JP3785496B2 - Heat storage system - Google Patents

Heat storage system Download PDF

Info

Publication number
JP3785496B2
JP3785496B2 JP13629498A JP13629498A JP3785496B2 JP 3785496 B2 JP3785496 B2 JP 3785496B2 JP 13629498 A JP13629498 A JP 13629498A JP 13629498 A JP13629498 A JP 13629498A JP 3785496 B2 JP3785496 B2 JP 3785496B2
Authority
JP
Japan
Prior art keywords
well
heat source
heat
temperature
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13629498A
Other languages
Japanese (ja)
Other versions
JPH11325650A (en
Inventor
中村  慎
孝昭 清水
幹雄 高橋
雄一 甲村
典彦 古寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP13629498A priority Critical patent/JP3785496B2/en
Publication of JPH11325650A publication Critical patent/JPH11325650A/en
Application granted granted Critical
Publication of JP3785496B2 publication Critical patent/JP3785496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、未利用エネルギー利用や省エネルギーの立場から、地下帯水層を空調機並びにヒートポンプの熱源かつ蓄熱槽として利用する蓄熱システムに関する。
【0002】
【従来の技術】
地中を夏には冷熱源とし冬には温熱源として、季節間で熱利用をするところの地下帯水層に温水・冷水を蓄えて冬季・夏季に交互利用する地下水利用方法の基本的な蓄熱システムは周知である。この地中を蓄熱槽とする方式では、建物地下階に水蓄熱槽を構築するのに較べて、施工コストがほとんどかからない、大容量の蓄熱が可能、地中での水流はダルシー流であるので、温・冷間の対流が起らず混合ロスが少ない(水槽の場合には区画壁の付設や、温度成層効果の利用などが必要)等の利点を享受できる。この地下水利用システムでは、地下水を汲み上げてその保有熱を利用するもので、その際に揚水井と還元井を設け、地盤沈下の被害を無くす地下水還元方式が主流となっていて、図8に示す如く、冬季には地下温水帯からくみ上げた地下水を温熱源として利用するとともに利用後の冷えた水を地下冷水帯に注入し、また夏季には前記地下冷水帯からくみ上げた地下水を冷熱源として利用するとともに利用後の温まった水を前記地下温水帯に注入する。通常の自然な地下水の温度は15℃〜17℃程度であるが、蓄熱効果によって、前記地下冷水帯から夏季には自然な地下水よりも相当に低温(例えば10℃)の冷水をくみ上げることができ、冷房用などの冷熱源としての価値が高く、一方、前記地下温水帯から冬季には自然な地下水よりも相当に高温の温水(例えば20℃)をくみ上げることができ、暖房用などの温熱源としての価値が高く、空調機並びにヒートポンプの熱源として有効である。
【0003】
叙上のシステムは、その冷熱源、温熱源が一季節中の使用量をまかなうに足り得るならば極めて合理的なシステムである。しかし、専有の敷地が隣接地と干渉しないでその能力を有し得るケースは現実的ではなく、かつ、建物の大型化により専有の敷地内にては熱源が不足するケースがほとんどである。よって、従来の2種類の井戸から構成されるシステムでは、地中の熱容量に対して負荷の小さい場合は有効ではあるが、地中の熱容量に比べて熱負荷の大きい場合には、汲み上げ温度が安定せず、熱源として不十分となったり、地中温度が年間サイクルで安定せずに複数年の利用が困難になるなどの不具合が生じる。
【0004】
叙上の熱量不足に対しては補完手当てが採られてシステム維持が図られる。すなわち、日サイクルの蓄熱運転である。これは昼間に地中に還元した排熱を夜間の低コスト動力を利用して汲み上げ、元の井戸に与熱して戻すものである。
【0005】
【発明が解決しようとする課題】
しかし、この補完は、昼間の排熱を高負荷のもとで元の温度に処理しなければならず、コスト的、エネルギー的に妥当性を欠く。
【0006】
また、叙上の熱量不足のパターンは例えばOA負荷に代表される冷房運転が冬期にも要求される冷房負荷に偏った建物あるいは寒冷地の暖房運転が夏期にも要求されるような暖房負荷に偏った建物にあっても発生するものであるが、補完のため日サイクルの蓄熱運転を行なうと同様の不都合が生じる。
【0007】
本発明は、叙上の事情に鑑みなされたもので、その目的とするところは、日サイクルの蓄熱運転を実行してもコスト的に妥当性を確保し得る地下帯水層を空調機並びにヒートポンプの熱源として利用する蓄熱システムを提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の地下帯水層を空調機並びにヒートポンプの熱源かつ蓄熱槽として利用する蓄熱システムは、互いに干渉しにくい配置にて、平均地中温度の帯水層を有する熱源井戸と、該平均地中温度より低温の帯水層を有する低温井戸と、該平均地中温度より高温の帯水層を有する高温井戸との3種の井戸を設け、冷房モードは、低温井戸から揚水した冷水を先ず空調機の冷水として利用してあたためられた戻り水をヒートポンプの凝縮側の冷熱源に再利用して温水にしてから高温井戸に還水するものとし、あるいは、揚水した水が冷却水のレベルの場合には、ヒートポンプの凝縮側の冷熱源に利用して温水にしてから高温井戸に還水するものとし、暖房モードは、高温井戸から温水を揚水してヒートポンプの蒸発側の温熱源に利用して冷やされた戻り水は熱源井戸に還水するものとし、夜間の蓄熱モードは、熱源井戸から揚水してヒートポンプの凝縮器側と蒸発器側とに投入し、凝縮器側から出てくる温水は高温井戸に、蒸発器側から出てくる冷水は低温井戸に夫々還水するとしたものである。
【0009】
叙上要領に加えて冷房負荷に偏った建物の場合にあっては、冬期昼の冷房モードは、熱源井戸から揚水してヒートポンプの蒸発側の温熱源に利用したうえで出てくる冷水を空調機の冷熱源に使用して出てくる熱源井戸温度となった戻り水を前記ヒートポンプの凝縮側の冷熱源に利用し、出てくる温水を高温井戸に還水すると共に冬期夜に高温井戸から温水を揚水して冷却塔などを介して熱源井戸温度に冷却して熱源井戸に還水して熱源井戸の回復をするとしたものである。
【0010】
また、暖房負荷に偏った建物の場合にあっては、夏期昼の暖房モードは、高温井戸から揚水して凝縮側で空調機と循環のヒートポンプの蒸発側の温熱源に利用したうえ出てくる熱源井戸温度となった戻り水を熱源井戸に還水すると共に夏期昼に低温井戸から冷水を揚水して日光熱などを介して熱源井戸温度に温めて熱源井戸に還水して熱源井戸の回復をするとしたものである。
【0011】
【作用】
3種井戸を構成した結果、日サイクルの蓄熱を併用しての使用において、蓄熱に際する揚水井としてより負荷の少ない井戸(熱源井戸)を選択して低負荷にて運転することが可能となり、さらには、3種井戸のバランス維持上中間の温度の熱源井戸を建物の冷若しくは暖房負荷偏重に応じて揚水井(自然な地下水温度は夏期の冷房、冬期の暖房に十分利用できる)並びに還元井に合理的に選定利用しつつ、回復手当もすることで、地中温度の年間サイクルが安定し、地下帯水層を空調機並びにヒートポンプの熱源かつ蓄熱槽として利用する方式の蓄熱システムの有利性を一層有効活用し得るものとなる。
【0012】
【発明の実施の形態】
本発明の実施の形態を図1〜7に基づいて説明する。
【0013】
敷地1内に互いに干渉しない配置のもとに平均地中温度の帯水層を有する熱源井戸2、在来の2井戸のうちの一方に該当の平均地中温度より低温の帯水層を有する低温井戸3、他方の井戸に該当の地中温度より高温の高温井戸4を配設する。ここに、上記熱源井戸2は15℃が、低温井戸3は5℃が、高温井戸4は25℃が夫々イメージされる。但し、これ等の温度は負荷の状況により変動する非断定的な値である。各モードにおける揚水、還元は次記の如くなされる。
【0014】
先ず、夏期昼に運転される冷房モードは、図1に示される如く、低温井戸3から冷水を揚水して先ず空調機5の冷水に利用して熱源井戸2の温度レベルとなった戻り水を蒸発側で空調機5’と循環のヒートポンプ6の凝縮側の冷熱源に再利用して温水にしてから高温井戸4に還水する。低温井戸3から揚水の冷水の冷熱源を空調機5、5’にて直接、ヒートポンプ6を介して2重に有効に利用する。このパターンは揚水が冷水レベルにある場合に許容されるものであり、揚水が冷水レベルにまで冷えていないヒートポンプにしか利用し得ない所謂冷却水レベルの場合には、ヒートポンプに直接供給されることとなる。
【0015】
次に冬期昼に運転される暖房モードは、図2に示される如く、高温井戸3から温水を揚水して凝縮側で空調機5’に循環のヒートポンプ6の蒸発側の温熱源に利用して熱源井戸2の温度となった戻り水は熱源井戸2に還水する。
【0016】
さらに、夏、冬夜間に運転される日サイクルの蓄熱モードは、図3に示される如く、熱源井戸2から揚水してヒートポンプ6の凝縮器側と蒸発器側とに投入し、凝縮器側から出てくる温水は高温井戸4に、蒸発器側から出てくる冷水は低温井戸3に夫々還水する。低温、高温いずれの蓄熱も負荷の少ない井戸を揚水井に選択し得る利点を存分に利用して省エネルギーと省コストを達成している。
【0017】
冷房負荷に偏った建物の場合にあっては、図4に示される如く冬期夜に高温井戸4から温水を揚水して冷却塔7等を介して熱源井戸2の温度に冷却して熱源井戸2に還水して熱源井戸2の回復をする必要がある。
【0018】
また、暖房負荷に偏った建物の場合にあっては、図5に示される如く夏期昼に低温井戸3から冷水を揚水して日光熱8等を介して熱源井戸2の温度に温めて熱源井戸2に還水して熱源井戸2の回復をする必要がある。
【0019】
いずれのモードにあっても負担の大きな熱源井戸2の回復を図ってシステムの正常なる稼動を期している。
【0020】
図6は井戸2、3、4の互いに干渉しない配置例のうち平面的なものを示し、充分なる間隔を確保して配置構成している。敷地が広い場合に可能となる。
【0021】
これに比し、図7は敷地1が狭い制約された場合を示し、図7aは互いにレベル差をもつ立体的な配置を所定の間隔を確保して構成した例を示し、同図bは唯一の井戸をパッカー9で区画してレベル差をもって構成するとした例を示す。この場合、井戸壁は各区画毎にスクリーン10を設ける。
【0022】
【発明の効果】
本発明は、以上の如く構成されるので、以下に述べる効果を奏する。
【0023】
従来の方法では、低温井戸と高温井戸の2つだけであるため、季間蓄熱の場合は良いが、日サイクルの蓄熱を組合せた場合、例えば夏季、高温井戸から汲み上げて、低温水を製造する必要があるためエネルギー的に不利になるが、3種の井戸を構成した場合は、熱源井戸が平均温度に保て、かつ、これを揚水井に選択できるため冷熱製造が省エネルギーかつ省コストとなる(熱源が定温の熱交換システム構築は設計上有利)。
【0024】
この結果、日サイクル蓄熱の組合せが効果的に可能となる。
【0025】
また、冷若しくは暖房負荷に偏った場合でも省エネ、省コストのもとで熱源井戸2の回復をするので、システム維持に支障がない。
【図面の簡単な説明】
【図1】本発明システムの冷房モードを示す説明図である。
【図2】本発明システムの暖房モードを示す説明図である。
【図3】本発明システムの夜間蓄熱モードを示す説明図である。
【図4】本発明システムの冷房モードに付随してなされる回復モードの説明図である。
【図5】本発明システムの暖房モードに付随してなされる回復モードの説明図である。
【図6】本発明システムにおける井戸の配置構成説明図である。
【図7】a、bは本発明システムにおける井戸の配置構成説明図である。
【図8】従来の蓄熱システムの説明図である。
【符号の説明】
1 敷地
2 熱源井戸
3 低温井戸
4 高温井戸
5 空調機
6 ヒートポンプ
7 冷却塔
8 日光熱
9 パッカー
10 スクリーン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat storage system that uses an underground aquifer as a heat source and a heat storage tank of an air conditioner and a heat pump from the standpoint of using unused energy and saving energy.
[0002]
[Prior art]
Basic groundwater use method that stores hot water and cold water in the underground aquifer where heat is used between seasons, and uses it in the winter and summer alternately. Thermal storage systems are well known. Compared to the construction of a water heat storage tank on the basement floor of the building, this underground heat storage tank requires little construction cost, enables large-capacity heat storage, and the underground water flow is Darcy. In addition, convection between warm and cold does not occur and mixing loss is small (in the case of a water tank, it is necessary to attach a partition wall or use a temperature stratification effect). In this groundwater utilization system, the groundwater is pumped and the retained heat is used. At that time, a groundwater reduction method is established to provide a pumping well and a reduction well and eliminate the damage of ground subsidence. In winter, the groundwater pumped up from the underground warm water zone is used as a heat source, and the cold water after use is injected into the cold ground water zone. In the summer, the groundwater pumped up from the underground cold water zone is used as a cold heat source. In addition, warm water after use is poured into the underground warm water zone. The temperature of normal natural groundwater is about 15 ° C to 17 ° C. However, due to the heat storage effect, cold water having a temperature lower than that of natural groundwater (for example, 10 ° C) can be pumped from the ground cold water zone in summer. It is highly valuable as a cooling heat source for cooling, etc. On the other hand, warm water (e.g., 20 ° C.) that is considerably hotter than natural ground water can be pumped from the underground warm water zone in the winter season. And is effective as a heat source for air conditioners and heat pumps.
[0003]
The above system is a very reasonable system if the cold source and the hot source are sufficient to cover the amount used throughout the season. However, it is not realistic that the exclusive site can have the capability without interfering with the adjacent land, and in many cases, the heat source is insufficient in the exclusive site due to the enlargement of the building. Therefore, in the conventional system composed of two types of wells, it is effective when the load is small compared to the underground heat capacity, but when the heat load is large compared to the underground heat capacity, the pumping temperature is It is not stable and becomes insufficient as a heat source, or the underground temperature is not stabilized in an annual cycle, and it becomes difficult to use for multiple years.
[0004]
For the above shortage of heat, supplementary treatment will be taken to maintain the system. That is, it is a heat storage operation of a daily cycle. This is to pump the exhaust heat returned to the ground in the daytime using low-cost power at night and heat it back to the original well.
[0005]
[Problems to be solved by the invention]
However, this complementation must treat the exhaust heat during the daytime to the original temperature under a high load, which is not costly and energy-effective.
[0006]
In addition, the above-mentioned pattern of insufficient heat amount is, for example, a heating load in which cooling operation represented by OA load is biased to the cooling load required in winter or a heating load in which cold operation in the cold district is also required in summer. Although it occurs even in a biased building, the same inconvenience occurs when the heat storage operation of the daily cycle is performed for complementation.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an underground aquifer that can ensure cost validity even when a heat storage operation of a daily cycle is performed. It is in providing the thermal storage system utilized as a heat source.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a heat storage system that uses the underground aquifer of the present invention as a heat source and a heat storage tank of an air conditioner and a heat pump has an aquifer with an average underground temperature in an arrangement that does not interfere with each other. There are provided three types of wells: a heat source well, a low temperature well having an aquifer lower than the average underground temperature, and a high temperature well having an aquifer higher than the average underground temperature. The cold water pumped from the well is first used as the cold water of the air conditioner, and the return water is reused as the cold heat source on the condensation side of the heat pump to be warmed and then returned to the hot well, or pumped If the water is at the level of cooling water, it is used as a cooling heat source on the condensation side of the heat pump and heated to the hot water well and then returned to the hot water well. In the heating mode, the hot water is pumped from the hot water well and the heat pump is evaporated. Side Return water cooled by the heat source is returned to the heat source well, and the nighttime heat storage mode is pumped from the heat source well and fed to the condenser side and the evaporator side of the heat pump, and from the condenser side. The hot water that comes out is returned to the high temperature well, and the cold water that comes out from the evaporator side is returned to the low temperature well.
[0009]
In the case of buildings that are biased to the cooling load in addition to the above description, the cooling mode in winter daytime is air conditioning the cold water that is pumped from the heat source well and used as the heat source on the evaporation side of the heat pump The return water at the heat source well temperature that is used as the cold heat source of the machine is used as the cold heat source on the condensation side of the heat pump, and the hot water that comes out is returned to the high temperature well and from the high temperature well in the winter night The hot water is pumped, cooled to the temperature of the heat source well through a cooling tower, and returned to the heat source well to recover the heat source well.
[0010]
Also, in the case of buildings that are biased to the heating load, the summer day heating mode comes out after pumping water from the high-temperature well and using it as a heat source on the evaporation side of the air conditioner and circulation heat pump on the condensing side The return water that has reached the temperature of the heat source well is returned to the heat source well, and cold water is pumped from the low temperature well in the summer daytime, warmed to the heat source well temperature through sunlight heat, etc., and returned to the heat source well to recover the heat source well. If you do.
[0011]
[Action]
As a result of configuring three types of wells, it becomes possible to select a well with less load (heat source well) as a pumping well for heat storage when operating in combination with heat storage in a daily cycle and operate at low load. Furthermore, in order to maintain the balance of the three wells, the heat source well at an intermediate temperature is reduced according to the cooling of the building or the heating load (natural groundwater temperature is sufficient for cooling in summer and heating in winter) and reduction. Advantages of a heat storage system that stabilizes the annual cycle of underground temperature and makes use of the underground aquifer as a heat source and heat storage tank for air conditioners and heat pumps by rationally selecting and using wells for recovery It is possible to make more effective use of sex.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
[0013]
Heat source well 2 having an aquifer with an average underground temperature in an arrangement that does not interfere with each other in site 1, and one of two conventional wells has an aquifer that is lower than the corresponding average underground temperature A low temperature well 3 and a high temperature well 4 having a temperature higher than the corresponding underground temperature are disposed in the other well. Here, the heat source well 2 is imaged at 15 ° C., the low temperature well 3 is imaged at 5 ° C., and the high temperature well 4 is imaged at 25 ° C. However, these temperatures are non-indeterminate values that vary depending on the load conditions. The pumping and reduction in each mode is performed as follows.
[0014]
First, as shown in FIG. 1, the cooling mode that is operated during summer noon pumps the cold water from the low-temperature well 3 and first uses the return water that has been used for the cold water of the air conditioner 5 to reach the temperature level of the heat source well 2. On the evaporation side, it is reused as a cold heat source on the condensation side of the air conditioner 5 ′ and the circulating heat pump 6 to make warm water, and then returned to the high temperature well 4. The cold heat source of the pumped water from the low temperature well 3 is used effectively in a double manner via the heat pump 6 directly by the air conditioners 5, 5 ′. This pattern is acceptable when the pumped water is at the cold water level, and when the pumped water is at a so-called cooling water level that can only be used for a heat pump that has not cooled to the cold water level, it is supplied directly to the heat pump. It becomes.
[0015]
Next, as shown in FIG. 2, the heating mode operated in the winter daytime is used as a heat source on the evaporation side of the heat pump 6, which pumps hot water from the high temperature well 3 and circulates to the air conditioner 5 ′ on the condensing side. The return water that has reached the temperature of the heat source well 2 is returned to the heat source well 2.
[0016]
Furthermore, as shown in FIG. 3, the heat storage mode of the daily cycle operated in summer and winter nights is pumped from the heat source well 2 and supplied to the condenser side and the evaporator side of the heat pump 6, and from the condenser side. The warm water that comes out is returned to the high temperature well 4, and the cold water that comes out from the evaporator side is returned to the low temperature well 3. Energy saving and cost saving are achieved by making full use of the advantage that a well with low load for both low and high temperature heat storage can be selected as a pumping well.
[0017]
In the case of a building biased to a cooling load, as shown in FIG. 4, the hot water is pumped from the high temperature well 4 in the winter night and cooled to the temperature of the heat source well 2 through the cooling tower 7 or the like. It is necessary to recover the heat source well 2 by returning the water.
[0018]
In the case of a building that is biased to the heating load, as shown in FIG. 5, the cold water is pumped from the low temperature well 3 in the summer daytime and heated to the temperature of the heat source well 2 through the sunlight heat 8 or the like. It is necessary to recover the heat source well 2 by returning the water to 2.
[0019]
Regardless of the mode, normal operation of the system is expected by recovering the heat source well 2 having a large burden.
[0020]
FIG. 6 shows a planar arrangement of the wells 2, 3, and 4 that do not interfere with each other, and the arrangement is made with a sufficient spacing. This is possible when the site is large.
[0021]
In contrast to this, FIG. 7 shows a case where the site 1 is constrained, FIG. 7a shows an example in which a three-dimensional arrangement having a level difference from each other is secured with a predetermined interval, and FIG. An example is shown in which the well is partitioned by the packer 9 and configured with a level difference. In this case, the well wall is provided with a screen 10 for each section.
[0022]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0023]
In the conventional method, there are only two wells, a low temperature well and a high temperature well, so it is good for seasonal heat storage, but when combined with daily cycle heat storage, for example, in the summer, pumping from the high temperature well to produce low temperature water Although it is disadvantageous in terms of energy because it is necessary, if three types of wells are configured, the heat source well can be kept at an average temperature and can be selected as a pumping well, so that cold production is energy saving and cost saving (Building a heat exchange system with a constant heat source is advantageous in terms of design).
[0024]
As a result, a combination of daily cycle heat storage becomes possible effectively.
[0025]
Further, even when the load is biased to cooling or heating, the heat source well 2 is restored under energy saving and cost saving, so that there is no problem in maintaining the system.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a cooling mode of a system of the present invention.
FIG. 2 is an explanatory diagram showing a heating mode of the system of the present invention.
FIG. 3 is an explanatory diagram showing a night heat storage mode of the system of the present invention.
FIG. 4 is an explanatory diagram of a recovery mode performed in association with the cooling mode of the system of the present invention.
FIG. 5 is an explanatory diagram of a recovery mode performed in association with the heating mode of the system of the present invention.
FIG. 6 is an explanatory diagram of the arrangement of wells in the system of the present invention.
FIGS. 7A and 7B are explanatory views of the arrangement of wells in the system of the present invention.
FIG. 8 is an explanatory diagram of a conventional heat storage system.
[Explanation of symbols]
1 site 2 heat source well 3 low temperature well 4 high temperature well 5 air conditioner 6 heat pump 7 cooling tower 8 sunlight heat 9 packer 10 screen

Claims (7)

互いに干渉しにくい配置にて、平均地中温度の帯水層を有する熱源井戸と、該平均地中温度より低温の帯水層を有する低温井戸と、該平均地中温度より高温の帯水層を有する高温井戸との3種の井戸を設け、冷房モードは、低温井戸から揚水した冷水を少なくとも先ず空調機の冷水に利用してあたためられた戻り水をヒートポンプの凝縮側の冷熱源に再利用して温水にしてから高温井戸に還水するものとし、暖房モードは、高温井戸から温水を揚水してヒートポンプの蒸発側の温熱源に利用して熱源井戸温度となった戻り水は熱源井戸に還水するものとし、夜間の蓄熱モードは、熱源井戸から揚水してヒートポンプの凝縮器側と蒸発器側とに投入し、凝縮器側から出てくる温水は高温井戸に、蒸発器側から出てくる冷水は低温井戸に夫々還水するとしたことを特徴とする地下帯水層を空調機並びにヒートポンプの熱源かつ蓄熱槽として利用する蓄熱システム。A heat source well having an aquifer having an average underground temperature, a low temperature well having an aquifer having a temperature lower than the average underground temperature, and an aquifer having a temperature higher than the average underground temperature, in an arrangement that does not interfere with each other Three types of wells with high temperature wells are provided, and in the cooling mode, at least the cold water pumped from the low temperature wells is first used as the cold water of the air conditioner, and the return water is reused as the cold heat source on the condensation side of the heat pump In the heating mode, the warm water is pumped from the high temperature well and used as a heat source on the evaporation side of the heat pump, and the return water that has reached the heat source well temperature is returned to the heat source well. In the nighttime heat storage mode, water is pumped from the heat source well and supplied to the condenser side and evaporator side of the heat pump, and the hot water coming out of the condenser side is discharged to the hot well and from the evaporator side. The cold water that comes is returned to the low temperature well respectively. Heat storage system utilizing underground aquifer, characterized in that there was suppose as a heat source and the heat storage tank of the air conditioner and heat pump. 互いに干渉しにくい配置にて、平均地中温度の帯水層を有する熱源井戸と、該平均地中温度より低温の帯水層を有する低温井戸と、該平均地中温度より高温の帯水層を有する高温井戸との3種の井戸を設け、冷房モードは、低温井戸から揚水した冷却水をヒートポンプの凝縮側の冷熱源に利用して温水にしてから高温井戸に還水するものとし、暖房モードは、高温井戸から温水を揚水してヒートポンプの蒸発側の温熱源に利用して冷やされた戻り水は熱源井戸に還水するものとし、夜間の蓄熱モードは、熱源井戸から揚水してヒートポンプの凝縮器側と蒸発器側とに投入し、凝縮器側から出てくる温水は高温井戸に、蒸発器側から出てくる冷水は低温井戸に夫々還水するとしたことを特徴とする地下帯水層を空調機並びにヒートポンプの熱源かつ蓄熱槽として利用する蓄熱システム。A heat source well having an aquifer having an average underground temperature, a low temperature well having an aquifer having a temperature lower than the average underground temperature, and an aquifer having a temperature higher than the average underground temperature, in an arrangement that does not interfere with each other There are three types of wells, a high-temperature well and a cooling mode that uses cooling water pumped from the low-temperature well as a heat source on the condensation side of the heat pump to warm water and then returns to the high-temperature well. The mode is that hot water is pumped from a high-temperature well and the return water cooled by using the heat source on the evaporation side of the heat pump is returned to the heat source well. The night heat storage mode is pumped from the heat source well to heat pump An underground zone characterized in that hot water discharged from the condenser side is returned to the high temperature well and cold water output from the evaporator side is returned to the low temperature well respectively. Heat source for air conditioner and heat pump One thermal storage system that utilizes the thermal storage tank. 請求項1又は2記載の要領に加えて、冬期昼の冷房モードは、熱源井戸から揚水してヒートポンプの蒸発側の温熱源に利用したうえで出てくる冷水を空調機の冷熱源に使用して出てくる熱源井戸温度となった戻り水を前記ヒートポンプの凝縮側の冷熱源に利用し、出てくる温水を高温井戸に還水すると共に、冬期夜に高温井戸から温水を揚水して冷却塔等を介して熱源井戸温度に冷却して熱源井戸に還水して熱源井戸の回復をするとした冷房負荷に偏った建物の場合における地下帯水層を空調機並びにヒートポンプの熱源かつ蓄熱槽として利用する蓄熱システム。In addition to the procedure described in claim 1 or 2, the cooling mode in winter daytime uses cold water that is pumped up from the heat source well and used as a heat source on the evaporation side of the heat pump as a cooling source for the air conditioner. The return water that has reached the temperature of the heat source well is used as a cold heat source on the condensation side of the heat pump, and the hot water that comes out is returned to the high temperature well, and hot water is pumped from the high temperature well and cooled in the winter night. The underground aquifer in the case of a building biased to the cooling load, which is cooled to the heat source well temperature and returned to the heat source well through a tower or the like to recover the heat source well, serves as a heat source and heat storage tank for air conditioners and heat pumps. Thermal storage system to use. 請求項1又は2記載の要領に加えて、夏期昼の暖房モードは、高温井戸から揚水して凝縮側で空調機と循環のヒートポンプの蒸発側の温熱源に利用したうえ出てくる熱源井戸温度となった戻り水を熱源井戸に還水すると共に、夏期昼に低温井戸から冷水を揚水して日光熱等を介して熱源井戸温度に温めて熱源井戸に還水して熱源井戸の回復をするとした暖房負荷に偏った建物の場合における地下帯水層を空調機並びにヒートポンプの熱源かつ蓄熱槽として利用する蓄熱システム。In addition to the procedure described in claim 1 or 2, the heating mode in the summer daytime is a heat source well temperature that is pumped up from a hot well and used as a heat source on the evaporation side of an air conditioner and a circulating heat pump on the condensing side. When the return water is returned to the heat source well, cold water is pumped from the low temperature well in the summertime, warmed to the heat source well temperature through sunlight heat, etc., and returned to the heat source well to recover the heat source well. A heat storage system that uses the underground aquifer in the case of a building that is biased to a heated heating load as a heat source and heat storage tank for air conditioners and heat pumps. 互いに干渉しない配置の3種の井戸が、平面的に充分な間隔を確保して配置されたものである請求項1、2、3、4記載の蓄熱システム。The heat storage system according to claim 1, 2, 3, or 4, wherein the three types of wells arranged so as not to interfere with each other are arranged with a sufficient space in a plane. 互いに干渉しない配置の3種の井戸が、所定の間隔をもって立体的にレベル差を確保して配置されたものである請求項1、2、3、4記載の蓄熱システム。The heat storage system according to claim 1, 2, 3, or 4, wherein the three types of wells arranged so as not to interfere with each other are arranged with a three-dimensional level difference at a predetermined interval. 互いに干渉しない配置の3種の井戸が、唯一の井戸中をパッカーで区画してレベル差を確保して構成したものである請求項1、2、3、4記載の蓄熱システム。5. The heat storage system according to claim 1, wherein the three wells arranged so as not to interfere with each other are configured by partitioning a single well with a packer to ensure a level difference.
JP13629498A 1998-05-19 1998-05-19 Heat storage system Expired - Fee Related JP3785496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13629498A JP3785496B2 (en) 1998-05-19 1998-05-19 Heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13629498A JP3785496B2 (en) 1998-05-19 1998-05-19 Heat storage system

Publications (2)

Publication Number Publication Date
JPH11325650A JPH11325650A (en) 1999-11-26
JP3785496B2 true JP3785496B2 (en) 2006-06-14

Family

ID=15171822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13629498A Expired - Fee Related JP3785496B2 (en) 1998-05-19 1998-05-19 Heat storage system

Country Status (1)

Country Link
JP (1) JP3785496B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936726B2 (en) * 2006-01-05 2012-05-23 ミサワホーム株式会社 Geothermal air conditioning system
JP6163345B2 (en) * 2013-04-10 2017-07-12 株式会社竹中工務店 Purification equipment for contaminated soil and method for purification of contaminated soil
JP6452492B2 (en) * 2015-02-27 2019-01-16 三菱マテリアルテクノ株式会社 Geothermal heat pump system with a cold / hot simultaneous heat storage system
JP6857883B2 (en) * 2017-03-31 2021-04-14 三菱重工サーマルシステムズ株式会社 Geothermal utilization system and geothermal utilization method
KR102542579B1 (en) * 2021-08-31 2023-06-14 한국지역난방기술 (주) Aquifer-type thermal energy storage system with separate water intakes
JP7439220B1 (en) * 2022-11-18 2024-02-27 三菱重工サーマルシステムズ株式会社 Control device, geothermal heat utilization system, control method, and program

Also Published As

Publication number Publication date
JPH11325650A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
US4024908A (en) Solar powered heat reclamation air conditioning system
KR101761176B1 (en) Energy Storage System
US20070205298A1 (en) Hybrid heating and/or cooling system
CN101358784A (en) Solar thermal storage and geothermal heat pump group system
CN104251573B (en) Single-evaporator-type solar energy and air source combined heat pump and running method thereof
KR102130120B1 (en) Control Device and Method of the Geo-Solar Hybrid Heating and Cooling System
KR100506764B1 (en) Heat pump system for using heat of daily waste water and geothermy
JP2005127612A (en) Underground heat utilizing system with underground water tank water heat source heat pump
JP3785496B2 (en) Heat storage system
JP2988905B2 (en) Soil heat source ice heat storage heat pump device
KR100618292B1 (en) Triple purpose integrated power, heat and cold cogeneration system with absortion cooler from natural gas
CN104482691B (en) Ground-source heat pump system obtaining heat from environment and operation method thereof
Liu et al. Development of distributed multiple‐source and multiple‐use heat pump system using renewable energy: Outline of test building and experimental evaluation of cooling and heating performance
KR20140001185A (en) Subterranean heat-pump system
CN105650944B (en) The operation method of a kind of ground source answering system
CN103604248B (en) A kind of three use type earth source absorption type heat pump and operation method
EP1202010A1 (en) Multi-function thermodynamic device
JP2006145059A (en) Hybrid type underground heat utilization heat pump device and its operating method
KR101179659B1 (en) Hybrid type heating and cooling system using geothermal heat
JP2005337645A (en) Underground heat storage type cogeneration system
CN207963199U (en) Solar heat pump and water heating system
KR100391804B1 (en) A heat pump system using heat in the air and earth and electric power of late night
CN205349449U (en) Electricity generation of ultra -low temperature heat source and heat energy transfer system
KR20150029109A (en) Cooling-heating system by double pond
KR20060002400A (en) Heat pump system using the heat of the earth

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees