JP3788043B2 - Fingerprint image input device - Google Patents

Fingerprint image input device Download PDF

Info

Publication number
JP3788043B2
JP3788043B2 JP18430398A JP18430398A JP3788043B2 JP 3788043 B2 JP3788043 B2 JP 3788043B2 JP 18430398 A JP18430398 A JP 18430398A JP 18430398 A JP18430398 A JP 18430398A JP 3788043 B2 JP3788043 B2 JP 3788043B2
Authority
JP
Japan
Prior art keywords
light
transmitted
finger
fingerprint image
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18430398A
Other languages
Japanese (ja)
Other versions
JP2000020684A (en
Inventor
正博 鹿井
利郎 中島
照夫 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18430398A priority Critical patent/JP3788043B2/en
Publication of JP2000020684A publication Critical patent/JP2000020684A/en
Application granted granted Critical
Publication of JP3788043B2 publication Critical patent/JP3788043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns
    • G06V40/145Sensors therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Collating Specific Patterns (AREA)
  • Image Input (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、指紋照合装置等に対して指の指紋像を入力するための指紋像入力装置に関するものである。
【0002】
【従来の技術】
近年、コンピュータに保存した機密文書へのアクセス、コンピュータネットワーク上での電子商取引、重要施設への入退場などにおけるセキュリティ機能を高めるために、個人識別技術の研究が盛んに行われている。中でも指紋は、万人不同、終生不変の性質を持ち、個人識別を実現する重要な特徴として利用され、指紋照合装置等が開発されている。
しかし、既に登録済みの特定個人の指紋を複製した、いわゆるレプリカを用いられると、セキュリティが確保されない。このため、人間の指、即ち生体か否かを識別する必要が生じ、この種の生体識別の方法が提案されている。
【0003】
例えば、図5は特開平3−87981号公報に示された、従来の生体識別機能を備えた指紋像入力装置の構成を示すブロック図である。図5において、1は指Fに対して光Lを照射する光源、2は透明体で、一端に絞り2aを介してレンズ2bを設け、他端に検出面2cに接触した指Fからの光を、レンズ2bの方向へ反射する鏡2dを設けている。3は例えば赤色(R)成分、緑色(G)成分および青色(B)成分の色識別機能を有するカラーCCD(電荷結合素子、charge−coupled device)で構成されている画像検出器で、指Fの指紋像を検出する。4はRGB分離回路、5は指紋像入力処理手段で、画像検出器3で検出した指紋像を利用して指紋照合等の処理を行う。6は色ずれ補正回路6aと色識別回路6bとで構成された生体識別手段で、指Fの生体識別を行う。
【0004】
生体識別手段6においては、色ずれ補正回路6aが、各色(R,G,B)の指紋像画像信号の色ずれを補正し、色識別回路6bに、色ずれ補正された指紋像信号を供給する。色識別回路6bでは、指Fが検査面2cに接触した瞬間の指紋像と、指Fが検査面2cに押し当てられた後の指紋像との色の変化を比較識別する。指Fが生体のものであれば、指Fが検査面2cに接触した瞬間の指紋像は検査面2cに対する押圧力が小さいので、赤みを帯びている。しかし、指Fが検査面2cに押し当てられた後の指紋像は検査面2cに対する押圧力が大きいので、白っぽい肌色として検出される。このようにして、指紋像の色情報の変化から、生体か否かの識別を行う。
【0005】
【発明が解決しようとする課題】
従来の指紋像入力装置は以上のように構成されているので、例えば低温の状況によって冷えた指Fの表面の色が、検査面2cに接触する前から白っぽい肌色である場合、押圧力による色情報の変化が起こらないため、生体であるにも拘わらず、生体でないという誤った識別をするという問題点があった。
また、指Fを検査面2cに軽く接触する場合は、色情報の変化が起こり難いため、生体であるにも関らず、生体でないと誤った識別をするという問題点があった。
またさらに、指紋像の色情報の変化を生ずるに要するある程度の時間を、継続してモニターする必要があり、生体識別にある程度の時間を要するという問題点があった。
【0006】
本発明は上記のような問題点を解消するためになされたもので、指紋像の色情報の変化がなくても、確実に生体識別をすることができる指紋像入力装置を得ることを目的とする。
また、生体識別の時間を短縮することができる指紋像入力装置を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明に係る指紋像入力装置においては、指の血液に含まれた酸化ヘモグロビンの吸光係数が指の血液に含まれる還元ヘモグロビンの吸光係数より小さくなる波長領域のプローブ光と酸化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数とが同等になる波長領域の参照光とを指に照射する生体識別用光源と、プローブ光が指の内部を透過した透過プローブ光を受光し、透過プローブ光の光強度に応じた電気信号と、参照光が指の内部を透過した透過参照光を受光し、透過参照光の光強度に応じた電気信号とを出力する透過光検出手段と、透過光検出手段から出力された両電気信号により透過プローブ光の光強度と透過参照光の光強度との透過光強度比を求め、透過光強度比ら指が生体であるか否かを識別する生体識別手段とを備えたものである。
【0008】
この発明に係る指紋像入力装置においては、検査面を有する透明体と、指の血液に含まれた酸化ヘモグロビンの吸光係数が指の血液に含まれる還元ヘモグロビンの吸光係数より小さくなる波長領域のプローブ光と酸化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数とが同等になる波長領域の参照光とを検査面に接触された指に照射する生体識別用光源と、プローブ光が指の内部を透過した透過プローブ光を受光し、透過プローブ光の光強度に応じた電気信号と、参照光が指の内部を透過した透過参照光を受光し、透過参照光の光強度に応じた電気信号とを出力する透過光検出手段と、透過光検出手段から出力された両電気信号により透過プローブ光の光強度と透過参照光の光強度との透過光強度比を求め、透過光強度比から検査面に接触された指が生体であるか否かを識別する生体識別手段とを備えたものである。
【0009】
この発明に係る指紋像入力装置においては、検査面を有する透明体と、指の血液に含まれた酸化ヘモグロビンの吸光係数が指の血液に含まれる還元ヘモグロビンの吸光係数より小さくなる波長領域のプローブ光と酸化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数とが同等になる波長領域の参照光とを検査面に接触された指に照射する生体識別用光源と、プローブ光が指の内部を透過した透過プローブ光を受光し、透過プローブ光の光強度に応じた電気信号と、参照光が指の内部を透過した透過参照光を受光し、透過参照光の光強度に応じた電気信号とを出力する透過光検出手段と、透過光検出手段から出力された両電気信号により透過プローブ光の光強度と透過参照光の光強度との透過光強度の差を求め、透過光強度の差から検査面に接触された指が生体であるか否かを識別する生体識別手段とを備えたものである。
【0010】
また、プローブ光の波長は、660nm付近のものである。
【0011】
また、透過光検出手段は、透過プローブ光の波長の光のみを電気信号に変換し出力する手段と、透過参照光の波長の光のみを電気信号に変換し出力する手段とを有するものである。
【0012】
またさらに、透過光検出手段は、透過プローブ光の波長の光を電気信号に変換し出力する手段と、透過参照光の波長の光を電気信号に変換し出力する手段とを共通にしたものである。
【0013】
【発明の実施の形態】
実施の形態1.
図1は、本発明の実施の形態1である指紋像入力装置の構成を示すブロック図である。図1において、11は生体識別用光源であり、プローブ光L1と参照光L2とを、例えばガラス、透明プラスチックなどの透明体12に設けられた検査面12aに接触した指Fに照射する。生体識別用光源11としては、例えば半導体レーザーを使用してもよいが、必ずしもレーザーの出力光のようなコヒーレント光に近い状態の光を必要とせず、600〜700nmの領域の波長、例えば660nm付近の波長を有するプローブ光L1と、800〜900nmの領域の波長、例えば800nm付近の波長を有する参照光L2とのインコヒーレント光を照射する1個の発光ダイオード、あるいは白色光源を使用する。
【0014】
13は透過光検出手段であり、生体識別用光源11から照射され、指Fの内部を透過した透過プローブ光L11と透過参照光L12とが、レンズ14を介して受光される。透過光検出手段13は、例えばバンドパスフィルタ付きホトダイオードなどの透過プローブ光用光電変換手段13aと、透過参照光用光電変換手段13bとを有し、透過プローブ光用光電変換手段13aで透過プローブ光L11を光電変換して透過プローブ光L11の光強度に応じた電気信号S1を出力し、透過参照光用光電変換手段13bで透過参照光L12を光電変換して透過参照光L12の光強度に応じた電気信号S2を出力する。
【0015】
15は生体識別手段であり、割算回路15aと比較回路15bとを有する。割算回路15aでは、透過光検出手段13から出力された透過プローブ光L11の光強度に応じた電気信号S1を、透過参照光L12の光強度に応じた電気信号S2で割って得られた透過光強度比S3を比較回路15bに出力する。比較回路15bでは、割算回路15aから出力された透過光強度比S3を、予め設定した上限値および下限値で比較し、指Fが生体であるか否かの識別信号S4を出力する。
【0016】
16は例えば発光ダイオードなどの指紋像用光源で、検査面12aに接触した指Fに光L3を照射する。17はカラーCCDなどの2次元固体撮像素子からなる画像検出器であり、光L3が指Fで反射した光L13を、レンズ18を介して受光し、指Fの指紋像を検出する。この検出された指Fの指紋像は、画像取り込み回路19に取り込まれる。20は指紋照合回路であり、比較回路15bから出力される識別信号S4により、指Fの指紋像を照合する。
【0017】
図2は、人体の血液中の酸化ヘモグロビンと還元ヘモグロビンの各波長における吸光係数を示す説明図である。吸光係数とは、ある物質の一定濃度と一定光路長に対する光吸収を表わす単位である。酸化ヘモグロビンの濃度と還元ヘモグロビンの濃度の和が全ヘモグロビンの濃度である。プローブ光L1の600〜700nmの領域の波長、例えば660nm付近では、酸化ヘモグロビンの吸光係数は還元ヘモグロビンの吸光係数に対して小さいため、酸化ヘモグロビンの濃度が高いほど光の吸収が少なくなり、透過光である透過プローブ光L11の光強度は大きくなることが顕著に現れる。
【0018】
一方、参照光L2に対応する800〜900nmの領域の波長、例えば800nmの付近では、酸化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数とが、ほぼ同じであるため、酸化ヘモグロビンの濃度に拘わらず、透過光である透過参照光L12の光強度は一定である。
従って、指Fを透過した透過参照光L12の光強度に対する透過プローブ光L11の光強度が大きいほど、指F内の血液における酸化ヘモグロビンの濃度が高いことがわかる。
【0019】
次に、動作について説明する。
生体識別用光源11から検査面12aに接触した指Fに照射され、指Fから透過してきた透過プローブ光L11と透過参照光L12とが、レンズ14を介して透過光検出手段13に受光される。透過プローブ光L11は、透過プローブ光用光電変換手段13aで光電変換され、透過プローブ光L11の光強度に応じた電気信号S1を出力する。透過参照光L12は、透過参照光用光電変換手段13bで光電変換され、透過参照光L12の光強度に応じた電気信号S2を出力する。
【0020】
透過光検出手段13から出力された両電気信号S1,S2は、割算回路15aで、電気信号S1を電気信号S2で割って透過光強度比S3を求め、この透過光強度比S3が比較回路15bに出力される。透過光強度比S3が大きいほど、指Fに含まれる血液の酸化ヘモグロビンの濃度が高いことを示す。割算回路15aから出力された透過光強度比S3は、比較回路15bで、予め設定した上限値および下限値で比較される。透過光強度比S3が上限値と下限値との間にある場合、指Fが生体であると判定し、透過光強度比S3が上限値と下限値との間にない場合、指Fが生体でないと判定し、その判定結果を識別信号S4として出力する。
【0021】
一方、指紋像用光源16から光L3が検査面12aに接触した指Fに照射され、指Fで反射した光L13が、レンズ18を介して画像検出器17に受光されて指Fの指紋像を検出する。画像取り込み回路19に取り込まれた指Fの指紋像は、比較回路15bで出力された識別信号S4が、指Fを生体であると判定されたものである場合に指紋照合回路20で照合されるが、指Fを生体でないと判定されたものである場合には指紋照合回路20で照合されない。
【0022】
このように、本発明の実施の形態1によれば、生体識別用光源11で検査面12aに接触された指Fにプローブ光L1と参照光L2とを照射し、透過光検出手段13でプローブ光が指の内部を透過した透過プローブ光L11の光強度に応じた電気信号S1と、参照光が指の内部を透過した透過参照光L12の光強度に応じた電気信号S2とを出力し、生体識別手段15で出力された両電気信号S1,S2により透過プローブ光の光強度と透過参照光の光強度との透過光強度比S3を求め、透過光強度比から検査面に接触された指が生体であるか否かを識別しているので、指紋像の色情報の変化がなくても、レプリカか生体の指かを確実に生体識別をすることができる。
【0023】
また、指Fの血液に含まれる還元ヘモグロビンと酸化ヘモグロビンとのうち、プローブ光L1が酸化ヘモグロビンの吸光係数の方が還元ヘモグロビンの吸光係数より小さい領域の波長であり、また参照光L2は酸化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数とがほぼ同じ領域の波長であるので、透過プローブ光L11の光強度と透過参照光L12の光強度との透過光強度比が顕著になり、指紋像の色情報の変化がなくても、指Fがレプリカか生体の指かを確実に生体識別をすることができる。
【0024】
また、プローブ光L1の波長は、660nm付近であるので、透過プローブ光L11の光強度が顕著に大きくなり、透過プローブ光L11の光強度と透過参照光L12の光強度との透過光強度比がより顕著になり、指紋像の色情報の変化がなくても、指Fがレプリカか生体の指かを確実に生体識別をすることができる。
【0025】
またさらに、透過光検出手段13は、透過プローブ光の波長の光のみを電気信号に変換し出力する透過プローブ光用光電変換手段13aと、透過参照光の波長の光のみを電気信号に変換し出力する透過参照光用光電変換手段13bとを有するので、プローブ光L1と参照光L2とを同時に指Fに照射できる。このため、従来例のように指紋像の色情報の変化を生ずるに要するある程度の時間を、継続してモニターすることが不要となり、生体識別の時間を短縮することができる。
【0026】
尚、参照光L2の波長は、800〜900nmの領域の波長としたが、酸化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数とがほぼ同一であればよく、他の波長、例えば400〜530nmの領域の波長としても上記と同様の効果を奏する。
また、割算回路15aでは、透過光検出手段13から出力された透過プローブ光L11の光強度に応じた電気信号S1を、透過参照光L12の光強度に応じた電気信号S2で割って得られた透過光強度比S3を比較回路15bに出力しているが、電気信号S1と電気信号S2との差を求めて得られた透過光強度差を比較回路15bに出力しても上記と同様の効果を奏する。
【0027】
実施の形態2.
図3は、本発明の実施の形態2である指紋像入力装置の構成を示すブロック図である。図3で使用した符号のうち、図1で使用した符号と同一のものは、同一または相当品を示し、その説明を省略する。図3において図1と異なるところは、プローブ光L1を照射する生体識別用光源21と、参照光L2を照射する生体識別用光源22とが個別になっている。生体識別用光源としては、例えば半導体レーザーを使用してもよいが、必ずしもレーザーの出力光のようなコヒーレント光に近い状態の光を必要とせず、例えば生体識別用光源21では660nm付近の波長を有するプローブ光L1、生体識別用光源22では800〜900nmのうちのいずれかの波長を有する参照光L2のインコヒーレント光を照射する発光ダイオード、あるいは白色光源を使用する。また透過光検出手段23は、単一の例えばバンドパスフィルタ付きホトダイオードなどの透過光用光電変換手段23aで、透過プローブ光用光電変換手段と透過参照光用光電変換手段とを共通にしている。
【0028】
次に、動作について説明する。
まず、生体識別用光源21によりプローブ光L1を検査面12aに接触した指Fに照射する。このとき、生体識別用光源22は参照光L2を照射しない。生体識別用光源21から指Fに照射され、指Fから透過してきた透過プローブ光L11が、レンズ14を介して透過光用光電変換手段23aに受光されて光電変換され、透過プローブ光L11の光強度に応じた電気信号S1を出力する。
次に、生体識別用光源22より参照光L2を検査面12aに接触した指Fに照射する。このとき、生体識別用光源21はプローブ光L1を照射しない。つまり、生体識別用光源21と生体識別用光源22とは交互に照射することになる。生体識別用光源22から指Fに照射され、指Fから透過してきた透過参照光L12が、レンズ14を介して透過光用光電変換手段23aに受光されて光電変換され、透過参照光L12の光強度に応じた電気信号S2を出力する。
【0029】
透過光用光電変換手段23aから出力された各電気信号S1,S2は一旦記録され、割算回路15aで、電気信号S1を電気信号S2で割って透過光強度比S3を求め、この透過光強度比S3が比較回路15bに出力される。透過光強度比S3が大きいほど、指Fに含まれる血液の酸化ヘモグロビンの濃度が高いことを示す。割算回路15aから出力された透過光強度比S3は、比較回路15bで、予め設定した上限値および下限値と比較される。透過光強度比S3が上限値と下限値との間にある場合、指Fが生体であると判定し、透過光強度比S3が上限値と下限値との間にない場合、指Fが生体でないと判定し、その判定結果を識別信号S4として出力する。
【0030】
本発明の実施の形態2によれば、生体識別用光源21,22で検査面12aに接触された指Fにプローブ光L1と参照光L2とを照射し、透過光検出手段23でプローブ光が指の内部を透過した透過プローブ光L11の光強度に応じた電気信号S1と、参照光が指の内部を透過した透過参照光L12の光強度に応じた電気信号S2とを出力し、生体識別手段15で出力された両電気信号S1,S2により透過プローブ光の光強度と透過参照光の光強度との透過光強度比S3を求め、透過光強度比から検査面に接触された指が生体であるか否かを識別しているので、指紋像の色情報の変化がなくても、レプリカか生体の指かを確実に生体識別をすることができる。
【0031】
また、指Fの血液に含まれる還元ヘモグロビンと酸化ヘモグロビンとのうち、プローブ光L1が酸化ヘモグロビンの吸光係数の方が還元ヘモグロビンの吸光係数より小さい領域の波長であり、参照光L2が酸化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数とがほぼ同じ領域の波長であるので、透過プローブ光L11の光強度と透過参照光L12の光強度との透過光強度比が顕著になり、指紋像の色情報の変化がなくても、指Fがレプリカか生体の指かを確実に生体識別をすることができる。
【0032】
また、プローブ光L1の波長は、660nm付近であるので、透過プローブ光L11の光強度が顕著に大きくなり、透過プローブ光L11の光強度と透過参照光L12の光強度との透過光強度比がより顕著になり、指紋像の色情報の変化がなくても、指Fがレプリカか生体の指かを確実に生体識別をすることができる。
【0033】
またさらに、単一の透過光用光電変換手段23aで、透過プローブ光L11の波長の光を電気信号に変換し出力する透過プローブ光用光電変換手段と、透過参照光L12の波長の光を電気信号に変換し出力する透過参照光用光電変換手段とを共通にしたので、透過プローブ光用光電変換手段と透過参照光用光電変換手段とが個別の場合に片方が劣化により感度が変化するとき、割算回路15aの出力に誤差が生ずるが、単一の透過光用光電変換手段23aの場合では劣化により感度が変化するときでも、割算回路15aの出力に誤差が生じない。
尚、生体識別用光源21と生体識別用光源22とを交互に照射する時間間隔を短くすれば、生体識別の時間を短縮できる。
【0034】
実施の形態3.
図4は、本発明の実施の形態3である指紋像入力装置の構成を示すブロック図である。図4で使用した符号のうち、図3で使用した符号と同一のものは、同一または相当品を示し、その説明を省略する。図4において図3と異なるところは、画像検出器24により、光L3が指Fで反射した光L13を、レンズ25を介して受光して指Fの指紋像を検出し、この指紋像が画像取り込み回路19に取り込まれる。指紋像を検出するときには、生体識別用光源21および生体識別用光源22は、プローブ光L1および参照光L2を照射しない。
また、画像検出器24は、生体識別用光源21および生体識別用光源22から、検査面12aに接触された指Fに、プローブ光L1および参照光L2を照射されると、プローブ光L1および参照光L2が指Fを透過した透過プローブ光L11および透過参照光L12を、レンズ25を介して受光して光電変換し、透過プローブ光L11および透過参照光L12の光強度に応じた電気信号を出力する透過光検出手段としての機能をも有する。
【0035】
次に、動作について説明する。
まず、生体識別用光源21によりプローブ光L1を検査面12aに接触した指Fに照射する。このとき、生体識別用光源22は参照光L2を照射しない。生体識別用光源21から指Fに照射され、指Fから透過してきた透過プローブ光L11が、レンズ25を介して画像検出器24に受光されて光電変換され、透過プローブ光L11の光強度に応じた電気信号S1を出力する。
次に、生体識別用光源22より参照光L2を検査面12aに接触した指Fに照射する。このとき、生体識別用光源21はプローブ光L1を照射しない。つまり、生体識別用光源21と生体識別用光源22とは交互に照射することになる。生体識別用光源22から指Fに照射され、指Fから透過してきた透過参照光L12が、レンズ25を介して画像検出器24に受光されて光電変換され、透過参照光L12の光強度に応じた電気信号S2を出力する。
【0036】
画像検出器24から出力された両電気信号S1,S2は一旦記録され、割算回路15aで、電気信号S1を電気信号S2で割って透過光強度比S3を求め、この透過光強度比S3が比較回路15bに出力される。透過光強度比S3が大きいほど、指Fに含まれる血液の酸化ヘモグロビンの濃度が高いことを示す。割算回路15aから出力された透過光強度比S3は、比較回路15bで、予め設定した上限値および下限値で比較される。透過光強度比S3が上限値と下限値との間にある場合、指Fが生体であると判定し、透過光強度比S3が上限値と下限値との間にない場合、指Fが生体でないと判定し、その判定結果を識別信号S4として出力する。
【0037】
本発明の実施の形態3によれば、生体識別用光源21,22で検査面12aに接触された指Fにプローブ光L1と参照光L2とを照射し、透過光検出手段としての画像検出器24でプローブ光が指の内部を透過した透過プローブ光L11の光強度に応じた電気信号S1と、参照光が指の内部を透過した透過参照光L12の光強度に応じた電気信号S2とを出力し、生体識別手段15で出力された両電気信号S1,S2により透過プローブ光の光強度と透過参照光の光強度との透過光強度比S3を求め、透過光強度比から検査面に接触された指が生体であるか否かを識別しているので、指紋像の色情報の変化がなくても、レプリカか生体の指かを確実に生体識別をすることができる。
【0038】
また、指Fの血液に含まれる還元ヘモグロビンと酸化ヘモグロビンとのうち、プローブ光L1が酸化ヘモグロビンの吸光係数の方が還元ヘモグロビンの吸光係数より小さい領域の波長であり、参照光L2が酸化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数とがほぼ同じ領域の波長であるので、透過プローブ光L11の光強度と透過参照光L12の光強度との透過光強度比が顕著になり、指紋像の色情報の変化がなくても、指Fがレプリカか生体の指かを確実に生体識別をすることができる。
【0039】
また、プローブ光L1の波長は、660nm付近のものであるので、透過プローブ光L11の光強度が顕著に大きくなり、透過プローブ光L11の光強度と透過参照光L12の光強度との透過光強度比がより顕著になり、指紋像の色情報の変化がなくても、指Fがレプリカか生体の指かを確実に生体識別をすることができる。
【0040】
またさらに、単一の透過光検出手段としての画像検出器24で、透過プローブ光L11の波長の光を電気信号に変換し出力する透過プローブ光検出手段と、透過参照光L12の波長の光を電気信号に変換し出力する透過参照光検出手段とを共通にしたので、透過プローブ光検出手段と透過参照光検出手段とが個別の場合に片方が劣化により感度が変化するとき、割算回路15aの出力に誤差が生ずるが、単一の画像検出器24の場合では劣化により感度が変化するときでも、割算回路15aの出力に誤差が生じない。
尚、生体識別用光源21と生体識別用光源22とを交互に照射する時間間隔を短くすれば、生体識別の時間を短縮できる。
また、単一の画像検出器24は、透過光検出手段も有するので、装置を小型化できる。
【0041】
【発明の効果】
以上のように、本発明の指紋像入力装置によれば、生体識別用光源で指の血液に含まれた酸化ヘモグロビンの吸光係数が指の血液に含まれる還元ヘモグロビンの吸光係数より小さくなる波長領域のプローブ光と酸化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数とが同等になる波長領域の参照光とを指に照射し、透過光検出手段でプローブ光が指の内部を透過した透過プローブ光の光強度に応じた電気信号と、参照光が指の内部を透過した透過参照光の光強度に応じた電気信号とを出力し、生体識別手段で透過光検出手段から出力された両電気信号により透過プローブ光の光強度と透過参照光の光強度との透過光強度比を求め、透過光強度比から、指が生体であるか否かを識別しているので、透過プローブ光の光強度と透過参照光の光強度との透過光強度比が顕著になり、指紋像の色情報の変化がなくても、レプリカか生体の指か生体識別を確実にすることができる。
【0042】
また、生体識別用光源で指の血液に含まれた酸化ヘモグロビンの吸光係数が指の血液に含まれる還元ヘモグロビンの吸光係数より小さくなる波長領域のプローブ光と酸化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数とが同等になる波長領域の参照光とを検査面に接触された指に照射し、透過光検出手段でプローブ光が指の内部を透過した透過プローブ光の光強度に応じた電気信号と、参照光が指の内部を透過した透過参照光の光強度に応じた電気信号とを出力し、生体識別手段で透過光検出手段から出力された両電気信号に応じた透過プローブ光の光強度と透過参照光の光強度との透過光強度比を求め、透過光強度比から検査面に接触された指が生体であるか否かを識別しているので、透過プローブ光の光強度と透過参照光の光強度との透過光強度比が顕著になり、指紋像の色情報の変化がなくても、レプリカか生体の指か生体識別を確実にすることができる。
【0043】
また、生体識別用光源で指の血液に含まれた酸化ヘモグロビンの吸光係数が指の血液に含まれる還元ヘモグロビンの吸光係数より小さくなる波長領域のプローブ光と酸化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数とが同等になる波長領域の参照光とを検査面に接触された指に照射し、透過光検出手段でプローブ光が指の内部を透過した透過プローブ光の光強度に応じた電気信号と、参照光が指の内部を透過した透過参照光の光強度に応じた電気信号とを出力し、生体識別手段で透過光検出手段から出力された両電気信号に応じた透過プローブ光の光強度と透過参照光の光強度との透過光強度の差を求め、透過光強度の差から検査面に接触された指が生体であるか否かを識別しているので、透過プローブ光の光強度と透過参照光の光強度との透過光強度の差が顕著になり、指紋像の色情報の変化がなくても、レプリカか生体の指かの生体識別を確実にすることができる。
【0044】
また、プローブ光の波長は、660nm付近のものであるので、透過プローブ光の光強度が顕著に大きくなり、透過プローブ光の光強度と透過参照光の光強度との透過光強度比がより顕著になり、指紋像の色情報の変化がなくても、指がレプリカか生体の指かを確実に生体識別をすることができる。
【0045】
また、透過光検出手段は、透過プローブ光の波長の光のみを電気信号に変換し出力する透過プローブ光用光電変換手段と、透過参照光の波長の光のみを電気信号に変換し出力する透過参照光用光電変換手段とを有するものであるので、プローブ光と参照光とを同時に指に照射できる。このため、従来例のように指紋像の色情報の変化を生ずるに要するある程度の時間を、継続してモニターすることが不要となり、生体識別の時間を短縮することができる。
【0046】
またさらに、単一の透過光検出手段で、透過プローブ光の波長の光を電気信号に変換し出力する透過プローブ光用光電変換手段と、透過参照光の波長の光を電気信号に変換し出力する透過参照光用光電変換手段とを共通にするものであるので、透過プローブ光用光電変換手段と透過参照光用光電変換手段とが個別の場合に片方が劣化により感度が変化するとき、割算回路の出力に誤差が生ずるが、単一の透過光検出手段の場合では劣化により感度が変化するときでも、割算回路の出力に誤差が生じない。
【図面の簡単な説明】
【図1】 本発明の一実施例による指紋像入力装置の構成を示すブロック図である。
【図2】 人体の血液中の酸化ヘモグロビンと還元ヘモグロビンの各波長における吸光係数を示す説明図である。
【図3】 本発明の他の実施例による指紋像入力装置の構成を示すブロック図である。
【図4】 本発明の他の実施例による指紋像入力装置の構成を示すブロック図である。
【図5】 従来の指紋像入力装置の構成を示すブロック図ある。
【符号の説明】
11,21,22 生体識別用光源
12 透明体
12a 検査面
13,23,24 透過光検出手段
15 生体識別手段
F 指
L1 プローブ光
L2 参照光
L11 透過プローブ光
L12 透過参照光
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fingerprint image input device for inputting a fingerprint image of a finger to a fingerprint collation device or the like.
[0002]
[Prior art]
In recent years, research on personal identification technology has been actively conducted in order to enhance security functions in access to confidential documents stored in a computer, electronic commerce on a computer network, entrance to and exit from an important facility, and the like. In particular, fingerprints have a universal and lifelong nature and are used as an important feature for realizing personal identification, and fingerprint verification devices and the like have been developed.
However, if a so-called replica that duplicates a fingerprint of a specific individual who has already been registered is used, security cannot be ensured. For this reason, it is necessary to identify whether or not it is a human finger, that is, a living body, and this kind of living body identification method has been proposed.
[0003]
For example, FIG. 5 is a block diagram showing a configuration of a conventional fingerprint image input apparatus having a biometric identification function disclosed in Japanese Patent Laid-Open No. 3-87981. In FIG. 5, 1 is a light source that irradiates the finger F with light L, 2 is a transparent body, a lens 2b is provided at one end via a diaphragm 2a, and light from the finger F that is in contact with the detection surface 2c at the other end. Is provided in the direction of the lens 2b. Reference numeral 3 denotes an image detector composed of a color CCD (charge-coupled device) having a color discrimination function of, for example, a red (R) component, a green (G) component, and a blue (B) component. Detect fingerprint image. Reference numeral 4 denotes an RGB separation circuit, and reference numeral 5 denotes a fingerprint image input processing means, which performs processing such as fingerprint collation using the fingerprint image detected by the image detector 3. Reference numeral 6 denotes biometric identification means composed of the color misregistration correction circuit 6a and the color identification circuit 6b, which performs biometric identification of the finger F.
[0004]
In the biometric identification means 6, the color misregistration correction circuit 6a corrects the color misregistration of the fingerprint image signal of each color (R, G, B) and supplies the color discrimination circuit 6b with the color misregistration corrected fingerprint image signal. To do. The color identification circuit 6b compares and identifies the color change between the fingerprint image at the moment when the finger F contacts the inspection surface 2c and the fingerprint image after the finger F is pressed against the inspection surface 2c. If the finger F is a living body, the fingerprint image at the moment when the finger F contacts the inspection surface 2c is reddish because the pressing force against the inspection surface 2c is small. However, the fingerprint image after the finger F is pressed against the inspection surface 2c has a large pressing force against the inspection surface 2c, and is thus detected as a whitish skin color. In this manner, whether or not the subject is a living body is identified from the change in the color information of the fingerprint image.
[0005]
[Problems to be solved by the invention]
Since the conventional fingerprint image input device is configured as described above, for example, when the color of the surface of the finger F that has been cooled due to a low-temperature condition is a whitish skin color before contacting the inspection surface 2c, the color due to the pressing force Since no change in information occurs, there is a problem of erroneous identification that the subject is not a living body even though it is a living body.
Further, when the finger F is lightly touched to the inspection surface 2c, there is a problem in that the color information hardly changes, and thus the wrong identification is made if it is not a living body even though it is a living body.
Furthermore, there is a problem that it is necessary to continuously monitor a certain amount of time required to change the color information of the fingerprint image, and a certain amount of time is required for biometric identification.
[0006]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fingerprint image input device that can reliably identify a living body even if there is no change in color information of the fingerprint image. To do.
It is another object of the present invention to provide a fingerprint image input device that can shorten the time for biometric identification.
[0007]
[Means for Solving the Problems]
  In the fingerprint image input device according to the present invention,In the wavelength region where the extinction coefficient of oxyhemoglobin contained in finger blood is smaller than the extinction coefficient of reduced hemoglobin contained in finger blood.With probe lightIn the wavelength region where the extinction coefficient of oxygenated hemoglobin and the extinction coefficient of reduced hemoglobin are equivalent.With reference lightOn the fingerThe biometric light source for irradiation, the transmitted probe light transmitted through the inside of the finger by the probe light, the electrical signal corresponding to the light intensity of the transmitted probe light, and the transmitted reference light transmitted through the inside of the finger. The transmitted light detecting means for receiving and outputting an electrical signal corresponding to the light intensity of the transmitted reference light, and both electrical signals output from the transmitted light detecting meansThanLight intensity of transmitted probe light and transmitted reference lightThe transmitted light intensity ratio is calculated to obtain the transmitted light intensity ratio.OrFingerAnd a living body identifying means for identifying whether or not the body is a living body.
[0008]
  In the fingerprint image input device according to the present invention, a transparent body having an inspection surface;In the wavelength region where the extinction coefficient of oxyhemoglobin contained in finger blood is smaller than the extinction coefficient of reduced hemoglobin contained in finger blood.With probe lightIn the wavelength region where the extinction coefficient of oxygenated hemoglobin and the extinction coefficient of reduced hemoglobin are equivalent.With reference lightOn the finger touching the inspection surfaceThe biometric light source for irradiation, the transmitted probe light transmitted through the inside of the finger by the probe light, the electrical signal corresponding to the light intensity of the transmitted probe light, and the transmitted reference light transmitted through the inside of the finger. Transmitted light detection means for receiving and outputting an electrical signal corresponding to the light intensity of the transmitted reference light, and the intensity of the transmitted probe light and the intensity of the transmitted reference light by both electrical signals output from the transmitted light detection means And a biometric identification means for determining whether or not the finger touching the inspection surface is a living body from the transmitted light intensity ratio.
[0009]
  In the fingerprint image input device according to the present invention, a transparent body having an inspection surface, and a probe in a wavelength region in which the extinction coefficient of oxyhemoglobin contained in finger blood is smaller than the extinction coefficient of reduced hemoglobin contained in finger blood A light source for biometric identification that irradiates the finger that is in contact with the test surface with reference light in a wavelength region in which the extinction coefficient of light, oxygenated hemoglobin, and the extinction coefficient of reduced hemoglobin are equivalent, and the probe light transmitted through the inside of the finger Receives transmitted probe light, receives an electrical signal according to the light intensity of the transmitted probe light, and receives a transmitted reference light transmitted through the inside of the finger, and outputs an electrical signal according to the light intensity of the transmitted reference light The difference between the transmitted light intensity of the transmitted probe light and the transmitted reference light is obtained from the transmitted light detection means and the electrical signal output from the transmitted light detection means, and the inspection is performed from the difference in transmitted light intensity. Contacted finger is that a biometric identification means for identifying whether a living body.
[0010]
The wavelength of the probe light is around 660 nm.
[0011]
The transmitted light detecting means has means for converting only the light of the wavelength of the transmitted probe light into an electric signal and outputting it, and means for converting only the light of the wavelength of the transmitted reference light into an electric signal and outputting it. .
[0012]
Furthermore, the transmitted light detecting means is a means in which the means for converting the light of the wavelength of the transmitted probe light into an electrical signal and outputting it and the means for converting the light of the wavelength of the transmitted reference light into an electrical signal and outputting it are common. is there.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of a fingerprint image input apparatus according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 11 denotes a light source for biometric identification, which irradiates a finger F that is in contact with an inspection surface 12a provided on a transparent body 12 such as glass or transparent plastic, with a probe light L1 and a reference light L2. For example, a semiconductor laser may be used as the biometric light source 11, but it does not necessarily require light in a state close to coherent light such as laser output light, and has a wavelength in the region of 600 to 700 nm, for example, around 660 nm. One light emitting diode that emits incoherent light of a probe light L1 having a wavelength of λ and a reference light L2 having a wavelength in the range of 800 to 900 nm, for example, a wavelength in the vicinity of 800 nm, or a white light source is used.
[0014]
Reference numeral 13 denotes transmitted light detection means, which receives the transmitted probe light L11 and the transmitted reference light L12 that are irradiated from the living body identifying light source 11 and transmitted through the finger F through the lens 14. The transmitted light detection means 13 includes, for example, a transmission probe light photoelectric conversion means 13a such as a photodiode with a bandpass filter, and a transmitted reference light photoelectric conversion means 13b. The L11 is photoelectrically converted to output an electric signal S1 corresponding to the light intensity of the transmitted probe light L11, and the transmitted reference light L12 is photoelectrically converted by the transmitted reference light photoelectric conversion means 13b to correspond to the light intensity of the transmitted reference light L12. The electrical signal S2 is output.
[0015]
Reference numeral 15 denotes biometric identification means, which includes a division circuit 15a and a comparison circuit 15b. In the dividing circuit 15a, the transmission signal obtained by dividing the electric signal S1 corresponding to the light intensity of the transmitted probe light L11 output from the transmitted light detection means 13 by the electric signal S2 corresponding to the light intensity of the transmitted reference light L12. The light intensity ratio S3 is output to the comparison circuit 15b. The comparison circuit 15b compares the transmitted light intensity ratio S3 output from the division circuit 15a with a preset upper limit value and lower limit value, and outputs an identification signal S4 indicating whether or not the finger F is a living body.
[0016]
Reference numeral 16 denotes a fingerprint image light source such as a light emitting diode, which irradiates the finger F in contact with the inspection surface 12a with the light L3. Reference numeral 17 denotes an image detector composed of a two-dimensional solid-state imaging device such as a color CCD, which receives the light L13 reflected by the light F3 from the finger F through the lens 18 and detects the fingerprint image of the finger F. The detected fingerprint image of the finger F is captured by the image capturing circuit 19. A fingerprint collation circuit 20 collates the fingerprint image of the finger F with the identification signal S4 output from the comparison circuit 15b.
[0017]
FIG. 2 is an explanatory diagram showing extinction coefficients at each wavelength of oxyhemoglobin and deoxyhemoglobin in human blood. The extinction coefficient is a unit representing light absorption with respect to a certain concentration and a certain optical path length of a certain substance. The sum of the concentration of oxyhemoglobin and the concentration of reduced hemoglobin is the total hemoglobin concentration. In the wavelength range of 600 to 700 nm of the probe light L1, for example, around 660 nm, the absorption coefficient of oxyhemoglobin is smaller than the absorption coefficient of reduced hemoglobin. Therefore, the higher the concentration of oxyhemoglobin, the less light is absorbed. It is noticeable that the light intensity of the transmitted probe light L11 increases.
[0018]
On the other hand, since the extinction coefficient of oxyhemoglobin and the extinction coefficient of reduced hemoglobin are substantially the same in the wavelength range of 800 to 900 nm corresponding to the reference light L2, for example, in the vicinity of 800 nm, regardless of the concentration of oxyhemoglobin, The light intensity of the transmitted reference light L12 that is transmitted light is constant.
Therefore, it can be seen that the higher the light intensity of the transmitted probe light L11 relative to the light intensity of the transmitted reference light L12 transmitted through the finger F, the higher the concentration of oxyhemoglobin in the blood in the finger F.
[0019]
Next, the operation will be described.
The transmitted probe light L11 and the transmitted reference light L12 irradiated from the biometric light source 11 to the finger F in contact with the inspection surface 12a and transmitted from the finger F are received by the transmitted light detection means 13 through the lens 14. . The transmitted probe light L11 is photoelectrically converted by the transmitted probe light photoelectric conversion means 13a and outputs an electric signal S1 corresponding to the light intensity of the transmitted probe light L11. The transmitted reference light L12 is photoelectrically converted by the transmitted reference light photoelectric conversion means 13b and outputs an electric signal S2 corresponding to the light intensity of the transmitted reference light L12.
[0020]
The electric signals S1 and S2 output from the transmitted light detection means 13 are divided by the dividing circuit 15a to obtain the transmitted light intensity ratio S3 by dividing the electric signal S1 by the electric signal S2, and this transmitted light intensity ratio S3 is the comparison circuit. Is output to 15b. It shows that the density | concentration of the oxyhemoglobin of the blood contained in the finger | toe F is so high that the transmitted light intensity ratio S3 is large. The transmitted light intensity ratio S3 output from the division circuit 15a is compared by the comparison circuit 15b with a preset upper limit value and lower limit value. When the transmitted light intensity ratio S3 is between the upper limit value and the lower limit value, it is determined that the finger F is a living body. When the transmitted light intensity ratio S3 is not between the upper limit value and the lower limit value, the finger F is a living body. Is determined, and the determination result is output as the identification signal S4.
[0021]
On the other hand, the light L3 from the fingerprint image light source 16 is applied to the finger F that has come into contact with the inspection surface 12a, and the light L13 reflected by the finger F is received by the image detector 17 through the lens 18 to be received by the fingerprint image of the finger F. Is detected. The fingerprint image of the finger F captured by the image capturing circuit 19 is verified by the fingerprint verification circuit 20 when the identification signal S4 output by the comparison circuit 15b is determined to be a living body of the finger F. However, when it is determined that the finger F is not a living body, the fingerprint collation circuit 20 does not perform collation.
[0022]
As described above, according to the first embodiment of the present invention, the probe light L1 and the reference light L2 are irradiated to the finger F that is in contact with the inspection surface 12a by the biometric light source 11, and the probe is transmitted by the transmitted light detection means 13. An electrical signal S1 corresponding to the light intensity of the transmitted probe light L11 through which the light has passed through the inside of the finger, and an electrical signal S2 according to the light intensity of the transmitted reference light L12 through which the reference light has passed through the inside of the finger; A transmitted light intensity ratio S3 between the light intensity of the transmitted probe light and the light intensity of the transmitted reference light is obtained from both electrical signals S1 and S2 output from the living body identifying means 15, and the finger touching the inspection surface is determined from the transmitted light intensity ratio. Therefore, even if there is no change in the color information of the fingerprint image, it is possible to reliably identify the replica or the finger of the living body.
[0023]
Of the reduced hemoglobin and oxygenated hemoglobin contained in the blood of the finger F, the probe light L1 has a wavelength in a region where the absorption coefficient of oxidized hemoglobin is smaller than the absorption coefficient of reduced hemoglobin, and the reference light L2 is oxidized hemoglobin. Therefore, the ratio of the transmitted light intensity of the transmitted probe light L11 and the transmitted reference light L12 becomes remarkable, and the color of the fingerprint image is large. Even if there is no change in information, it is possible to reliably identify whether the finger F is a replica or a biological finger.
[0024]
Further, since the wavelength of the probe light L1 is around 660 nm, the light intensity of the transmitted probe light L11 is significantly increased, and the transmitted light intensity ratio between the light intensity of the transmitted probe light L11 and the transmitted reference light L12 is Even more prominently, even if there is no change in the color information of the fingerprint image, it is possible to reliably identify whether the finger F is a replica or a biological finger.
[0025]
Further, the transmitted light detecting means 13 converts only the light of the wavelength of the transmitted probe light into an electrical signal and outputs it, and converts only the light of the wavelength of the transmitted reference light into an electrical signal. Since it has the photoelectric conversion means 13b for transmitted reference light to be output, it is possible to irradiate the finger F with the probe light L1 and the reference light L2 simultaneously. For this reason, it is not necessary to continuously monitor a certain amount of time required to change the color information of the fingerprint image as in the conventional example, and the time for biometric identification can be shortened.
[0026]
The wavelength of the reference light L2 is a wavelength in the range of 800 to 900 nm, but the absorption coefficient of oxyhemoglobin and the absorption coefficient of reduced hemoglobin may be almost the same, and other wavelengths, for example, a range of 400 to 530 nm. The same effects as described above can be obtained with the wavelength of.
Further, the division circuit 15a obtains the electric signal S1 corresponding to the light intensity of the transmitted probe light L11 output from the transmitted light detection means 13 by dividing it by the electric signal S2 corresponding to the light intensity of the transmitted reference light L12. The transmitted light intensity ratio S3 is output to the comparison circuit 15b. Even if the transmitted light intensity difference obtained by calculating the difference between the electric signal S1 and the electric signal S2 is output to the comparison circuit 15b, the same as described above. There is an effect.
[0027]
Embodiment 2. FIG.
FIG. 3 is a block diagram showing the configuration of the fingerprint image input apparatus according to the second embodiment of the present invention. Among the reference numerals used in FIG. 3, the same reference numerals as those used in FIG. 3 differs from FIG. 1 in that a biometric light source 21 that irradiates the probe light L1 and a biometric light source 22 that irradiates the reference light L2 are separate. As the biometric light source, for example, a semiconductor laser may be used. However, light in a state close to coherent light such as laser output light is not necessarily required. For example, the biometric light source 21 has a wavelength of about 660 nm. The probe light L1 and the biometric light source 22 include a light emitting diode that emits incoherent light of the reference light L2 having a wavelength of 800 to 900 nm, or a white light source. The transmitted light detecting means 23 is a single transmitted light photoelectric conversion means 23a such as a photodiode with a bandpass filter, for example, and the transmitted probe light photoelectric conversion means and the transmitted reference light photoelectric conversion means are shared.
[0028]
Next, the operation will be described.
First, the biometric identification light source 21 irradiates the probe light L1 onto the finger F in contact with the inspection surface 12a. At this time, the biometric light source 22 does not irradiate the reference light L2. The transmitted probe light L11 irradiated to the finger F from the biometric light source 21 and transmitted from the finger F is received and photoelectrically converted by the transmitted light photoelectric conversion means 23a via the lens 14, and the transmitted probe light L11 light. An electric signal S1 corresponding to the intensity is output.
Next, the reference light L2 is irradiated from the biometric light source 22 onto the finger F in contact with the inspection surface 12a. At this time, the biometric light source 21 does not irradiate the probe light L1. That is, the biometric light source 21 and the biometric light source 22 are irradiated alternately. The transmitted reference light L12 irradiated to the finger F from the biometric identification light source 22 and transmitted from the finger F is received by the transmitted light photoelectric conversion means 23a via the lens 14 and is subjected to photoelectric conversion, and the transmitted reference light L12 is light. An electric signal S2 corresponding to the intensity is output.
[0029]
The electric signals S1 and S2 output from the transmitted light photoelectric conversion means 23a are temporarily recorded, and the dividing circuit 15a divides the electric signal S1 by the electric signal S2 to obtain a transmitted light intensity ratio S3. The ratio S3 is output to the comparison circuit 15b. It shows that the density | concentration of the oxyhemoglobin of the blood contained in the finger | toe F is so high that the transmitted light intensity ratio S3 is large. The transmitted light intensity ratio S3 output from the dividing circuit 15a is compared with a preset upper limit value and lower limit value by the comparison circuit 15b. When the transmitted light intensity ratio S3 is between the upper limit value and the lower limit value, it is determined that the finger F is a living body. When the transmitted light intensity ratio S3 is not between the upper limit value and the lower limit value, the finger F is a living body. Is determined, and the determination result is output as the identification signal S4.
[0030]
According to the second embodiment of the present invention, the probe light L1 and the reference light L2 are irradiated to the finger F that is in contact with the inspection surface 12a by the biometric light sources 21 and 22, and the probe light is emitted from the transmitted light detection unit 23. An electrical signal S1 corresponding to the light intensity of the transmitted probe light L11 transmitted through the inside of the finger and an electric signal S2 corresponding to the light intensity of the transmitted reference light L12 transmitted through the inside of the finger are output to identify the living body The transmitted light intensity ratio S3 between the light intensity of the transmitted probe light and the light intensity of the transmitted reference light is obtained from both electrical signals S1 and S2 output from the means 15, and the finger in contact with the test surface is determined from the transmitted light intensity ratio. Therefore, even if there is no change in the color information of the fingerprint image, it is possible to reliably identify the biometric whether it is a replica or a biometric finger.
[0031]
Further, of the reduced hemoglobin and oxygenated hemoglobin contained in the blood of the finger F, the probe light L1 has a wavelength in the region where the absorption coefficient of oxidized hemoglobin is smaller than the absorption coefficient of reduced hemoglobin, and the reference light L2 is the oxygenated hemoglobin. Since the extinction coefficient and the extinction coefficient of reduced hemoglobin are in the same region, the transmitted light intensity ratio between the transmitted probe light L11 and the transmitted reference light L12 becomes significant, and the color information of the fingerprint image. Even if there is no change, it is possible to reliably identify whether the finger F is a replica or a biological finger.
[0032]
Further, since the wavelength of the probe light L1 is around 660 nm, the light intensity of the transmitted probe light L11 is significantly increased, and the transmitted light intensity ratio between the light intensity of the transmitted probe light L11 and the transmitted reference light L12 is Even more prominently, even if there is no change in the color information of the fingerprint image, it is possible to reliably identify whether the finger F is a replica or a biological finger.
[0033]
Still further, the single transmitted light photoelectric conversion means 23a converts the light of the wavelength of the transmitted probe light L11 into an electrical signal and outputs it, and the light of the wavelength of the transmitted reference light L12 is electrically converted. When the transmission reference light photoelectric conversion means and the transmission reference light photoelectric conversion means are separate from each other, the sensitivity changes due to degradation when the transmission probe light photoelectric conversion means and the transmission reference light photoelectric conversion means are separate. Although an error occurs in the output of the dividing circuit 15a, no error occurs in the output of the dividing circuit 15a in the case of the single transmitted light photoelectric conversion means 23a even when the sensitivity changes due to deterioration.
If the time interval for alternately irradiating the biometric light source 21 and the biometric light source 22 is shortened, the biometric time can be shortened.
[0034]
Embodiment 3 FIG.
FIG. 4 is a block diagram showing a configuration of a fingerprint image input apparatus according to Embodiment 3 of the present invention. Among the symbols used in FIG. 4, the same symbols as those used in FIG. 3 indicate the same or equivalent products, and description thereof is omitted. 4 differs from FIG. 3 in that the image detector 24 receives the light L13 reflected by the finger F through the lens 25 to detect the fingerprint image of the finger F, and the fingerprint image is an image. The data is captured by the capturing circuit 19. When a fingerprint image is detected, the biometric light source 21 and the biometric light source 22 do not irradiate the probe light L1 and the reference light L2.
Further, when the finger F that is in contact with the inspection surface 12a is irradiated with the probe light L1 and the reference light L2 from the biometric light source 21 and the biometric light source 22, the image detector 24 detects the probe light L1 and the reference light L1. The transmitted light L2 and the transmitted reference light L12 that are transmitted through the finger F by the light L2 are received through the lens 25 and photoelectrically converted, and an electric signal corresponding to the light intensity of the transmitted probe light L11 and the transmitted reference light L12 is output. It also has a function as transmitted light detecting means.
[0035]
Next, the operation will be described.
First, the biometric identification light source 21 irradiates the probe light L1 onto the finger F in contact with the inspection surface 12a. At this time, the biometric light source 22 does not irradiate the reference light L2. The transmitted probe light L11 irradiated to the finger F from the biometric light source 21 and transmitted from the finger F is received by the image detector 24 through the lens 25 and subjected to photoelectric conversion, and according to the light intensity of the transmitted probe light L11. The electrical signal S1 is output.
Next, the reference light L2 is irradiated from the biometric light source 22 onto the finger F in contact with the inspection surface 12a. At this time, the biometric light source 21 does not irradiate the probe light L1. That is, the biometric light source 21 and the biometric light source 22 are irradiated alternately. The transmitted reference light L12 irradiated to the finger F from the biometric light source 22 and transmitted from the finger F is received by the image detector 24 through the lens 25 and subjected to photoelectric conversion, and is according to the light intensity of the transmitted reference light L12. The electrical signal S2 is output.
[0036]
Both electric signals S1 and S2 output from the image detector 24 are temporarily recorded, and the dividing circuit 15a divides the electric signal S1 by the electric signal S2 to obtain a transmitted light intensity ratio S3. It is output to the comparison circuit 15b. It shows that the density | concentration of the oxyhemoglobin of the blood contained in the finger | toe F is so high that the transmitted light intensity ratio S3 is large. The transmitted light intensity ratio S3 output from the division circuit 15a is compared by the comparison circuit 15b with a preset upper limit value and lower limit value. When the transmitted light intensity ratio S3 is between the upper limit value and the lower limit value, it is determined that the finger F is a living body. When the transmitted light intensity ratio S3 is not between the upper limit value and the lower limit value, the finger F is a living body. Is determined, and the determination result is output as the identification signal S4.
[0037]
According to Embodiment 3 of the present invention, the probe F L1 and the reference light L2 are applied to the finger F that is in contact with the inspection surface 12a by the biometric light sources 21 and 22, and the image detector as the transmitted light detecting means. 24, an electric signal S1 corresponding to the light intensity of the transmitted probe light L11 transmitted through the inside of the finger and an electric signal S2 corresponding to the light intensity of the transmitted reference light L12 transmitted through the inside of the finger. The transmitted light intensity ratio S3 between the light intensity of the transmitted probe light and the light intensity of the transmitted reference light is obtained from both electrical signals S1 and S2 output from the living body identifying means 15, and the inspection surface is contacted from the transmitted light intensity ratio Since the finger is identified as to whether or not it is a living body, it is possible to reliably identify whether the finger is a replica or a living body finger without any change in the color information of the fingerprint image.
[0038]
Further, of the reduced hemoglobin and oxygenated hemoglobin contained in the blood of the finger F, the probe light L1 has a wavelength in the region where the absorption coefficient of oxidized hemoglobin is smaller than the absorption coefficient of reduced hemoglobin, and the reference light L2 is the oxygenated hemoglobin. Since the extinction coefficient and the extinction coefficient of reduced hemoglobin are in the same region, the transmitted light intensity ratio between the transmitted probe light L11 and the transmitted reference light L12 becomes significant, and the color information of the fingerprint image. Even if there is no change, it is possible to reliably identify whether the finger F is a replica or a biological finger.
[0039]
Further, since the wavelength of the probe light L1 is around 660 nm, the light intensity of the transmitted probe light L11 is significantly increased, and the transmitted light intensity between the light intensity of the transmitted probe light L11 and the transmitted light intensity of the transmitted reference light L12. Even if the ratio becomes more prominent and there is no change in the color information of the fingerprint image, it is possible to reliably identify whether the finger F is a replica or a biological finger.
[0040]
Further, the image detector 24 as a single transmitted light detecting means converts the light of the wavelength of the transmitted probe light L11 into an electrical signal and outputs the light, and the light of the wavelength of the transmitted reference light L12. Since the transmitted reference light detecting means for converting into electrical signals and outputting is made common, when the transmitted probe light detecting means and the transmitted reference light detecting means are separate, when the sensitivity changes due to deterioration in one of them, the dividing circuit 15a In the case of a single image detector 24, no error occurs in the output of the divider circuit 15a even when the sensitivity changes due to deterioration.
If the time interval for alternately irradiating the biometric light source 21 and the biometric light source 22 is shortened, the biometric time can be shortened.
In addition, since the single image detector 24 also has transmitted light detection means, the apparatus can be miniaturized.
[0041]
【The invention's effect】
  As described above, according to the fingerprint image input device of the present invention, the light source for biometric identification is used.In the wavelength region where the extinction coefficient of oxyhemoglobin contained in finger blood is smaller than the extinction coefficient of reduced hemoglobin contained in finger blood.With probe lightIn the wavelength region where the extinction coefficient of oxygenated hemoglobin and the extinction coefficient of reduced hemoglobin are equivalent.With reference lightOn the fingerAn electrical signal corresponding to the light intensity of the transmitted probe light that has been irradiated and transmitted through the finger by the probe light detection means, and an electrical signal corresponding to the light intensity of the transmitted reference light that has passed through the finger. To the two electrical signals output from the transmitted light detection means by the biometric identification means.ThanLight intensity of transmitted probe light and transmitted reference lightThe transmitted light intensity ratio is calculated to obtain the transmitted light intensity ratio.From,fingerIs identifying whether or not is a living body,The transmitted light intensity ratio between the light intensity of the transmitted probe light and the light intensity of the transmitted reference light becomes significant.Even if there is no change in the color information of the fingerprint image, it can be a replica or a biological finger.ofBiometric identificationcertainlycan do.
[0042]
  In addition, with a biometric light sourceIn the wavelength region where the extinction coefficient of oxyhemoglobin contained in finger blood is smaller than the extinction coefficient of reduced hemoglobin contained in finger blood.With probe lightIn the wavelength region where the extinction coefficient of oxygenated hemoglobin and the extinction coefficient of reduced hemoglobin are equivalent.With reference lightOn the finger touching the inspection surfaceAn electrical signal corresponding to the light intensity of the transmitted probe light that has been irradiated and transmitted through the finger by the probe light detection means, and an electrical signal corresponding to the light intensity of the transmitted reference light that has passed through the finger. And the transmitted light intensity ratio between the transmitted probe light intensity and the transmitted reference light intensity corresponding to both electrical signals output from the transmitted light detection means by the biological identification means Since it identifies whether or not the finger touching the inspection surface is a living body,The transmitted light intensity ratio between the light intensity of the transmitted probe light and the light intensity of the transmitted reference light becomes significant.Even if there is no change in the color information of the fingerprint image, it can be a replica or a biological finger.ofBiometric identificationcertainlycan do.
[0043]
  In addition, probe light in the wavelength region where the extinction coefficient of oxyhemoglobin contained in finger blood is smaller than the extinction coefficient of deoxyhemoglobin contained in finger blood, the extinction coefficient of oxyhemoglobin, and the extinction of deoxyhemoglobin. An electrical signal corresponding to the light intensity of the transmitted probe light that irradiates the finger in contact with the inspection surface with reference light in a wavelength region in which the coefficient is equivalent, and the transmitted light detection means transmits the probe light through the inside of the finger. The light intensity of the transmitted probe light corresponding to both electrical signals output from the transmitted light detection means by the living body identification means is output, and the electrical signal according to the light intensity of the transmitted reference light transmitted through the inside of the finger. Difference between the transmitted light intensity and the transmitted reference light intensity, and the difference between the transmitted light intensities is used to identify whether the finger touching the test surface is a living body. And transmitted reference light The difference of the transmitted light intensity of the strength becomes remarkable, even without change in the color information of the fingerprint image, it is possible to ensure the fingers of biometric identification of replica or biological.
[0044]
Further, since the wavelength of the probe light is around 660 nm, the light intensity of the transmitted probe light is significantly increased, and the transmitted light intensity ratio between the light intensity of the transmitted probe light and the transmitted reference light is more remarkable. Thus, even if there is no change in the color information of the fingerprint image, it is possible to reliably identify whether the finger is a replica or a biological finger.
[0045]
The transmitted light detecting means converts only the light having the wavelength of the transmitted probe light into an electrical signal and outputs it, and transmits the light having only the wavelength of the transmitted reference light converted into an electrical signal and outputs it. Since it has the reference light photoelectric conversion means, it is possible to irradiate the finger with the probe light and the reference light simultaneously. For this reason, it is not necessary to continuously monitor a certain amount of time required to change the color information of the fingerprint image as in the conventional example, and the time for biometric identification can be shortened.
[0046]
Furthermore, a single transmitted light detecting means converts the light of the wavelength of the transmitted probe light into an electrical signal and outputs it, and converts the light of the wavelength of the transmitted reference light into an electrical signal and outputs it. When the sensitivity of one of the transmission probe light photoelectric conversion means and the transmission reference light photoelectric conversion means changes due to deterioration when the transmission probe light photoelectric conversion means and the transmission reference light photoelectric conversion means are separate, An error occurs in the output of the arithmetic circuit, but in the case of a single transmitted light detection means, no error occurs in the output of the divider circuit even when the sensitivity changes due to deterioration.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a fingerprint image input apparatus according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing extinction coefficients at each wavelength of oxyhemoglobin and deoxyhemoglobin in human blood.
FIG. 3 is a block diagram showing a configuration of a fingerprint image input apparatus according to another embodiment of the present invention.
FIG. 4 is a block diagram illustrating a configuration of a fingerprint image input apparatus according to another embodiment of the present invention.
FIG. 5 is a block diagram showing a configuration of a conventional fingerprint image input apparatus.
[Explanation of symbols]
11, 21, 22 Light source for biometric identification
12 Transparent body
12a Inspection surface
13, 23, 24 Transmitted light detection means
15 Biological identification means
F finger
L1 probe light
L2 reference beam
L11 Transmitted probe light
L12 Transmitted reference light

Claims (8)

指の血液に含まれた酸化ヘモグロビンの吸光係数が指の血液に含まれる還元ヘモグロビンの吸光係数より小さくなる波長領域のプローブ光と上記酸化ヘモグロビンの吸光係数と上記還元ヘモグロビンの吸光係数とが同等になる波長領域の参照光とを指に対して照射する生体識別用光源、
上記プローブ光による上記指の内部への透過によって生じた透過プローブ光を受光して上記透過プローブ光の光強度に応じた電気信号を出力する手段と、上記参照光による上記指の内部への透過によって生じた透過参照光を受光して上記透過参照光の光強度に応じた電気信号を出力する手段とを具備した透過光検出手段、および
上記透過光検出手段から出力された上記両電気信号に基づき上記透過プローブ光の光強度と上記透過参照光の光強度との透過光強度比を演算し、上記透過光強度比から上記指が生体であるか否かを識別する生体識別手
備えたことを特徴とする指紋像入力装置。
Probe light in the wavelength region where the extinction coefficient of oxyhemoglobin contained in finger blood is smaller than the extinction coefficient of reduced hemoglobin contained in finger blood, the extinction coefficient of oxyhemoglobin, and the extinction coefficient of reduced hemoglobin are equivalent. A biometric light source for irradiating a finger with reference light in a wavelength region of
Means for receiving transmitted probe light generated by transmission of the probe light into the finger and outputting an electrical signal corresponding to the light intensity of the transmitted probe light; and transmission of the reference light into the finger to transmit the reference light by receiving transmitted light detecting means and means for outputting an electric signal corresponding to the light intensity of the transmitted reference beam, and the both electrical signal output from the transmitted light detection means caused by the transmittance probe light transmitted light intensity ratio between the light intensity and the light intensity of the transmitted reference beam is calculated, biometric hand stage identifies whether the finger from the transmitted light intensity ratio is a biological basis
Fingerprint image input apparatus characterized by comprising a.
検査面を有する透明体、
指の血液に含まれた酸化ヘモグロビンの吸光係数が指の血液に含まれる還元ヘモグロビンの吸光係数より小さくなる波長領域のプローブ光と上記酸化ヘモグロビンの吸光係数と上記還元ヘモグロビンの吸光係数とが同等になる波長領域の参照光とを上記検査面に接触された指に対して照射する生体識別用光源、
上記プローブ光による上記指の内部への透過によって生じた透過プローブ光を受光して上記透過プローブ光の光強度に応じた電気信号を出力する手段と、上記参照光による上記指の内部への透過によって生じた透過参照光を受光して上記透過参照光の光強度に応じた電気信号を出力する手段とを具備した透過光検出手段、および
上記透過光検出手段から出力された上記両電気信号に基づき上記透過プローブ光の光強度と上記透過参照光の光強度との透過光強度比を演算し、上記透過光強度比から上記検査面に接触された指が生体であるか否かを識別する生体識別手段
を備えたことを特徴とする指紋像入力装置。
A transparent body having an inspection surface,
Probe light in the wavelength region where the extinction coefficient of oxyhemoglobin contained in finger blood is smaller than the extinction coefficient of reduced hemoglobin contained in finger blood, the extinction coefficient of oxyhemoglobin, and the extinction coefficient of reduced hemoglobin are equivalent. A biometric light source for irradiating a finger in contact with the inspection surface with reference light in a wavelength region of
Means for receiving transmitted probe light generated by transmission of the probe light into the finger and outputting an electrical signal corresponding to the light intensity of the transmitted probe light; and transmission of the reference light into the finger to transmit the reference light by receiving transmitted light detecting means and means for outputting an electric signal corresponding to the light intensity of the transmitted reference beam, and the both electrical signal output from the transmitted light detection means caused by A transmitted light intensity ratio between the light intensity of the transmitted probe light and the transmitted reference light is calculated based on the transmitted light intensity ratio, and whether the finger touching the inspection surface is a living body is determined from the transmitted light intensity ratio. A fingerprint image input device comprising a biometric identification means.
検査面を有する透明体、A transparent body having an inspection surface,
指の血液に含まれた酸化ヘモグロビンの吸光係数が指の血液に含まれる還元ヘモグロビンの吸光係数より小さくなる波長領域のプローブ光と上記酸化ヘモグロビンの吸光係数と上記還元ヘモグロビンの吸光係数とが同等になる波長領域の参照光とを上記検査面に接触された指に対して照射する生体識別用光源、Probe light in the wavelength region where the extinction coefficient of oxyhemoglobin contained in finger blood is smaller than the extinction coefficient of reduced hemoglobin contained in finger blood, the extinction coefficient of oxyhemoglobin, and the extinction coefficient of reduced hemoglobin are equivalent. A biometric light source for irradiating a finger in contact with the inspection surface with reference light in a wavelength region of
上記プローブ光による上記指の内部への透過によって生じた透過プローブ光を受光して上記透過プローブ光の光強度に応じた電気信号を出力する手段と、上記参照光による上記指の内部への透過によって生じた透過参照光を受光して上記透過参照光の光強度に応じた電気信号を出力する手段とを具備した透過光検出手段、およびMeans for receiving transmitted probe light generated by transmission of the probe light into the finger and outputting an electrical signal corresponding to the light intensity of the transmitted probe light; and transmission of the reference light into the finger Means for receiving the transmitted reference light generated by the output and outputting an electrical signal corresponding to the light intensity of the transmitted reference light, and
上記透過光検出手段から出力された上記両電気信号に基づき上記透過プローブ光の光強度と上記透過参照光の光強度との透過光強度の差を演算し、上記透過光強度の差から上記検査面に接触された指が生体であるか否かを識別する生体識別手段Based on the both electrical signals output from the transmitted light detection means, a difference in transmitted light intensity between the transmitted probe light intensity and the transmitted reference light intensity is calculated, and the inspection is performed from the transmitted light intensity difference. Biological identification means for identifying whether or not a finger touching the surface is a living body
を備えたことを特徴とする指紋像入力装置。A fingerprint image input device comprising:
指紋像用光を指に対して照射する指紋像用光源、A fingerprint image light source for irradiating the finger with the fingerprint image light;
上記指紋像用光のうち上記指から反射された光を検出する画像検出手段、Image detection means for detecting light reflected from the finger among the fingerprint image light;
この画像検出手段によって検出された指紋像を取込む画像取込み手段、Image capturing means for capturing a fingerprint image detected by the image detecting means;
この画像取込み手段によって取込まれた上記指紋像を照合する指紋照合手段、Fingerprint collating means for collating the fingerprint image captured by the image capturing means;
を備えたことを特徴とする請求項1ないし3のいずれか1項に記載の指紋像入力装置。The fingerprint image input device according to any one of claims 1 to 3, further comprising:
指紋像用光を検査面に接触された指に対して照射する指紋像用光源、A fingerprint image light source for irradiating the finger touching the inspection surface with the fingerprint image light;
上記指紋像用光のうち上記指から反射された光を検出する画像検出手段、Image detection means for detecting light reflected from the finger among the fingerprint image light;
この画像検出手段によって検出された指紋像を取込む画像取込み手段、Image capturing means for capturing a fingerprint image detected by the image detecting means;
この画像取込み手段によって取込まれた上記指紋像を照合する指紋照合手段、Fingerprint collating means for collating the fingerprint image captured by the image capturing means;
を備えたことを特徴とする請求項1ないし3のいずれか1項に記載の指紋像入力装置。The fingerprint image input device according to any one of claims 1 to 3, further comprising:
プローブ光の波長は、600nm以上700nm以下であることを特The wavelength of the probe light is 600 nm or more and 700 nm or less. 徴とする請求項1ないし5のいずれか1項に記載の指紋像入力装置。The fingerprint image input device according to any one of claims 1 to 5, wherein 参照光の波長は、800nm以上900nm以下であることを特徴とする請求項1ないし5のいずれか1項に記載の指紋像入力装置。6. The fingerprint image input apparatus according to claim 1, wherein the wavelength of the reference light is 800 nm or more and 900 nm or less. 透過光検出手段と画像検出手段とが一体化していることを特徴とする請求項4または5のいずれか1項に記載の指紋像入力装置。6. The fingerprint image input device according to claim 4, wherein the transmitted light detection means and the image detection means are integrated.
JP18430398A 1998-06-30 1998-06-30 Fingerprint image input device Expired - Fee Related JP3788043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18430398A JP3788043B2 (en) 1998-06-30 1998-06-30 Fingerprint image input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18430398A JP3788043B2 (en) 1998-06-30 1998-06-30 Fingerprint image input device

Publications (2)

Publication Number Publication Date
JP2000020684A JP2000020684A (en) 2000-01-21
JP3788043B2 true JP3788043B2 (en) 2006-06-21

Family

ID=16150984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18430398A Expired - Fee Related JP3788043B2 (en) 1998-06-30 1998-06-30 Fingerprint image input device

Country Status (1)

Country Link
JP (1) JP3788043B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7627145B2 (en) 2000-09-06 2009-12-01 Hitachi, Ltd. Personal identification device and method
JP2003050993A (en) 2001-08-06 2003-02-21 Omron Corp Method and device for reading fingerprint
JP2003075135A (en) 2001-08-31 2003-03-12 Nec Corp Fingerprint image input device and organism discrimination method by fingerprint image
KR100442583B1 (en) * 2002-01-02 2004-08-02 (주)니트 젠 Method and apparatus for distinguishing forged fingerprint
EP2328111B1 (en) 2002-05-09 2018-12-12 Sony Corporation Blood vessel authentication
KR20020042588A (en) * 2002-05-11 2002-06-05 조기영 Fingerprint sensor using blood flow to recognize living bodies
KR20030095726A (en) * 2002-06-14 2003-12-24 씨큐트로닉스 (주) Apparatus and method for sensing a hematocele of finger for fingerprint input device
KR100471645B1 (en) * 2002-07-09 2005-03-10 씨큐트로닉스 (주) Apparatus and method for detecting a forged fingerprint for fingerprint input device
EP1679036B1 (en) 2003-08-15 2013-02-27 Nippon Telegraph And Telephone Corporation Organism recognition system
KR20070067149A (en) * 2004-10-22 2007-06-27 코닌클리케 필립스 일렉트로닉스 엔.브이. Biometrics-based identification method and apparatus
US7446316B2 (en) 2005-10-31 2008-11-04 Honeywell International Inc. Skin detection sensor
JP4694352B2 (en) * 2005-11-10 2011-06-08 三菱電機株式会社 Fingerprint verification device
JP4599320B2 (en) * 2006-03-13 2010-12-15 富士通株式会社 Fingerprint authentication device, biometric finger determination device, and biometric finger determination method
JP2008067727A (en) * 2006-09-12 2008-03-27 Hitachi Information & Control Solutions Ltd Personal authentication device
KR100816553B1 (en) * 2006-09-15 2008-03-25 (주)니트 젠 Method and apparatus for distinguishing fingerprint replica using fingerprint periodicity and directiveness
JP5299491B2 (en) * 2011-10-03 2013-09-25 ソニー株式会社 Biological information detection apparatus and biological information detection method
JP2012128868A (en) * 2012-02-16 2012-07-05 Hitachi Ltd Feature image photographing device and personal identification device
CN109061946B (en) * 2018-08-31 2022-03-11 Oppo广东移动通信有限公司 Display screen assembly and electronic equipment
JP2023068211A (en) 2020-03-30 2023-05-17 ソニーセミコンダクタソリューションズ株式会社 Electronic device

Also Published As

Publication number Publication date
JP2000020684A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
JP3788043B2 (en) Fingerprint image input device
KR930002346B1 (en) Biological object detection apparatus
KR101872753B1 (en) Fingerprint recognition method and fingerprint recognition apparatus
JP4281272B2 (en) Fingerprint image imaging method, fingerprint image acquisition method, fingerprint image imaging device, and personal identification device
US11030739B2 (en) Human detection device equipped with light source projecting at least one dot onto living body
KR101159142B1 (en) Information processing device
US10121051B2 (en) Optical apparatus and a method for identifying an object
JP2020093114A (en) Biometric authentication device
KR101701559B1 (en) Image correction apparatus, image correction method, and biometric authentication apparatus
US20080095412A1 (en) Method And System For Extracting Liveliness Information From Fingertip
US6845173B2 (en) Apparatus and method of inputting fingerprints
JP2004290664A (en) Identification device and fingerprint picture imaging method
JP2003085538A5 (en)
CN113785291A (en) Anti-spoofing method and system for devices including fingerprint sensors
US10503958B2 (en) Living body determination device, living body determination method, and program
WO2000057146A9 (en) System and method for calibrating a reflection imaging spectrophotometer
JP5534288B2 (en) Signal processing apparatus, method of operating signal processing apparatus, and program
JP7392779B2 (en) Imaging device, biological image processing system, biological image processing method, and biological image processing program
JP2708051B2 (en) Fingerprint image input device
JP5229490B2 (en) Biometric authentication device
JP2008009821A (en) Fingerprint authentication method and device thereof
JP2005046234A (en) Living body detecting method
KR20180029319A (en) Apparatus and method for measuring of blood oxygen saturation in vehicle
JPH03188574A (en) Organism identification device
KR100471645B1 (en) Apparatus and method for detecting a forged fingerprint for fingerprint input device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees