When the amount of evaporated fuel in the fuel tank body increases or decreases and the fuel tank pressure fluctuates, the volume of the variable volume container connected to the inside of the fuel tank body changes via the communication path. The fluctuation of becomes smaller. As a result, since the release of the evaporated fuel in the fuel tank to the outside is suppressed, it is easy to prevent the evaporated fuel from being released into the atmosphere and causing air pollution.
[0011]
Further, since the variable volume container is provided above the fuel level in the fuel tank main body separately from the fuel tank main body, in order to support the weight of the stored fuel as in the case where the fuel tank main body itself is a variable volume container. In addition, it is not necessary to provide a metal spring having a large elastic force in the variable volume container. For this reason, since the maximum pressure of the gas phase that can be generated above the fuel level when vapor is generated can be reduced, evaporative fuel can be prevented from being ejected from the fuel filler port when the filler cap is removed during fueling, for example. .
[0012]
According to a second aspect of the present invention, in the fuel tank according to the first aspect, a cooling means for cooling at least one of the variable volume container and the communication path is provided.
[0013]
With this configuration, the evaporated fuel in the fuel tank body is cooled and liquefied by the cooling means in the variable volume container or the communication path, so that, for example, even in a state where the outside air temperature is high and the amount of heat generated by the engine operation is extremely large Since the amount of evaporated fuel can be reduced and the increase in fuel tank pressure can be mitigated, the effect of preventing evaporated fuel from being released into the atmosphere and causing air pollution can be further enhanced.
[0014]
The invention according to claim 3 is the fuel tank according to claim 1 or 2, wherein the fuel tank body has a heat insulating structure.
[0015]
With this configuration, the amount of heat transferred between the inside and outside of the fuel tank body is reduced, so that changes in the amount of evaporated fuel in the fuel tank are suppressed, and fluctuations in the pressure in the fuel tank are reduced. As a result, since the release of the evaporated fuel in the fuel tank to the outside is suppressed, the effect of preventing the evaporated fuel from being released into the atmosphere and causing air pollution can be further enhanced.
According to a fourth aspect of the present invention, the fuel tank according to any one of the first to third aspects further includes a pipe communicating with the atmosphere and a valve mechanism provided in the pipe, wherein the valve mechanism is opened. The first internal pressure range in which the valve is operated is set so that the spring member does not overlap with the second internal pressure range in which the volume of the variable volume container is expanded or contracted.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
FIG. 1 is an overall configuration diagram showing a fuel tank and its peripheral elements according to an embodiment of the present invention.
[0018]
The fuel tank 1 includes a fuel tank body 1a, a sub chamber 1b as a bladder-type variable volume container made of bellows, a communication passage 1c connecting the fuel tank body 1a and the sub chamber 1b, and the communication passage 1c. Cooling device 1d.
[0019]
The fuel tank main body 1a is connected to a fuel filler not shown through a filler pipe 1f. Further, the outer wall of the fuel tank body 1a is covered with a heat insulating layer 1e made of, for example, glass wool in order to reduce the amount of heat transfer between the inside and outside of the body 1a. The sub chamber 1b is provided above the fuel liquid level in the fuel tank main body 1a, is connected to the internal space above the fuel liquid level in the fuel tank main body 1a via the communication path 1c, and is connected to the fuel tank main body 1a. When the internal pressure P changes according to the increase / decrease in the amount of evaporated fuel in the tank body, a bladder structure is provided in which a metal spring 1b 'is provided on the peripheral side portion so that the volume expands and contracts. The sub chamber 1b is designed to expand and contract in volume when the tank internal pressure P is, for example, 18.6 mmHg (gauge pressure) or less (according to current regulations, if the tank internal pressure P is 18.6 mmHg or less, the fuel filler port This is because it is allowed to release evaporated fuel from the atmosphere to the atmosphere).
[0020]
The cooling device 1d includes, for example, a thermoelectric cooling element (an electronic heat pump made based on the Peltier effect that heat is absorbed when a current is passed through a joint between two different kinds of metals). Thus, electric power is supplied in a predetermined operation state such as a high rotation operation in which the heat generation amount of the internal combustion engine increases, and the evaporated fuel (hereinafter referred to as vapor) passing through the communication passage 1c is cooled. .
[0021]
The fuel tank main body 1 a is connected to a fuel pump of an internal combustion engine (not shown) through a fuel supply pipe 2 and is connected to a canister 4 through a charge passage 3. The charge passage 3 is provided with a two-way valve 5 and a tank internal pressure sensor 6 for detecting the pressure P in the tank body 1a. The two-way valve 5 has a predetermined pressure (when the tank internal pressure P detected by the tank internal pressure sensor 6 is higher than the atmospheric pressure by a predetermined pressure (for example, 20 mmHg) and the tank internal pressure P is higher than the pressure on the canister 4 side of the two-way valve 5 ( For example, the valve is opened when it is lowered by 10 mmHg). The range of the tank internal pressure P (P> 20 mmHg, P <−10 mmHg) at which the two-way valve 5 opens is set so as not to overlap the range of the tank internal pressure P when the volume of the sub chamber 1 b expands or contracts. That is, the sub chamber 1b expands and contracts only in the range of −10 mmHg <P <20 mmHg (18.6 mmHg).
[0022]
The canister 4 incorporates activated carbon for adsorbing vapor discharged from the fuel tank main body 1a through the charge passage 3, and is connected to an intake port (not shown) communicating with the atmosphere through the passage 7. . The canister 4 is connected to a downstream side of a throttle valve of an intake pipe (not shown) via a purge passage 8. A purge control valve 9 comprising an electromagnetic valve is provided in the purge passage 8, and the flow rate of the fuel-air mixture purged from the canister 4 is controlled by opening and closing the purge control valve 9.
[0023]
Next, the operation of the fuel tank of the present embodiment will be described with reference to FIG.
[0024]
FIG. 2 is a graph showing the relationship between the outside air temperature T and the tank internal pressure P when the vehicle is parked.
[0025]
In the figure, a curve A shows a change in the outside air temperature T on one day (time tS to time tE shows one day), and a curve B shows a change in the tank internal pressure P of the fuel tank according to the present embodiment (cooling device). 1d is inactive). Curve C shows a change in tank internal pressure P in a conventional fuel tank having a constant volume.
[0026]
The tank internal pressure P is equal to the atmospheric pressure at time tS, and when the outside air temperature T rises from this state, the amount of vapor generated increases and the tank internal pressure P rises.
[0027]
As shown by the curve B, in the fuel tank according to the present embodiment, the volume of the sub chamber 1b increases as the tank internal pressure P increases, so that the increase in the tank internal pressure P is alleviated. As a result, in the illustrated example, the tank internal pressure P does not reach the upper operating pressure PMAX (for example, 20 mmHg) of the two-way valve 5 even at the time tU when the outside air temperature T becomes the maximum temperature TU. Is not released to the canister 4. For this reason, even when the vehicle is left without being operated for a long period of time, the cumulative amount of vapor discharged from the fuel tank body 1a to the canister 4 can be suppressed, so that the vapor adsorption capacity of the canister 4 can be increased. The vapor can be prevented from being released into the atmosphere without taking any special measures.
[0028]
When the outside air temperature T decreases from the time tU and the tank internal pressure P decreases accordingly, the volume of the sub chamber 1b decreases. When the tank internal pressure P falls to atmospheric pressure at time tN, the metal spring 1b 'provided on the peripheral side of the sub chamber 1b becomes substantially natural length, and the volume of the sub chamber 1b returns to the state at time tS. Thereafter, when the outside air temperature T further decreases and the tank internal pressure P falls below the atmospheric pressure, the volume of the sub chamber 1b is reduced from the state at the time tS. As a result, the decrease in the tank internal pressure P is alleviated, and in the illustrated example, the tank internal pressure P remains at the lower operating pressure PMIN (for example, −10 mmHg) at the time tL when the outside air temperature T becomes the lowest temperature TL. Therefore, the air-fuel mixture is not sucked into the fuel tank 1 from the canister 4. For this reason, even when the outside air temperature T rises again and the amount of vapor generated increases, there remains room for the volume of the sub chamber 1b to expand.
[0029]
As shown by curve C, in the conventional fuel tank, the tank internal pressure P increases as the outside air temperature T rises from time tS, and the tank internal pressure P reaches the upper operating pressure PMAX of the two-way valve 5 at time t1. Then, the two-way valve 5 is opened, and the fuel tank vapor is discharged to the canister 4. During the period from time t1 to time t2, the two-way valve 5 is intermittently opened, and the tank internal pressure P is controlled so as not to exceed the PMAX value. At this time, the vapor discharged from the fuel tank main body 1a is adsorbed by the activated carbon in the canister 4, and when the amount of vapor discharged exceeds the adsorption capacity of the activated carbon, the vapor is released into the atmosphere from that point.
[0030]
When the outside air temperature T decreases from the time tU, the tank internal pressure P decreases accordingly. When the tank internal pressure P decreases to the atmospheric pressure at time tN and further decreases to the lower operating pressure PMIN of the two-way valve 5 at time t3, outside air should be sucked into the fuel tank body 1a via the canister 4. The two-way valve 5 is intermittently opened. At this time, the vapor adsorbed on the activated carbon of the canister 4 is vaporized again and taken into the fuel tank body 1a.
[0031]
Thus, in a conventional fuel tank with a constant volume, if the amount of evaporated fuel increases or decreases as the outside air temperature T changes, the increase or decrease in the amount of evaporated fuel directly leads to fluctuations in the tank internal pressure P. The fluctuation is large, and as a result, the amount of the fuel tank vapor released to the outside increases. On the other hand, in the fuel tank of the present embodiment, the change in the tank internal pressure P is reduced by expanding / contracting the volume of the sub chamber 1b according to the increase / decrease of the amount of vapor generated. Fewer cases should be released to the outside. As a result, since the amount of fuel tank vapor released to the outside can be suppressed, the fuel tank vapor is released into the atmosphere without taking special measures such as improving the vapor adsorption capacity of the canister 4. Can be prevented.
[0032]
Further, in the fuel tank of the present embodiment, the variable volume sub chamber 1b is provided above the fuel level in the fuel tank body 1a separately from the fuel tank body 1a. For example, the fuel tank body 1a itself has a volume. In the case of the variable bladder structure, a metal spring having a particularly large elastic force is provided in the sub chamber 1b as compared with the case where it is necessary to provide a metal spring having a certain elastic force to the fuel tank body 1a in order to support the weight of the stored fuel. There is no need to provide a spring, and therefore the maximum pressure in the gas phase that can be generated above the fuel liquid level when vapor is generated can be reduced, so that vapor can be prevented from being ejected from the fuel filler port during refueling. .
[0033]
Furthermore, according to the fuel tank of the present embodiment, cooling is performed in a state where the amount of vapor generated in the fuel tank 1 is particularly increased, for example, in a state where the outside air temperature is high and the amount of heat generated by engine operation is large. By supplying electric power to the device 1d and cooling and liquefying the fuel tank vapor by the cooling device 1d, the amount of vapor in the fuel tank can be reduced and the increase in the tank internal pressure P can be mitigated. Thereby, even in the state as described above, the amount of fuel tank vapor released can be suppressed to a range that can be supplied to the engine via the canister 4.
[0034]
Furthermore, according to the fuel tank of the present embodiment, since the outer wall of the fuel tank body 1a is covered with the heat insulating layer 1e, the amount of heat transferred through the outer wall of the fuel tank body 1a is reduced, and the fuel tank Since the temperature change in 1 is suppressed, the fluctuation of the tank internal pressure P is suppressed, and as a result, the discharge amount of the fuel tank vapor to the outside can be suppressed.
[0035]
Further, since the amount of heat transferred through the outer wall of the fuel tank body 1a changes according to the heat insulation specification of the heat insulation layer 1e, the size of the sub chamber 1b may be set according to the heat insulation specification of the heat insulation layer 1e. . For example, when the heat insulating effect of the heat insulating layer 1e is high, the sub chamber 1b may be small, and when the heat insulating effect of the heat insulating layer 1e is low, it is preferable to use a large sub chamber 1b.
[0036]
The cooling device 1d is not limited to the thermoelectric cooling element, and the communication passage 1c may be cooled by cold air obtained by operating a car air conditioner, for example. Further, the cooling device 1d may cool the sub chamber 1b, or may cool both the communication passage 1c and the sub chamber 1b.
[0037]
The operation of the cooling device 1d is not limited to when the engine is operating. For example, a solar cell is attached to the vehicle, and the fuel tank vapor is cooled by the cooling device 1d while the vehicle is parked using the electric power generated by the solar cell. You may do it.
[0038]
【The invention's effect】
According to the fuel tank with a sub chamber according to claim 1, when the amount of evaporated fuel in the fuel tank body increases or decreases and the pressure in the fuel tank fluctuates, the fuel tank body is connected to the inside of the fuel tank body through the communication path. Since the volume of the variable volume container changes, the fluctuation range of the pressure in the fuel tank becomes small. As a result, since the release of the evaporated fuel in the fuel tank to the outside is suppressed, it is easy to prevent the evaporated fuel from being released into the atmosphere and causing air pollution.
[0039]
Further, since the variable volume container is provided above the fuel level in the fuel tank main body separately from the fuel tank main body, in order to support the weight of the stored fuel as in the case where the fuel tank main body itself is a variable volume container. In addition, it is not necessary to provide a metal spring having a large elastic force in the variable volume container. For this reason, since the maximum pressure in the gas phase that can be generated above the fuel level when vapor is generated can be reduced, evaporating fuel can be prevented from being ejected from the fuel filler port when, for example, the filler cap is removed during fueling. .
[0040]
According to the fuel tank with a sub-chamber according to claim 2, the evaporated fuel in the fuel tank is cooled and liquefied by the cooling means in the variable volume container or the communication path. Even in operating conditions where the amount is extremely large, the amount of evaporated fuel can be reduced and the increase in the pressure in the fuel tank can be mitigated, thus preventing the evaporated fuel from being released into the atmosphere and causing air pollution. It can be further enhanced.
[0041]
According to the fuel tank with a sub-chamber according to claim 3, since the amount of heat transferred between the inside and outside of the fuel tank body is reduced, the change in the amount of evaporated fuel in the fuel tank is suppressed, and the pressure in the fuel tank The fluctuation of becomes smaller. As a result, since the release of the evaporated fuel in the fuel tank to the outside is suppressed, the effect of preventing the evaporated fuel from being released into the atmosphere and causing air pollution can be further enhanced.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a fuel tank with a sub chamber according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between tank internal pressure P and outside air temperature T in the fuel tank with the sub chamber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel tank 1a Tank main body 1b Subchamber 1c Communication path 1d Cooling device 1e Heat insulation layer 4 Canister 5 Two-way valve 6 Tank internal pressure sensor 9 Purge valve

Claims (4)

液体燃料を貯蔵する燃料タンク本体と、該燃料タンク本体内の燃料液面よりも上方に設けられ、連通路を介して前記燃料タンク本体の内部と接続され前記燃料タンク本体内の燃料の蒸発量に応じて容積が変化する容積可変容器と、所定の内圧で前記容積可変容器の容積を拡縮させるバネ部材とを備えたことを特徴とする燃料タンク。A fuel tank main body for storing liquid fuel, and an amount of fuel evaporation in the fuel tank main body provided above the fuel liquid level in the fuel tank main body and connected to the inside of the fuel tank main body via a communication path A fuel tank comprising: a variable volume container whose volume changes according to the pressure; and a spring member that expands and contracts the volume of the variable volume container with a predetermined internal pressure . 前記容積可変容器及び前記連通路の少なくとも一方を冷却する冷却手段を設けたことを特徴とする請求項1記載の燃料タンク。  2. The fuel tank according to claim 1, further comprising a cooling means for cooling at least one of the variable volume container and the communication path. 前記燃料タンク本体は断熱構造を有することを特徴とする請求項1又は2記載の燃料タンク。  The fuel tank according to claim 1 or 2, wherein the fuel tank body has a heat insulating structure. 大気に連通する配管及び該配管に設けられた弁機構をさらに備え、A pipe that communicates with the atmosphere and a valve mechanism provided in the pipe;
前記弁機構が開弁作動する第1の内圧の範囲は、前記バネ部材が前記容積可変容器の容積を拡縮させる第2の内圧の範囲と重なり合わないように設定されることを特徴とする請求項1乃至3のいずれか1項に記載の燃料タンク。The first internal pressure range in which the valve mechanism opens is set so that the spring member does not overlap with the second internal pressure range in which the volume of the variable volume container is expanded or contracted. Item 4. The fuel tank according to any one of Items 1 to 3.
JP20396997A 1997-07-15 1997-07-15 Fuel tank Expired - Fee Related JP3790017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20396997A JP3790017B2 (en) 1997-07-15 1997-07-15 Fuel tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20396997A JP3790017B2 (en) 1997-07-15 1997-07-15 Fuel tank

Publications (2)

Publication Number Publication Date
JPH1134675A JPH1134675A (en) 1999-02-09
JP3790017B2 true JP3790017B2 (en) 2006-06-28

Family

ID=16482643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20396997A Expired - Fee Related JP3790017B2 (en) 1997-07-15 1997-07-15 Fuel tank

Country Status (1)

Country Link
JP (1) JP3790017B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11280287B1 (en) 2020-10-20 2022-03-22 Ford Global Technologies, Llc Diagnostic method for pressure-less fuel tank
DE102022106726A1 (en) 2021-04-05 2022-10-06 Ford Global Technologies, Llc METHODS AND SYSTEMS FOR DIAGNOSTING DEPRESSION OF AN UNPRESSURIZED FUEL TANK
US11754012B1 (en) 2022-06-03 2023-09-12 Ford Global Technologies, Llc Methods and systems for a pressureless fuel tank

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800271B2 (en) * 2007-07-27 2011-10-26 愛三工業株式会社 Evaporative fuel emission suppression device
WO2012131885A1 (en) 2011-03-28 2012-10-04 トヨタ自動車株式会社 Fuel tank system
JP6387077B2 (en) * 2016-12-21 2018-09-05 本田技研工業株式会社 Fuel tank system
JP2020152252A (en) * 2019-03-20 2020-09-24 いすゞ自動車株式会社 Liquid tank
DE102019126414A1 (en) * 2019-09-30 2021-04-01 Kautex Textron Gmbh & Co. Kg Fuel tank system and motor vehicle
US11346308B1 (en) 2021-07-09 2022-05-31 Ford Global Technologies, Llc Methods and systems for diagnosing degradation in a pressure-less fuel tank

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11280287B1 (en) 2020-10-20 2022-03-22 Ford Global Technologies, Llc Diagnostic method for pressure-less fuel tank
DE102021126977A1 (en) 2020-10-20 2022-04-21 Ford Global Technologies, Llc DEPRESSURED FUEL TANK DIAGNOSTIC PROCEDURE
DE102022106726A1 (en) 2021-04-05 2022-10-06 Ford Global Technologies, Llc METHODS AND SYSTEMS FOR DIAGNOSTING DEPRESSION OF AN UNPRESSURIZED FUEL TANK
US11651631B2 (en) 2021-04-05 2023-05-16 Ford Global Technologies, Llc Methods and systems for diagnosing degradation in pressureless fuel tank
US11754012B1 (en) 2022-06-03 2023-09-12 Ford Global Technologies, Llc Methods and systems for a pressureless fuel tank
DE102023113854A1 (en) 2022-06-03 2023-12-14 Ford Global Technologies, Llc METHOD AND SYSTEMS FOR A UNPRESSURIZED FUEL TANK

Also Published As

Publication number Publication date
JPH1134675A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
JP3540286B2 (en) Fuel vapor treatment device
US6637415B2 (en) Evaporative fuel leakage preventing device for internal combustion engine
JP3790017B2 (en) Fuel tank
US20130061934A1 (en) In-tank evaporative emission control system
JPH0674108A (en) Evaporation fuel treatment device
US3977379A (en) Contained volatile liquids vapor retention system
US6557535B2 (en) System and method for transferring heat from exhaust gasses to compressed gas fuel
JP6519194B2 (en) Boil-off gas release control method for LNG vehicle
JP4342713B2 (en) Fuel vapor processing device and failure diagnosis device
JP4047215B2 (en) Fuel evaporation suppression method for fuel storage device and fuel storage device
JP6789884B2 (en) Engine catalyst cooling system
JP6301338B2 (en) In-cylinder air supply system and method for fuel supply system
WO2002050418A1 (en) Gas fuel feeder of internal combustion engine
JP7449120B2 (en) fuel storage device
EP1177401B1 (en) Systems for delivering liquified natural gas to an engine
JP2011236814A (en) Device for control of internal combustion engine
CN208564803U (en) A kind of automobile canister to radiate from deodorization
JP6519193B2 (en) Boil-off gas release prevention structure for LNG vehicles
JPS6014916Y2 (en) Fuel tank internal pressure control device
JP5962410B2 (en) Evaporative fuel processing equipment
JP2557303Y2 (en) Evaporative fuel cooling system
JPS63215864A (en) Fuel vapor exhaust suppressing device for internal combustion engine
JPH08100715A (en) Carbon canister
JP2002188518A (en) Gas fuel supply device for internal combustion engine
JPH0783118A (en) Fuel supply device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Effective date: 20050829

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060322

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060330

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090407

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100407

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees