JP3785312B2 - Hydraulic control device for automatic transmission - Google Patents

Hydraulic control device for automatic transmission Download PDF

Info

Publication number
JP3785312B2
JP3785312B2 JP2000313511A JP2000313511A JP3785312B2 JP 3785312 B2 JP3785312 B2 JP 3785312B2 JP 2000313511 A JP2000313511 A JP 2000313511A JP 2000313511 A JP2000313511 A JP 2000313511A JP 3785312 B2 JP3785312 B2 JP 3785312B2
Authority
JP
Japan
Prior art keywords
engagement
pressure
shift
speed
shift command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000313511A
Other languages
Japanese (ja)
Other versions
JP2002122227A (en
Inventor
正伸 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000313511A priority Critical patent/JP3785312B2/en
Publication of JP2002122227A publication Critical patent/JP2002122227A/en
Application granted granted Critical
Publication of JP3785312B2 publication Critical patent/JP3785312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は自動変速機の油圧制御装置に関し、詳しくは、摩擦係合要素の締結制御中の再変速要求に対応するための技術に関する。
【0002】
【従来の技術】
従来から、車両用の自動変速機として、摩擦係合要素の締結・解放の組み合わせに基づいて変速段を切り換える構成であって、摩擦係合要素の締結・解放動作を油圧で制御する構成の自動変速機が知られている。
また、上記構成の自動変速機において、最初の変速指令から変速終了までの間に、次の変速指令(再変速)が発生したときの制御としては、特開平10−103497号公報に示されるようなものがあった、
前記特開平10−103497号公報に開示されるものでは、最初の変速指令に対応する変速が既に開始されているとき、即ち、最初の変速指令に基づく締結側への油圧供給動作や解放側摩擦係合要素からの油圧の抜き動作が開始されているときには、変速ショック等の発生を防止すべく、最初の変速指令に基づく変速制御の終了を待って次の変速指令に基づく変速制御を行わせるようになっている。
【0003】
【発明が解決しようとする課題】
しかし、上記のように、最初の変速指令に基づく変速制御が終了するまで再変速指令に基づく変速制御を実行できないと、例えば運転者がアクセルを大きく踏み込んでシフトダウンが行われるときに、運転者の意図よりも遅れた変速タイミングになってしまうという問題があった。
【0004】
本発明は上記問題点に鑑みなされたものであり、特に、最初の変速指令で締結が要求される摩擦係合要素が、次の変速指令でも締結させる必要がある場合に、前記締結させる摩擦係合要素の締結圧を再変速指令に適合させることができるようにすることで、変速ショックの発生を回避しつつ、最初の変速指令による変速制御の終了を待たずに途中から再変速指令に対応する変速制御を行わせることが可能となる自動変速機の油圧制御装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
そのため請求項1記載の発明では、変速指令に基づく摩擦係合要素の締結制御中に、前記変速指令と異なる再変速指令が発生し、かつ、該再変速指令においても前記締結制御中の摩擦係合要素の締結が要求されるときに、締結指示油圧を再変速指令に対応して要求される締結指示油圧に切り換えて締結制御を継続させる構成とした。
【0006】
かかる構成によると、例えば5速で解放されていた摩擦係合要素(例えばロークラッチ)を4速へのダウンシフト要求に従って締結制御している途中で、同じ摩擦係合要素の締結が要求される3速へのダウンシフト要求が発生すると、5速→4速で要求される締結指示油圧を、5速→3速で要求される締結指示油圧に切り換えて、締結制御を継続させる。
【0007】
同じ摩擦係合要素を締結させる場合でも、変速段に応じて締結圧の要求が異なるから、最初の変速指令に対応して制御されていた油圧から、再変速指令に対応する制御油圧に途中で切り換え、再変速指令が発生した以降は、再変速指令に対応する特性で締結油圧を制御させることで、締結させる摩擦係合要素の締結圧を締結途中で再変速指令に適合させる。
【0008】
請求項2記載の発明では、変速機の入力軸トルクに対応する伝達トルク容量の摩擦係合要素毎の分担比に対応して締結指示油圧が制御される構成であり、変速の種類による前記分担比の違いに応じて油圧を切り換える構成とした。
かかる構成によると、例えば、最初の変速指令での締結側摩擦係合要素の分担比よりも、再変速指令での分担比が小さい場合には、該分担比の減少に対応させて締結指示油圧を減少変化させ、その後、再変速指令での分担比に対応させて締結制御を継続する。
【0009】
請求項3記載の発明では、締結指示油圧を再変速指令に対応して要求される油圧にまでステップ的に変化させる構成とした。
かかる構成によると、再変速指令の発生に伴って、直ちに再変速指令に対応して要求される締結指示油圧にまでステップ変化させ、再変速指令に対応する指示油圧での締結制御を開始させる。
【0010】
請求項4記載の発明では、締結指示油圧を再変速指令に対応して要求される油圧にまで所定時間で徐々に変化させる構成とした。
かかる構成によると、再変速指令が発生すると、そのときの締結指示油圧から再変速指令に対応して要求される締結指示油圧にまで、所定時間で徐々に変化させることで、再変速指令に伴う締結指示油圧の切り換えを滑らかに行わせる。
【0011】
請求項5記載の発明では、前記所定時間を、変速機の入力軸トルクが大きいときほどより長く設定する構成とした。
かかる構成によると、変速機の入力軸トルク(エンジンの発生トルク)に応じた速度で、締結指示油圧を再変速指令に対応して要求される油圧にまで変化させ、入力軸トルクが大きいときには、より長い時間をかけて再変速指令に対応して要求される油圧にまで変化させる。
【0012】
【発明の効果】
請求項1記載の発明によると、再変速指令が発生したときに、再変速指令に対応して要求される締結指示油圧に切り換えた上で締結制御を継続させるので、締結制御においては締結途中で再変速指令に適合した制御に切り換わり、最初の変速の終了を待つことなく再変速が行わせることが可能となり、運転者の意図に見合ったタイミングで変速を行わせることが可能になると共に、変速の種類変更に対応する油圧に切り換えるので、油圧の不適合による変速ショック等の発生を回避することができるという効果がある。
【0013】
請求項2記載の発明によると、変速段毎に要求される伝達トルク容量の分担比の違いに対応して締結指示油圧を切り換えるので、締結指示油圧を変速の種類変更に精度良く対応して切り換えることができるという効果がある。
請求項3記載の発明によると、再変速指令の発生に伴う締結指示油圧の変更を簡便に行わせることができるという効果がある。
【0014】
請求項4記載の発明によると、再変速指令の発生に伴う締結指示油圧の変更を滑らかに行わせて、締結指示油圧の急激な変化によるショックの発生を回避することができるという効果がある。
請求項5記載の発明によると、そのときの入力軸トルクに応じた速度で締結指示油圧を変化させるので、締結指示油圧の急激な変化によるショックの発生を回避しつつ、再変速指令に対応して要求される締結指示油圧に速やかに切り換えることができるという効果がある。
【0015】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
図1は、本発明に係る油圧制御装置が適用される車両用自動変速機の歯車伝動列を示すものであり、入力軸Iにはトルクコンバータを介してエンジン出力トルクが入力され、自動変速機の出力トルクは出力軸Oを介して駆動輪に伝達される。
【0016】
図2において、入出力軸I,O間に、同軸に3個の第1,第2,第3遊星歯車組G1,G2,G3を配列される。
前記3個の第1,第2,第3遊星歯車組G1,G2,G3は、第1,第2,第3サンギヤ、第1,第2,第3リングギヤ、第1,第2,第3キャリアからなる単純遊星歯車組である。
【0017】
前記第1サンギヤが入力軸Iに結合し、第2及び第3サンギヤをロークラッチL/Cで入力軸Iに結合可能にすると共に、第2キャリアをハイクラッチH/Cで入力軸Iに結合可能とする。
第1キャリア及び第2リングギヤを一体係合してセカンドブレーキ2/Bで固定可能とし、第1リングギヤを3速/5速/後退バンドブレーキ35R/Bで固定可能とする。
【0018】
また、第2キャリアは更に第3リングギヤに一体結合してローリバースブレーキLR/Bで固定可能にすると共に、ローワンウェイクラッチL/OWCで入力軸Iと反対方向に回転止めする。
上記歯車伝動列は、図2に示す摩擦係合要素の締結(○印で示す)、解放(無印)の組合せにより、前進1速〜5速及び後退の変速段を選択することができる。
【0019】
図3は、図1に示す歯車伝動列のための変速制御油圧回路で、これにより図2の締結論理を達成する。
マニュアル弁10は、圧力源11で調圧され、回路12に出力されたライン圧PLを、Dレンジではポート10Dに、Iレンジではポート10D,10Iに、Rレンジではポート10Rに出力するが、Nレンジではライン圧回路12をどのポートにも接続させずに、全てのポートをドレンするものとする。
【0020】
第1,第2,第3デューティソレノイド弁13〜15及びソレノイド切換弁16には、回路17により一定のパイロット圧を供給する。このパイロット圧は、パイロット弁18がラインPL を一定値に減圧して作り出す。
前記デューティソレノイド弁13〜15には、更に、マニュアル弁ポート10Dに通じた前進圧回路19を接続し、この回路19は更にロークラッチL/Cの締結室LCAに通じている。
【0021】
前記デューティソレノイド弁13〜15は、デューティ0%で室13a,14a,15a内へのパイロット圧を全てドレンされて回路20〜22をドレンする図示位置を保ち、デューティを100%に向け増大されるにつれて室13a,14a,15a内がパイロット圧と同じ値になるまで圧力上昇し、回路20〜22内の圧力を前進圧回路19のライン圧と同じ値になるまで圧力上昇させる。
【0022】
前記ソレノイド切換弁16は、ON時に、回路17のパイロット圧を切換弁23,24に供給してこれら弁を図中右行させ、OFF時に、切換弁23,24を図示位置にするものとする。
切換弁23は図示位置で回路20を回路25に通じ、右行時に回路20を回路26に通じるものとする。また、切換弁24は、図示位置でセカンドブレーキ2/Bを回路25に、ハイクラッチH/Cをドレンポート24aにそれぞれ通じ、右行時、セカンドブレーキ2/Bをドレンポート24aに、ハイクラッチH/Cをシャトル弁27の出力ポートにそれぞれ通じるものとする。
【0023】
シャトル弁27の一方の入力ポートは回路26に接続し、この回路26はロークラッチL/Cの解放室LCR及び切換弁28を介しバンドブレーキ35R/Bの5速、後退締結室5RAにも通じさせる。
シャトル弁27の他方の入力ポートは回路22に接続し、この回路22及び回路25をシャトル弁29を経てバンドブレーキ35R/Bの2・4速解放室24Rに通じさせ、該バンドブレーキの3速・後退締結室3RAに回路21を接続する。
【0024】
マニュアル弁10のポート10Iは、Iレンジ減圧弁30を経てローリバースブレーキLR/Bの1速締結室1Aに接続する。
また、マニュアル弁10のポート10Rは、回路31によりローリバースブレーキLR/Bの後退締結室RAに接続すると共に、切換弁28を介しバンドブレーキ35R/Bの5速・後退締結室5RAに接続する。
【0025】
図4に示すコントローラ40は、要求される変速段に対応する摩擦係合要素の締結・解放の組合せになるように、前記弁13〜16を制御する。
前記コントロールユニット40には、変速機の入力軸トルクを検出する入力トルクセンサ41からの信号と、変速機出力回転速度Noを検出する出力回転センサ42からの信号と、エンジンスロットル開度THを検出するスロットルセンサ43などが入力される。
【0026】
次に上記自動変速機におけるDレンジでの変速動作を説明する。
「1速」
前進走行を希望してマニュアル弁10をDレンジにすると、ポート10Dに回路12のライン圧PLが出力される。このライン圧はポート10Dから回路19を経てロークラッチL/Cの締結室LCAに至り、ロークラッチL/Cを締結する。
【0027】
一方、1速を選択すべき走行状態であれば、図4のコントローラ40がデューティソレノイド弁13〜15をそれぞれデューティ0%にし、ソレノイド切換弁16をOFFする。よって、回路20〜22が無圧状態となり、切換弁23,24が図示位置にされるため、ロークラッチL/Cの解放室LCR、セカンドブレーキ2/B、ハイクラッチH/C及びバンドブレーキ35R/Bの全室3RA,5RA,24Rがドレンされる。従って、自動変速機はロークラッチL/Cのみが締結されることとなり、1速の選択状態となる。
「2速」
Dレンジの1速状態において、2速を選択すべき運転状態になると、コントローラ40は、デューティソレノイド弁13のデューティを漸増させることにより、回路20に圧力を生じさせると共にこの圧力を徐々に上昇させる。この回路20の圧力は切換弁23,24を経てセカンドブレーキ2/Bに至り、セカンドブレーキ2/Bを徐々に締結させ、2速へのアップシフトが行われる。
「3速」
2速状態で、3速を選択すべき運転状態になると、コントローラ40はデューティソレノイド弁13のデューティを減少させて回路20(セカンドブレーキ2/B)の圧力を低下させると共に、デューティソレノイド弁14のデューティを漸増させて回路21(バンドブレーキ35R/Bの室3RA)に圧力を生じさせ、徐々に上昇させる。これにより、セカンドブレーキ2/Bが解放され、バンドブレーキ35R/Bが締結される摩擦要素の掛け換えにより3速へのアップシフトが行われる。
【0028】
上記2速→3速の変速中、解放されるセカンドブレーキ2/Bの締結圧と締結されるバンドブレーキ35R/Bの締結圧とをそれぞれデューティソレノイド弁13,14で個別に制御することから、運転状態に応じて自由にセカンドブレーキ2/Bの解放タイミング及びバンドブレーキ35R/Bの締結タイミングをそれぞれ最適に制御することができる。
「4速」
3速選択状態で4速を選択すべき運転状態になると、コントローラ40はソレノイド切換弁16をONして切換弁23,24をそれぞれ回路17からのパイロット圧により図中右行位置に切り換え、同時にデューティソレノイド弁14のデューティを漸減させて回路21の圧力(バンドブレーキ35R/Bの締結室3RA内における圧力)を低下させると共に、デューティソレノイド弁15のデューティを漸増させて回路22の圧力(シャトル弁27, 切換弁24を経てハイクラッチH/Cに至る締結圧)を徐々に上昇させる。これにより、バンドブレーキ35R/Bが解放され、ハイクラッチH/Cが締結される摩擦要素の掛け換えにより4速へのアップシフトが行われる。
【0029】
この3速→4速の変速中も、解放されるバンドブレーキ35R/Bの室35Aにおける締結圧と、締結されるハイクラッチH/Cの締結圧とをそれぞれデューティソレノイド弁14,15で個別に制御することができる。
「5速」
4速選択状態で5速を選択すべき運転状態になると、コントローラ40はデューティソレノイド弁15のデューティを減少させて回路22の圧力を低下させると共に、デューティソレノイド弁13のデューティを増大させて回路20の圧力を上昇させる。
【0030】
回路22の圧力低下はハイクラッチH/Cを解放させようとするが、代わりに回路20の圧力が切換弁23、シャトル弁27、回路26及び切換弁24を経てハイクラッチH/Cに至り、ハイクラッチH/Cを締結し続ける。
回路26に至った圧力は同時に、ロークラッチL/Cの解放室LCRに至り、この室の受圧面積が室LCAの受圧面積より大きいことによってロークラッチL/Cを解放させる。
【0031】
回路26の圧力は更に切換弁28を経てバンドブレーキ35R/Bの締結室5RAに至り、該ブレーキの解放室24Rが回路22の圧力低下でドレンされることから、バンドブレーキ35R/Bを締結させる。これにより5速へのアップシフトが行われる。
尚、5→4ダウンシフト変速、4→3ダウンシフト変速、3→2ダウンシフト変速、2→1ダウンシフト変速についても、デューティソレノイド弁13〜15及びソレノイド切換弁16の対応する制御により、上記アップシフトと逆の手順で行われる。
【0032】
ところで、上記構成の自動変速機においては、変速機の入力軸トルクに対応する伝達トルク容量の変速前後の分担比が、変速の種類毎に各摩擦係合要素について予め決められており、コントローラ40は、該分担比に応じて各摩擦係合要素の締結・解放を制御する。
具体的には、例えば図5に示すように、締結側摩擦係合要素の締結圧をプリチャージによって締結・解放の臨界圧付近にまで上昇させる一方、解放側摩擦係合要素の締結圧(伝達トルク容量)を非変速時の値から入力軸トルクTt×トルク分担比OB(変速前の分担比)で示される伝達トルクに相当する解放初期圧(>臨界圧)にまで圧力低下させる。
【0033】
そして、解放側摩擦係合要素の締結圧を、前記解放初期圧から、入力軸トルクTt×トルク分担比OA(変速後の分担比)で示される伝達トルクに相当する目標圧(<臨界圧)にまで所定時間tで低下させるように制御すると同時に、締結側摩擦係合要素の締結圧(伝達トルク容量)を、前記臨界圧から入力軸トルクTt×トルク分担比CA(変速後の分担比)で示される伝達トルクに相当する目標油圧(>臨界圧)にまで所定時間tで増大させるように制御する。
【0034】
尚、同じロークラッチL/Cが締結される4速及び3速でも、ロークラッチL/Cを介して駆動輪に伝達されるトルクの割合が異なることに対応して、5速→4速のダウンシフト時と、5速→3速のダウンシフト時とでは、ロークラッチL/Cの油圧目標である前記入力軸トルクTt×CAを決定する分担比CA(変速後の分担比)の値として異なる値が設定されるようになっている。
【0035】
ここで、本実施形態では、例えば、5速→4速の変速指令に基づく変速中に、5速→3速の変速指令のように同じ摩擦係合要素を締結させる必要がある再変速指令が発生したときには、前記分担比の違いに対応して締結指示油圧を切り換えて締結制御を継続させ、5速→3速の変速に途中から切り換えるようになっている。
【0036】
具体的には、図6のフローチャートに示すようにして締結指示油圧が制御される。
まず、ステップS1では、変速指令に基づいて摩擦係合要素の掛け換えを行っている途中であるか否かを判別する。
摩擦係合要素の掛け換え中とは、締結側摩擦係合要素の油圧を臨界圧から締結目標に向けて上昇させている期間である。
【0037】
掛け換え中であると判断されると、ステップS2へ進み、再変速指令が発生したか否かを判別する。
再変速指令が発生すると、ステップS3へ進み、最初の変速指令で締結が要求される摩擦係合要素と、再変速指令で締結が要求される摩擦係合要素とが同じであるか否かを判別する。
【0038】
例えば、5速→4速の変速指令に従ってロークラッチL/Cの締結を行っているときに、5速→3速の再変速指令が発生した場合には、再変速指令においても同じロークラッチL/Cの締結が要求されるので、上記ステップS3で、最初の変速指令で締結が要求される摩擦係合要素と、再変速指令で締結が要求される摩擦係合要素とが同じであると判別されることになる。
【0039】
ステップS3で、最初の変速指令で締結が要求される摩擦係合要素と、再変速指令で締結が要求される摩擦係合要素とが異なると判別されたときには、再変速指令が発生しない場合と同様に、ステップS6へ進み、最初の変速指令に基づく変速制御をそのまま継続させる。
従って、最初の変速指令で締結が要求される摩擦係合要素と、再変速指令で締結が要求される摩擦係合要素とが異なると判別されたときには、最初の変速指令に対応する変速が終わってから、再変速指令に対応する変速を行わせることになる。
【0040】
一方、ステップS3で、最初の変速指令で締結が要求される摩擦係合要素と、再変速指令で締結が要求される摩擦係合要素とが同じであると判断された場合には、ステップS4へ進む。
ステップS4では、そのときの締結側摩擦係合要素の指示油圧PA(締結指示油圧)に基づいて、再変速指令に対応する締結指示油圧PBを算出する。
【0041】
ここで、5速→4速の変速指令に基づく変速中に5速→3速の再変速指令が発生した場合を例とすると、変速中にロークラッチL/Cに要求される分担比が、5速→4速変速時と5速→3速変速時とは異なり、5速→4速変速時にロークラッチL/Cに要求される変速後分担比をCA4th、5速→3速変速時にロークラッチL/Cに要求される変速後分担比をCA3rdとすると、
再変速指令に対応する締結指示油圧PBは、最初の変速指令に基づく締結側摩擦係合要素の指示油圧をPAとすると、
PB=(CA3rd×PA)/CA4th
として求められる。
【0042】
ステップS5では、最初の変速指令に基づく締結側摩擦係合要素の指示油圧PAから再変速指令に対応する締結指示油圧PBにまで、締結指示油圧をステップ的に変化させ、その後は、臨界圧から所定時間tで再変速指令に対応する分担比で決定される目標油圧にまで増大させるときの上昇速度で締結指示油圧を徐々に増大させて、締結制御を継続させる(図7参照)。
【0043】
上記の締結指示油圧の切り換えによって、締結側摩擦係合要素については、再変速指令に対応する制御に途中から切り換えられたことになり、再変速指令が発生した後は、最初から5速→3速の変速を行わせた場合と同様に締結指示油圧が増大変化するから、再変速指令の発生に伴って変速の種類を切り換えても、締結側摩擦係合要素の油圧に過不足が生じることがなく、変速ショックを発生させることなく、再変速指令に対応することができる。
【0044】
従って、最初の変速指令に対応する変速の完了を待たずに、再変速指令に対応する変速を行わせることが可能となり、運転者の意図に見合った変速を実現できる。
尚、再変速指令に対応するためには、上記の締結側摩擦係合要素の指示油圧の制御に並行して、解放制御する対象を切り換える必要が生じ、例えば5速→4速の変速指令に基づく変速中に5速→3速の再変速指令が発生した場合であれば、再変速指令に伴ってバンドブレーキ35R/Bの解放制御から、ハイクラッチH/Cの解放制御に切り換えることになる。
【0045】
上記実施の形態では、再変速指令に対応して締結指示油圧をステップ的に切り換える構成としたが、最初の変速指令に対応する締結指示油圧から再変速指令に対応する締結指示油圧にまで滑らかに変化させて、ショックのない締結指油圧の切り換えを行わせることができ、かかる構成とした第2の実施形態を、図8のフローチャートに従って説明する。
【0046】
図8のフローチャートにおいて、ステップS11〜ステップS14までの各ステップでの処理は、図6のフローチャートのステップS1〜ステップS4と同じであり、また、ステップS19の処理は図6のフローチャートのステップS6と同じであり、説明を省略する。
ステップS14で、再変速指令に対応して締結指示油圧PBを求めると、ステップS15では、最初の変速指令に基づくそのときの締結指示油圧PAから再変速指令に対応する油圧にまで変化させる時間t1を、そのときの入力軸トルクに基づいて決定する。
【0047】
前記時間t1は、変速機の入力軸トルクが大きいときほど、長い時間に設定される。
ステップS16では、前記締結指示油圧PBを初期圧として再変速指令に対応する速度で油圧を増大させた場合の時間t1後における締結指示油圧PCを算出する(図9参照)。
【0048】
前記再変速指令に対応する油圧の増大速度は、再変速指指令が5速→3速であるときには、臨界圧から所定時間tでトルク分担比CA3rdで決定される目標油圧にまで増大させるときの上昇速度となる。
ステップS17では、最初の変速指令に基づくそのときの締結指示油圧PAから時間t1で締結指示油圧PCまで変化させるときの油圧の変化速度を演算する。
【0049】
そして、ステップS18では、前記ステップS17で演算した速度に従って、締結指示油圧PAから徐々に指示油圧を低下させる処理を行わせ、時間t1が経過して略締結指示油圧PCになってから、再変速指令に対応する油圧の増大速度で締結指示油圧を増大させる(図9参照)。
尚、上記第2の実施形態では、締結指示油圧PAから締結指示油圧PCにまで一定速度で変化させる構成としたが、締結指示油圧PAからの変化開始付近での変化速度及び締結指示油圧PCに充分に近づいてからの変化速度を遅くするなどして、より滑らかに締結指示油圧を変化させるようにしても良い。
【図面の簡単な説明】
【図1】自動変速機の歯車伝動列を示すスケルトン図。
【図2】上記歯車伝動列における摩擦係合要素の論理表を示す図。
【図3】前記歯車伝動列の油圧回路を示す回路図。
【図4】上記油圧回路の制御系を示すブロック図。
【図5】実施の形態における油圧制御による摩擦係合要素の掛け換えを示すタイムチャート。
【図6】再変速指令発生時の制御の第1実施形態を示すフローチャート。
【図7】上記第1実施形態における制御特性を示すタイムチャート。
【図8】再変速指令発生時の制御の第2実施形態を示すフローチャート。
【図9】上記第2実施形態における制御特性を示すタイムチャート。
【符号の説明】
I…入力軸
O…出力軸
G1…第1遊星歯車組
G2…第2遊星歯車組
G3…第3遊星歯車組
L/C…ロークラッチ
H/C…ハイクラッチ
35R/B…バンドブレーキ
2/B…セカンドブレーキ
LR/B…ローリバースブレーキ
L/OWC…ローワンウェイクラッチ
10…マニュアル弁
11…圧力源
13…デューティソレノイド弁
14…デューティソレノイド弁
15…デューティソレノイド弁
16…ソレノイド切換弁
40…コントローラ
41…入力トルクセンサ
42…出力回転センサ
43…スロットルセンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydraulic control device for an automatic transmission, and more particularly to a technique for responding to a re-transmission request during fastening control of a friction engagement element.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an automatic transmission for a vehicle is configured to switch gears based on a combination of engagement / release of friction engagement elements, and is configured to automatically control engagement / release of friction engagement elements with hydraulic pressure. A transmission is known.
Further, in the automatic transmission configured as described above, the control when the next shift command (re-shift) is generated between the first shift command and the end of the shift is disclosed in JP-A-10-103497. There was something,
In the one disclosed in Japanese Patent Application Laid-Open No. 10-103497, when the gear shift corresponding to the first gear shift command has already started, that is, the hydraulic pressure supply operation to the engagement side and the disengagement side friction based on the first gear shift command. When the operation of releasing the hydraulic pressure from the engagement element is started, the shift control based on the next shift command is performed after the end of the shift control based on the first shift command in order to prevent the occurrence of a shift shock or the like. It is like that.
[0003]
[Problems to be solved by the invention]
However, as described above, if the shift control based on the re-shift command cannot be executed until the shift control based on the first shift command is completed, for example, when the driver greatly depresses the accelerator and the downshift is performed, the driver There was a problem that the shift timing was delayed from the intention of the present.
[0004]
The present invention has been made in view of the above problems, and in particular, when a frictional engagement element that is required to be engaged by the first shift command needs to be engaged even by the next shift command, the friction engagement element that is engaged. By making it possible to adapt the engagement pressure of the coupling element to the re-shift command, it avoids the occurrence of a shift shock and responds to the re-shift command from the middle without waiting for the end of the shift control by the first shift command. It is an object of the present invention to provide a hydraulic control device for an automatic transmission that can perform shift control.
[0005]
[Means for Solving the Problems]
Therefore, according to the first aspect of the present invention, a re-transmission command different from the shift command is generated during the engagement control of the friction engagement element based on the shift command, and the friction engagement during the engagement control is also generated in the re-transmission command. When the coupling element is required to be engaged, the engagement instruction oil pressure is switched to the engagement instruction oil pressure required in response to the re-transmission command, and the engagement control is continued.
[0006]
According to this configuration, for example, the same friction engagement element is required to be engaged while the friction engagement element (for example, the low clutch) that has been released at the fifth speed is controlled to be engaged in accordance with the downshift request to the fourth speed. When a downshift request to the third speed is generated, the engagement instruction hydraulic pressure required from the fifth speed to the fourth speed is switched to the engagement instruction hydraulic pressure required from the fifth speed to the third speed, and the engagement control is continued.
[0007]
Even when the same frictional engagement element is engaged, the request for the engagement pressure differs depending on the gear position, so that the hydraulic pressure controlled in response to the first gearshift command is changed to the control oil pressure in response to the gearshift command. After the switching and re-transmission command is generated, the engagement hydraulic pressure is controlled with the characteristic corresponding to the re-transmission command, so that the engagement pressure of the friction engagement element to be engaged is adapted to the re-transmission command during the engagement.
[0008]
The invention according to claim 2 is a configuration in which the engagement instruction hydraulic pressure is controlled in accordance with a sharing ratio for each friction engagement element of the transmission torque capacity corresponding to the input shaft torque of the transmission, and the sharing according to the type of the shift. The hydraulic pressure is switched according to the difference in ratio.
According to such a configuration, for example, when the sharing ratio in the re-shift command is smaller than the sharing ratio of the engagement-side frictional engagement element in the first shift command, the engagement instruction hydraulic pressure is associated with the decrease in the sharing ratio. Then, the engagement control is continued in accordance with the sharing ratio in the re-transmission command.
[0009]
The invention according to claim 3 is configured to change the engagement instruction oil pressure stepwise to the oil pressure required in response to the re-transmission command.
According to this configuration, with the occurrence of the re-shift command, the step is immediately changed to the engagement command oil pressure required in response to the re-shift command, and the engagement control at the command oil pressure corresponding to the re-shift command is started.
[0010]
The invention according to claim 4 is configured such that the engagement instruction hydraulic pressure is gradually changed to a hydraulic pressure required in response to the re-shift command in a predetermined time.
According to this configuration, when a re-transmission command is generated, the change is accompanied by the re-transmission command by gradually changing the engagement instruction oil pressure at that time from the engagement instruction oil pressure required in response to the re-transmission command in a predetermined time. Makes the switching of the fastening instruction oil pressure smooth.
[0011]
According to a fifth aspect of the invention, the predetermined time is set longer as the input shaft torque of the transmission is larger.
According to this configuration, when the input instruction torque is large when the engagement instruction oil pressure is changed to the oil pressure required in response to the re-transmission instruction at a speed according to the input shaft torque of the transmission (generated torque of the engine) It takes a longer time to change to the required hydraulic pressure in response to the re-shift command.
[0012]
【The invention's effect】
According to the first aspect of the present invention, when the re-shift command is generated, the engagement control is continued after switching to the engagement instruction hydraulic pressure required corresponding to the re-shift command. The control is switched to the control suitable for the re-shift command, and the re-shift can be performed without waiting for the end of the first shift, and the shift can be performed at a timing suitable for the driver's intention. Since switching to the hydraulic pressure corresponding to the change in the type of shift is made, there is an effect that it is possible to avoid the occurrence of a shift shock or the like due to non-conformance of the hydraulic pressure.
[0013]
According to the second aspect of the present invention, the engagement instruction hydraulic pressure is switched in response to the difference in the share ratio of the transmission torque capacity required for each gear position. There is an effect that can be.
According to the third aspect of the invention, there is an effect that it is possible to easily change the engagement instruction hydraulic pressure accompanying the generation of the re-shift command.
[0014]
According to the fourth aspect of the present invention, there is an effect that it is possible to smoothly change the engagement instruction hydraulic pressure accompanying the generation of the re-transmission command, and to avoid the occurrence of a shock due to a sudden change in the engagement instruction hydraulic pressure.
According to the fifth aspect of the invention, since the engagement instruction hydraulic pressure is changed at a speed corresponding to the input shaft torque at that time, it is possible to cope with the re-transmission instruction while avoiding the occurrence of a shock due to a sudden change in the engagement instruction hydraulic pressure. Thus, there is an effect that it is possible to quickly switch to the required engagement instruction hydraulic pressure.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
FIG. 1 shows a gear transmission train of an automatic transmission for a vehicle to which a hydraulic control device according to the present invention is applied. An engine output torque is input to an input shaft I through a torque converter, and the automatic transmission Is transmitted to the drive wheels via the output shaft O.
[0016]
In FIG. 2, three first, second, and third planetary gear sets G1, G2, and G3 are arranged coaxially between the input and output shafts I and O.
The three first, second, and third planetary gear sets G1, G2, and G3 include first, second, and third sun gears, first, second, and third ring gears, first, second, and third, respectively. It is a simple planetary gear set consisting of carriers.
[0017]
The first sun gear is coupled to the input shaft I, the second and third sun gears can be coupled to the input shaft I by the low clutch L / C, and the second carrier is coupled to the input shaft I by the high clutch H / C. Make it possible.
The first carrier and the second ring gear are integrally engaged and can be fixed by the second brake 2 / B, and the first ring gear can be fixed by the third speed / 5th speed / reverse band brake 35R / B.
[0018]
Further, the second carrier is further integrally coupled to the third ring gear and can be fixed by the low reverse brake LR / B, and is rotated in the direction opposite to the input shaft I by the low one-way clutch L / OWC.
The gear transmission train can be selected from forward 1st to 5th and reverse gears by a combination of engagement (indicated by a circle) and release (no symbol) of the friction engagement elements shown in FIG.
[0019]
FIG. 3 is a shift control hydraulic circuit for the gear transmission train shown in FIG. 1, thereby achieving the engagement logic of FIG.
The manual valve 10 regulates the pressure from the pressure source 11 and outputs the line pressure PL output to the circuit 12 to the port 10D in the D range, to the ports 10D and 10I in the I range, and to the port 10R in the R range. In the N range, all the ports are drained without connecting the line pressure circuit 12 to any port.
[0020]
A constant pilot pressure is supplied by a circuit 17 to the first, second and third duty solenoid valves 13 to 15 and the solenoid switching valve 16. This pilot pressure is produced by the pilot valve 18 reducing the line PL to a constant value.
The duty solenoid valves 13 to 15 are further connected with a forward pressure circuit 19 connected to the manual valve port 10D, and this circuit 19 is further connected to the engagement chamber LCA of the low clutch L / C.
[0021]
The duty solenoid valves 13 to 15 maintain the illustrated position where all the pilot pressures into the chambers 13a, 14a and 15a are drained at a duty of 0% and drain the circuits 20 to 22, and the duty is increased toward 100%. As a result, the pressure in the chambers 13a, 14a, and 15a increases until the same value as the pilot pressure is reached, and the pressure in the circuits 20 to 22 is increased until the pressure in the chambers 20 to 22 becomes the same value as the line pressure of the forward pressure circuit 19.
[0022]
When the solenoid switching valve 16 is turned on, the pilot pressure of the circuit 17 is supplied to the switching valves 23 and 24 to cause the valves to move right in the figure, and when the solenoid switching valve 16 is turned off, the switching valves 23 and 24 are set to the illustrated positions. .
The switching valve 23 communicates the circuit 20 to the circuit 25 at the illustrated position, and communicates the circuit 20 to the circuit 26 in the right-hand direction. Further, the switching valve 24 passes the second brake 2 / B to the circuit 25 and the high clutch H / C to the drain port 24a at the illustrated position, respectively, and when on the right, the second brake 2 / B to the drain port 24a It is assumed that H / C is connected to the output port of the shuttle valve 27, respectively.
[0023]
One input port of the shuttle valve 27 is connected to a circuit 26, and this circuit 26 is also connected to the fifth speed of the band brake 35R / B and the reverse engagement chamber 5RA via the release chamber LCR of the low clutch L / C and the switching valve 28. Let
The other input port of the shuttle valve 27 is connected to the circuit 22, and the circuit 22 and the circuit 25 are connected to the 2nd and 4th speed release chamber 24R of the band brake 35R / B through the shuttle valve 29, and the 3rd speed of the band brake is connected. -The circuit 21 is connected to the reverse fastening chamber 3RA.
[0024]
The port 10I of the manual valve 10 is connected via the I range pressure reducing valve 30 to the first speed engagement chamber 1A of the low reverse brake LR / B.
The port 10R of the manual valve 10 is connected to the reverse engagement chamber RA of the low reverse brake LR / B by the circuit 31 and is connected to the fifth speed / reverse engagement chamber 5RA of the band brake 35R / B via the switching valve 28. .
[0025]
The controller 40 shown in FIG. 4 controls the valves 13 to 16 so as to be a combination of fastening and releasing of the friction engagement elements corresponding to the required shift speed.
The control unit 40 detects a signal from an input torque sensor 41 that detects an input shaft torque of the transmission, a signal from an output rotation sensor 42 that detects a transmission output rotational speed No, and an engine throttle opening TH. The throttle sensor 43 to be input is input.
[0026]
Next, the shifting operation in the D range in the automatic transmission will be described.
"First speed"
When the manual valve 10 is set to the D range in hope of traveling forward, the line pressure PL of the circuit 12 is output to the port 10D. This line pressure reaches the engagement chamber LCA of the low clutch L / C from the port 10D through the circuit 19, and engages the low clutch L / C.
[0027]
On the other hand, if the traveling state in which the first speed is to be selected, the controller 40 in FIG. 4 sets the duty solenoid valves 13 to 15 to 0% duty and turns off the solenoid switching valve 16. Accordingly, the circuits 20 to 22 are brought into the non-pressure state, and the switching valves 23 and 24 are set to the illustrated positions. Therefore, the release chamber LCR of the low clutch L / C, the second brake 2 / B, the high clutch H / C, and the band brake 35R. All rooms 3RA, 5RA, 24R of / B are drained. Accordingly, only the low clutch L / C is engaged in the automatic transmission, and the first speed is selected.
"2nd speed"
When the second speed is selected in the first speed state of the D range, the controller 40 gradually increases the duty of the duty solenoid valve 13 to generate pressure in the circuit 20 and gradually increase the pressure. . The pressure of the circuit 20 reaches the second brake 2 / B through the switching valves 23 and 24, and the second brake 2 / B is gradually engaged to perform an upshift to the second speed.
"3rd speed"
When an operation state in which the third speed is to be selected in the second speed state, the controller 40 decreases the duty of the duty solenoid valve 13 to lower the pressure of the circuit 20 (second brake 2 / B), and the duty solenoid valve 14 The duty is gradually increased, pressure is generated in the circuit 21 (the chamber 3RA of the band brake 35R / B), and the pressure is gradually increased. As a result, the second brake 2 / B is released and the upshift to the third speed is performed by changing the friction element to which the band brake 35R / B is engaged.
[0028]
During the shift from the second speed to the third speed, the engagement pressure of the second brake 2 / B to be released and the engagement pressure of the band brake 35R / B to be engaged are individually controlled by the duty solenoid valves 13 and 14, respectively. The release timing of the second brake 2 / B and the engagement timing of the band brake 35R / B can be optimally controlled freely according to the driving state.
"4th speed"
When the fourth speed is selected in the third speed selection state, the controller 40 turns on the solenoid switching valve 16 to switch the switching valves 23 and 24 to the right row position in the figure by the pilot pressure from the circuit 17, respectively. The duty of the duty solenoid valve 14 is gradually decreased to lower the pressure of the circuit 21 (pressure in the fastening chamber 3RA of the band brake 35R / B) and the duty of the duty solenoid valve 15 is gradually increased to increase the pressure of the circuit 22 (shuttle valve). 27, the engagement pressure reaching the high clutch H / C via the switching valve 24 is gradually increased. As a result, the band brake 35R / B is released, and the upshift to the fourth speed is performed by changing the friction element to which the high clutch H / C is engaged.
[0029]
Even during the shifting from the 3rd speed to the 4th speed, the engagement pressure in the chamber 35A of the band brake 35R / B to be released and the engagement pressure of the high clutch H / C to be engaged are individually controlled by the duty solenoid valves 14 and 15, respectively. Can be controlled.
"5-speed"
When an operation state in which the fifth speed is selected in the fourth speed selection state, the controller 40 decreases the duty of the duty solenoid valve 15 to lower the pressure of the circuit 22 and increases the duty of the duty solenoid valve 13 to increase the duty of the circuit 20. Increase the pressure.
[0030]
The pressure drop in the circuit 22 attempts to release the high clutch H / C, but instead the pressure in the circuit 20 reaches the high clutch H / C via the switching valve 23, shuttle valve 27, circuit 26 and switching valve 24, Continue to engage the high clutch H / C.
At the same time, the pressure reaching the circuit 26 reaches the release chamber LCR of the low clutch L / C, and the low clutch L / C is released when the pressure receiving area of this chamber is larger than the pressure receiving area of the chamber LCA.
[0031]
The pressure of the circuit 26 further passes through the switching valve 28 to the fastening chamber 5RA of the band brake 35R / B, and the release chamber 24R of the brake is drained due to the pressure drop of the circuit 22, so that the band brake 35R / B is fastened. . As a result, an upshift to the fifth speed is performed.
The 5 → 4 downshift, the 4 → 3 downshift, the 3 → 2 downshift, and the 2 → 1 downshift are also controlled by the corresponding control of the duty solenoid valves 13 to 15 and the solenoid switching valve 16. The procedure is the reverse of the upshift.
[0032]
By the way, in the automatic transmission having the above configuration, the ratio of transmission torque capacity corresponding to the input shaft torque of the transmission before and after the shift is determined in advance for each friction engagement element for each type of shift. Controls the engagement / release of each friction engagement element in accordance with the sharing ratio.
Specifically, for example, as shown in FIG. 5, the fastening pressure of the engagement side frictional engagement element is raised to the vicinity of the critical pressure of engagement / release by precharging, while the engagement pressure (transmission of the release side frictional engagement element is transmitted. The torque capacity is reduced from the value at the time of non-shifting to a release initial pressure (> critical pressure) corresponding to the transmission torque indicated by input shaft torque Tt × torque sharing ratio OB (sharing ratio before shifting).
[0033]
Then, the engagement pressure of the disengagement side frictional engagement element is changed from the initial release pressure to a target pressure (<critical pressure) corresponding to a transmission torque represented by input shaft torque Tt × torque sharing ratio OA (sharing ratio after shifting). At the same time, the engagement pressure (transmission torque capacity) of the engagement side frictional engagement element is controlled from the critical pressure to the input shaft torque Tt × torque sharing ratio CA (sharing ratio after shifting). Control is performed so as to increase to a target hydraulic pressure (> critical pressure) corresponding to the transmission torque indicated by
[0034]
Note that the ratio of the torque transmitted to the drive wheels via the low clutch L / C differs between the fourth speed and the third speed even when the same low clutch L / C is engaged. As a value of a sharing ratio CA (sharing ratio after shifting) that determines the input shaft torque Tt × CA, which is the hydraulic target of the low clutch L / C, at the time of downshifting and at the time of downshifting from 5th gear to 3rd gear. Different values are set.
[0035]
Here, in this embodiment, for example, during a shift based on a 5th speed → 4th speed shift command, a re-shift command that requires the same friction engagement element to be fastened, such as a 5th speed → 3rd speed shift command, is issued. When this occurs, the engagement instruction oil pressure is switched in accordance with the difference in the sharing ratio to continue the engagement control, and the shift from the fifth speed to the third speed is changed from the middle.
[0036]
Specifically, the engagement instruction hydraulic pressure is controlled as shown in the flowchart of FIG.
First, in step S1, it is determined whether or not the friction engagement element is being changed based on the shift command.
Changing the friction engagement element is a period in which the hydraulic pressure of the engagement side friction engagement element is increased from the critical pressure toward the engagement target.
[0037]
If it is determined that the change is being made, the process proceeds to step S2 to determine whether or not a re-shift command has been issued.
When the re-shift command is generated, the process proceeds to step S3, and it is determined whether or not the friction engagement element that is required to be engaged by the first shift command and the friction engagement element that is required to be engaged by the re-change command are the same. Determine.
[0038]
For example, when the low clutch L / C is engaged according to the 5th speed → 4th speed shift command, and the 5th speed → 3rd speed re-shift command is generated, the same low clutch L is also applied to the re-shift command. Since the engagement of / C is required, the friction engagement element that is required to be engaged by the first shift command and the friction engagement element that is required to be engaged by the re-shift command are the same in step S3. It will be determined.
[0039]
When it is determined in step S3 that the friction engagement element that is required to be engaged by the first shift command is different from the friction engagement element that is required to be engaged by the re-shift command, a re-shift command is not generated. Similarly, the process proceeds to step S6, and the shift control based on the first shift command is continued as it is.
Accordingly, when it is determined that the friction engagement element that is required to be engaged by the first shift command is different from the friction engagement element that is required to be engaged by the re-shift command, the shift corresponding to the first shift command is completed. After that, a shift corresponding to the re-shift command is performed.
[0040]
On the other hand, if it is determined in step S3 that the friction engagement element that is required to be engaged by the first shift command and the friction engagement element that is required to be engaged by the re-shift command are the same, step S4 is performed. Proceed to
In step S4, the engagement instruction oil pressure PB corresponding to the re-transmission command is calculated based on the instruction oil pressure PA (engagement instruction oil pressure) of the engagement side frictional engagement element at that time.
[0041]
Here, taking as an example the case where a 5th speed → 3rd speed re-shift command is generated during a shift based on a 5th speed → 4th speed shift command, the sharing ratio required for the low clutch L / C during the shift is: Unlike the 5th gear → 4th gear shift and the 5th gear → 3rd gear shift, the share ratio after shifting required for the low clutch L / C at the 5th gear → 4th gear shift is the CA4th, and the low speed during the 5th gear → 3rd gear shift is low. If the share ratio after shifting required for the clutch L / C is CA3rd,
The engagement instruction oil pressure PB corresponding to the re-shift command is PA, where the instruction oil pressure of the engagement side frictional engagement element based on the first shift instruction is PA.
PB = (CA3rd × PA) / CA4th
As required.
[0042]
In step S5, the engagement instruction oil pressure is changed stepwise from the instruction oil pressure PA of the engagement side frictional engagement element based on the first gear change instruction to the engagement instruction oil pressure PB corresponding to the re-transmission instruction. The engagement instruction oil pressure is gradually increased at the rising speed when the oil pressure is increased to the target oil pressure determined by the sharing ratio corresponding to the re-transmission command at the predetermined time t, and the engagement control is continued (see FIG. 7).
[0043]
By switching the engagement instruction hydraulic pressure, the engagement side frictional engagement element is switched from the middle to the control corresponding to the re-transmission command. After the re-transmission command is generated, the fifth speed → 3 Since the engagement command hydraulic pressure increases and changes in the same manner as in the case of shifting at a high speed, the hydraulic pressure of the engagement-side frictional engagement element may become excessive or insufficient even if the type of shift is switched as the re-shift command is generated. Therefore, it is possible to respond to the re-shift command without causing a shift shock.
[0044]
Therefore, the shift corresponding to the re-shift command can be performed without waiting for the completion of the shift corresponding to the first shift command, and a shift suitable for the driver's intention can be realized.
In order to respond to the re-transmission command, it is necessary to switch the object to be released in parallel with the control of the instruction hydraulic pressure of the above-mentioned engagement side frictional engagement element. If a 5th speed → 3rd speed re-transmission command is generated during the shifting based on the speed change, the band brake 35R / B release control is switched to the high clutch H / C release control in accordance with the re-transmission command. .
[0045]
In the above-described embodiment, the engagement instruction hydraulic pressure is switched stepwise in response to the re-transmission command. However, the engagement instruction oil pressure corresponding to the first shift instruction is smoothly changed to the engagement instruction oil pressure corresponding to the re-transmission instruction. A second embodiment having such a configuration that can be changed to switch the fastening finger hydraulic pressure without shock will be described with reference to the flowchart of FIG.
[0046]
In the flowchart of FIG. 8, the processing at each step from step S11 to step S14 is the same as step S1 to step S4 of the flowchart of FIG. 6, and the processing of step S19 is the same as step S6 of the flowchart of FIG. This is the same and will not be described.
When the engagement instruction oil pressure PB is obtained in response to the re-transmission command in step S14, in step S15, the time t1 during which the engagement instruction oil pressure PA is changed from the current engagement instruction oil pressure PA to the oil pressure corresponding to the re-transmission instruction in step S15. Is determined based on the input shaft torque at that time.
[0047]
The time t1 is set to a longer time as the input shaft torque of the transmission is larger.
In step S16, the engagement instruction oil pressure PC after the time t1 when the oil pressure is increased at a speed corresponding to the re-shift command using the engagement instruction oil pressure PB as an initial pressure is calculated (see FIG. 9).
[0048]
The increase speed of the hydraulic pressure corresponding to the re-transmission command is that when the re-transmission finger command is from the fifth speed to the third speed, it is increased from the critical pressure to the target oil pressure determined by the torque sharing ratio CA3rd at a predetermined time t. Ascending speed.
In step S17, the change speed of the oil pressure when changing from the engagement instruction oil pressure PA based on the first shift instruction to the engagement instruction oil pressure PC at time t1 is calculated.
[0049]
In step S18, a process for gradually decreasing the command hydraulic pressure from the engagement command hydraulic pressure PA is performed according to the speed calculated in step S17. The engagement instruction hydraulic pressure is increased at the hydraulic pressure increase speed corresponding to the command (see FIG. 9).
In the second embodiment, the engagement instruction oil pressure PA is changed at a constant speed from the engagement instruction oil pressure PA to the engagement instruction oil pressure PC. The fastening instruction hydraulic pressure may be changed more smoothly, for example, by slowing down the change speed after sufficiently approaching.
[Brief description of the drawings]
FIG. 1 is a skeleton diagram showing a gear transmission train of an automatic transmission.
FIG. 2 is a diagram showing a logical table of friction engagement elements in the gear transmission train.
FIG. 3 is a circuit diagram showing a hydraulic circuit of the gear transmission train.
FIG. 4 is a block diagram showing a control system of the hydraulic circuit.
FIG. 5 is a time chart showing switching of friction engagement elements by hydraulic control in the embodiment.
FIG. 6 is a flowchart showing a first embodiment of control when a re-shift command is generated.
FIG. 7 is a time chart showing control characteristics in the first embodiment.
FIG. 8 is a flowchart showing a second embodiment of control when a re-shift command is generated.
FIG. 9 is a time chart showing control characteristics in the second embodiment.
[Explanation of symbols]
I ... Input shaft O ... Output shaft G1 ... First planetary gear set G2 ... Second planetary gear set G3 ... Third planetary gear set L / C ... Low clutch H / C ... High clutch
35R / B ... Band brake 2 / B ... Second brake LR / B ... Low reverse brake L / OWC ... Low one-way clutch 10 ... Manual valve 11 ... Pressure source 13 ... Duty solenoid valve 14 ... Duty solenoid valve 15 ... Duty solenoid valve 16 ... Solenoid switching valve 40 ... Controller 41 ... Input torque sensor 42 ... Output rotation sensor 43 ... Throttle sensor

Claims (5)

摩擦係合要素の締結・解放を油圧で制御する自動変速機の油圧制御装置であって、
変速指令に基づく摩擦係合要素の締結制御中に、前記変速指令と異なる再変速指令が発生し、かつ、該再変速指令においても前記締結制御中の摩擦係合要素の締結が要求されるときに、締結指示油圧を再変速指令に対応して要求される締結指示油圧に切り換えて締結制御を継続させることを特徴とする自動変速機の油圧制御装置。
A hydraulic control device for an automatic transmission that hydraulically controls engagement / release of a friction engagement element,
When a re-shift command different from the shift command is generated during the engagement control of the friction engagement element based on the shift command, and the engagement of the friction engagement element during the engagement control is also requested in the re-shift command. In addition, the hydraulic control device for an automatic transmission is characterized in that the engagement instruction oil pressure is switched to the engagement instruction oil pressure required in response to the re-shift command and the engagement control is continued.
変速機の入力軸トルクに対応する伝達トルク容量の摩擦係合要素毎の分担比に対応して締結指示油圧が制御される構成であり、変速の種類による前記分担比の違いに応じて油圧を切り換えることを特徴とする請求項1記載の自動変速機の油圧制御装置。The tightening instruction hydraulic pressure is controlled in accordance with the sharing ratio for each friction engagement element of the transmission torque capacity corresponding to the input shaft torque of the transmission, and the hydraulic pressure is adjusted according to the difference in the sharing ratio depending on the type of shift. 2. The hydraulic control device for an automatic transmission according to claim 1, wherein switching is performed. 前記締結指示油圧を再変速指令に対応して要求される油圧にまでステップ的に変化させることを特徴とする請求項1又は2記載の自動変速機の油圧制御装置。The hydraulic control device for an automatic transmission according to claim 1 or 2, wherein the engagement instruction hydraulic pressure is changed stepwise to a hydraulic pressure required in response to a re-shift command. 前記締結指示油圧を再変速指令に対応して要求される油圧にまで所定時間で徐々に変化させることを特徴とする請求項1又は2記載の自動変速機の油圧制御装置。3. The hydraulic control device for an automatic transmission according to claim 1, wherein the engagement instruction hydraulic pressure is gradually changed to a hydraulic pressure required in response to a re-shift command in a predetermined time. 前記所定時間を、変速機の入力軸トルクが大きいときほどより長く設定することを特徴とする請求項4記載の自動変速機の油圧制御装置。5. The hydraulic control device for an automatic transmission according to claim 4, wherein the predetermined time is set longer as the input shaft torque of the transmission is larger.
JP2000313511A 2000-10-13 2000-10-13 Hydraulic control device for automatic transmission Expired - Fee Related JP3785312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313511A JP3785312B2 (en) 2000-10-13 2000-10-13 Hydraulic control device for automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313511A JP3785312B2 (en) 2000-10-13 2000-10-13 Hydraulic control device for automatic transmission

Publications (2)

Publication Number Publication Date
JP2002122227A JP2002122227A (en) 2002-04-26
JP3785312B2 true JP3785312B2 (en) 2006-06-14

Family

ID=18792917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313511A Expired - Fee Related JP3785312B2 (en) 2000-10-13 2000-10-13 Hydraulic control device for automatic transmission

Country Status (1)

Country Link
JP (1) JP3785312B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111491A (en) * 2006-10-31 2008-05-15 Denso Corp Automatic transmission control device
JP4743667B2 (en) * 2006-11-06 2011-08-10 株式会社デンソー Control device for automatic transmission

Also Published As

Publication number Publication date
JP2002122227A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
JP4257328B2 (en) Control device for automatic transmission
KR101363902B1 (en) Control device of automatic transmission
KR101319230B1 (en) Automatic transmission
EP1219869A2 (en) Speed shift control apparatus of automatic transmission
JPH03265752A (en) Control device for automatic transmission
JPH0125944B2 (en)
JPH0454374A (en) Controlling of automatic transmission of vehicle
JP4201111B2 (en) Automatic transmission lockup control device
US5361651A (en) Shift control system for automatic transmission
EP1028276B1 (en) Hydraulic control system for 4-speed automatic transmission
KR100496360B1 (en) Shift control apparatus for automatic transmission
JP2850615B2 (en) Transmission control device for automatic transmission
JP2007170638A (en) Automatic transmission control device
JP4626006B2 (en) Hydraulic control device for automatic transmission
JPH05157167A (en) Servo oil pressure control device for automatic transmission
JPH02173466A (en) Electronic speed change control device for automatic transmission
JPH08303576A (en) Shift control device for automatic transmission
JP3785312B2 (en) Hydraulic control device for automatic transmission
JPH0130024B2 (en)
JP3620999B2 (en) Control device for automatic transmission
JPH0483964A (en) Shift control method for automatic transmission
JP4929528B2 (en) Hydraulic control device for automatic transmission
KR100471257B1 (en) Method of controlling shift for two axes automatic transmission in a vehicle of power-on and up-shift
KR100471255B1 (en) Method of controlling shift for two axes automatic transmission in a vehicle of power-on and up-shift
JP3437217B2 (en) Automatic transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3785312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150324

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees