JP3785614B2 - Titanium oxide film showing photocatalytic property under visible light and method for producing the same - Google Patents

Titanium oxide film showing photocatalytic property under visible light and method for producing the same Download PDF

Info

Publication number
JP3785614B2
JP3785614B2 JP2001323194A JP2001323194A JP3785614B2 JP 3785614 B2 JP3785614 B2 JP 3785614B2 JP 2001323194 A JP2001323194 A JP 2001323194A JP 2001323194 A JP2001323194 A JP 2001323194A JP 3785614 B2 JP3785614 B2 JP 3785614B2
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide film
visible light
under visible
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001323194A
Other languages
Japanese (ja)
Other versions
JP2003126700A (en
Inventor
春也 山本
泰史 住田
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2001323194A priority Critical patent/JP3785614B2/en
Publication of JP2003126700A publication Critical patent/JP2003126700A/en
Application granted granted Critical
Publication of JP3785614B2 publication Critical patent/JP3785614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、可視光下で光触媒性を示す酸化チタン膜の作製に関するものであり、レーザアブレーション成膜法による蒸着とその後の熱処理により可視光下で光触媒性を有した酸化チタン膜が得られることを見出した。即ち、本発明に従うことにより、太陽光及び自然光等の可視光下で光触媒性を示す酸化チタン膜が得られるので、従来、光触媒として使用されている二酸化チタンに比べて、窒素酸化物等の有害ガスの分解、除去への利用に拡大が図れる。
【0002】
【従来の技術】
従来、真空蒸着法やゾル・ゲル法により光触媒として使用される二酸化チタン膜の作製が行われているが、これまでの二酸化チタン膜はその結晶構造がルチルおよびアナターゼの多結晶構造のものしか作製できなかった。
【0003】
また、可視光領域での光触媒性を有した酸化チタンは、水素プラズマ処理により酸素欠損型酸化チタンを形成することにより粉体状のものを作製することができるが、数十nm(ナノメートル)の膜厚で均一な膜厚の酸化チタン膜を作製することは困難であった。
【0004】
【発明が解決しようとする課題】
本件の課題は、数十nm程度の非常に薄い厚さで平滑な膜の作製が可能なレーザアブレーション成膜法による蒸着とその後の熱処理により、酸素欠損を含まない、即ち、熱的に安定で、可視光下で光触媒性を示す酸化チタン膜を作製することにある。
【0005】
【課題を解決するための手段】
本発明では、レーザアブレーション成膜法により、(0001)面方位のサファイア単結晶基板上に室温付近(例えば、20℃)で酸化チタンを蒸着し、その後、空気中で熱処理させることが重要である。このためにサファイア基板上に酸化チタンを形成する蒸着条件およびその後の熱処理条件を見出した。作製した膜の結晶構造はX線回折法により評価し、さらに光触媒性をパルス光励起表面正孔量測定法により評価した。
【0006】
【発明の実施の形態】
本発明は、レーザアブレーション成膜法によりサファイア基板上に酸化チタンを蒸着し、空気中で熱処理をすることにより可視光下で光触媒性を示す酸化チタン膜を作製するものである。
【0007】
この作製条件として、レーザアブレーション成膜法による蒸着時の基板温度、酸素ガス圧、蒸発物質、そして蒸着後の熱処理温度が重要な項目である。即ち、レーザアブレーション成膜法により、(0001)面方位のサファイア単結晶基板上に酸化チタンを蒸着する条件は、サファイア単結晶基板の温度を室温付近(20℃〜80℃)とし、酸素雰囲気中(1.3Pa(10mTorr)〜8.0Pa(60mTorr))で、蒸発物質としてTiO焼結体を用いることである。レーザアブレーション成膜法において用いるレーザーは、蒸発物質を蒸発することができるものであればいずれでもよいが、好ましくはYAG(イットリウムアルミニウムガーネット)レーザー(波長532nm)である。次に、空気中の熱処理条件としては、加熱温度は、700℃〜900℃(好ましくは750℃〜850℃、最も好ましくは800℃)であり、加熱保持時間は1〜2時間である。
【0008】
以下、本発明を実施例に基づいて説明する。
【0009】
【実施例】
(実施例1)
本発明では、まず、レーザアブレーション成膜法により酸化チタンの蒸着を行った。1パルス当たり100mJ、繰り返し周波数10HzのYAG(イットリウムアルミニウムガーネット)レーザー(波長532nm)を酸素雰囲気中(4.7Pa(35mTorr))に置いたTiO焼結体ターゲット(TiO:φ50mm、厚さ5mm)に直径1mmに集光させて入射した。TiO焼結体ターゲットより5cmの距離に室温約20℃で(0001)面方位のサファイア単結晶基板を設置し、4時間のレーザー照射で酸化チタン膜を作製した。得られた酸化チタン膜は厚さ0.2μmであった。次に、電気炉を用いて、蒸着した酸化チタン膜を空気中で800℃、1時間の熱処理を行った。熱処理後の酸化チタン膜の結晶構造をX線回折法により評価した。その結果を図1に示す。低角度側のピークからそれぞれルチル構造のTiO(101)、アナターゼ構造のTiO(004)、Ti(0006)、およびルチル構造のTiO(200)からのピークに対応している。従って、このX線回折測定の結果から、本発明による酸化チタン膜は、アナターゼ及びルチル構造のTiOからなる従来の膜とは異なり、(0001)面のサファイア基板上にアナターゼ及びルチル構造のTiOとさらにTiとが混在した酸化チタン膜であることがわかる。
【0010】
上記の条件で作製した二酸化チタン膜の光触媒性能を見積もるため、パルス光励起表面正孔量測定法により評価を行った。その結果を図2に示す。横軸は励起光の波長、縦軸は量子効率(表面励起正孔数/入射光強度)でプロットしている。この量子効率が高いほど、光の入射に対して多くの正孔が表面に励起することを意味しているので、高い光触媒性能が期待される。熱処理温度を800℃として作製した酸化チタン膜の光触媒性能を評価したところ、図2に示すように可視光領域(460nm)まで光触媒反応を示すことがわかった。
【0011】
従来の酸素欠損を含む酸化チタンでは、一般に、空気中で500℃程度に加熱をすると酸化チタンに空気中の酸素が供給されて(酸化されて)単なるルチル及びアナターゼの二酸化チタンに変化し、可視光に対する光触媒性が失われてしまうが、本発明による酸化チタン膜は例えば800℃で熱処理を施すことにより作製されるものであることから、熱的に安定、即ち空気中で500℃程度まで加熱しても可視光に対する光触媒性の変化が見られない。
【0012】
(比較例1)
実施例1と同様の条件で(0001)面方位のサファイア基板上に蒸着した酸化チタン膜について、熱処理における加熱温度を600℃として作製した酸化チタン膜の光触媒性を評価したところ、図2に示すように加熱温度が800℃の酸化チタン膜(実施例1)に比べて低い量子効率を示し、入射光波長が370nm以上で量子効率は測定限界以下であった。さらに、(11−20)、(10−10)、(01−12)面方位のサファイア基板上に実施例1と同様の条件で蒸着し、800℃で熱処理した酸化チタン膜の光触媒性を評価したところ、本発明による酸化チタン膜に比べて低い光触媒性を示した。
【0013】
(比較例2)
(0001)面方位のサファイア基板上に蒸着した金属チタン膜を実施例1と同様の条件で熱処理して酸化チタン膜を作製し、光触媒性能を評価したところ、本発明による酸化チタン膜に比べて低い光触媒性を示した。
【0014】
【発明の効果】
レーザアブレーション成膜法による蒸着とその後の熱処理により、可視光下で光触媒性を有した酸化チタン膜が得られることを見出した。即ち、太陽光及び自然光等の可視光下で光触媒性を示すことにより、従来の二酸化チタンに比べて、窒素酸化物等の有害ガスの分解、除去への利用への拡大が図れる。
【図面の簡単な説明】
【図1】 図1は、レーザアブレーション成膜法により(0001)面方位のサファイア基板上に蒸着及び800℃、1時間の熱処理後に得られた酸化チタン膜のX線回折(θ−2θ)図である。
【図2】 図2は、レーザアブレーション成膜法により(0001)面方位のサファイア基板上に蒸着した酸化チタン膜について600℃と800℃で熱処理して作製した膜の表面励起正孔量測定結果を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production of a titanium oxide film exhibiting photocatalytic properties under visible light, and a titanium oxide film having photocatalytic properties under visible light can be obtained by vapor deposition using a laser ablation film forming method and subsequent heat treatment. I found. That is, according to the present invention, a titanium oxide film exhibiting photocatalytic properties under visible light such as sunlight and natural light can be obtained. Therefore, compared with titanium dioxide that has been conventionally used as a photocatalyst, nitrogen oxides and the like are harmful. It can be used for gas decomposition and removal.
[0002]
[Prior art]
Conventionally, titanium dioxide films used as photocatalysts by vacuum evaporation or sol-gel methods have been produced. Conventionally, titanium dioxide films are only produced with a polycrystalline structure of rutile and anatase. could not.
[0003]
In addition, titanium oxide having photocatalytic properties in the visible light region can be produced in the form of powder by forming oxygen-deficient titanium oxide by hydrogen plasma treatment, but several tens of nanometers It was difficult to produce a titanium oxide film having a uniform thickness.
[0004]
[Problems to be solved by the invention]
The problem of this case is that it does not contain oxygen vacancies, that is, it is thermally stable by vapor deposition by the laser ablation film forming method that can produce a very thin film with a very thin thickness of about several tens of nanometers, and subsequent heat treatment. It is to produce a titanium oxide film exhibiting photocatalytic properties under visible light.
[0005]
[Means for Solving the Problems]
In the present invention, it is important to deposit titanium oxide near a room temperature (for example, 20 ° C.) on a (0001) plane sapphire single crystal substrate by a laser ablation film forming method, and then heat-treat in air. . For this purpose, the vapor deposition conditions for forming titanium oxide on the sapphire substrate and the subsequent heat treatment conditions were found. The crystal structure of the produced film was evaluated by an X-ray diffraction method, and the photocatalytic property was evaluated by a pulsed photoexcitation surface hole content measurement method.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, titanium oxide is deposited on a sapphire substrate by a laser ablation film-forming method, and heat-treated in air to produce a titanium oxide film exhibiting photocatalytic properties under visible light.
[0007]
As production conditions, the substrate temperature, the oxygen gas pressure, the evaporated substance, and the heat treatment temperature after the vapor deposition by the laser ablation film forming method are important items. That is, the conditions for depositing titanium oxide on a sapphire single crystal substrate having a (0001) plane orientation by laser ablation film formation are that the temperature of the sapphire single crystal substrate is around room temperature (20 ° C. to 80 ° C.) and in an oxygen atmosphere. (1.3 Pa (10 mTorr) to 8.0 Pa (60 mTorr)) and using a TiO 2 sintered body as an evaporating substance. The laser used in the laser ablation film forming method may be any laser capable of evaporating the evaporated substance, but is preferably a YAG (yttrium aluminum garnet) laser (wavelength: 532 nm). Next, as heat treatment conditions in air, the heating temperature is 700 ° C. to 900 ° C. (preferably 750 ° C. to 850 ° C., most preferably 800 ° C.), and the heating and holding time is 1 to 2 hours.
[0008]
Hereinafter, the present invention will be described based on examples.
[0009]
【Example】
Example 1
In the present invention, first, titanium oxide was deposited by a laser ablation film forming method. A TiO 2 sintered body target (TiO 2 : φ50 mm, thickness 5 mm) in which a YAG (yttrium aluminum garnet) laser (wavelength: 532 nm) with a repetition rate of 10 Hz per pulse is placed in an oxygen atmosphere (4.7 Pa (35 mTorr)). ) Was focused to a diameter of 1 mm and entered. A sapphire single crystal substrate with a (0001) plane orientation was placed at a room temperature of about 20 ° C. at a distance of 5 cm from the TiO 2 sintered compact target, and a titanium oxide film was produced by laser irradiation for 4 hours. The obtained titanium oxide film had a thickness of 0.2 μm. Next, using an electric furnace, the deposited titanium oxide film was heat-treated in air at 800 ° C. for 1 hour. The crystal structure of the titanium oxide film after the heat treatment was evaluated by an X-ray diffraction method. The result is shown in FIG. Corresponding to the peaks from the rutile structure TiO 2 (101), the anatase structure TiO 2 (004), Ti 2 O 3 (0006), and the rutile structure TiO 2 (200) from the low angle side peak, respectively. . Therefore, from the result of the X-ray diffraction measurement, the titanium oxide film according to the present invention is different from the conventional film made of TiO 2 having anatase and rutile structure, and the TiO 2 having anatase and rutile structure on a (0001) sapphire substrate. It can be seen that this is a titanium oxide film in which 2 and Ti 2 O 3 are mixed.
[0010]
In order to estimate the photocatalytic performance of the titanium dioxide film produced under the above conditions, evaluation was performed by a pulsed photoexcitation surface hole content measurement method. The result is shown in FIG. The horizontal axis plots the wavelength of the excitation light, and the vertical axis plots the quantum efficiency (number of surface excited holes / incident light intensity). Higher quantum efficiency means that more holes are excited on the surface with respect to the incidence of light, so higher photocatalytic performance is expected. When the photocatalytic performance of the titanium oxide film produced at a heat treatment temperature of 800 ° C. was evaluated, it was found that the photocatalytic reaction was exhibited up to the visible light region (460 nm) as shown in FIG.
[0011]
In the conventional titanium oxide containing oxygen deficiency, generally, when heated to about 500 ° C. in the air, oxygen in the air is supplied to the titanium oxide (oxidized) and converted into mere rutile and anatase titanium dioxide. Although the photocatalytic property to light is lost, the titanium oxide film according to the present invention is prepared by performing a heat treatment at 800 ° C., for example, so that it is thermally stable, that is, heated to about 500 ° C. in the air. However, no change in photocatalytic property to visible light is observed.
[0012]
(Comparative Example 1)
The titanium oxide film deposited on the (0001) plane sapphire substrate under the same conditions as in Example 1 was evaluated for the photocatalytic property of the titanium oxide film produced at a heating temperature of 600 ° C., as shown in FIG. Thus, the quantum efficiency was lower than that of the titanium oxide film having a heating temperature of 800 ° C. (Example 1), the incident light wavelength was 370 nm or more, and the quantum efficiency was below the measurement limit. Furthermore, the photocatalytic property of the titanium oxide film deposited on the sapphire substrate with (11-20), (10-10), (01-12) orientation under the same conditions as in Example 1 and heat-treated at 800 ° C. was evaluated. As a result, the photocatalytic property was lower than that of the titanium oxide film according to the present invention.
[0013]
(Comparative Example 2)
A titanium metal film deposited on a (0001) -oriented sapphire substrate was heat-treated under the same conditions as in Example 1 to produce a titanium oxide film, and the photocatalytic performance was evaluated. Compared with the titanium oxide film according to the present invention. The photocatalytic property was low.
[0014]
【The invention's effect】
It has been found that a titanium oxide film having photocatalytic properties under visible light can be obtained by vapor deposition by laser ablation film formation and subsequent heat treatment. That is, by exhibiting photocatalytic properties under visible light such as sunlight and natural light, it can be expanded to use for decomposition and removal of harmful gases such as nitrogen oxides as compared with conventional titanium dioxide.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction (θ-2θ) diagram of a titanium oxide film obtained by vapor deposition on a (0001) plane sapphire substrate and heat treatment at 800 ° C. for 1 hour by a laser ablation film forming method. It is.
FIG. 2 is a result of surface excitation hole measurement of a film prepared by heat treatment at 600 ° C. and 800 ° C. of a titanium oxide film deposited on a (0001) plane sapphire substrate by a laser ablation film forming method. FIG.

Claims (2)

(0001)面方位のサファイア基板上に成膜され、アナターゼ及びルチル結晶構造のTiOと、Tiとが混在した、可視光下で光触媒活性を示すことを特徴とする、光触媒酸化チタン膜。A photocatalytic titanium oxide film formed on a sapphire substrate having a (0001) orientation and having photocatalytic activity under visible light in which TiO 2 having anatase and rutile crystal structure and Ti 2 O 3 are mixed. film. 可視光下で光触媒活性を示す酸化チタン膜を製造する方法であって、
レーザーアブレーション成膜法により、(0001)面方位のサファイア単結晶基板上に酸化チタンを蒸着し、その後、空気中で熱処理することを含み、
酸化チタンの蒸着が、蒸発物質としてTiO焼結体を用いて、20℃〜80℃の基板温度で、1.3Pa(10mTorr)〜8.0Pa(60mTorr)の酸素雰囲気中で行われ、
熱処理が700℃〜900℃で1〜2時間行われることを特徴とする、前記製造方法。
A method for producing a titanium oxide film exhibiting photocatalytic activity under visible light,
Including vapor-depositing titanium oxide on a (0001) -oriented sapphire single crystal substrate by a laser ablation film-forming method, followed by heat treatment in air;
The deposition of titanium oxide is performed in an oxygen atmosphere of 1.3 Pa (10 mTorr) to 8.0 Pa (60 mTorr) at a substrate temperature of 20 ° C. to 80 ° C. using a TiO 2 sintered body as an evaporating substance,
The said manufacturing method characterized by heat-processing being performed at 700 to 900 degreeC for 1 to 2 hours.
JP2001323194A 2001-10-22 2001-10-22 Titanium oxide film showing photocatalytic property under visible light and method for producing the same Expired - Fee Related JP3785614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001323194A JP3785614B2 (en) 2001-10-22 2001-10-22 Titanium oxide film showing photocatalytic property under visible light and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001323194A JP3785614B2 (en) 2001-10-22 2001-10-22 Titanium oxide film showing photocatalytic property under visible light and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003126700A JP2003126700A (en) 2003-05-07
JP3785614B2 true JP3785614B2 (en) 2006-06-14

Family

ID=19140123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001323194A Expired - Fee Related JP3785614B2 (en) 2001-10-22 2001-10-22 Titanium oxide film showing photocatalytic property under visible light and method for producing the same

Country Status (1)

Country Link
JP (1) JP3785614B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697732B2 (en) * 2004-07-29 2011-06-08 富士電機リテイルシステムズ株式会社 Method for producing titanium oxide thin film
JP5035060B2 (en) * 2008-03-24 2012-09-26 三菱マテリアル株式会社 Method for manufacturing titanium oxide target having high density and low specific resistance

Also Published As

Publication number Publication date
JP2003126700A (en) 2003-05-07

Similar Documents

Publication Publication Date Title
US8609205B2 (en) Method for depositing crystalline titania nanoparticles and films
Velten et al. Preparation of TiO2 layers on cp‐Ti and Ti6Al4V by thermal and anodic oxidation and by sol‐gel coating techniques and their characterization
JP6255647B2 (en) Crystal film, crystal film manufacturing method, vapor deposition apparatus, and multi-chamber apparatus
US8197884B2 (en) Process for producing a sol-gel-based absorber coating for solar heating
US20100240531A1 (en) Process for producing titanium oxide layers
JP3785614B2 (en) Titanium oxide film showing photocatalytic property under visible light and method for producing the same
JP2000096212A (en) Photocatalyst film coated member and its production
Kim et al. Structural analysis on photocatalytic efficiency of TiO2 by chemical vapor deposition
WO2008091053A1 (en) Method of preparation for titania photo-catalyst by oxygen plasma and rapid thermal annealing
JP4565170B2 (en) Method for producing anatase TiO2 single crystal thin film
JP4701447B2 (en) Preparation method of titanium oxide single crystal thin film with anatase crystal structure
JP4599547B2 (en) Two-layer photocatalytic titanium oxide film and method for producing the same
JP4590580B2 (en) Titanium oxide mixed type highly active photocatalytic thin film and method for producing the same
JP3550658B2 (en) Method for producing titanium dioxide-based thin film with controlled crystal structure
JP4761013B2 (en) Method for producing anatase type titanium dioxide crystal alignment film on silicon single crystal substrate
JP4224850B2 (en) Method for producing photocatalytic anatase-type titanium dioxide thin film
JP4883512B2 (en) Fabrication method of visible light responsive titanium oxide thin film
JP2003311158A (en) Manufacturing method for high-efficiency photocatalytic titanium dioxide thin film
JP2002020199A (en) Method of producing rutile type titanium dioxide single crystal thin film
JP2010070400A (en) Method for producing high-photoactivity titania containing oxygen-deficient portion
Lu et al. Photocatalytic TiO2 thin films prepared via a high-pressure crystallization process
TW202307251A (en) Method of forming a layer of a compound
JP3116093B1 (en) Method for producing TiO single crystal thin film
TW202316689A (en) Method for producing a solid-state component, solid-state component, quantum component and apparatus for producing a solid-state component
JP2004359472A (en) Method for manufacturing titanium dioxide film comprising crystal-oriented crystallites

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees