JP3789833B2 - Lead-free free-cutting copper alloy material - Google Patents

Lead-free free-cutting copper alloy material Download PDF

Info

Publication number
JP3789833B2
JP3789833B2 JP2002055007A JP2002055007A JP3789833B2 JP 3789833 B2 JP3789833 B2 JP 3789833B2 JP 2002055007 A JP2002055007 A JP 2002055007A JP 2002055007 A JP2002055007 A JP 2002055007A JP 3789833 B2 JP3789833 B2 JP 3789833B2
Authority
JP
Japan
Prior art keywords
phase
free
lead
alloy material
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002055007A
Other languages
Japanese (ja)
Other versions
JP2003253358A (en
Inventor
陽太郎 村上
武 小林
和祺 中尾
徹 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GONDA METAL INDUSTRY CO., LTD.
SAN-ETSU METALS Co.,Ltd.
Kitz Corp
Original Assignee
GONDA METAL INDUSTRY CO., LTD.
SAN-ETSU METALS Co.,Ltd.
Kitz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GONDA METAL INDUSTRY CO., LTD., SAN-ETSU METALS Co.,Ltd., Kitz Corp filed Critical GONDA METAL INDUSTRY CO., LTD.
Priority to JP2002055007A priority Critical patent/JP3789833B2/en
Publication of JP2003253358A publication Critical patent/JP2003253358A/en
Application granted granted Critical
Publication of JP3789833B2 publication Critical patent/JP3789833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉛を含有せずとも切削性に富む無鉛快削性銅合金材に関するものである。
【0002】
【従来の技術】
切削性に優れた銅合金として、一般に、JIS H5111 CAC406等の青銅系合金やJIS H3250−C3604,C3771等の黄銅系合金が知られている。これらは相当量の鉛を含有することによって切削性を向上させたものであり、工業的に満足しうる切削性を確保したものである。すなわち、鉛はマトリックスに固溶せず、粒状をなして分散し、切削加工熱で溶融して切削屑を細かく分断(剪断)させるチップブレーカとして機能することによって、銅合金材の切削性を向上させるものである。
【0003】
鉛を含有する銅合金材は、上記した如く切削性に優れるものであることから、従来からも種々の製品(例えば、上水道用配管の水栓金具,給排水金具,バルブ等)の構成材として重宝されている。しかし、鉛が人体や環境に悪影響を及ぼす有害物質であるところから、近時においては、その用途が大幅に制限される傾向にある。例えば、合金の溶解,鋳造等の高温作業時に発生する金属蒸気には鉛成分が含まれることになり、或いは飲料水等との接触により水栓金具や弁等から鉛成分が溶出する虞れがあり、人体や環境衛生上問題がある。
【0004】
【発明が解決しようとする課題】
そこで、近時、米国等の先進国においては銅合金における鉛含有量を大幅に制限する傾向にあり、わが国においても鉛含有量を可及的に低減した快削性銅合金材の開発が強く要請されている。
【0005】
本発明は、かかる世界的な傾向及び要請に応えるべくなされたもので、鉛を含有することなく、工業的に満足しうる切削性を有する無鉛快削性銅合金材を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、上記の目的を達成すべく、70〜78質量%の銅と3.5〜7.0質量%のアルミニウムとを含有し且つ残部が亜鉛からなる合金組成をなす銅合金材であって、面積比率において95〜60%のα相と4〜20%の分散状の微細なγ相とを含む金属組織をなすことを特徴とする無鉛快削性銅合金材を提案する。
【0007】
かかる無鉛快削性銅合金材にあって、金属組織は、β相の変態により析出された微細なγ相及びα相を含むものであること、又はβ相の変態により析出された微細なγ相及びα相と変態されない残余の微細なβ相とからなるものであることが好ましい。また、合金組成は、必要に応じて、0.01〜0.1質量%の硼素又は0.05〜0.5質量%のバナジウムを含有するものとしておくことができる。
【0008】
而して、鉛は、前述した如く、マトリックスに固溶せず、粒状をなして分散することによって、切削性を向上させるチップブレーカ機能を発揮するものであるが、このような溶融物(鉛)が存在しない場合にも、微細な硬質相がマトリックス中に分散していることによりチップブレーカ機能が発揮され、切削性が向上する。すなわち、硬質且つ微細なγ相が分散されていることにより切削屑の破断が容易となり、その結果、切削加工において切削屑が細かく分断されることになり、切削性が向上するのである。
【0009】
一方、チップブレーカとして機能しうるに十分なγ相が形成されている場合にあって、銅合金本来の特性(加工性等)が維持されるためには、マトリックスが十分なα相を有していることが必要である。すなわち、銅合金本来の特性を損なうことなく切削性を向上させるためには、α相及びγ相が所定の範囲で存在していることが好ましい。具体的には、面積比率において、α相が95〜60%含有されており且つγ相が4〜20%含有されていることが好ましい。けだし、α相が60%未満又はγ相が20%を超えると、銅合金本来の特性が損なわれる虞れあり、γ相が4%未満ではγ相の分散による切削性改善効果が期待できない。また、α相が95%を超えると、4〜20%のγ相を確保することが困難である。
【0010】
このようなα相,γ相の形成には、合金組成を上記の如く特定することが必要条件ではあるが、十分条件ではない。銅合金本来の特性を確保しつつ切削性の向上を図るために必要且つ十分なα相,γ相を確保するためには、上記した合金組成をなすものについて次のような熱処理による組織コントロールが必要となる。
【0011】
すなわち、上記した合金組成をなす素材(鋳塊又はその熱間,冷間加工材(鍛造材,押出材等))に600〜800℃,30分以上の条件で高温加熱処理(以下「一次熱処理」という)を施して、α相とβ相との2相組織の金属組織となした上、この一次熱処理材に550〜300℃,1時間以上の条件で低温加熱処理(以下「二次熱処理」という)を施して、β相を変態させて微細なγ相とα相とに分解させ、α相のマトリックス中に微細な混合相を分散させる。この混合相は、β相が完全に変態した場合には、微細なα相及びγ相で構成され、β相が完全に変態しない場合には、変態しない残余のβ相を含有することになる。混合相にβ相が含まれるか否かは、実質的に切削性向上に影響するものではなく、切削性はあくまでも上記範囲(4〜20%)の微細なγ相が分散していることによって向上するのである。なお、一次熱処理及び二次熱処理の条件は、素材の合金組成に応じて設定されるものであり、熱処理条件が同一であっても、合金組成が異なれば金属組織は異なったものとなる。同様に、合金組成が同一であっても、熱処理条件が異なれば、金属組織は異なったものとなる。
【0012】
ところで、一次熱処理によるβ相の形成は、二次熱処理による微細なγ相の析出を実現するために必要であり、一次熱処理温度が600℃未満ではα単相となる傾向が強く、十分なβ相を確保できないし、一次熱処理時間が30分未満であると、再結晶が十分に行われず、適正なα+β相となし得ない。また、一次熱処理温度が800℃を超えると、結晶粒の成長が著しく、二次熱処理によっても切削性を向上させるに必要な金属組織を得ることが困難となる。また、二次熱処理時間が短いと(例えば、1時間未満)、γ相の形成が十分でなく、二次熱処理は可能な限り長時間行うことが好ましい。但し、二次熱処理によりβ相が完全に変態するまでの時間(平衡状態に達するまでの時間)は極めて長大であり、かかる長大な時間を条件とする二次熱処理は工業的には実現が困難である。したがって、一般には、二次熱処理時間は24時間以内に設定しておくことが好ましい。但し、二次熱処理時間が24時間以内である場合、β相は完全に変態されず、上記混合相には変態しない残余のβ相が含まれることになる。また、二次熱処理温度が550℃を超える場合にはβ相の分解が実質的に生じず、300℃未満である場合には反応速度が遅く、γ相が切削性を改善できる程度まで増加しない。
【0013】
また、銅合金本来の特性(加工性等)を損なうことなく、上記した組織コトロールにより切削性を向上された快削性銅合金材を得るためには、構成元素及びその含有量を上記した如く設定しておくことが必要である。
【0014】
すなわち、素地構成元素である銅の含有量が70質量%未満であると、合金硬度が必要以上に高くなり、加工性が低下する。また、銅含有量が78質量%を超えると、合金が軟質化して切削加工性が低下する。アルミニウムはβ相の出現を可能ならしめるものであるが、その含有量が3.5質量%未満であるとβ相の分解による微細なγ相の形成が十分に行われず、7.0質量%を超えて添加すると、一次熱処理時にβ単相となり易く、二次熱処理後の硬度が高くなって加工性を低下させる。ところで、組織が微細化されることにより切削屑の破断効果はより顕著となるが、硼素又はバナジウムは、このような組織の微細化を助長させる微粒化剤として機能するものであり、必要に応じて添加される。しかし、硼素添加量が0.01質量%未満である場合又はバナジウム添加量が0.05質量%未満である場合には、微粒化剤としての機能が十分に発揮されない。かかる機能は、硼素については0.5質量%で、またバナジウムについては0.1質量%で、夫々飽和状態に達し、これらの量を超えて添加しても、添加量に見合う効果は期待できない。
【0015】
【実施例】
実施例として、表1に示す合金組成の鋳塊(ビレット)を、その頭部を切除した上で、外径9.5mmの丸棒状に熱間押出し、その押出材又はこれを冷間で外径9.0mmの丸棒状に引き抜き加工したもの(引抜材)に一次熱処理及び二次処理を施すことによって、α相のマトリックス中に微細なγ相が均一に分散しており且つα相,γ相の面積比率が表1に示す値となる金属組織に組織コントロールされた、本発明に係る合金材No.1〜5を得た。なお、各合金材No.1〜5については、組織コントールを次のような一次熱処理及び二次熱処理により行った。すなわち、合金材No.1については、押出材に700℃,1時間の一次熱処理を施し、炉冷後に400℃,3時間の二次熱処理を行った。合金材No.2については、押出材に700℃,1時間の一次熱処理を施し、炉冷後に350℃,3時間の二次熱処理を行った。合金材No.3については、引抜材に700℃,3時間の一次熱処理を施し、炉冷後に350℃,5時間の二次熱処理を行った。合金材No.4については、引抜材に700℃,1時間の一次熱処理を施し、炉冷後に350℃,5時間の二次熱処理を行った。合金材No.5については、引抜材に650℃,3時間の一次熱処理を施し、炉冷後に500℃,5時間の二次熱処理を行った。
【0016】
また、比較例として、実施例と同様に、表2に示す合金組成の鋳塊(ビレット)を、その頭部を切除した上で、外径9.5mmの丸棒状に熱間押出して、その押出材又はこれを冷間で外径9.0mmの丸棒状に引き抜き加工したもの(引抜材)に次のような熱処理を施すことによって金属組織を変化させた合金材No.11〜16を得た。すなわち、合金材No.11,12については、押出材に700℃,3時間の熱処理を施し、炉冷後に更に350℃,5時間の熱処理を行った。合金材No.13については、押出材に700℃,3時間の熱処理を施し、炉冷後に更に400℃,5時間の熱処理を行った。合金材No.14については、押出材に700℃,1時間の熱処理を施し、空冷後に更に350℃,4時間の熱処理を行った。合金材No.15については、引抜材に350℃,5時間の熱処理を施した。合金材No.16については、引抜材に700℃,3時間の熱処理を施し、水冷した。かかる熱処理を行った各合金材No.11〜16におけるα相及びγ相の面積比率は表2に示す通りであった。
【0017】
そして、実施例合金材No.1〜5及び比較例合金材No.11〜16を、旋盤を使用して、切削油:なし,刃物:超硬合金製,上すくい角:0°,横すくい角:0°,前逃げ角:0°,横逃げ角:6°,前切り刃角:15°,横切り刃角:0°,ノーズ半径:0mm,回転数:785rpm,送り:0.1mm/rev,切り込み:0.5mmの条件で切削し、その切削屑の形態により切削性を確認した。その結果は、表1及び表2に示す通りであった。
【0018】
表1に示す如く、微細なγ相が分散しており且つα相及びγ相の面積比率が本発明で特定する範囲(α相:95〜60%,γ相:4〜20%)内となっている実施例合金材No.1〜5については、何れも、切削屑が5巻き以内で分断されており、鉛を含有しないにも拘わらず、優れた切削性を有することが確認された。一方、合金組成又はα相若しくはγ相の面積比率の少なくとも何れかが本発明で特定する範囲から逸脱している比較例合金材No.11〜16については、表2に示す如く、何れも切削屑が連続カール状をなしており、切削性が何ら改善されおらず、鉛含有合金に比して切削性が著しく低下するものであることが明らかである。したがって、鉛を含有せずとも、本発明で特定する合金組成をなすものを本発明で特定する金属組織に組織コントロールしておくことにより、切削性が大幅に向上することが理解される。
【0019】
【表1】
【0020】
【表2】
【0021】
【発明の効果】
以上の説明から容易に理解されるように、本発明の無鉛快削性銅合金は、切削性改善元素である鉛を含有しないにも拘わらず、極めて切削性に富むものであり、鉛を含有する従来の快削性銅合金の代替材料として安全に使用できるものであり、切削屑の再利用等を含めて環境衛生上の問題が全くなく、鉛含有製品が規制されつつある近時の傾向に充分対応することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead-free free-cutting copper alloy material that is rich in machinability without containing lead.
[0002]
[Prior art]
In general, bronze alloys such as JIS H5111 CAC406 and brass alloys such as JIS H3250-C3604 and C3771 are known as copper alloys having excellent machinability. These have improved machinability by containing a considerable amount of lead and ensure industrially satisfactory machinability. In other words, lead does not dissolve in the matrix, disperses in a granular form, and improves the machinability of the copper alloy material by functioning as a chip breaker that melts with cutting heat and finely cuts (shears) the cutting waste. It is something to be made.
[0003]
Since copper alloy materials containing lead are excellent in machinability as described above, they have been useful as constituent materials for various products (for example, faucet fittings for water supply pipes, water supply / drainage fittings, valves, etc.). Has been. However, since lead is a harmful substance that adversely affects the human body and the environment, its use has recently been greatly limited. For example, the metal vapor generated during high-temperature work such as melting or casting of an alloy may contain lead components, or lead components may be eluted from faucet fittings or valves due to contact with drinking water or the like. Yes, there are human and environmental health problems.
[0004]
[Problems to be solved by the invention]
Therefore, recently, in developed countries such as the United States, there is a tendency to significantly limit the lead content in copper alloys, and in Japan, the development of free-cutting copper alloy materials with a reduced lead content as much as possible is strong. It has been requested.
[0005]
The present invention has been made to respond to such global trends and demands, and aims to provide a lead-free free-cutting copper alloy material that has industrially satisfactory machinability without containing lead. To do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is a copper alloy material having an alloy composition containing 70 to 78% by mass of copper and 3.5 to 7.0% by mass of aluminum, with the balance being zinc. Then, a lead-free free-cutting copper alloy material characterized by forming a metal structure including 95 to 60% α phase and 4 to 20% dispersed fine γ phase in area ratio is proposed.
[0007]
In such a lead-free free-cutting copper alloy material, the metal structure includes fine γ phase and α phase precipitated by β phase transformation, or fine γ phase precipitated by β phase transformation and It is preferably composed of an α phase and a remaining fine β phase that is not transformed . Also, the alloy composition, if desired, may have been the one containing 0.01 to 0.1 wt% boron, or 0.05 to 0.5 weight percent vanadium.
[0008]
Thus, as described above, lead exhibits a chip breaker function that improves the machinability by being dispersed in a granular form without being dissolved in the matrix, but such a melt (lead ) Does not exist, the chip breaker function is exhibited and the machinability is improved because the fine hard phase is dispersed in the matrix. That is, since the hard and fine γ phase is dispersed, the cutting waste is easily broken, and as a result, the cutting waste is finely divided in the cutting process, and the machinability is improved.
[0009]
On the other hand, in the case where a sufficient γ phase is formed to function as a chip breaker, the matrix has a sufficient α phase in order to maintain the original characteristics (workability, etc.) of the copper alloy. It is necessary to be. That is, in order to improve machinability without impairing the original characteristics of the copper alloy, it is preferable that the α phase and the γ phase exist in a predetermined range. Specifically, in the area ratio, it is preferable that the α phase is 95 to 60% and the γ phase is 4 to 20%. However, if the α phase is less than 60% or the γ phase exceeds 20%, the original characteristics of the copper alloy may be impaired. If the γ phase is less than 4%, the effect of improving machinability due to dispersion of the γ phase cannot be expected. On the other hand, if the α phase exceeds 95%, it is difficult to secure a 4 to 20% γ phase.
[0010]
In order to form such α phase and γ phase, it is a necessary condition to specify the alloy composition as described above, but it is not a sufficient condition. In order to secure the α and γ phases necessary and sufficient to improve the machinability while ensuring the original characteristics of the copper alloy, the following structure control by heat treatment is required for those having the above alloy composition. Necessary.
[0011]
That is, high-temperature heat treatment (hereinafter referred to as “primary heat treatment”) at 600 to 800 ° C. for 30 minutes or more on a material (ingot or its hot or cold work material (forged material, extruded material)) having the above-described alloy composition. To form a two-phase microstructure of α phase and β phase, and this primary heat treatment material is subjected to low temperature heat treatment (hereinafter “secondary heat treatment” at 550 to 300 ° C. for 1 hour or more. The β phase is transformed to decompose into a fine γ phase and an α phase, and the fine mixed phase is dispersed in the matrix of the α phase. When the β phase is completely transformed, the mixed phase is composed of fine α phase and γ phase, and when the β phase is not completely transformed, the mixed phase contains the remaining β phase that is not transformed. . Whether or not the mixed phase contains the β phase does not substantially affect the machinability improvement, and the machinability is due to the fact that the fine γ phase in the above range (4 to 20%) is dispersed. It improves. The conditions for the primary heat treatment and the secondary heat treatment are set according to the alloy composition of the material, and even if the heat treatment conditions are the same, the metal structure will be different if the alloy composition is different. Similarly, even if the alloy composition is the same, if the heat treatment conditions are different, the metal structures are different.
[0012]
By the way, the formation of β phase by primary heat treatment is necessary to realize the precipitation of fine γ phase by secondary heat treatment, and when primary heat treatment temperature is less than 600 ° C., there is a strong tendency to become α single phase, and sufficient β If the phase cannot be secured, and the primary heat treatment time is less than 30 minutes, recrystallization is not sufficiently performed, and an appropriate α + β phase cannot be obtained. Further, when the primary heat treatment temperature exceeds 800 ° C., crystal grains grow remarkably, and it becomes difficult to obtain a metal structure necessary for improving the machinability even by the secondary heat treatment. If the secondary heat treatment time is short (for example, less than 1 hour), the formation of the γ phase is not sufficient, and the secondary heat treatment is preferably performed for as long as possible. However, the time until the β phase is completely transformed by the secondary heat treatment (the time to reach the equilibrium state) is extremely long, and the secondary heat treatment under such a long time is difficult to realize industrially. It is. Therefore, in general, the secondary heat treatment time is preferably set within 24 hours. However, when the secondary heat treatment time is within 24 hours, the β phase is not completely transformed, and the mixed phase contains the remaining β phase that is not transformed. In addition, when the secondary heat treatment temperature exceeds 550 ° C., the decomposition of the β phase does not substantially occur, and when it is less than 300 ° C., the reaction rate is slow and the γ phase does not increase to such an extent that the machinability can be improved. .
[0013]
Further, in order to obtain a free-cutting copper alloy material with improved machinability by the above-described structure control without impairing the original characteristics (workability, etc.) of the copper alloy, the constituent elements and their contents are as described above. It is necessary to set.
[0014]
That is, when the content of copper, which is a base constituent element, is less than 70% by mass, the alloy hardness becomes higher than necessary, and the workability decreases. Moreover, when copper content exceeds 78 mass%, an alloy will soften and machinability will fall. Aluminum makes it possible for the β phase to appear, but if its content is less than 3.5% by mass, formation of a fine γ phase due to decomposition of the β phase is not sufficiently performed, and 7.0% by mass. If it is added in excess of, the β single phase is likely to be formed during the primary heat treatment, and the hardness after the secondary heat treatment is increased and the workability is lowered. By the way, although the fracture effect of cutting scraps becomes more remarkable when the structure is refined, boron or vanadium functions as a atomizing agent that promotes the refinement of such a structure. Added. However, when the boron addition amount is less than 0.01% by mass or when the vanadium addition amount is less than 0.05% by mass, the function as the atomizing agent is not sufficiently exhibited. Such functions reach 0.5% by mass for boron and 0.1% by mass for vanadium, and reach saturation, and even if they are added in excess of these amounts, an effect commensurate with the amount added cannot be expected. .
[0015]
【Example】
As an example, an ingot (billet) having the alloy composition shown in Table 1 was hot-extruded into a round bar shape having an outer diameter of 9.5 mm after the head portion was cut out, and the extruded material or this was externally cooled. By applying a primary heat treatment and a secondary treatment to a material drawn into a round bar shape with a diameter of 9.0 mm (drawn material), the fine γ phase is uniformly dispersed in the α phase matrix and the α phase, γ The alloy material No. 1 according to the present invention, in which the area ratio of the phases is controlled to a metal structure having the values shown in Table 1. 1-5 were obtained. In addition, each alloy material No. About 1-5, the structure | tissue control was performed by the following primary heat processing and secondary heat processing. That is, the alloy material No. For No. 1, the extruded material was subjected to a primary heat treatment at 700 ° C. for 1 hour, followed by a secondary heat treatment at 400 ° C. for 3 hours after furnace cooling. Alloy material No. For No. 2, the extruded material was subjected to primary heat treatment at 700 ° C. for 1 hour, and then subjected to secondary heat treatment at 350 ° C. for 3 hours after furnace cooling. Alloy material No. For No. 3, the drawn material was subjected to primary heat treatment at 700 ° C. for 3 hours, and after furnace cooling, secondary heat treatment was performed at 350 ° C. for 5 hours. Alloy material No. For No. 4, the drawn material was subjected to a primary heat treatment at 700 ° C. for 1 hour, and after the furnace cooling, a secondary heat treatment was performed at 350 ° C. for 5 hours. Alloy material No. For No. 5, the drawn material was subjected to a primary heat treatment at 650 ° C. for 3 hours, and after the furnace cooling, a secondary heat treatment was performed at 500 ° C. for 5 hours.
[0016]
As a comparative example, in the same manner as in the example, an ingot (billet) having the alloy composition shown in Table 2 was hot-extruded into a round bar shape having an outer diameter of 9.5 mm after cutting off its head. Alloy material No. 1 in which the metal structure was changed by subjecting the extruded material or a material obtained by cold drawing to a round bar shape with an outer diameter of 9.0 mm (drawn material) to the following heat treatment. 11-16 were obtained. That is, the alloy material No. For Nos. 11 and 12, the extruded material was heat-treated at 700 ° C. for 3 hours, and further subjected to heat treatment at 350 ° C. for 5 hours after furnace cooling. Alloy material No. For No. 13, the extruded material was subjected to heat treatment at 700 ° C. for 3 hours, and further subjected to heat treatment at 400 ° C. for 5 hours after furnace cooling. Alloy material No. For No. 14, the extruded material was heat treated at 700 ° C. for 1 hour, and after air cooling, further heat treated at 350 ° C. for 4 hours. Alloy material No. For No. 15, the drawn material was heat treated at 350 ° C. for 5 hours. Alloy material No. For No. 16, the drawn material was heat-treated at 700 ° C. for 3 hours and cooled with water. Each alloy material no. The area ratio of the α phase and the γ phase in 11 to 16 was as shown in Table 2.
[0017]
And Example alloy material No. 1-5 and comparative alloy material No. 11-16 using a lathe, cutting oil: none, cutting tool: cemented carbide, top rake angle: 0 °, side rake angle: 0 °, front clearance angle: 0 °, side clearance angle: 6 ° , Front cutting edge angle: 15 °, side cutting edge angle: 0 °, nose radius: 0 mm, rotation speed: 785 rpm, feed: 0.1 mm / rev, cutting: 0.5 mm As a result, the machinability was confirmed. The results were as shown in Tables 1 and 2.
[0018]
As shown in Table 1, fine γ phase is dispersed and the area ratio of α phase and γ phase is within the range specified in the present invention (α phase: 95 to 60%, γ phase: 4 to 20%). Example alloy material No. As for 1-5, in all, it was confirmed that the cutting waste is divided within 5 windings and has excellent machinability despite containing no lead. On the other hand, comparative alloy material No. 1 in which at least one of the alloy composition and the area ratio of α phase or γ phase deviates from the range specified in the present invention. As for Tables 11-16, as shown in Table 2, the cutting waste has a continuous curl shape, the machinability is not improved at all, and the machinability is remarkably lowered as compared with the lead-containing alloy. It is clear. Therefore, it is understood that the machinability is greatly improved by controlling the structure of the alloy composition specified in the present invention to the metal structure specified in the present invention without containing lead.
[0019]
[Table 1]
[0020]
[Table 2]
[0021]
【The invention's effect】
As can be easily understood from the above description, the lead-free free-cutting copper alloy of the present invention has extremely high machinability despite the fact that it does not contain lead, which is an element for improving machinability, and contains lead. As a substitute for conventional free-cutting copper alloys, it can be safely used, and there is no environmental hygiene problem including reuse of cutting waste, and lead-containing products are being regulated recently. Can be fully accommodated.

Claims (5)

70〜78質量%の銅と3.5〜7.0質量%のアルミニウムとを含有し且つ残部が亜鉛からなる合金組成をなす銅合金材であって、
面積比率において95〜60%のα相と4〜20%の分散状の微細なγ相とを含む金属組織をなすことを特徴とする無鉛快削性銅合金材。
A copper alloy material comprising 70 to 78% by mass of copper and 3.5 to 7.0% by mass of aluminum, and the balance being zinc alloy composition,
A lead-free free-cutting copper alloy material characterized by forming a metal structure containing 95 to 60% α phase and 4 to 20% dispersed fine γ phase in area ratio .
前記γ相が、β相の変態により析出されたものであることを特徴とする、請求項1に記載する無鉛快削性銅合金材。The γ phase, characterized in that it is the ash deposited by transformation β phase, lead-free free-cutting copper alloy material according to claim 1. β相の変態により析出された微細なγ相及びα相と変態されない残余の微細なβ相とからなる金属組織をなすことを特徴とする、請求項1に記載する無鉛快削性銅合金材。wherein the forming a metal structure comprising the balance of the fine β-phase which is not transformed with the deposited fine γ phase and α phase by transformation of β-phase, lead-free free-cutting copper alloy material according to claim 1 . 0.01〜0.1質量%の硼素を更に含有する合金組成をなすものであることを特徴とする、請求項1、請求項2又は請求項3に記載する無鉛快削性銅合金The lead-free free-cutting copper alloy material according to claim 1, 2 or 3 , wherein the alloy composition further contains 0.01 to 0.1% by mass of boron. 0.05〜0.5質量%のバナジウムを更に含有する合金組成をなすものであることを特徴とする、請求項1、請求項2又は請求項3に記載する無鉛快削性銅合金The lead-free free-cutting copper alloy material according to claim 1, 2 or 3 , wherein the alloy composition further comprises 0.05 to 0.5% by mass of vanadium.
JP2002055007A 2002-02-28 2002-02-28 Lead-free free-cutting copper alloy material Expired - Fee Related JP3789833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002055007A JP3789833B2 (en) 2002-02-28 2002-02-28 Lead-free free-cutting copper alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002055007A JP3789833B2 (en) 2002-02-28 2002-02-28 Lead-free free-cutting copper alloy material

Publications (2)

Publication Number Publication Date
JP2003253358A JP2003253358A (en) 2003-09-10
JP3789833B2 true JP3789833B2 (en) 2006-06-28

Family

ID=28665957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002055007A Expired - Fee Related JP3789833B2 (en) 2002-02-28 2002-02-28 Lead-free free-cutting copper alloy material

Country Status (1)

Country Link
JP (1) JP3789833B2 (en)

Also Published As

Publication number Publication date
JP2003253358A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
US5582659A (en) Aluminum alloy for forging, process for casting the same and process for heat treating the same
CN105624463A (en) Lead-free free-cutting brass alloy and preparation method thereof
JP3886270B2 (en) High corrosion resistance aluminum alloy with excellent machinability
JP2000104136A (en) Magnesium alloy having fine crystal grain and its production
JPH11511806A (en) Machinable aluminum alloy containing In and Sn and method for producing the same
JP2003277855A (en) Lead-free, free-cutting brass alloy material and production method thereof
JP3789833B2 (en) Lead-free free-cutting copper alloy material
JP3801518B2 (en) Free-cutting copper alloy material
JPS6130643A (en) Hard shape memory alloy having high workability
JP2000169919A (en) Lead-free copper base alloy material
JP4693028B2 (en) Manufacturing method of aluminum alloy material with excellent machinability
US3712837A (en) Process for obtaining copper alloys
JP2002003967A (en) Lead-free free cutting brass excellent in dezincification corrosion resistance and its production method
CN105132739B (en) Lead-free brass alloy and preparing method of lead-free brass alloy
JP2007327115A (en) High-strength free-cutting aluminum alloy superior in toughness
JP2730423B2 (en) Hypereutectic Al-Si alloy excellent in workability and manufacturing method
JP2008266719A (en) Extruded material of free-cutting aluminum alloy
JP2004091886A (en) Steel for machine structural use having excellent machinability and high chip-breakability
JPH11323472A (en) Al-mg-si alloy extrusion material excellent in machinability and its production
JPS61119643A (en) Free-cutting aluminum alloy and its production
JP4276735B2 (en) Super free-cutting brass
WO2022070905A1 (en) Manganese-aluminum bronze casting alloy
JPH11140575A (en) Aluminum alloy excellent in machinability and corrosion resistance
KR101045080B1 (en) A high cutting copper alloy with improved strength and ductility
KR20120042483A (en) Brass alloy with corrosion resistance containing little lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060412

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20060905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees