JP3787501B2 - Wall insulation layer construction method - Google Patents

Wall insulation layer construction method Download PDF

Info

Publication number
JP3787501B2
JP3787501B2 JP2001056838A JP2001056838A JP3787501B2 JP 3787501 B2 JP3787501 B2 JP 3787501B2 JP 2001056838 A JP2001056838 A JP 2001056838A JP 2001056838 A JP2001056838 A JP 2001056838A JP 3787501 B2 JP3787501 B2 JP 3787501B2
Authority
JP
Japan
Prior art keywords
glass mesh
urethane
heat insulation
wall surface
insulation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001056838A
Other languages
Japanese (ja)
Other versions
JP2002284288A (en
Inventor
丈能 西崎
元彦 中谷
文男 鎌田
稔 奥立
博一 塚口
真史 奥藤
明弘 藤尾
俊彦 古田
悦治 飯田
隆 中原
恒夫 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Osaka Gas Co Ltd
Toyo Tire Corp
Original Assignee
Obayashi Corp
Osaka Gas Co Ltd
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Osaka Gas Co Ltd, Toyo Tire and Rubber Co Ltd filed Critical Obayashi Corp
Priority to JP2001056838A priority Critical patent/JP3787501B2/en
Publication of JP2002284288A publication Critical patent/JP2002284288A/en
Application granted granted Critical
Publication of JP3787501B2 publication Critical patent/JP3787501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Building Environments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば液化天然ガス(LNG)や液化石油ガス(LPG)などの低温タンクや屋外冷凍庫、船舶等の外壁面に硬質ウレタンフォーム(以下、単に硬質ウレタンと称するものも含む)による断熱層を現場施工によって形成する壁面の断熱層施工法に関するものである。
【0002】
【従来の技術】
低温タンクなどの壁面に硬質ウレタンによる断熱層を形成するにあたっては、熱衝撃や温度勾配に起因した温度応力による有害なひび割れの発生とその進展を防ぐ表面補強、表面保護及び外観仕上げのために、硬質ウレタンの表面にガラス繊維織物、つまり、ガラスメッシュを表面材として貼付ける手段を採用するのが一般的である。
【0003】
上記のように硬質ウレタンとその表面に貼付けられるガラスメッシュとによりタンク壁面に所定の断熱層を現場施工するに際して、硬質ウレタンを直接、壁面に所要厚みに吹付け発泡する旧来からの施工法による場合は、施工壁面の研掃、プライマー処理、ウレタンのスプレー吹付け発泡による断熱層の形成、ウレタン断熱層厚さを一定にするための表面切削、断熱層表面への接着剤の塗布、ガラスメッシュの接着及び接着剤の乾燥によるウレタン断熱層とガラスメッシュとの一体化といった多くの工程を必要とするだけでなく、各工程のほとんどが作業者による人為作業であり、特に硬質ウレタン表面の切削は機械化が困難で手作業となるために、全体として膨大な工数および費用を要するという問題がある。また、硬質ウレタンの吹付け時に発生するミスト及び硬質ウレタン表面の切削時に発生する切削屑などの粉塵によって作業環境が悪化することは避けられず、殊に低温タンクにおける断熱層のように、内外二重壁の外壁の内面を断熱施工する際は、閉じられた狭い空間内での作業が強いられるために、ミストや粉塵による作業環境の悪化は顕著である。
【0004】
加えて、施工された断熱層の表面を平滑にし、かつ、その厚みを壁面全域に亘ってばらつきのないような均一な厚みに仕上げる必要であるが、このような厚み精度の良否は現場作業者の経験と熟練度に依存することになり、厚み精度の向上にも自ずと限界があるという問題もあった。
【0005】
上記のような多くの問題点を有する旧来の硬質ウレタンによる断熱層の施工法に代わるものとして、本出願人は、特願平11−363014号により、低温タンクの外壁を断熱施工の対象壁面とし、その断熱施工壁面に硬質ウレタンとガラスメッシュとを一体成型して断熱層を現場施工する施工法を既に提案している。
【0006】
本出願人が既に提案した壁面の断熱層施工法の要点は、断熱施工壁面との間に所定の断熱層の仕上がり厚さに相当する空間を形成保持しながら壁面に沿わせて走行可能な押え面板の走行に同期させて上記空間の押え面板側に表面材となるガラスメッシュを繰り出すと同時に、その繰り出しガラスメッシュと断熱施工壁面との間にウレタン原液を注入し発泡させて硬質ウレタンとガラスメッシュとが一体成型された断熱層を現場施工する方法である。
【0007】
上記施工法を具体的に詳述すると、図10に示すように、コンクリート製外壁2の内表面を構成するスチールライナ面(断熱施工壁面となる)4との間に所定の断熱層7の仕上がり厚さtに相当する空間11を形成した状態でゴンドラ8を介してスチールライナ面4に平行に沿わせて昇降走行可能な押え面板12の上昇走行に同期して、押え面板12の内面側に表面材としてのガラスメッシュ6単体を繰り出し、その繰り出したガラスメッシュ6とスチールライナ面4との間にヘッド16からウレタン原液を注入し発泡させることにより、硬質ウレタン5とガラスメッシュ6とが一体成型された断熱層7を施工する方法である。
【0008】
しかし、図10に示す施工法の場合は、空間11に注入されたウレタン原液が発泡して硬化するまでの間のゲル状〜半硬化状のウレタンがガラスメッシュ6に直接当たる状況にあるために、そのゲル状〜半硬化状ウレタンがガラスメッシュ6の格子状の目を通して外部に漏れ出し、その漏れ出たウレタンが押え面板12に付着して硬化し、その付着硬化したウレタン5aが障害となってそれ以降における一体成型施工が行なえなくなるという問題があり、このような問題をなくして上述のような一体成型による合理的かつ能率的な断熱層施工法を壁面全域に亘って実現可能とするためには、ウレタンの漏れ止め対策が必要不可欠となる。
【0009】
このようなウレタンの漏れ止め対策として、本出願人が既に提案した壁面の断熱層施工法においては、図11に示すように、ガラスメッシュ6の押え面板12側の面(裏面)に離型紙等の離型面材13を非接着状態で単に重ね合わせたり、あるいは、図12に示すように、離型面材13を粘着剤を介してガラスメッシュ6の裏面に微粘着状態に貼り付けたりする手段を試みていた。なお、図10〜図12において、後述する本発明の実施態様で説明するものと同一の構成要素及び相当する部位にはそれぞれ同一の符号を付すこととする。
【0010】
【発明が解決しようとする課題】
しかしながら、図11に示すように、ウレタン漏れ止め用の離型面材13をガラスメッシユ6の裏面に非接着状態で単に重ね合わせるだけの場合は、ウレタン発泡時の発泡圧によって離型面材13が外側、つまり、ガラスメッシュ6から離れる側に押されてガラスメッシュ6の裏面と離型面材13との間に隙間が発生し、ガラスメッシュ6の格子状の目から漏れ出たゲル状〜半硬化状ウレタンが隙間に入り込んで硬化し、その結果、ガラスメッシュ6が硬質ウレタン5の肉厚内に埋まってしまい、表面材としての機能が損なわれてしまうという問題がある。
【0011】
一方、図12に示すように、ウレタン漏れ止め用離型面材13をガラスメッシュ6の裏面に粘着剤を介して貼り付ける場合は、その離型面材13とガラスメッシュ6の格子とにより多数の凹状空間が形成され、この多数の凹状空間がウレタン発泡時のガス溜まりとなって、ウレタン硬化後にその硬質ウレタン5の表面にボイド5bとなって残存し、これが断熱層7表面の外観仕上げを悪化する要因になると同時に、ガラスメッシュ6と硬質ウレタン5との一体接着性能を低下させる要因にもなるという問題がある。
【0012】
さらに、離型面材13とガラスメッシュ6とを重ね合わせ一体化した状態のままで空間11に繰り出して、ウレタン原液の注入発泡により硬質ウレタン5とガラスメッシュ6とが一体成型された断熱層7を施工する施工法では、図11及び図12のいずれの場合でも、離型面材13とガラスメッシュ6の伸縮性の相違によって皺などが発生しやすく、この皺などが断熱層7の表面に残存して外観仕上げ上の不具合になることは避けられないという問題があった。
【0013】
本発明は上記のような実情に鑑みてなされたもので、ウレタンの漏れ出しに起因してガラスメッシュが硬質ウレタンの肉厚内に埋まったり、表面にボイドが形成されたりすることなく、ウレタンの現場発泡によるガラスメッシュと硬質ウレタンの一体成型という能率的、経済的な施工でありながら、外観的にも強度的にも壁面全域に亘って均一かつ良好な仕上がりの断熱層を施工することができる壁面の断熱層施工法を提供することを主たる目的としている。
【0014】
本発明の他の目的は、上記目的に加えて、ウレタンの漏れ止めのためにガラスメッシュに離型面材を重ね合わせ一体化して使用しつつ、断熱層の表面への皺などの不具合の発生を極力回避することができるようにする点にある。
【0015】
【課題を解決するための手段】
上記主たる目的を達成するために、本発明の請求項1に係る壁面の断熱層施工法は、断熱施工壁面との間に所定の断熱層の仕上がり厚さに相当する空間を形成保持しながら壁面に沿わせて走行可能な押え面板の走行に同期させて上記空間の押え面板側に表面材となるガラスメッシュを繰り出すと同時に、その繰り出しガラスメッシュと断熱施工壁面との間にウレタン原液を注入し発泡させて硬質ウレタンフォームとガラスメッシュとが一体成型された断熱層を現場施工する壁面の断熱層施工法であって、上記ガラスメッシュのウレタン発泡側の面には、ウレタン系接着剤を用いて20〜300μmの膜厚に形成されウレタン発泡圧力により部分的に破損可能な薄い樹脂膜がコーティングされているとともに、ガラスメッシュの押え面板側の面にはウレタン漏れ止め用の離型面材を重ね合わせ、この離型面材をガラスメッシュと共に繰り出すことを特徴とするものである。
【0016】
上記のような特徴を有する本発明の請求項1による壁面の断熱層施工法によれば、押え面板を走行させつつ、この押え面板と断熱施工壁面との間に連続的に形成保持される空間の押え面板の内面に沿うようにガラスメッシュを順次繰り出すと同時に、その繰り出しガラスメッシュと壁面との間の空間にウレタン原液を注入し発泡させるといった一連の工程により、硬質ウレタンフォームとガラスメッシュとが一体成型された断熱層を、非常に能率的かつ経済的に施工することが可能であるとともに、切削に伴う粉塵の発生や吹き付け発泡でみられるようなミストの発生もなく、作業環境の大幅な改善が図れる。
【0017】
その上、押え面板と断熱施工壁面との間の空間に繰り出されるガラスメッシュのウレタン発泡側の面にはコーティングされた薄い樹脂膜が存在し、かつ、押え面板側の面にはウレタン漏れ止め用の離型面材が重ね合わせられているので、ウレタンの発泡硬化がある程度進行するまでの間にゲル状〜半硬化状のウレタンがガラスメッシュの格子状の目から漏れ出すことを抑えつつ、ウレタンの発泡硬化がある程度まで進行した状態では発泡圧力及び発熱によりコーティング樹脂膜が部分的に破損されてガラスメッシュの格子の目から一部のウレタンが離型面材側に漏れ、この一部のウレタン漏れによって離型面材とガラスメッシュの格子とにより形成される多数の凹状空間内のガスを押し出してガス溜まりのあるままでウレタンが硬化することを防げる。その結果、ガラスメッシュが硬化ウレタンフォームの肉厚内の表面側に埋まることがないとともに、硬化した硬質ウレタンフォームの表面にボイドが発生することもなくなり、表面の外観仕上げ及びガラスメッシュと硬質ウレタンフォームとの一体接着性能に優れた断熱層を施工することが可能となる。
【0018】
本発明の請求項1に係る壁面の断熱層施工法において、ガラスメッシュの押え面板側のウレタン漏れ止め用離型面材を、請求項2に記載のように、ガラスメッシュに対して非接着状態で重ね合わせて用いる場合は、ガラスメッシュと離型面材の伸縮性が互いに異なるものであっても、その伸縮性が相互に影響することがないため、施工後の断熱層表面の外観跡(欠点)となる皺の発生を少なくすることが可能である。
【0019】
また、本発明の請求項1に係る壁面の断熱層施工法において、ガラスメッシュのウレタン発泡側の面に形成されるコーテング樹脂膜としては、ウレタン系接着剤を用いて20〜300μm、好ましくは60〜180μmの膜厚に形成することが望ましい。膜厚が20μm未満の場合は、ウレタンの発泡過程のうち発泡圧力の低い時点でコーティング樹脂膜の全体が破れ、多量のゲル状〜未硬化ウレタンがガラスメッシュの格子の目から漏れ出して離型面材との間の隙間に入り込んで硬化し、その結果、ガラスメッシュが硬化ウレタンフォームの肉厚内の表面側に埋まってしまう可能性が高い。また、300μmを越える膜厚の場合は、ウレタンの発泡過程でコーティング樹脂膜が破れず、その結果、ガス溜まりを形成してボイドを発生する可能性が高い。
【0020】
さらに、本発明に係る壁面の断熱層施工法を、請求項に記載のように、断熱施工壁面に硬質ウレタンフォームと同一厚み及び同等の断熱特性を持つ既製のスペーサーを所定間隔を隔てて互いに平行状態で、かつ、断熱施工壁面の上下方向に向けて直線的に貼付け施工した後、上記スペーサーの長手方向下端からスペーサーの長手方向上端に向けてのゴンドラの上昇移動に伴い隣接する一対のスペーサーの表面にローラーを押し当て走行させるとともに、上記押え面板を隣接する一対のスペーサーの対向面間に入り込んで断熱施工壁面との間に所定の断熱層の仕上がり厚さに相当する空間を形成保持しながら壁面に沿わせて走行させつつ、上記ガラスメッシュのコーティング樹脂膜と断熱施工壁面との間に硬質ウレタン原液を注入し発泡させて隣接する一対のスペーサー間に硬質ウレタンフォームとガラスメッシュとが一体成型された単位施工区域の断熱層を繰り返し施工するといった低温タンク外壁等の大面積の壁面に対する断熱層施工に適用することによって、壁面に先行して貼付け施工されたスペーサーを注入発泡成型される硬質ウレタンフォームの厚みの基準にして押え面板の押え荷重及び面積、ウレタンの発泡特性を考慮した原液の注入量などを適切にコントロールすることが可能であり、特別な経験や高度な熟練を要することなく、硬質ウレタンフォームとガラスメッシュの一体成型による大面積に及ぶ断熱層の厚み精度及び表面精度を向上させることが可能である。
【0021】
また、本発明の請求項に係る壁面の断熱層施工法は、断熱施工壁面との間に所定の断熱層の仕上がり厚さに相当する空間を形成保持しながら壁面に沿わせて走行可能な押え面板の走行に同期させて上記空間の押え面板側に表面材となるガラスメッシュを繰り出すと同時に、その繰り出しガラスメッシュと断熱施工壁面との間にウレタン原液を注入し発泡させて硬質ウレタンフォームとガラスメッシュとが一体成型された断熱層を現場施工する壁面の断熱層施工法であって、上記ガラスメッシュのウレタン発泡側の面には、ウレタン系接着剤を用いて20〜300μmの膜厚に形成されウレタン発泡圧力により部分的に破損可能な薄い樹脂膜がコーティングされているとともに、上記ガラスメッシュの押え面板側の面には、その全長に亘ってウレタン漏れ止め用の離型面材が予め重ね合わせ一体化されており、その一体化されたガラスメッシュと離型面材との重ね合わせを、上記空間に繰り出す直前で、一旦、連続的に剥がした後、その剥がした離型面材に引張り力を加えながら、この離型面材を再びガラスメッシュに重ね合わせて上記空間に繰り出すことを特徴とするものである。
【0022】
上記のような特徴を有する本発明の請求項による壁面の断熱層施工法によれば、押え面板と断熱施工壁面との間の空間に繰り出されるガラスメッシュの押え面板側の面にウレタン漏れ止め用の離型面材を予め重ね合わせ一体化しているので、両者(ガラスメッシュ及び離型面材)を別々に繰り出す必要がなく、単一の繰り出し装置を用いて空間に同時に供給することが可能である。その上、空間への繰り出し直前には、一旦、両者を連続的に剥がし、その剥がした離型面材に引張り力を加えることで、ガラスメッシュとの伸縮性の相違によって離型面材側に発生している皺などを積極的に取り除いた後、再びガラスメッシュに重ね合わせて空間に繰り出すことによって、断熱層の表面に皺などの不具合が発生することを極力回避し、表面の外観仕上がりのよい断熱層を施工することが可能である。
【0023】
本発明の請求項に係る壁面の断熱層施工法において、上記ウレタン漏れ止め用離型面材は、請求項に記載のように、ガラスメッシュの押え面板側の面に非接着状態に重ね合わせ一体化しても、あるいは、弱接着状態に重ね合わせ一体化してもよく、また、上記ガラスメッシュと離型面材との重ね合わせを連続的に剥がし、かつ、剥がされた離型面材に引張り力を加える手段として、請求項に記載のように、ガラスメッシュの一定繰り出し経路に対して遠近移動可能なローラを使用することによって、両者(ガラスメッシュ及び離型面材)を円滑な繰り出し状態に保ちつつ、上述のように、皺などの不具合の発生を回避することができる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を図面にもとづいて説明する。
図1は本発明の請求項1〜による壁面の断熱層施工法を、低温タンク外壁への断熱層施工に適用する場合における施工装置の概略構成及び断熱施工状況の概要を示す側面図、図2はその正面図である。この断熱施工装置Aは、図3に明示するように、LNG等を貯蔵する低温タンクにおける内槽1とこの内槽1の外周を取り囲むコンクリート製外槽(外壁)2との間の環状空間3に設置されて、外壁2表面のスチールライナ面4に冷熱抵抗緩和材として、硬質ウレタンフォーム(以下,PUFと称する)5とこのPUF5の表面を覆い補強する表面材としてのガラスメッシュ6とがウレタンの現場発泡により一体成型された断熱層7を施工するように用いられるものである。
【0025】
上記断熱施工装置Aは、図1及び図2に示すように、内外槽1,2間の頂部に設置されたトロリービーム(図示省略する)に取り付けられて空間3内を断熱施工対象壁面となるスチールライナー面4に沿って昇降自在に吊持されるゴンドラ8を備え、このゴンドラ8に断熱層7を一体成型するための設備が装備されている。
【0026】
上記ゴンドラ8に装備されている一体成型設備は、上記スチールライナー面4に予め所定の等間隔Lを隔てて互いに平行状態で、かつ、スチールライナー面4の上下方向に向けて直線的に貼付け施工される一対の既製スペーサー9,9(詳細は後述する)の表面に押し当てられゴンドラ8の昇降に伴い上下に走行可能な押し当てローラー10と、この押し当てローラー10の下部に配置されて一対のスペーサー9,9の対向面間に入り込んでスチールライナー面4との間にPUF5の仕上がり厚みtに相当する空間11を形成保持可能な矩形状の押え面板12と、ゴンドラ8内の下部に配置されてガラスメッシュ6を該ガラスメッシュ6の表面側に重ね合わせられた離型面材としての離型紙13と共にロール状に巻回保持するとともにゴンドラ8の上昇走行に伴い案内ローラー14及び上記押し当てローラー10を経て上記空間11の押え面板12側に順次繰り出し可能なガラスメッシュ供給装置15と、ゴンドラ8内の上部に配置されてガラスメッシュ供給装置15から離型紙13と共に繰り出されるガラスメッシュ6とスチールライナー面4との間にウレタン原液を注入するウレタン注入ヘッド16及びその注入ヘッド16を横方向に往復移動させるためのトラバーサー17とから構成されている。なお、上記スペーサー9は、スチールライナー面4に注入発泡成型されるPUF5と同等の断熱特性を持つようにPUF5と同一の硬質ウレタン材料を使用してPUF5の仕上がり厚みtと同一厚みに成型されている。
【0027】
上記ガラスメッシュ6の表面側、つまり、上記空間11に繰り出された時に押え面板12側となる面には、図4に拡大して明示するように、ウレタン漏れ止め用離型紙13が非接着状態で重ね合わせられているとともに、ガラスメッシュ6の裏面側、つまり、上記空間11に繰り出された時にPUFの注入発泡側となる面には薄い樹脂膜19がコーティングされている。このコーティング樹脂膜19は、ウレタン系接着剤をガラスメッシュ6の面全域に60g/m2 塗布して20〜300μm、好ましくは60〜180μmの膜厚に形成されている。
【0028】
次に、上記のような構成の断熱施工装置Aを用いて低温タンクにおける外槽2内面のスチールライナー面4に対する断熱層施工要領について、図5〜図7を参照しながら列記説明する。
(1)スチールライナー面4の埃、付着物、浮き錆等を除去したのち、必要に応じてサンドペーパー等を用いて面荒らしする下地処理を行なう。
(2)下地処理後のスチールライナー面4にローラー刷毛等を用いて無溶剤プライマーを塗布する。
(3)上述した一体成型設備をゴンドラ8に装備させた断熱施工装置Aを内外槽1,2間の空間3に搬入し組立てるとともに、発泡機室や高圧発泡機、コンプレッサーなどを低温タンクにおける外槽2の外部グランド面に設置する。
(4)スチールライナー面4のうち側壁上部WU及び側壁下部・底部コーナー部WDを除く側壁部Wに対する断熱施工を行なう。
(5)側壁上部WU及び側壁下部・底部コーナー部WDに対する断熱施工を行なう。
【0029】
上記(1)〜(5)の順番で行なわれる断熱施工のうち、本発明による断熱層施工法は、(4)に示す側壁部Wの断熱施工に適用されるものであり、この側壁部Wの具体的な施工手順は次の通りである。
《1》側壁部Wのスチールライナー面4に水平横方向に所定ピッチ幅でマーキングを行なう。
《2》マーキング位置に合わせてウレタン系接着剤を用いて複数の既製スペーサー9を所定間隔Lを隔てて互いに平行で、かつ、上下方向に向けて直線的に貼付ける。
《3》断熱施工装置Aの押し当てローラー10を隣接する一対のスペーサー9,9の表面に押し当てるとともに、押え面板12を一対のスペーサー9,9の対向端面間に入り込ませて該押え面板12とスチールライナー面4との間に施工予定のPUF5の仕上がり厚みtに相当する空間11を形成させた状態でゴンドラ8を上昇させて断熱施工装置Aの全体をスペーサー9,9の長手方向下端から上端に向けて走行させる。この走行に伴って、図1に示すように、ガラスメッシュ供給装置15にロール状に巻回保持されている離型紙13及びガラスメッシュ6が案内ローラー14及び押し当てローラー10を経て上記空間11の押え板12側に順次繰り出されると同時に、その繰り出されたガラスメッシュ6とスチールライナー面4との間の空間11にトラバーサー17を介し横方向に往復移動されるヘッド16からウレタン原液が注入され発泡する。このように空間11に注入され発泡したウレタン原液はゲル状〜半硬化を経て硬化し、図6に示すように、隣接する一対のスペーサー9,9間にPUF5とその表面のガラスメッシュ6とが一体成型された所定厚みtの単位施工区域の断熱層7A-1を施工する。
《4》単位施工区域の断熱層7A-1の施工が終わると、スペーサー9,9の表面上にはみ出した注入ウレタンをカットした上、断熱施工装置Aを次に隣接する一対のスペーサー9,9間に移行セットして、上記《3》の場合と同様な手順で単位施工区域の断熱層7A-2を施工する。このような単位施工区域の断熱層7A-1〜7A-nをスチールライナー面4の全面に亘って複数回繰り返し施工することにより、側壁部W全域に及ぶ断熱層7を施工する。
《5》断熱層7の施工後は、各スペーサー9の表面上にはみ出た注入ウレタンを綺麗に除去した上、各スペーサー9の表面に接着剤を塗布して目地部用ガラスメッシュ18を貼付ける。この目地部用ガラスメッシュ18は、各スペーサー9の表面だけでなく、図7に示すように、各スペーサー9の左右両側に隣接する単位施工区域の断熱層7A,7Aの端部表面をオーバーラップするように貼付け施工される。
【0030】
以上の側壁部Wの断熱層7の施工のうち、《3》で述べたように、ヘッド16からウレタン原液が注入発泡される空間11の一方に位置するガラスメッシュ6のウレタン発泡側の面にはウレタン系接着剤から形成された薄い(20〜300μmで、好ましくは60〜180μm膜厚)コーティング樹脂膜19が存在するとともに、ガラスメッシュ6の押え面板12側の面にはウレタン漏れ止め用離型紙13が非接着状態に重ね合わせられているので、注入ウレタンの発泡硬化がある程度進行するまでの間にゲル状〜半硬化状のウレタンがガラスメッシュ6の格子状の目から離型紙13側へ漏れ出すことは抑えられており、ウレタンの発泡硬化がある程度まで進行した状態では発泡圧力と発熱によりコーティング樹脂膜19が部分的に破られてガラスメッシュ6の格子の目から離型紙13側に一部のウレタンが漏れ、この一部のウレタン漏れによって離型紙13とガラスメッシュ6の格子とにより形成される多数の凹状空間に溜まっているガスが離型紙13とガラスメッシュ6の間の隙間を通って外部に排出され、凹状空間がガス溜まりになったままでウレタンが硬化することを防ぐ。その結果、多量のウレタンの漏れ出しに伴ってガラスメッシュ6がPUF5の肉厚内の表面側に埋まることがないとともに、PUF5の表面にボイドが発生することもなくなり、外観仕上がりに優れているだけでなく、ガラスメッシュ6とPUF5とが強固に一体接着された断熱層7を施工することが可能である。
【0031】
因みに、本発明者らが実験的に行なったLNGタンクの断熱施工例及びその成果について以下説明する。
本発明施工例:ガラスメッシュとしてカネボウ(株)製KS−5431を使用するとともに、樹脂膜のコーティング材としてウレタン系樹脂接着剤を使用し、ガラスメッシュに離型紙を非接着状態に重ね合わせた面材を作成し、これをウレタンと一体に発泡成型した。
比較施工例:ガラスメッシュとしてカネボウ(株)製KS−5431を使用し、このガラスメッシュに離型紙を粘着剤を介して一体に接着した面材を作成し、これをウレタンと一体に発泡成型した(図12の施工法に対応する)。
【0032】
上記の本発明施工例と比較施工例とにより施工された断熱層について各種性能を比べると、表1のような結果が得られた。この表1からも明らかなように、コーティング樹脂膜と離型紙を併用した面材を用いる本発明の施工法においては、外観仕上がりが均一かつ良好であるとともに、ガラスメッシュと硬質ウレタンとの一体化が強固で強度的にも優れた断熱層が得られることが分かる。
【0033】
【表1】

Figure 0003787501
【0034】
なお、上記実施の形態では、離型紙13をガラスメッシュ6の押え面板12側の面に非接着状態に重ね合わせて用いることで、ガスを外部にスムーズに排出させてガス溜まりの形成に伴うボイドの発生を防止できるようにしたものについて説明したが、離型紙13をガラスメッシュ6に対して部分的に接着させて用いてもよい。この場合でも、発泡過程でコーティング樹脂膜19が部分的に破られてガラスメッシュ6の格子の目から漏れ出す一部のウレタンによってガスを離型紙13とガラスメッシュ6の間に形成される微小隙間を通して外部に排出させ、ボイドの発生を外観上殆ど問題とならない程度に十分抑制することが可能である。
【0035】
図8は本発明の請求項による壁面の断熱層施工法に適用される施工装置A´の概略構成及び断熱施工状況の概要を示す側面図である。この断熱層施工装置A´は、図1に示す施工装置Aと大部分が同一の構成を有するものであり、それと同一の構成または相当する部位には同一の符号を付して、それらの詳しい説明を省略し、相違する構成について以下、説明する。
【0036】
図8に示す断熱層施工装置A´では、ガラスメッシュ6の表面側、つまり、スチーライナー面4と押え面板12との間の空間11にガラスメッシュ6が繰り出された時に押え面板12側となる面に、図9に明示するように、ウレタン漏れ止め用離型紙13が非接着状態(もしくは弱接着状態)で重ね合わせられるように、両者6,13を予め一体化してガラスメッシュ供給装置15にロール状に巻回保持されている。このガラスメッシュ供給装置15から繰り出されて案内ローラ14及び押し当てローラ10を経て上記空間11の押え面板12側に順次繰り出される直前において、ガラスメッシュ6と離型紙13とを一旦、連続的に剥がすべく上記両ローラ14,10間の中間部には、ガラスメッシュ6の略水平面に沿った一定繰り出し経路に対して上下に遠近移動可能なローラ20が設けられている。
【0037】
上記のような構成の断熱層施工装置A´による断熱層7の施工要領及び手順も基本的には図1に示す施工装置Aと同様に図5〜図7で説明した通りであり、異なる点は、予め重ね合わせ一体化されてロール状に巻回保持されているガラスメッシュ6と離型紙13とがガラスメッシュ供給装置15から繰り出されて案内ローラ14及び押し当てローラ10を経て空間11の押え面板12側に順次繰り出される直前において、離型紙13がローラ20を介してガラスメッシュ6から一旦、連続的に剥がされるとともに、ローラ20の矢印u−d方向の移動量調整によって剥がされた離型紙13に引張り力が加えられてガラスメッシュ6との伸縮性の相違により生じている皺などが除去された後、押し当てローラ10により再びガラスメッシュ6に重ね合せられて空間11に繰り出されることであり、これによって、図9に示すように、断熱層7の表面に皺などの不具合が発生することを回避し、表面の外観仕上がりのよい断熱層7を施工することが可能となる。
【0038】
なお、図8及び図9に示す断熱層施工法においては、コーティング樹脂膜19が形成されていないものについて説明したが、ガラスメッシュ6の裏面側、つまり、PUFの注入発泡側となる面に薄い樹脂膜19をコーティングしてPUF5の表面へのボイドの発生を防止するようにする
【0039】
【発明の効果】
以上のように、本発明の請求項1によれば、表面材としてのガラスメッシュの繰り出しとウレタン原液の注入発泡といった現場での一連の工程により、硬質ウレタンフォームとガラスメッシュとが一体成型された断熱層を非常に能率的かつ経済的に施工することができるとともに、切削に伴う粉塵の発生や吹き付け発泡でみられるようなミストの発生もなく、作業環境の大幅な改善を図ることができる。
【0040】
しかも、ガラスメッシュのウレタン発泡側の面に薄いコーティング樹脂膜が存在し、かつ、押え面板側の面にウレタン漏れ止め用離型面材を重ね合わせて用いることによって、発泡過程でのゲル状〜半硬化状ウレタンの漏れ出し量を適正にコントロールすることができるために、漏れ出し量が過剰である場合にガラスメッシュが硬化ウレタンフォームの肉厚内の表面側に埋まってしまうことを防止できるとともに、漏れ出しがない、あるいは、漏れ出し量が不十分である場合に硬質ウレタンフォームの表面にボイドが発生することを防止でき、これによって、表面の外観仕上げに優れているだけでなく、ガラスメッシュと硬質ウレタンフォームとの一体接着性能にも優れた断熱層を施工することができるという効果を奏する。
【0041】
特に、請求項2のように、ガラスメッシュに対して非接着状態で重ね合わせて用いることによって、ガラスメッシュと離型面材の伸縮性が互いに異なるものであっても、その伸縮性の相互影響に伴う断熱層表面の外観跡(欠点)となる皺の発生を防止でき、また、ガラスメッシュ及び離型面材各々に別々にテンションを掛けて皺を事前に取り除くことも容易であり、一層外観仕上がりに優れた断熱層を施工することができる。
【0042】
また、本発明の施工法を、請求項のように、断熱施工壁面に硬質ウレタンフォームと同一厚さ及び同等の断熱特性を持つ既製のスペーサーを先行して貼付け施工し、そのスペーサーを注入発泡成型される硬質ウレタンフォームの厚みの基準にして押え面板の押え荷重及び面積、ウレタンの発泡特性を考慮した原液の注入量などを適切にコントロールするといった施工に適用することにより、特別な経験や高度な熟練を要することなく、硬質ウレタンフォームとガラスメッシュの一体成型による大面積に及ぶ断熱層の厚み精度及び表面精度を飛躍的に向上させることができる。
【0043】
さらに、本発明の請求項によれば、ガラスメッシュとウレタン漏れ止め用の離型面材を予め重ね合わせ一体化しておくことで両者を別々に繰り出すような複雑な繰り出し装置を使用する必要がなく、単一の繰り出し装置を用いてガラスメッシュ及び離型面材を空間に同時に供給することができる。しかも、空間への繰り出し直前に、一旦、両者の重ね合せを連続的に剥がし、その剥がした離型面材に引張り力を加えてガラスメッシュとの伸縮性の相違によって離型面材側に発生している皺などを取り除いた後、再びガラスメッシュに重ね合わせて空間に繰り出すことによって、断熱層の表面に皺などによる品質不具合が発生することを極力回避し、外観仕上がりのよい断熱層を施工することができるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明の請求項1〜による壁面の断熱層施工法を低温タンク外壁の断熱層施工に適用する場合における施工装置の概略構成及び断熱施工状況の概要を示す側面図である。
【図2】図1の正面図である。
【図3】断熱施工箇所を説明する要部の拡大縦断側面図である。
【図4】図1の丸囲いしたX部の拡大断面図である。
【図5】低温タンク外壁の側壁部の断熱施工状態を説明する要部概念図である。
【図6】割付けられた単位施工区域の断熱層施工部を示す要部の拡大正面図である。
【図7】施工された断熱層の構造を示す要部の拡大横断面図である。
【図8】 本発明の請求項による壁面の断熱層施工法に適用される施工装置の概略構成及び断熱施工状況の概要を示す側面図である。
【図9】図8の丸囲いしたY部の拡大断面図である。
【図10】 本出願人が既に提案している低温タンク壁面の断熱層施工法による施工状況の概要を示す側面図である。
【図11】 図10に示す断熱層施工法による問題点を解消する手段を試みた施工法の一例を示す側面図である。
【図12】 図10に示す断熱層施工法による問題点を解消する手段を試みた施工法の他の例を示す側面図である。
【符号の説明】
4 スチールライナー面(断熱施工対象面)
5 硬質ウレタンフォーム(PUF)
6 ガラスメッシュ
7 断熱層
8 ゴンドラ
9 スペーサー
10 押し当てローラー
11 空間
12 押え面板
13 剥離紙(離型面材)
19 コーティング樹脂膜
20 離型紙剥がし用ローラ[0001]
BACKGROUND OF THE INVENTION
The present invention is, for example, a low-temperature tank such as liquefied natural gas (LNG) or liquefied petroleum gas (LPG), an outdoor freezer, a heat insulating layer made of rigid urethane foam (hereinafter also simply referred to as rigid urethane) on the outer wall surface of a ship or the like. It is related with the heat insulation layer construction method of the wall surface formed by site construction.
[0002]
[Prior art]
When forming a heat insulation layer with hard urethane on the wall surface of a low temperature tank, etc., for surface reinforcement, surface protection and appearance finish to prevent the occurrence and development of harmful cracks due to thermal stress due to thermal shock and temperature gradient, In general, a means for sticking a glass fiber fabric, that is, a glass mesh as a surface material to the surface of the hard urethane is employed.
[0003]
When applying the specified heat insulation layer on the tank wall surface by hard urethane and the glass mesh stuck on the surface as described above, when using the conventional construction method in which hard urethane is directly blown and foamed to the wall surface Cleaning of construction walls, primer treatment, formation of heat insulation layer by spray spray foaming of urethane, surface cutting to make the thickness of urethane heat insulation layer constant, application of adhesive to the surface of heat insulation layer, glass mesh Not only does it require many processes such as the integration of the urethane insulation layer and glass mesh by bonding and drying of the adhesive, but most of the processes are man-made by workers, especially cutting hard urethane surfaces. However, since this is difficult and manual, there is a problem that a huge amount of man-hours and costs are required as a whole. In addition, it is inevitable that the working environment is deteriorated by dust such as mist generated when hard urethane is sprayed and cutting waste generated when cutting the surface of hard urethane. When heat-treating the inner surface of the outer wall of the heavy wall, work in a closed and narrow space is forced, so the work environment is significantly deteriorated due to mist and dust.
[0004]
In addition, it is necessary to smooth the surface of the applied heat insulation layer and finish it to a uniform thickness that does not vary over the entire wall surface surface. There was also a problem that there was a limit in improving the thickness accuracy.
[0005]
As an alternative to the conventional construction method of a heat insulating layer made of hard urethane having many problems as described above, the present applicant made the outer wall of a low-temperature tank the subject wall surface of heat insulation work according to Japanese Patent Application No. 11-363014. We have already proposed a construction method in which hard urethane and glass mesh are integrally formed on the heat insulation construction wall surface and a heat insulation layer is constructed on site.
[0006]
The main point of the wall insulation layer construction method that the applicant has already proposed is that the presser can be run along the wall surface while maintaining a space corresponding to the finished thickness of the predetermined insulation layer between the insulation wall surface Synchronously with the travel of the face plate, the glass mesh that is the surface material is fed out to the holding face plate side of the above space, and at the same time, the urethane stock solution is injected between the feed glass mesh and the heat insulation construction wall surface to foam and hard urethane and glass mesh Is a method of constructing a heat insulating layer integrally formed with and on-site.
[0007]
When the construction method is specifically described in detail, as shown in FIG. 10, a predetermined heat insulation layer 7 is finished between the steel liner surface (which becomes a heat insulation construction wall surface) 4 constituting the inner surface of the concrete outer wall 2. Synchronized with the upward movement of the pressing surface plate 12 that can be moved up and down along the steel liner surface 4 via the gondola 8 in a state where the space 11 corresponding to the thickness t is formed, on the inner surface side of the pressing surface plate 12 A single piece of the glass mesh 6 as a surface material is drawn out, and a urethane stock solution is injected from the head 16 between the drawn out glass mesh 6 and the steel liner surface 4 to cause foaming, so that the hard urethane 5 and the glass mesh 6 are integrally formed. It is a method of constructing the heat insulation layer 7 made.
[0008]
However, in the case of the construction method shown in FIG. 10, the gel-like to semi-cured urethane until the urethane stock solution injected into the space 11 foams and hardens directly hits the glass mesh 6. The gel-like to semi-cured urethane leaks to the outside through the grid-like eyes of the glass mesh 6, and the leaked urethane adheres to the holding face plate 12 and cures, and the adhered and cured urethane 5a becomes an obstacle. After that, there is a problem that it is impossible to carry out integral molding work after that, and it is possible to realize such a rational and efficient thermal insulation layer construction method by integral molding as described above over the entire wall surface. In order to prevent the leakage of urethane, it is essential.
[0009]
As a countermeasure against leakage of urethane, the wall surface heat insulation layer construction method already proposed by the present applicant, as shown in FIG. 11, is a release paper or the like on the surface (rear surface) of the pressing surface plate 12 of the glass mesh 6. The release surface material 13 is simply overlapped in a non-adhered state, or as shown in FIG. 12, the release surface material 13 is attached to the back surface of the glass mesh 6 in a slightly adhesive state via an adhesive. I was trying a means. 10 to 12, the same components and corresponding parts as those described in the embodiment of the present invention to be described later are denoted by the same reference numerals.
[0010]
[Problems to be solved by the invention]
However, as shown in FIG. 11, when the release face material 13 for urethane leakage prevention is simply overlapped with the back surface of the glass mesh 6 in a non-adhered state, the release face material 13 is caused by the foaming pressure at the time of urethane foaming. Gelled to semi-slipped from the grid-like eyes of the glass mesh 6 due to a gap generated between the back surface of the glass mesh 6 and the release surface material 13 when pressed to the outside, that is, the side away from the glass mesh 6 There is a problem in that the cured urethane enters the gap and cures, and as a result, the glass mesh 6 is buried in the thickness of the hard urethane 5 and the function as the surface material is impaired.
[0011]
On the other hand, as shown in FIG. 12, when the release surface material 13 for urethane leakage prevention is attached to the back surface of the glass mesh 6 via an adhesive, a large number of the release surface material 13 and the lattice of the glass mesh 6 are used. The concave space is formed, and a large number of the concave spaces become gas pools during urethane foaming and remain as voids 5b on the surface of the hard urethane 5 after curing of the urethane. There is a problem that it becomes a factor that deteriorates, and at the same time, a factor that deteriorates the integral bonding performance between the glass mesh 6 and the hard urethane 5.
[0012]
Further, the release surface material 13 and the glass mesh 6 are superposed and integrated into the space 11, and the heat insulating layer 7 in which the hard urethane 5 and the glass mesh 6 are integrally molded by injection foaming of a urethane stock solution. 11 and 12, the wrinkles are likely to occur due to the difference in stretchability between the release surface 13 and the glass mesh 6, and the wrinkles are formed on the surface of the heat insulating layer 7. There is a problem that it remains unavoidable that it remains as a defect in appearance finish.
[0013]
The present invention has been made in view of the above situation, and the glass mesh is not buried in the thickness of the hard urethane due to the leakage of the urethane, and voids are not formed on the surface. Although it is an efficient and economical construction of glass mesh and rigid urethane by in-situ foaming, it is possible to construct a heat insulation layer with a uniform and good finish over the entire wall surface in terms of appearance and strength. The main purpose is to provide a method for constructing a heat insulation layer on the wall surface.
[0014]
Another object of the present invention is the occurrence of defects such as wrinkles on the surface of the heat-insulating layer, in addition to the above-mentioned object, while using a glass mesh with an integrated release surface material to prevent leakage of urethane. It is in the point to be able to avoid as much as possible.
[0015]
[Means for Solving the Problems]
In order to achieve the main object described above, the wall surface heat insulating layer construction method according to claim 1 of the present invention is the wall surface while forming and holding a space corresponding to the finished thickness of the predetermined heat insulating layer between the wall surface and the heat insulating wall surface. Synchronously with the travel of the presser face plate that can be run along, the glass mesh as the surface material is fed out to the presser face plate side of the above space, and at the same time, the urethane stock solution is injected between the fed glass mesh and the heat insulation construction wall surface. It is a heat insulation layer construction method for the wall surface where the heat insulation layer in which the rigid urethane foam and the glass mesh are integrally molded is foamed, and on the urethane foam side of the glass mesh , Formed with a thickness of 20-300μm using urethane adhesive A thin resin film that can be partially damaged by urethane foaming pressure is coated, and a release face material for urethane leakage prevention is placed on the glass mesh holding face side, and this release face material is made of glass. It is characterized by feeding with a mesh.
[0016]
According to the heat insulation layer construction method for a wall surface according to claim 1 of the present invention having the above-described features, a space that is continuously formed and held between the pressure surface plate and the heat insulation wall surface while running the pressure surface plate. The rigid urethane foam and the glass mesh are formed by a series of processes such as sequentially feeding the glass mesh along the inner surface of the holding face plate and simultaneously injecting and foaming the urethane stock solution into the space between the feeding glass mesh and the wall surface. It is possible to construct an integrally formed heat insulating layer very efficiently and economically, and there is no generation of dust due to cutting or generation of mist as seen in spray foaming, resulting in a significant working environment. Improvements can be made.
[0017]
In addition, there is a thin resin film coated on the urethane foam side of the glass mesh that is fed into the space between the presser face plate and the insulation wall surface, and the face on the presser face plate side is for urethane leakage prevention. The release surface material is superposed so that the gel- to semi-cured urethane is prevented from leaking out of the grid-like eyes of the glass mesh until the urethane foam curing progresses to some extent, while the urethane In the state where the foam hardening of the resin has progressed to a certain extent, the coating resin film is partially damaged by the foaming pressure and heat generation, and some urethane leaks from the mesh of the glass mesh to the release surface material side. Urethane cures in the presence of a gas reservoir by extruding gas in a number of concave spaces formed by the release surface material and the glass mesh lattice due to leakage. Prevented. As a result, the glass mesh is not buried on the surface side within the thickness of the cured urethane foam, and voids are not generated on the surface of the cured rigid urethane foam. It is possible to construct a heat insulation layer with excellent integrated adhesion performance.
[0018]
In the heat insulation layer construction method of the wall surface according to claim 1 of the present invention, the release surface material for urethane leakage prevention on the holding face plate side of the glass mesh is not bonded to the glass mesh as described in claim 2. If the glass mesh and the release surface material have different stretch properties, the stretch properties will not affect each other. It is possible to reduce the occurrence of wrinkles, which is a drawback.
[0019]
Moreover, in the heat insulation layer construction method according to claim 1 of the present invention, as a coating resin film formed on the urethane foam side surface of the glass mesh, The It is desirable to form a film with a thickness of 20 to 300 μm, preferably 60 to 180 μm using a retane-based adhesive. When the film thickness is less than 20 μm, the entire coating resin film is broken at the point of time when the foaming pressure is low in the urethane foaming process, and a large amount of gelled to uncured urethane leaks from the mesh of the glass mesh and is released. There is a high possibility that the glass mesh enters the gap between the face materials and hardens, and as a result, the glass mesh is buried on the surface side within the thickness of the cured urethane foam. In the case of a film thickness exceeding 300 μm, the coating resin film does not break during the foaming process of urethane, and as a result, there is a high possibility of forming a gas reservoir and generating voids.
[0020]
Further, the wall surface heat insulation layer construction method according to the present invention is claimed. 3 As described in the above, off-the-shelf spacers having the same thickness and equivalent heat insulation properties as the hard urethane foam are parallel to each other with a predetermined interval on the heat insulation construction wall surface, and linearly toward the vertical direction of the heat insulation construction wall surface. After affixing to the spacer, as the gondola moves upward from the lower end in the longitudinal direction of the spacer to the upper end in the longitudinal direction of the spacer, the roller is pressed against the surface of the pair of adjacent spacers and the press face plate is adjacent. The coating resin film of the glass mesh while running along the wall surface while forming and holding a space corresponding to the finished thickness of the predetermined heat insulation layer between the opposed surfaces of the pair of spacers and the heat insulation construction wall surface Hard urethane foam is injected between a pair of adjacent spacers by injecting and foaming a hard urethane stock solution between the wall and the insulation wall By applying heat insulation layer construction to large area wall surfaces such as low-temperature tank outer walls, such as repeatedly constructing a heat insulation layer in a unit construction area that is integrally molded with glass mesh, injecting spacers that have been affixed prior to the wall surface It is possible to appropriately control the presser load and area of the pressing face plate and the injection amount of the stock solution considering the foaming characteristics of urethane based on the thickness of the rigid urethane foam to be foam-molded. Without requiring skill, it is possible to improve the thickness accuracy and surface accuracy of the heat insulation layer covering a large area by integral molding of rigid urethane foam and glass mesh.
[0021]
Further, the claims of the present invention 4 The heat insulation layer construction method for the wall surface is synchronized with the travel of the pressing face plate that can travel along the wall surface while maintaining a space corresponding to the finished thickness of the predetermined heat insulation layer between the heat insulation construction wall surface The glass mesh used as the surface material is fed out to the holding face plate side of the above space, and at the same time, the urethane stock solution is injected between the feeding glass mesh and the heat insulation construction wall surface and foamed to integrally form the rigid urethane foam and the glass mesh. A heat insulation layer construction method for a wall surface where a heat insulation layer is constructed on site, The surface of the glass mesh on the urethane foam side is coated with a thin resin film that is formed to a thickness of 20 to 300 μm using a urethane adhesive and can be partially damaged by urethane foam pressure, On the surface of the glass mesh holding face plate side, a release face material for urethane leakage prevention is superposed and integrated in advance over the entire length, and the integrated glass mesh and release face material Immediately before feeding the overlap into the space, once peeled off continuously, while applying a tensile force to the peeled release surface material, the release surface material is again overlapped with the glass mesh in the space. It is characterized by feeding out.
[0022]
Claims of the invention having the characteristics as described above 4 According to the wall surface heat insulation layer construction method, the release surface material for urethane leakage prevention is superposed and integrated in advance on the surface of the glass mesh that is fed into the space between the pressure face plate and the heat insulation wall surface. Therefore, it is not necessary to feed out both (glass mesh and release surface material) separately, and it is possible to supply them simultaneously to the space using a single feeding device. In addition, immediately before feeding into the space, once both are continuously peeled off, by applying a tensile force to the peeled release surface material, due to the difference in stretchability with the glass mesh, on the release surface material side After positively removing the generated wrinkles, etc., it is superimposed again on the glass mesh and fed into the space to avoid the occurrence of defects such as wrinkles on the surface of the heat insulation layer as much as possible. It is possible to construct a good thermal insulation layer.
[0023]
Claims of the invention 4 In the heat insulation layer construction method of the wall according to the above, the release surface material for urethane leakage prevention is claimed in claim 5 As described in the above, the glass mesh may be superposed and integrated in a non-adhered state on the holding face plate side surface, or may be superposed and integrated in a weakly adhered state. As means for continuously peeling the overlap with the peeled surface and applying a tensile force to the peeled release surface material, 6 As described above, by using a roller that can move far and away with respect to a constant feeding path of the glass mesh, while maintaining both (glass mesh and release surface material) in a smooth feeding state, as described above, Occurrence of defects such as drought can be avoided.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows claims 1 to 5 of the present invention. 3 FIG. 2 is a front view showing a schematic configuration of a construction apparatus and an outline of a heat insulation construction situation when the heat insulation layer construction method of the wall surface is applied to a heat insulation layer construction on a low-temperature tank outer wall. As shown in FIG. 3, the heat insulation construction apparatus A has an annular space 3 between an inner tank 1 in a low temperature tank for storing LNG and the like and a concrete outer tank (outer wall) 2 surrounding the outer periphery of the inner tank 1. Are installed on the steel liner surface 4 on the outer wall 2 surface, and a hard urethane foam (hereinafter referred to as PUF) 5 and a glass mesh 6 as a surface material for covering and reinforcing the surface of the PUF 5 are urethane as a cooling resistance reducing material. It is used so that the heat insulation layer 7 integrally molded by in-situ foaming may be applied.
[0025]
As shown in FIGS. 1 and 2, the heat insulation construction apparatus A is attached to a trolley beam (not shown) installed at the top between the inner and outer tubs 1 and 2, and the space 3 becomes a wall for heat insulation construction. A gondola 8 that is suspended up and down along the steel liner surface 4 is provided, and equipment for integrally molding the heat insulating layer 7 on the gondola 8 is provided.
[0026]
The gondola 8 is equipped with an integral molding facility that is attached to the steel liner surface 4 in parallel with each other at a predetermined equal interval L in advance and linearly in the vertical direction of the steel liner surface 4. A pair of pre-made spacers 9, 9 (details will be described later) pressed against the surface of the gondola 8 and moved up and down as the gondola 8 moves up and down. Are disposed between the opposing surfaces of the spacers 9, 9, and a rectangular holding surface plate 12 capable of forming and holding a space 11 corresponding to the finished thickness t of the PUF 5 between the steel liner surface 4 and a lower portion in the gondola 8. The glass mesh 6 is wound and held in a roll shape together with a release paper 13 as a release surface material superimposed on the surface side of the glass mesh 6 and a gond The glass mesh supply device 15 that can be sequentially fed to the holding face plate 12 side of the space 11 through the guide roller 14 and the pressing roller 10 as the vehicle moves up, and the glass mesh supply device that is disposed at the upper part of the gondola 8. 15 includes a urethane injection head 16 for injecting a urethane stock solution between the glass mesh 6 fed together with the release paper 13 and the steel liner surface 4, and a traverser 17 for reciprocating the injection head 16 in the lateral direction. Yes. The spacer 9 is molded to the same thickness as the finished thickness t of the PUF 5 by using the same hard urethane material as that of the PUF 5 so as to have a heat insulating property equivalent to the PUF 5 that is injected and foam-molded on the steel liner surface 4. Yes.
[0027]
On the surface side of the glass mesh 6, that is, the surface that becomes the holding face plate 12 side when being drawn out into the space 11, as shown in an enlarged view in FIG. And a thin resin film 19 is coated on the back side of the glass mesh 6, that is, the surface that becomes the PUF injection foam side when drawn out into the space 11. The coating resin film 19 is formed by applying a urethane adhesive to the entire surface of the glass mesh 6 at 60 g / m. 2 It is applied to form a film thickness of 20 to 300 μm, preferably 60 to 180 μm.
[0028]
Next, the heat insulation layer construction procedure for the steel liner surface 4 on the inner surface of the outer tub 2 in the low-temperature tank using the heat insulation construction apparatus A having the above-described configuration will be described with reference to FIGS.
(1) After removing dust, deposits, floating rust and the like on the steel liner surface 4, surface treatment is performed using sandpaper or the like as necessary.
(2) A solventless primer is applied to the steel liner surface 4 after the base treatment using a roller brush or the like.
(3) The heat insulation construction apparatus A equipped with the above-mentioned integrated molding equipment in the gondola 8 is carried into the space 3 between the inner and outer tanks 1 and 2 and assembled, and the foaming machine room, the high pressure foaming machine, the compressor, etc. are installed in the low temperature tank. Installed on the external ground surface of the tank 2.
(4) Thermal insulation is performed on the side wall portion W of the steel liner surface 4 excluding the side wall upper portion WU and the side wall lower portion / bottom corner portion WD.
(5) Insulate the sidewall upper WU and the sidewall lower / bottom corner WD.
[0029]
Of the heat insulation work performed in the order of (1) to (5) above, the heat insulation layer construction method according to the present invention is applied to the heat insulation work of the side wall part W shown in (4). The specific construction procedure is as follows.
<< 1 >> Marking is performed on the steel liner surface 4 of the side wall W with a predetermined pitch width in the horizontal horizontal direction.
<< 2 >> A plurality of ready-made spacers 9 are attached in parallel to each other at a predetermined interval L and linearly in the vertical direction using a urethane-based adhesive in accordance with the marking position.
<< 3 >> The pressing roller 10 of the heat insulation construction apparatus A is pressed against the surface of the pair of adjacent spacers 9 and 9, and the pressing face plate 12 is inserted between the opposed end faces of the pair of spacers 9 and 9 to press the pressing face plate 12 and the steel liner. The gondola 8 is raised in a state where a space 11 corresponding to the finished thickness t of the PUF 5 to be constructed is formed between the surface 4 and the entire heat insulating construction apparatus A is directed from the lower end in the longitudinal direction of the spacers 9 and 9 to the upper end. And run. With this traveling, as shown in FIG. 1, the release paper 13 and the glass mesh 6 that are wound and held in a roll shape by the glass mesh supply device 15 pass through the guide roller 14 and the pressing roller 10, and the space 11 Simultaneously withdrawing to the holding plate 12 side, the urethane stock solution is injected from the head 16 which is reciprocated in the lateral direction through the traverser 17 into the space 11 between the fed glass mesh 6 and the steel liner surface 4 and foamed. To do. The urethane stock solution injected and foamed into the space 11 in this way is cured through gel-like to semi-curing, and as shown in FIG. 6, the PUF 5 and the glass mesh 6 on the surface thereof are placed between a pair of adjacent spacers 9 and 9. The heat insulating layer 7A-1 in the unit construction area having a predetermined thickness t, which is integrally formed, is applied.
<< 4 >> When the construction of the heat insulation layer 7A-1 in the unit construction area is finished, the injected urethane protruding on the surface of the spacers 9 and 9 is cut, and the heat insulation construction device A is then transferred between a pair of adjacent spacers 9 and 9. Set above << 3 >> The heat insulation layer 7A-2 in the unit construction area is constructed in the same procedure as in. By repeatedly applying the heat insulating layers 7A-1 to 7A-n in such a unit construction area over the entire surface of the steel liner surface 4, the heat insulating layer 7 extending over the entire side wall W is applied.
<< 5 >> After the construction of the heat insulation layer 7, the injected urethane protruding on the surface of each spacer 9 is removed cleanly, an adhesive is applied to the surface of each spacer 9, and the joint portion glass mesh 18 is attached. This glass mesh 18 for joints overlaps not only the surface of each spacer 9, but also the end surface of the heat insulating layers 7A and 7A in the unit construction area adjacent to the left and right sides of each spacer 9, as shown in FIG. It is pasted and constructed to do.
[0030]
Of the above construction of the heat insulating layer 7 of the side wall W, << 3 >> As described above, the urethane foam side surface of the glass mesh 6 located on one side of the space 11 where the urethane stock solution is injected and foamed from the head 16 is formed of a thin (20 to 300 μm, preferably, urethane adhesive). Since the coating resin film 19 exists and the release paper 13 for urethane leakage prevention is superposed on the surface of the glass mesh 6 on the holding face plate 12 side in a non-adhesive state, Until the foam hardening progresses to a certain extent, the gel-to-semi-cured urethane is prevented from leaking from the grid-like eyes of the glass mesh 6 toward the release paper 13, and the urethane foam hardening progresses to a certain extent. In this state, the coating resin film 19 is partially broken by the foaming pressure and heat generation, so that the glass mesh 6 has a grid line that is moved toward the release paper 13 side. Part of the urethane leaks, and the gas accumulated in a number of concave spaces formed by the release paper 13 and the lattice of the glass mesh 6 due to this urethane leakage passes through the gaps between the release paper 13 and the glass mesh 6. It is discharged to the outside and prevents the urethane from hardening while the concave space remains a gas reservoir. As a result, the glass mesh 6 is not buried on the surface side within the thickness of the PUF 5 due to a large amount of urethane leaking, and no voids are generated on the surface of the PUF 5, so that only the appearance finish is excellent. Instead, it is possible to apply the heat insulating layer 7 in which the glass mesh 6 and the PUF 5 are firmly and integrally bonded.
[0031]
Incidentally, an example of heat insulation construction of the LNG tank and the result of the experiment conducted by the present inventors will be described below.
Construction example of the present invention: KS-5431 manufactured by Kanebo Co., Ltd. is used as the glass mesh, and urethane resin adhesive is used as the coating material for the resin film, and the release paper is superimposed on the glass mesh in a non-adhesive state. A material was created and foamed integrally with urethane.
Comparative construction example: KS-5431 manufactured by Kanebo Co., Ltd. was used as a glass mesh, and a face material was prepared by integrally bonding a release paper to the glass mesh via an adhesive, and this was foamed integrally with urethane. (Corresponding to the construction method of FIG. 12).
[0032]
When various performances were compared for the heat insulation layers constructed according to the above-described construction examples of the present invention and the comparative construction examples, the results shown in Table 1 were obtained. As is clear from Table 1, in the construction method of the present invention using the face material that uses both the coating resin film and the release paper, the appearance finish is uniform and good, and the glass mesh and the rigid urethane are integrated. It can be seen that a heat insulation layer that is strong and excellent in strength can be obtained.
[0033]
[Table 1]
Figure 0003787501
[0034]
In the above embodiment, the release paper 13 is used in a non-adhered state on the holding surface 12 side surface of the glass mesh 6 so that the gas is smoothly discharged to the outside, and the void accompanying the formation of the gas reservoir is obtained. However, the release paper 13 may be partially bonded to the glass mesh 6 to be used. Even in this case, the coating resin film 19 is partially broken during the foaming process, and a small gap is formed between the release paper 13 and the glass mesh 6 by a part of urethane leaking from the lattice of the glass mesh 6. The generation of voids can be sufficiently suppressed to the extent that there is almost no problem in appearance.
[0035]
FIG. 8 is a claim of the present invention. 4 ~ 6 It is a side view which shows the general | schematic structure of construction apparatus A 'applied to the heat insulation layer construction method of the wall surface by A, and the outline | summary of the heat insulation construction condition. This heat insulation layer construction apparatus A ′ has the same configuration as that of the construction apparatus A shown in FIG. 1, and the same configuration or corresponding parts are denoted by the same reference numerals, and detailed descriptions thereof. The description is omitted, and different configurations will be described below.
[0036]
In the heat insulation layer construction apparatus A ′ shown in FIG. 8, when the glass mesh 6 is drawn out to the surface side of the glass mesh 6, that is, the space 11 between the steel liner surface 4 and the pressing surface plate 12, it becomes the pressing surface plate 12 side. As clearly shown in FIG. 9, both the sheets 6 and 13 are integrated in advance so that the urethane leak-proof release paper 13 is overlaid in a non-adhered state (or a weakly bonded state). It is wound and held in a roll. The glass mesh 6 and the release paper 13 are once and continuously peeled from the glass mesh supply device 15 immediately before being sequentially fed to the holding face plate 12 side of the space 11 through the guide roller 14 and the pressing roller 10. Accordingly, a roller 20 that can move up and down with respect to a fixed feeding path along a substantially horizontal plane of the glass mesh 6 is provided at an intermediate portion between the rollers 14 and 10.
[0037]
The construction procedure and procedure of the heat insulation layer 7 by the heat insulation layer construction apparatus A ′ configured as described above are basically the same as the construction apparatus A shown in FIG. The glass mesh 6 and release paper 13 which are preliminarily overlapped and integrated and held in a roll shape are unwound from the glass mesh supply device 15 and passed through the guide roller 14 and the pressing roller 10 to press the space 11. Immediately before being sequentially fed out to the face plate 12 side, the release paper 13 is once continuously peeled off from the glass mesh 6 via the roller 20 and peeled off by adjusting the movement amount of the roller 20 in the arrow ud direction. 13 is pulled to remove wrinkles and the like caused by the difference in stretchability from the glass mesh 6, and then the glass roller 6 is again applied by the pressing roller 10. As shown in FIG. 9, this prevents the occurrence of defects such as wrinkles on the surface of the heat insulating layer 7, and the heat insulating layer 7 with a good surface finish. Can be constructed.
[0038]
In the heat insulation layer construction method shown in FIGS. 8 and 9, the coating resin film 19 is not formed, but it is thin on the back side of the glass mesh 6, that is, the surface that becomes the injection foam side of PUF. To prevent the generation of voids on the surface of the PUF 5 by coating the resin film 19 Do .
[0039]
【The invention's effect】
As described above, according to claim 1 of the present invention, the rigid urethane foam and the glass mesh are integrally formed by a series of on-site processes such as feeding out the glass mesh as the surface material and injecting and foaming the urethane stock solution. The heat insulation layer can be applied very efficiently and economically, and the work environment can be greatly improved without generation of dust accompanying cutting or generation of mist as seen in blowing foam.
[0040]
In addition, there is a thin coating resin film on the urethane foam side of the glass mesh, and by using a release surface material for urethane leakage prevention on the surface of the holding face plate, it is gelled in the foaming process. Because the amount of leakage of semi-cured urethane can be controlled appropriately, it is possible to prevent the glass mesh from being buried on the surface side within the thickness of the cured urethane foam when the amount of leakage is excessive. , It can prevent the occurrence of voids on the surface of rigid urethane foam when there is no leakage or the amount of leakage is insufficient, which not only provides excellent surface finish but also glass mesh There is an effect that it is possible to construct a heat-insulating layer that is also excellent in the ability to integrally bond with urethane foam.
[0041]
In particular, even if the stretchability of the glass mesh and the release surface material are different from each other by using the glass mesh in a non-adhered state as in claim 2, the mutual influence of the stretchability. In addition, it is possible to prevent the generation of wrinkles that become the appearance marks (defects) on the surface of the heat insulation layer, and it is also easy to remove the wrinkles in advance by separately applying tension to the glass mesh and the release surface material. A heat insulation layer with excellent finish can be applied.
[0042]
Moreover, the construction method of the present invention is claimed. 3 As shown in the figure, an off-the-shelf spacer with the same thickness and the same thermal insulation properties as the hard urethane foam is applied to the heat insulation construction wall in advance, and the spacer is used as a standard for the thickness of the rigid urethane foam to be injected and molded. Rigid urethane foam and glass can be used without any special experience or high level of skill by appropriately controlling the presser load and area of the presser face plate and the injection amount of the stock solution taking into account the foaming characteristics of urethane. The thickness accuracy and surface accuracy of the heat insulation layer covering a large area by integral molding of the mesh can be dramatically improved.
[0043]
Further claims of the present invention 4 ~ 6 According to the present invention, it is not necessary to use a complicated feeding device that separately feeds the glass mesh and the urethane leak-proof release surface material in advance and separates them. The glass mesh and the release surface material can be simultaneously supplied to the space. Moreover, just before feeding into the space, once the overlap between the two is continuously peeled off, a tensile force is applied to the peeled release face material, and it occurs on the release face material side due to the difference in stretchability with the glass mesh. After removing the wrinkles, etc., it is overlaid on the glass mesh and drawn out into the space to avoid quality defects caused by wrinkles on the surface of the heat insulation layer as much as possible. There is an effect that can be done.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 3 It is a side view which shows the general | schematic structure of the construction apparatus in the case of applying the heat insulation layer construction method of a wall surface by a thermal insulation layer construction of a low-temperature tank outer wall, and the outline of the heat insulation construction condition.
FIG. 2 is a front view of FIG. 1;
FIG. 3 is an enlarged longitudinal sectional side view of a main part for explaining a heat insulation construction location.
4 is an enlarged cross-sectional view of a circled X portion in FIG. 1. FIG.
FIG. 5 is a conceptual diagram illustrating a main part for explaining a heat insulation construction state of a side wall portion of a low-temperature tank outer wall.
FIG. 6 is an enlarged front view of the main part showing the heat insulation layer construction part of the assigned unit construction area.
FIG. 7 is an enlarged cross-sectional view of a main part showing the structure of a heat insulating layer applied.
FIG. 8 claims of the present invention 4 ~ 6 It is a side view which shows the general | schematic structure of the construction apparatus applied to the heat insulation layer construction method of the wall surface by JIS, and the outline | summary of the heat insulation construction condition.
9 is an enlarged cross-sectional view of a circled Y portion in FIG. 8. FIG.
FIG. 10 is a side view showing an outline of a construction situation by a heat insulation layer construction method for a low-temperature tank wall already proposed by the present applicant.
11 is a side view showing an example of a construction method in which means for solving the problems caused by the thermal insulation layer construction method shown in FIG. 10 is tried.
12 is a side view showing another example of a construction method that tries to solve the problems caused by the thermal insulation layer construction method shown in FIG.
[Explanation of symbols]
4 Steel liner surface (surface for heat insulation construction)
5 Hard urethane foam (PUF)
6 Glass mesh
7 Insulation layer
8 Gondola
9 Spacer
10 Pressing roller
11 space
12 Presser face plate
13 Release paper (release surface material)
19 Coating resin film
20 Release paper peeling roller

Claims (6)

断熱施工壁面との間に所定の断熱層の仕上がり厚さに相当する空間を形成保持しながら壁面に沿わせて走行可能な押え面板の走行に同期させて上記空間の押え面板側に表面材となるガラスメッシュを繰り出すと同時に、その繰り出しガラスメッシュと断熱施工壁面との間にウレタン原液を注入し発泡させて硬質ウレタンフォームとガラスメッシュとが一体成型された断熱層を現場施工する壁面の断熱層施工法であって、
上記ガラスメッシュのウレタン発泡側の面には、ウレタン系接着剤を用いて20〜300μmの膜厚に形成されウレタン発泡圧力により部分的に破損可能な薄い樹脂膜がコーティングされているとともに、ガラスメッシュの押え面板側の面にはウレタン漏れ止め用の離型面材を重ね合わせ、この離型面材をガラスメッシュと共に繰り出すことを特徴とする壁面の断熱層施工法。
A space corresponding to the finished thickness of the predetermined heat insulation layer is formed between the heat insulation construction wall surface and the surface material on the side of the press face plate of the space in synchronism with the travel of the press face plate that can run along the wall surface. As soon as the glass mesh is fed, the urethane stock solution is injected between the drawn glass mesh and the heat-insulating wall surface, and foamed to form a heat-insulating layer in which the rigid urethane foam and the glass mesh are integrally molded. Construction method,
The surface of the glass mesh on the urethane foam side is coated with a thin resin film that is formed to a thickness of 20 to 300 μm using a urethane adhesive and can be partially damaged by the urethane foam pressure. A method for constructing a heat insulating layer on a wall, characterized in that a release face material for urethane leakage prevention is superposed on the surface of the holding face plate and the release face material is fed out together with a glass mesh.
上記ウレタン漏れ止め用離型面材は、ガラスメッシュの押え面板側の面に非接着状態に重ね合わせられている請求項1に記載の壁面の断熱層施工法。  The wall surface heat insulation layer construction method according to claim 1, wherein the urethane leak-proof release surface material is superposed in a non-adhesive state on a surface of the glass mesh on the holding face plate side. 断熱施工壁面に硬質ウレタンフォームと同一厚み及び同等の断熱特性を持つ既製のスペーサーを所定間隔を隔てて互いに平行状態で、かつ、断熱施工壁面の上下方向に向けて直線的に貼付け施工した後、
上記スペーサーの長手方向下端からスペーサーの長手方向上端に向けてのゴンドラの上昇移動に伴い隣接する一対のスペーサーの表面にローラーを押し当て走行させるとともに、上記押え面板を隣接する一対のスペーサーの対向面間に入り込んで断熱施工壁面との間に所定の断熱層の仕上がり厚さに相当する空間を形成保持しながら壁面に沿わせて走行させつつ、上記ガラスメッシュのコーティング樹脂膜と断熱施工壁面との間に硬質ウレタン原液を注入し発泡させて隣接する一対のスペーサー間に硬質ウレタンフォームとガラスメッシュとが一体成型された単位施工区域の断熱層を繰り返し施工する請求項1又は2に記載の壁面の断熱層施工法。
After affixing linearly on the heat insulation construction wall surface, the ready-made spacers having the same thickness and equivalent heat insulation properties as the rigid urethane foam are parallel to each other at a predetermined interval, and in the vertical direction of the heat insulation construction wall surface,
As the gondola moves up from the lower end in the longitudinal direction of the spacer toward the upper end in the longitudinal direction of the spacer, the roller is pressed against the surface of the adjacent pair of spacers and the pressing surface plate is opposed to the adjacent pair of spacers. The glass mesh coating resin film and the thermal insulation wall surface are moved while moving along the wall surface while maintaining a space corresponding to the finished thickness of the predetermined thermal insulation layer between the thermal insulation wall surface. The wall surface according to claim 1 or 2 , wherein the heat insulating layer of the unit construction area in which the hard urethane foam and the glass mesh are integrally molded is repeatedly applied between a pair of adjacent spacers by injecting a hard urethane undiluted solution in between. Thermal insulation layer construction method.
断熱施工壁面との間に所定の断熱層の仕上がり厚さに相当する空間を形成保持しながら壁面に沿わせて走行可能な押え面板の走行に同期させて上記空間の押え面板側に表面材となるガラスメッシュを繰り出すと同時に、その繰り出しガラスメッシュと断熱施工壁面との間にウレタン原液を注入し発泡させて硬質ウレタンフォームとガラスメッシュとが一体成型された断熱層を現場施工する壁面の断熱層施工法であって、
上記ガラスメッシュのウレタン発泡側の面には、ウレタン系接着剤を用いて20〜300μmの膜厚に形成されウレタン発泡圧力により部分的に破損可能な薄い樹脂膜がコーティングされているとともに、上記ガラスメッシュの押え面板側の面には、その全長に亘ってウレタン漏れ止め用の離型面材が予め重ね合わせ一体化されており、
その一体化されたガラスメッシュと離型面材との重ね合わせを、上記空間に繰り出す直前で、一旦、連続的に剥がした後、
その剥がした離型面材に引張り力を加えながら、この離型面材を再びガラスメッシュに重ね合わせ一体化して上記空間に繰り出すことを特徴とする壁面の断熱層施工法。
A space corresponding to the finished thickness of the predetermined heat insulation layer is formed between the heat insulation construction wall surface and the surface material on the side of the press face plate of the space in synchronism with the travel of the press face plate that can run along the wall surface. As soon as the glass mesh is fed, the urethane stock solution is injected between the drawn glass mesh and the heat-insulating wall surface, and foamed to form a heat-insulating layer in which the rigid urethane foam and the glass mesh are integrally molded. Construction method,
The surface of the glass mesh on the urethane foam side is coated with a thin resin film which is formed to a thickness of 20 to 300 μm using a urethane adhesive and can be partially damaged by urethane foam pressure. On the surface of the mesh holding face plate side, a release face material for urethane leakage prevention is overlapped and integrated in advance over the entire length,
Immediately before unwinding the integrated glass mesh and release surface material into the space, once peeled off continuously,
A method for constructing a heat insulating layer on a wall surface, wherein a tensile force is applied to the peeled release surface material, and the release surface material is again superimposed on a glass mesh and integrated into the space.
上記ウレタン漏れ止め用離型面材は、ガラスメッシュの押え面板側の面に非接着状態もしくは弱接着状態に重ね合わせ一体化されている請求項に記載の壁面の断熱層施工法。5. The method for constructing a heat insulation layer on a wall according to claim 4 , wherein the release surface material for urethane leakage prevention is laminated and integrated in a non-adhered state or a weakly adhered state on a surface of the glass mesh on the holding face plate side. 上記ガラスメッシュと離型面材との重ね合わせを連続的に剥がし、かつ、剥がされた離型面材に引張り力を加える手段として、ガラスメッシュの一定繰り出し経路に対して遠近移動可能なローラを使用する請求項またはに記載の壁面の断熱層施工法。As a means for continuously peeling the superposition of the glass mesh and the release surface material and applying a tensile force to the peeled release surface material, a roller that can be moved to and away from the fixed feeding path of the glass mesh is provided. The heat insulation layer construction method of the wall surface of Claim 4 or 5 to be used.
JP2001056838A 2000-03-31 2001-03-01 Wall insulation layer construction method Expired - Lifetime JP3787501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001056838A JP3787501B2 (en) 2000-03-31 2001-03-01 Wall insulation layer construction method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000097362 2000-03-31
JP2001-7483 2001-01-16
JP2001007483 2001-01-16
JP2000-97362 2001-01-16
JP2001056838A JP3787501B2 (en) 2000-03-31 2001-03-01 Wall insulation layer construction method

Publications (2)

Publication Number Publication Date
JP2002284288A JP2002284288A (en) 2002-10-03
JP3787501B2 true JP3787501B2 (en) 2006-06-21

Family

ID=27342918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001056838A Expired - Lifetime JP3787501B2 (en) 2000-03-31 2001-03-01 Wall insulation layer construction method

Country Status (1)

Country Link
JP (1) JP3787501B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137433B2 (en) * 2007-03-26 2013-02-06 大阪瓦斯株式会社 Insulation layer construction method for low temperature tank wall
JP5896749B2 (en) 2010-01-28 2016-03-30 大阪瓦斯株式会社 Low temperature tank
CN112045723A (en) * 2020-09-03 2020-12-08 陈红红 Heat preservation foamer cutting device

Also Published As

Publication number Publication date
JP2002284288A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
US4099280A (en) Hull, mold therefor, and process for producing same
US6723273B2 (en) Curable liquid sealant used as vacuum bag in composite manufacturing
BRPI0618167A2 (en) process and device for treating and consolidating stone blocks and slabs
KR20200002803A (en) FRP material bonding structure and bonding method to the structure
JP3656011B2 (en) Insulating layer construction method for low temperature tank wall and its construction equipment
WO2013174227A1 (en) Continuous production method and equipment for composite type sleeper
JP3787501B2 (en) Wall insulation layer construction method
CN114986933A (en) Integrated preparation method of lightweight sandwich insulation board
JP5584000B2 (en) Concrete curing device and curing method using the device
CN112376626B (en) Waterproof coiled material for cast-in-situ open caisson and construction method thereof
JP6105438B2 (en) Wall surface construction equipment
JP2006283445A (en) Construction method of hard polyurethane-foam heat insulating layer
KR102410843B1 (en) Manufacturing method of waterproof sheets for concrete or structure with ease of on-site construction
TWI413724B (en) Method of reinforcing existing structures using carbon fiber
JP5137433B2 (en) Insulation layer construction method for low temperature tank wall
KR102098490B1 (en) Nonflammability panel for a building and manufacturing apparatus thereof
KR20220135714A (en) Reinforcing cover of Insulation and Manufacturing Method Thereof
JP2003042394A (en) Heat-insulating structure for concrete liquid container and heat-insulating layer constructing device
RU2742182C1 (en) Tube made in form of composite film structure, hollow structure comprising tube, method of making tube and hollow structure
JP4005349B2 (en) Method and apparatus for manufacturing honeycomb core material
JP3044605B2 (en) Heat insulation construction method for low temperature tank wall
JP7403805B2 (en) Tape roll for repairing slab type track, its manufacturing method, and method for installing repair formwork for slab type track
JPH0621507B2 (en) Composite waterproofing method
JP4183965B2 (en) Method for producing rigid polyurethane foam
JP2006052750A (en) Thermal insulation construction device for wall face of low temperature tank

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3787501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term