JP3785330B2 - Soil collector - Google Patents

Soil collector Download PDF

Info

Publication number
JP3785330B2
JP3785330B2 JP2001088536A JP2001088536A JP3785330B2 JP 3785330 B2 JP3785330 B2 JP 3785330B2 JP 2001088536 A JP2001088536 A JP 2001088536A JP 2001088536 A JP2001088536 A JP 2001088536A JP 3785330 B2 JP3785330 B2 JP 3785330B2
Authority
JP
Japan
Prior art keywords
soil
transparent container
cylindrical portion
feed screw
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001088536A
Other languages
Japanese (ja)
Other versions
JP2002286593A (en
Inventor
和広 高木
基次 藤原
Original Assignee
株式会社藤原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社藤原製作所 filed Critical 株式会社藤原製作所
Priority to JP2001088536A priority Critical patent/JP3785330B2/en
Publication of JP2002286593A publication Critical patent/JP2002286593A/en
Application granted granted Critical
Publication of JP3785330B2 publication Critical patent/JP3785330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、土壌を採取して地質検査を行う際に用いる土壌採取器に関する。
【0002】
【従来の技術】
耕地土壌の肥沃(ひよく)性や農業害虫の発生状況を理化学的に判定したり、埋め立てた堆積物を分析し土壌の成因を調べるために、地質調査が行われる。この地質調査は、土壌の垂直断面形態を観察する必要があり、目的に応じて1m程度の深さの垂直断面を観察、分析実験するために試料の採取(サンプリング)が行われる。
【0003】
かかる1m程度の試料を採取するために従来、回転式の土壌採取器が使用される。回転式の土壌採取器は、図7に示すように、地面Eに直接押し込んで試料としての土壌Sを内部に収容する筒部2と、この筒部2に回転力を伝達する伝動部1と、を主要部として備えている。
【0004】
伝動部1は、図8(a)に示すように、回転軸11と、この回転軸11の一端側に直交するハンドル12と、回転軸11の他端側に鍔14を介して段付き状に連設する円柱形状のグリップ13と、を主要部として構成される。グリップ13の周壁には回転軸11の軸方向と直交する向きに棒状の突起15が設けられている。この突起15は周壁に対して180度位置に2箇所設けられている。また、グリップ13には、軸方向に空気孔16が穿設されている。
【0005】
筒部2は、図8(b)に示すように、その両端が開口した円筒形状を有する筒本体21と、筒本体21の一端側に設けたL型溝22と、他端側に設けた掘削刃(ビット)23と、を主要部として構成される。筒本体21の内径はグリップ13の外径と同じかやや大きく形成されている。また、L型溝22の溝幅は棒状の突起15の外径と同じかやや大きく形成されている。そして、伝動部1を筒部2に連結する際に、突起15をL型溝22に沿って挿入すると共に、グリップ13を筒本体21内に挿入し、筒本体21の一端が鍔14と当接した時、突起15をL型溝22に沿って時計回りに回転させることで、伝動部1と筒部2を軸方向に分離しないように連結する。掘削刃(ビット)23は筒本体21の内周壁に沿って先端が鋭角となるように形成されている。
【0006】
そして、この土壌採取器は、図7に示すように、掘削刃23を地面Eに突き立て伝動部1のハンドル12を時計回りに回転させることで筒部2を地面Eに押し込んで筒部2内部に土壌Sを収納する。そして、通常は筒部2内に予め透明容器3(サンプラー)が挿入されており、土壌Sはこの透明容器3に収納する。
【0007】
透明容器3は、図8(c)に示すように、胴31と底板32からなる有底円筒形状を有し、底板32には土壌Sを収納する際、筒内部の空気をグリップ13側の空気孔16を介して外部に出すための空気抜き穴32aが設けられている。
【0008】
そして、地質検査は、透明容器3内に収納した土壌Sを用いて、まず垂直断面をみて、色、構造、植物根の入り方、母材の地質(腐葉土か、砂か、火山灰か等々)の上下方向の変わり方を観察し、比較的にそれらの性状が急変する部分に水平方向の境界線を引いて層位の区別をする。また、各層位ごとに耕地土壌の肥沃(ひよく)性や農業害虫の発生状況を理化学的に判定したり、埋め立てた堆積物を分析し土壌の成因を調べる。
【0009】
【発明が解決しようとする課題】
ところで、従来の土壌採取器は、地面Eを掘削刃(ビット)23で回転切削しながら筒部2を押し込み掘進するものであるが、筒部2を掘進させるために多大な労力を要するといった問題があった。また、労力によって得られた土壌Sは筒部23を押し込む際に押し固められ、外観検査の際に土壌Sの性状が判りずらいといった問題や透明容器3から土壌Sを取り出して検査する際に押し固められた土壌Sを粒子状に崩すための労力が別途必要になるといった問題もあった。
【0010】
本発明は、土壌を採取する際の掘進作業が容易で、採取した土壌も地質検査が容易である土壌採取器を提供することを技術的課題とする。
【0011】
【課題を解決するための手段】
本発明の土壌採取器は前述の技術的課題を解決するために以下のように構成されている

すなわち、本発明の土壌採取器は、両端が開口した円筒形状の筒部と、この筒部の一端開口に着脱自在に係合し、前記筒部に回転力を伝達する伝動部と、前記筒部の他端開口の内側に鋭角となる傾斜面が形成された掘削刃と、前記筒部の他端開口の内周面に設けられた送りねじと、胴と底板からなる有底円筒形状を有し、前記底板には内部の空気を外部に出す空気孔が設けられ、有底円筒の開口部を前記筒部の他端開口側として前記筒部の内部に着脱自在に挿入される透明容器と、を備え、前記筒部の他端開口は、前記掘削刃を土壌に接地させて前記伝動部を介して回転されると、前記土壌が前記送りねじの斜面に沿って筒内に送られて前記透明容器の開口部側より透明容器内に収納され、前記土壌が収納された前記透明容器を筒内部から取り出して新たな透明容器を挿入することを特徴とする。また、本発明の土壌採取器において、前記掘削刃は鋸刃形状であることが好ましい。
【0012】
筒部先端の掘削刃が鋸刃形状なので、鋸刃が土壌を切断すると共に筒部内に送る作用をする。また、筒部の内周面に送りねじを設けた構成により、掘削刃で切断し筒部内に送られた土壌が更に送りねじの斜面に沿って筒部内に送られるので、筒部内周面と土壌との摩擦係数が減少するので多大な労力を必要とせず、土壌を採取する際の掘進作業が容易となる。また、掘削刃で切削された土壌が従来のように直接筒部内をせり上がるのではなく、送りねじに沿って回転移動しながら筒部内に送られるので、土壌が粉れた柔らかい状態で採取でき、後工程の地質検査も容易にできる。
【0013】
また、本発明の土壌採取器において、前記送りねじは前記掘削刃に連接して設けられることが好ましい。すなわち、送りねじが掘削刃に連接して設けられることで、掘削刃で切断し筒部内に送られた土壌が直ちに送りねじに沿って送ることができる。
【0014】
更に、本発明の土壌採取器において、送りねじが右ねじであれば、通常の送り回転である時計回り方向で伝動部を操作できる。
【0015】
更にまた、本発明の土壌採取器において、前記送りねじのねじピッチが3〜5mmであることが好ましく、特に耕地土壌での試験結果によれば、3mmのねじピッチを用いたものが容易に掘進できたという結果を得た。
【0016】
更にまた、本発明の土壌採取器において、前記伝動部が駆動源を有しており、この駆動源を用いて前記筒部に回転力を伝達する構成のものも例示できる。この例示によれば、駆動源に多大な負荷が掛かることなく掘削できるので、従来土壌採取器では不可能とされていた6mから7m程度の掘削も可能となる。
【0017】
【発明の実施の形態】
以下、本発明の一実施の形態である土壌採取器を添付した図面に基づいて説明する。なお、本実施形態では、耕地土壌の肥沃(ひよく)性や農業害虫の発生状況を理化学的に判定したり、埋め立てた堆積物を分析し土壌の成因を調べるために、1m程度の深さの土壌を採取するハンドフィード型の土壌採取器を用いた場合で説明する。
【0018】
すなわち、土壌採取器は、図1及び図2に示すように、地面Eに直接押し込んで試料としての土壌Sを内部に収容する筒部2と、この筒部2に回転力を伝達する伝動部1と、を主要部として備えている。
【0019】
伝動部1は、回転軸11と、この回転軸11の一端側に直交するハンドル12と、回転軸11の他端側に鍔14を介して段付き状に連設する円柱形状のグリップ13と、を主要部として構成される。グリップ13の周壁には回転軸11の軸方向と直交する向きに棒状の突起15が設けられている。この突起15は周壁に対して180度位置に2箇所設けられている。また、グリップ13には、軸方向に空気孔16が穿設されている。
【0020】
筒部2は、その両端が開口した円筒形状を有する筒本体21と、筒本体21の一端側に設けたL型溝22と、他端側に内周壁に沿って設けた掘削刃(ビット)23と、掘削刃23と連接して筒本体内に穿設された送りねじ24と、を主要部として構成される。なお、筒部2(筒本体21)の長手方向寸法は25cmであり、径は50mmである。筒部2の長手方向寸法を25cmとした理由は、耕地に耕耘機が入って土を起こす深さが25cm程度であることによる。
【0021】
筒本体21の内径はグリップ13の外径と同じかやや大きく形成されている。また、L型溝22の溝幅は棒状の突起15の外径と同じかやや大きく形成されている。そして、伝動部1を筒部2に連結する際に、突起15をL型溝22に沿って挿入すると共に、グリップ13を筒本体21内に挿入し、筒本体21の一端が鍔14と当接した時、突起15をL型溝22に沿って時計回りに回転させることで、伝動部1と筒部2を軸方向に分離しないように連結する。
【0022】
掘削刃(ビット)23は、図3及び図4に示すように、鋸刃形状であり、その歯が径50mmに対し内周壁に沿って18個設けられている。また、歯は筒本体21の内側に鋭角となる傾斜面が形成されている(図4(b)参照)。
【0023】
送りねじは筒本体21の内周面に穿設された右ねじであり、そのピッチは3mmの1条ねじである。
【0024】
そして、この土壌採取器は、図1に示すように、掘削刃23を地面Eに突き立て伝動部1のハンドル12を時計回りに回転させることで筒部2を地面Eに押し込んで筒部2内部に土壌Sを収納する。そして、この筒部2内には予め透明容器3(サンプラー)が挿入されており、土壌Sはこの透明容器3に収納する。
【0025】
透明容器3は、図5に示すように、胴31と底板32からなる有底円筒形状を有し、底板32には土壌Sを収納する際、筒内部の空気をグリップ13側の空気孔16を介して外部に出すための空気抜き穴32aが設けられている。なお、この透明容器3は土壌Sを収納した後、開口部側に蓋33をして採取した土壌Sを密閉する。また、この透明容器3の材質は加工や使用時の硬度を考慮すると塩化ビニル等の樹脂が好ましい。
【0026】
次に、この実施の形態の作用を説明する。
すなわち、筒部2先端の掘削刃23が鋸刃形状なので、鋸刃の歯が土壌を切断すると共に傾斜面を介して筒部2内に送る作用をする。また、筒部2の内周面に送りねじ24を設けた構成により、掘削刃23で切断し筒部2内に送られた土壌Sが更に送りねじ24の斜面に沿って筒部2内に送られる。従って、掘削刃23で切削された土壌Sが従来のように直接筒部2内をせり上がるのではなく、送りねじ24の斜面に沿って収納されるので、筒部2内周面と土壌Sとの摩擦係数が減少し、多大な労力を必要とせずに掘進作業が容易にできる。そして、図1に示すように、1回目の25cmの掘削L1が終了すると、筒部2より透明容器3を取り出して蓋33をする。次に、筒部2に新たな透明容器3を装着して掘削L1に続けて2回目の掘削L2を50cmの深さまで行う。同様に順次掘削L3,L4と続けることにより、1m程度掘進する。
【0027】
そして、地質検査は、透明容器3内に収納した土壌Sを用いて、まず垂直断面をみて、色、構造、植物根の入り方、母材の地質(腐葉土か、砂か、火山灰か等々)の上下方向の変わり方を観察し、比較的にそれらの性状が急変する部分に水平方向の境界線を引いて層位の区別をする。また、各層位ごとに耕地土壌の肥沃(ひよく)性や農業害虫の発生状況を理化学的に判定したり、埋め立てた堆積物を分析し土壌の成因を調べる。従って、この実施形態によれば、掘削された土壌Sが送りねじ24に沿って回転移動しながら筒部2内に送られるので、土壌Sが粉れた柔らかい状態で採取でき、後工程の地質検査も容易にできる。
【0028】
また、この実施の形態において、送りねじ24は掘削刃23に連接して設けられることで、掘削刃23で切削した土壌Sが直ちに送りねじ24に沿って送ることができる。更に、この実施の形態において、送りねじが右ねじであれば、通常の送り回転である時計回り方向で伝動部を操作できる。
【0029】
なお、この実施の形態では、耕地土壌での試験結果が良好であったので、掘削刃(ビット)23の歯を径50mmに対し18個設け、かつ送りねじ24のピッチを3mmに設計した土壌採取器の場合で説明したが、掘削刃23の歯数や送りねじ24のピッチはこの実施の形態のものに限定されるものではなく、掘削する土壌の性質に応じて適宜決定されるものである。但し、耕地土壌で用いる場合は、歯数が18個前後、ねじピッチが3〜5mmであることが好ましい。
【0030】
また、この実施の形態では、ハンドフィード型(手動)の土壌採取器として説明したが、別の実施の形態として、図6に示すように、伝動部100がが駆動源(例えば、電動モータ)110を有する構成のものも本発明に含まれる。すなわち、伝動部100が、回転軸101と、この回転軸101と変速機111を介して連接する電動モータ110と、電動モータ110を囲むように設けたハンドル102と、回転軸101の他端側に鍔114を介して段付き状に連設する円柱形状のグリップ113と、を主要部として構成される。そして、グリップ113の周壁には回転軸101の軸方向と直交する向きに棒状の突起115が設けられている。この突起115は周壁に対して180度位置に2箇所設けられている。なお、筒部2及び透明容器3の構成は前述の実施の形態と同様なのでその説明は省略する。上下駆動方向のものも含まれる。
【0031】
この別の実施の形態によれば、駆動源110を用いて筒部2に回転力を伝達する構成なので、駆動源110に多大な負荷が掛かることなく掘削できる。従って、従来土壌採取器では不可能とされていた6mから7m程度の掘削も可能となる。その結果、埋め立て地におけるダイオキシン検査等も本発明を用いて可能となる。
【0032】
【発明の効果】
以上説明したように、本発明によれば、筒部先端の掘削刃が鋸刃形状なので、鋸刃が土壌を切断すると共に筒部内に送る作用をする。また、筒部の内周面に送りねじを設けた構成により、掘削刃で切断し筒部内に送られた土壌が更に送りねじの斜面に沿って筒部内に送られるので、筒部内周面と土壌との摩擦係数が減少するので多大な労力を必要とせず、土壌を採取する際の掘進作業が容易となる。また、掘削刃で切削された土壌が従来のように直接筒部内をせり上がるのではなく、送りねじに沿って回転移動しながら筒部内に送られるので、土壌が粉れた柔らかい状態で採取でき、後工程の地質検査も容易にできる。
【図面の簡単な説明】
【図1】本発明の土壌採取器の外観図である。
【図2】本発明の土壌採取器の斜視図である。
【図3】筒部先端の詳細図である。
【図4】掘削刃と送りねじの詳細図であり、図4(a)は掘削刃の歯部を示し、図4(b)は図4(a)のA−A断面を示す。
【図5】土壌収納部(サンプラー)の詳細図である。
【図6】本発明の別の実施の形態に係る土壌採取器の外観図である。
【図7】従来の土壌採取器の外観図である。
【図8】従来の土壌採取器の構成部分の詳細図であり、図8(a)は伝動部を示し、図8(b)は筒部を示し、図8(c)は土壌収納部(サンプラー)を示す。
【符号の説明】
1…伝動部
2…筒部
3…透明容器(サンプラー)
11…回転軸
12…ハンドル
13…グリップ
14…鍔
15…突起
16…空気孔
21…筒本体
22…L型溝
23…掘削刃
24…送りねじ
31…胴
32…底板
32a…空気抜き穴
100…伝動部
110…駆動源(電動モータ)
111…変速機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a soil collector used when collecting soil and conducting a geological inspection.
[0002]
[Prior art]
Geological surveys are conducted to determine the fertility of arable soil and the state of occurrence of agricultural pests, and to analyze landfill by analyzing landfill deposits. In this geological survey, it is necessary to observe the vertical cross-sectional form of the soil, and sampling (sampling) is performed in order to observe and analyze a vertical cross-section with a depth of about 1 m depending on the purpose.
[0003]
Conventionally, a rotary soil collector is used to collect a sample of about 1 m. As shown in FIG. 7, the rotary soil extractor is directly pushed into the ground E to store therein a soil S as a sample, and a transmission unit 1 that transmits a rotational force to the cylindrical portion 2. , As the main part.
[0004]
As shown in FIG. 8A, the transmission unit 1 includes a rotating shaft 11, a handle 12 orthogonal to one end side of the rotating shaft 11, and a stepped shape via a flange 14 on the other end side of the rotating shaft 11. A cylindrical grip 13 that is provided continuously with the main body is configured as a main part. A rod-like protrusion 15 is provided on the peripheral wall of the grip 13 in a direction orthogonal to the axial direction of the rotary shaft 11. The protrusions 15 are provided at two positions at 180 degrees with respect to the peripheral wall. The grip 13 is provided with an air hole 16 in the axial direction.
[0005]
As shown in FIG. 8 (b), the cylindrical portion 2 is provided on a cylindrical main body 21 having a cylindrical shape with both ends opened, an L-shaped groove 22 provided on one end side of the cylindrical main body 21, and on the other end side. The excavating blade (bit) 23 is configured as a main part. The inner diameter of the cylinder body 21 is formed to be the same as or slightly larger than the outer diameter of the grip 13. Further, the groove width of the L-shaped groove 22 is the same as or slightly larger than the outer diameter of the rod-like protrusion 15. Then, when connecting the transmission portion 1 to the cylindrical portion 2, the protrusion 15 is inserted along the L-shaped groove 22, and the grip 13 is inserted into the cylindrical main body 21, and one end of the cylindrical main body 21 contacts the flange 14. When contacted, the protrusion 15 is rotated clockwise along the L-shaped groove 22 to connect the transmission portion 1 and the cylindrical portion 2 so as not to be separated in the axial direction. The excavation blade (bit) 23 is formed along the inner peripheral wall of the cylinder body 21 so that the tip has an acute angle.
[0006]
Then, as shown in FIG. 7, the soil sampler pushes the tubular portion 2 into the ground E by pushing the excavating blade 23 against the ground E and rotating the handle 12 of the transmission unit 1 in the clockwise direction. The soil S is stored inside. In general, a transparent container 3 (sampler) is inserted in the cylinder portion 2 in advance, and the soil S is stored in the transparent container 3.
[0007]
As shown in FIG. 8C, the transparent container 3 has a bottomed cylindrical shape made up of a trunk 31 and a bottom plate 32. When the soil S is stored in the bottom plate 32, the air inside the cylinder is transferred to the grip 13 side. An air vent hole 32a is provided through the air hole 16 to the outside.
[0008]
And in the geological inspection, using the soil S stored in the transparent container 3, first, a vertical section is seen, and the color, structure, how to enter the plant root, the geology of the base material (whether humus, sand, volcanic ash, etc.) Observe the changes in the vertical direction, and draw a horizontal boundary line at the part where their properties change abruptly to distinguish the stratum. In addition, for each stratum, the fertilization of the arable soil and the occurrence of agricultural pests are determined physicochemically, and landfills are analyzed to investigate the origin of the soil.
[0009]
[Problems to be solved by the invention]
By the way, the conventional soil extractor pushes and digs the cylindrical part 2 while rotating and cutting the ground E with the excavating blade (bit) 23, but it requires a lot of labor to dig the cylindrical part 2. was there. In addition, the soil S obtained by labor is compacted when the cylindrical portion 23 is pushed in, and it is difficult to understand the properties of the soil S during the appearance inspection or when the soil S is taken out from the transparent container 3 and inspected. There has also been a problem that additional effort is required to break down the compacted soil S into particles.
[0010]
This invention makes it a technical subject to provide the soil collector which the excavation operation | work at the time of extract | collecting soil is easy, and the extract | collected soil is also easy for a geological inspection.
[0011]
[Means for Solving the Problems]
The soil collector of the present invention is configured as follows in order to solve the above-described technical problem.
That is, the soil extractor of the present invention includes a cylindrical tube portion having both ends opened, a transmission portion that is detachably engaged with one end opening of the tube portion, and transmits a rotational force to the tube portion, and the tube. A bottomed cylindrical shape consisting of a drilling blade formed with an acute inclined surface inside the other end opening of the part, a feed screw provided on the inner peripheral surface of the other end opening of the cylindrical part, and a barrel and a bottom plate A transparent container that is provided in the bottom plate with an air hole for letting out the internal air to the outside, and is detachably inserted into the cylindrical portion with the opening of the bottomed cylinder as the other end opening side of the cylindrical portion And the other end opening of the tube portion is fed into the tube along the slope of the feed screw when the excavating blade is grounded to the soil and rotated through the transmission portion. The transparent container is stored in the transparent container from the opening side of the transparent container and the soil is stored in the cylinder. Characterized by inserting a new transparent container out. In the soil sampler of the present invention, it is preferable that the excavation blade has a saw blade shape.
[0012]
Since the excavating blade at the tip of the tube portion has a saw blade shape, the saw blade cuts the soil and feeds it into the tube portion. In addition, the structure in which the feed screw is provided on the inner peripheral surface of the cylindrical portion allows the soil cut by the excavating blade and sent into the cylindrical portion to be further fed into the cylindrical portion along the slope of the feed screw. Since the coefficient of friction with the soil decreases, a great deal of labor is not required, and the excavation work when collecting the soil becomes easy. In addition, the soil cut by the excavating blade is not directly raised in the cylinder as in the conventional case, but is sent to the cylinder while rotating along the feed screw, so that the soil can be collected in a soft and dusty state. Also, geological inspection in the post-process can be done easily.
[0013]
In the soil sampler of the present invention, it is preferable that the feed screw is connected to the excavation blade. That is, by providing the feed screw connected to the excavation blade, the soil cut by the excavation blade and sent into the cylindrical portion can be immediately sent along the feed screw.
[0014]
Furthermore, in the soil extractor of the present invention, if the feed screw is a right-hand screw, the transmission unit can be operated in the clockwise direction that is normal feed rotation.
[0015]
Furthermore, in the soil sampler of the present invention, it is preferable that the screw pitch of the feed screw is 3 to 5 mm, and according to the test result in the arable soil, the one using the screw pitch of 3 mm can be easily excavated. I got the result that I was able to.
[0016]
Furthermore, in the soil extractor according to the present invention, the transmission unit has a drive source, and a configuration in which a rotational force is transmitted to the tube portion using the drive source can be exemplified. According to this illustration, since excavation can be performed without applying a great load to the drive source, excavation of about 6 m to 7 m, which has been impossible with conventional soil collectors, is also possible.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a soil extractor according to an embodiment of the present invention will be described with reference to the accompanying drawings. In this embodiment, a depth of about 1 m is used for physicochemical determination of the fertility of the arable soil and the state of occurrence of agricultural pests, and for analyzing the landfill and investigating the origin of the soil. This will be described in the case of using a hand-feed type soil collector that collects the soil.
[0018]
That is, as shown in FIGS. 1 and 2, the soil sampler is directly pressed into the ground E to store the soil S as a sample therein, and a transmission unit that transmits rotational force to the tube 2. 1 as a main part.
[0019]
The transmission unit 1 includes a rotating shaft 11, a handle 12 orthogonal to one end side of the rotating shaft 11, and a columnar grip 13 provided in a stepped manner on the other end side of the rotating shaft 11 via a flange 14. Are configured as main parts. A rod-like protrusion 15 is provided on the peripheral wall of the grip 13 in a direction orthogonal to the axial direction of the rotary shaft 11. The protrusions 15 are provided at two positions at 180 degrees with respect to the peripheral wall. The grip 13 is provided with an air hole 16 in the axial direction.
[0020]
The cylindrical part 2 has a cylindrical main body 21 having a cylindrical shape with both ends opened, an L-shaped groove 22 provided on one end side of the cylindrical main body 21, and an excavating blade (bit) provided on the other end side along the inner peripheral wall. 23 and a feed screw 24 which is connected to the excavating blade 23 and drilled in the cylinder main body is constituted as a main part. In addition, the longitudinal direction dimension of the cylinder part 2 (cylinder main body 21) is 25 cm, and a diameter is 50 mm. The reason why the longitudinal dimension of the cylindrical portion 2 is 25 cm is that the depth at which the cultivator enters the cultivated land and raises the soil is about 25 cm.
[0021]
The inner diameter of the cylinder body 21 is formed to be the same as or slightly larger than the outer diameter of the grip 13. Further, the groove width of the L-shaped groove 22 is the same as or slightly larger than the outer diameter of the rod-like protrusion 15. Then, when connecting the transmission portion 1 to the cylindrical portion 2, the protrusion 15 is inserted along the L-shaped groove 22, and the grip 13 is inserted into the cylindrical main body 21, and one end of the cylindrical main body 21 contacts the flange 14. When contacted, the protrusion 15 is rotated clockwise along the L-shaped groove 22 to connect the transmission portion 1 and the cylindrical portion 2 so as not to be separated in the axial direction.
[0022]
As shown in FIGS. 3 and 4, the excavating blade (bit) 23 has a saw blade shape, and 18 teeth are provided along the inner peripheral wall with respect to a diameter of 50 mm. In addition, an inclined surface having an acute angle is formed inside the cylinder main body 21 (see FIG. 4B).
[0023]
The feed screw is a right-hand screw drilled in the inner peripheral surface of the cylinder main body 21, and the pitch is a single thread of 3 mm.
[0024]
As shown in FIG. 1, this soil sampler pushes the excavating blade 23 against the ground E and rotates the handle 12 of the transmission unit 1 in the clockwise direction to push the cylindrical portion 2 into the ground E so that the cylindrical portion 2. The soil S is stored inside. A transparent container 3 (sampler) is inserted in the cylinder portion 2 in advance, and the soil S is stored in the transparent container 3.
[0025]
As shown in FIG. 5, the transparent container 3 has a bottomed cylindrical shape composed of a trunk 31 and a bottom plate 32, and when the soil S is stored in the bottom plate 32, air inside the cylinder is passed through the air holes 16 on the grip 13 side. An air vent hole 32a is provided for exiting to the outside. In addition, after this transparent container 3 accommodates the soil S, the lid | cover 33 is put on the opening part side, and the soil S collected is sealed. The material of the transparent container 3 is preferably a resin such as vinyl chloride in consideration of hardness during processing and use.
[0026]
Next, the operation of this embodiment will be described.
That is, since the excavating blade 23 at the tip of the tube portion 2 has a saw blade shape, the teeth of the saw blade act to cut the soil and feed it into the tube portion 2 through the inclined surface. Further, due to the configuration in which the feed screw 24 is provided on the inner peripheral surface of the cylindrical portion 2, the soil S cut by the excavating blade 23 and sent into the cylindrical portion 2 further enters the cylindrical portion 2 along the slope of the feed screw 24. Sent. Therefore, the soil S cut by the excavating blade 23 is not directly raised in the cylindrical portion 2 as in the prior art, but is stored along the slope of the feed screw 24, so that the inner peripheral surface of the cylindrical portion 2 and the soil S are stored. The friction coefficient is reduced, and excavation work can be easily performed without requiring much labor. As shown in FIG. 1, when the first 25 cm excavation L <b> 1 is completed, the transparent container 3 is taken out from the cylindrical portion 2 and the lid 33 is put on. Next, a new transparent container 3 is mounted on the cylindrical portion 2, and the second excavation L2 is performed to a depth of 50 cm following the excavation L1. Similarly, the digging is continued for about 1 m by continuing the excavation L3 and L4 sequentially.
[0027]
And in the geological inspection, using the soil S stored in the transparent container 3, first, a vertical section is seen, and the color, structure, how to enter the plant root, the geology of the base material (whether humus, sand, volcanic ash, etc.) Observe the changes in the vertical direction, and draw a horizontal boundary line at the part where their properties change abruptly to distinguish the stratum. In addition, for each stratum, the fertilization of the arable soil and the occurrence of agricultural pests are determined physicochemically, and landfills are analyzed to investigate the origin of the soil. Therefore, according to this embodiment, the excavated soil S is sent into the cylindrical portion 2 while being rotationally moved along the feed screw 24, so that the soil S can be collected in a soft and dusty state, and the geology in the subsequent process Inspection is also easy.
[0028]
In this embodiment, the feed screw 24 is connected to the excavating blade 23 so that the soil S cut by the excavating blade 23 can be immediately fed along the feed screw 24. Furthermore, in this embodiment, if the feed screw is a right-hand screw, the transmission unit can be operated in the clockwise direction that is normal feed rotation.
[0029]
In this embodiment, since the test results in the cultivated soil were good, 18 teeth of the excavating blade (bit) 23 were provided for a diameter of 50 mm, and the pitch of the feed screw 24 was designed to be 3 mm. Although explained in the case of the extractor, the number of teeth of the excavating blade 23 and the pitch of the feed screw 24 are not limited to those of this embodiment, and are appropriately determined according to the properties of the soil to be excavated. is there. However, when used in arable soil, the number of teeth is preferably around 18 and the screw pitch is preferably 3 to 5 mm.
[0030]
Moreover, although this embodiment demonstrated as a hand feed type (manual) soil collector, as another embodiment, as shown in FIG. 6, the transmission part 100 is a drive source (for example, electric motor). A configuration having 110 is also included in the present invention. That is, the transmission unit 100 includes a rotating shaft 101, an electric motor 110 connected to the rotating shaft 101 via the transmission 111, a handle 102 provided so as to surround the electric motor 110, and the other end side of the rotating shaft 101. And a columnar grip 113 that is provided in a stepped manner via a flange 114, as a main part. A rod-like protrusion 115 is provided on the peripheral wall of the grip 113 in a direction orthogonal to the axial direction of the rotating shaft 101. The protrusions 115 are provided at two positions 180 degrees with respect to the peripheral wall. In addition, since the structure of the cylinder part 2 and the transparent container 3 is the same as that of the above-mentioned embodiment, the description is abbreviate | omitted. The vertical drive direction is also included.
[0031]
According to this another embodiment, since the rotational force is transmitted to the cylindrical portion 2 using the drive source 110, excavation can be performed without applying a great load to the drive source 110. Therefore, excavation of about 6 to 7 m, which has been impossible with conventional soil collectors, is also possible. As a result, dioxin inspection and the like in a landfill can be performed using the present invention.
[0032]
【The invention's effect】
As described above, according to the present invention, the excavating blade at the tip of the cylindrical portion has a saw blade shape, so that the saw blade cuts the soil and feeds it into the cylindrical portion. In addition, the structure in which the feed screw is provided on the inner peripheral surface of the cylindrical portion allows the soil cut by the excavating blade and sent into the cylindrical portion to be further fed into the cylindrical portion along the slope of the feed screw. Since the coefficient of friction with the soil decreases, a great deal of labor is not required, and the excavation work when collecting the soil becomes easy. In addition, the soil cut by the excavating blade is not directly raised in the cylinder as in the conventional case, but is sent to the cylinder while rotating along the feed screw, so that the soil can be collected in a soft and dusty state. Also, geological inspection in the post-process can be done easily.
[Brief description of the drawings]
FIG. 1 is an external view of a soil collector of the present invention.
FIG. 2 is a perspective view of a soil collector of the present invention.
FIG. 3 is a detailed view of a distal end of a cylindrical portion.
4A and 4B are detailed views of the excavation blade and the feed screw. FIG. 4A shows a tooth portion of the excavation blade, and FIG. 4B shows an AA cross section of FIG.
FIG. 5 is a detailed view of a soil storage unit (sampler).
FIG. 6 is an external view of a soil sampler according to another embodiment of the present invention.
FIG. 7 is an external view of a conventional soil collector.
FIG. 8 is a detailed view of the components of a conventional soil collector, FIG. 8 (a) shows the transmission part, FIG. 8 (b) shows the cylinder part, and FIG. 8 (c) shows the soil storage part ( Sampler).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Transmission part 2 ... Tube part 3 ... Transparent container (sampler)
DESCRIPTION OF SYMBOLS 11 ... Rotating shaft 12 ... Handle 13 ... Grip 14 ... 鍔 15 ... Protrusion 16 ... Air hole 21 ... Tube body 22 ... L-shaped groove 23 ... Excavation blade 24 ... Feed screw 31 ... Body 32 ... Bottom plate 32a ... Air vent hole 100 ... Transmission Unit 110 ... Drive source (electric motor)
111 ... transmission

Claims (6)

両端が開口した円筒形状の筒部と、A cylindrical tube portion having both ends open;
この筒部の一端開口に着脱自在に係合し、前記筒部に回転力を伝達する伝動部と、  A transmission portion that detachably engages with one end opening of the cylindrical portion, and transmits a rotational force to the cylindrical portion,
前記筒部の他端開口の内側に鋭角となる傾斜面が形成された掘削刃と、  A drilling blade in which an inclined surface having an acute angle is formed inside the other end opening of the cylindrical portion;
前記筒部の他端開口の内周面に設けられた送りねじと、  A feed screw provided on the inner peripheral surface of the other end opening of the cylindrical portion;
胴と底板からなる有底円筒形状を有し、前記底板には内部の空気を外部に出す空気孔が設けられ、有底円筒の開口部を前記筒部の他端開口側として前記筒部の内部に着脱自在に挿入される透明容器と、を備え、  The bottom plate has a bottomed cylindrical shape composed of a trunk and a bottom plate, and the bottom plate is provided with an air hole for letting internal air to the outside. A transparent container detachably inserted inside,
前記筒部の他端開口は、前記掘削刃を土壌に接地させて前記伝動部を介して回転されると、前記土壌が前記送りねじの斜面に沿って筒内に送られて前記透明容器の開口部側より透明容器内に収納され、  When the other end opening of the cylinder part is rotated through the transmission part with the excavating blade grounded to the soil, the soil is fed into the cylinder along the slope of the feed screw, and the transparent container Housed in a transparent container from the opening side,
前記土壌が収納された前記透明容器を筒内部から取り出して新たな透明容器を挿入することを特徴とする土壌採取器。  A soil collector, wherein the transparent container containing the soil is taken out of the cylinder and a new transparent container is inserted.
前記透明容器は、その内部に収納した前記土壌を開口部側より密閉する蓋を有する請求項1に記載の土壌採取器。The soil collector according to claim 1, wherein the transparent container has a lid that seals the soil stored therein from the opening side. 前記掘削刃は鋸形状である請求項1または2に記載の土壌採取器。The soil excavator according to claim 1 or 2, wherein the excavation blade has a saw shape. 前記送りねじは前記掘削刃に連接して設けられている請求項1から3のいずれかに記載の土壌採取器。The soil sampler according to any one of claims 1 to 3, wherein the feed screw is connected to the excavation blade. 前記送りねじは右ねじである請求項1から4のいずれかに記載の土壌採取器。The soil sampler according to any one of claims 1 to 4, wherein the feed screw is a right-hand screw. 前記伝動部は駆動源を有しており、この駆動源を用いて前記筒部に回転力及び上下移動力を伝達する請求項1から5のいずれかに記載の土壌採取器。The soil transmission device according to any one of claims 1 to 5, wherein the transmission unit includes a drive source, and the rotational force and the vertical movement force are transmitted to the tube unit using the drive source.
JP2001088536A 2001-03-26 2001-03-26 Soil collector Expired - Lifetime JP3785330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001088536A JP3785330B2 (en) 2001-03-26 2001-03-26 Soil collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001088536A JP3785330B2 (en) 2001-03-26 2001-03-26 Soil collector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005201732A Division JP2005315897A (en) 2005-07-11 2005-07-11 Soil sampler, and soil sampling method

Publications (2)

Publication Number Publication Date
JP2002286593A JP2002286593A (en) 2002-10-03
JP3785330B2 true JP3785330B2 (en) 2006-06-14

Family

ID=18943613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001088536A Expired - Lifetime JP3785330B2 (en) 2001-03-26 2001-03-26 Soil collector

Country Status (1)

Country Link
JP (1) JP3785330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506976A (en) * 2018-12-06 2019-03-22 中化地质矿山总局陕西地质勘查院 Engineering geology reconnaissance is with soil sample collection system

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101545831B (en) * 2009-03-17 2011-05-25 环境保护部南京环境科学研究所 Original-state soil sampler
KR101062033B1 (en) 2009-04-07 2011-09-02 고려대학교 산학협력단 Sampler and harvester for forage packing silage
CN102108706A (en) * 2011-03-24 2011-06-29 甘肃第一建设集团有限责任公司 Simple manual spiral earth fetching device for reinforcing pile core of pre-stressed pipe pile
JP5824927B2 (en) * 2011-07-15 2015-12-02 横浜ゴム株式会社 Snow road surface density measurement method
KR101308039B1 (en) * 2013-01-18 2013-09-12 한국지질자원연구원 Sampling device for horizontal soil stratum
CN103196697B (en) * 2013-02-20 2015-12-09 兰州大学 A kind of screw fetches earth and cuts sampling device
CN103233471B (en) * 2013-04-25 2016-01-27 南通海洲建设集团有限公司 A kind of multifunctional building hole cleaning machine
CN103293022B (en) * 2013-05-27 2016-01-20 中国科学院、水利部成都山地灾害与环境研究所 A kind of small-sized earth boring auger with soil sample collection and filling functions
CN103822799A (en) * 2014-03-12 2014-05-28 苏俊杰 Hand and foot operated soil sampler
KR101667527B1 (en) * 2014-10-31 2016-10-19 대한민국 A sampler
CN107907364B (en) * 2017-12-20 2020-01-07 江苏科易达环保科技有限公司 Utilize contaminated soil sampling device of piston principle
CN108918831A (en) * 2018-07-16 2018-11-30 安徽理工大学 A kind of two dimension similarity simulation experiment underground boring tool and its application method
CN109163927B (en) * 2018-11-12 2024-07-26 河北成运环保设备有限公司 Soil sampler containing polychlorinated biphenyl
CN110447343A (en) * 2019-08-21 2019-11-15 中国农业科学院作物科学研究所 A kind of transplantation device for crop seedling
CN111811874B (en) * 2020-08-13 2023-03-14 中国科学院西北生态环境资源研究院 Salix purpurea sandbag information extraction device and extraction method
CN112538848A (en) * 2020-11-23 2021-03-23 广东交科检测有限公司 Equipment for earth compaction digging
CN114755051B (en) * 2022-06-16 2022-10-11 潍坊市奎文区园林环卫服务中心 Soil inspection sampler is planted in horticulture
CN116752516B (en) * 2023-08-22 2023-10-20 四川交通职业技术学院 Pavement thickness detection equipment and detection method based on data analysis
CN118600949B (en) * 2024-08-08 2024-10-11 河北道桥工程检测有限公司 Road surface soil sampling equipment for road detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506976A (en) * 2018-12-06 2019-03-22 中化地质矿山总局陕西地质勘查院 Engineering geology reconnaissance is with soil sample collection system
CN109506976B (en) * 2018-12-06 2021-05-25 中化地质矿山总局陕西地质勘查院 Engineering geology reconnaissance is with soil sample collection system

Also Published As

Publication number Publication date
JP2002286593A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP3785330B2 (en) Soil collector
JP2005315897A (en) Soil sampler, and soil sampling method
JPS62244912A (en) Combination apparatus of soil auger and soil core specimen sampler
KR102392348B1 (en) A sampler device for investigation of ground using hand drill
WO2011056162A2 (en) A multifunctional screw drill and reaming device
CN210863230U (en) Soil sampling ware of depthkeeping degree sample
JP2011127370A (en) Underground soil sampling method
CN116147969A (en) Soil sampling device
CN115753202A (en) Soil sampling device
JP2011246923A (en) Soil collection pipe device
CN217953924U (en) Soil sampling device
CN112326327A (en) Soil sampling device for environmental monitoring
CN209342417U (en) Portable solid automatic ration instrument
JP3283015B2 (en) Soil sampling tool
WO1998016714A1 (en) Soil auger and mechanical soil sampler
CN219165116U (en) Device for quickly drilling complete root crop plants
JP3567207B2 (en) Investigation method and equipment for ground soil under large structures
CN211504726U (en) Earth taking equipment for geological exploration
CN221480761U (en) Soil sampling cutting ring suitable for municipal works
CN217980848U (en) Soil survey sample sampling device
KR200220320Y1 (en) The barrel type drill for a soft deposit
CN213336882U (en) Adjustable sampler is used in hydrographic engineering geological survey
CN217354247U (en) A soil bores device for gathering loose soil
CN216309472U (en) A soil collection system for forestry
CN221594333U (en) Soil detection is with getting soil and is bored

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060317

R150 Certificate of patent or registration of utility model

Ref document number: 3785330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250