JP3784168B2 - Current measuring device - Google Patents

Current measuring device Download PDF

Info

Publication number
JP3784168B2
JP3784168B2 JP08339498A JP8339498A JP3784168B2 JP 3784168 B2 JP3784168 B2 JP 3784168B2 JP 08339498 A JP08339498 A JP 08339498A JP 8339498 A JP8339498 A JP 8339498A JP 3784168 B2 JP3784168 B2 JP 3784168B2
Authority
JP
Japan
Prior art keywords
terminal
circuit
current
voltage
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08339498A
Other languages
Japanese (ja)
Other versions
JPH11281677A (en
Inventor
宗久 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP08339498A priority Critical patent/JP3784168B2/en
Publication of JPH11281677A publication Critical patent/JPH11281677A/en
Application granted granted Critical
Publication of JP3784168B2 publication Critical patent/JP3784168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は定電圧を印加して負荷抵抗に流れる電流を測定する電流測定装置に関する。
【0002】
【従来の技術】
定電圧を印加して測定対象である負荷抵抗に流れる電流を測定する従来の電流測定装置の要部の構成を図5に示す。この電流測定装置9は、抵抗値が10倍ずつ異なる5つの高精度の抵抗R1〜R5と、これらの抵抗にそれぞれ接続された5つの水銀リレーS1〜S5と、増幅回路93を備えている。抵抗R1〜R5は所定の電圧を印加される入力端子91に接続され、水銀リレーS1〜S5は図外の負荷抵抗に接続される出力端子92に接続されている。
【0003】
水銀リレーS1〜S5のいずれかを導通させると、入力端子91と出力端子92が接続されて出力端子92から負荷抵抗に電流が流れ、導通した水銀リレーに接続されている抵抗には、負荷抵抗を流れる電流に等しい電流が流れる。増幅回路93で入力端子91と出力端子92の間の電圧を増幅し、端子93cに現れる増幅後の電圧を不図示の電圧検出回路で測定することにより、負荷抵抗を流れる電流が測定される。
【0004】
導通させる水銀リレーを切り換えて電流を通す抵抗を切り換えることにより、入力端子91と出力端子92の間に現れる電圧は変化し、これにより測定レンジが切り換わる。この電流測定装置9は最小レンジR8UAから最大レンジR80MAまで5段階の測定レンジをもち、最大レンジR80MAから始めて順次測定レンジを切り換えて、電圧検出回路に与える電圧を所定範囲内とするレンジ自動設定機能を備えている。
【0005】
【発明が解決しようとする課題】
上述のように、従来の電流測定装置は測定レンジを切り換えるためのスイッチ素子として水銀リレーを使用している。ところが水銀リレーは、動作/復旧時間すなわち導通動作を始めてから完全に導通するまでの時間および導通動作を止め始めてから完全に非導通となるまでの時間が、共に3msec(ミリ秒)程度と長い。
【0006】
このため、測定レンジを頻繁に切り換えて負荷抵抗に流れる電流を測定するときには、測定にかなりの時間を要する。例えば、上記の電流測定装置9で、最小レンジR8UAで測定すべき負荷抵抗を最大レンジR80MAから始めてレンジ自動設定する場合、適正なレンジに設定するまでに約27msecかかることになる。
【0007】
速やかに測定を行い得るようにするためには、水銀リレーに代えて、動作/復旧時間の短いスイッチ素子を用いればよい。例えば、フォトモスリレーは動作/復旧時間がそれぞれ0.5msecと0.2msec程度であり、これを用いれば測定レンジの切り換えを速やかに行うことができる。しかしながら、水銀リレーのオン抵抗すなわち導通時の抵抗値が100mΩ程度であるのに対し、フォトモスリレーのオン抵抗は10Ω程度と100倍も高い。このため、抵抗値の小さな抵抗に電流を流す大レンジでの測定では、その抵抗値に匹敵するオン抵抗が新たに加わることになって、正しく電流を測定することができなくなる。
【0008】
動作/復旧時間が短い他のスイッチ素子も同様であり、これらのスイッチ素子を水銀リレーに代わるものとしてそのまま使用することはできない。
【0009】
本発明は、上記問題点に鑑みてなされたもので、負荷抵抗に流れる微小な電流から大電流までを精度よく測定することが可能で、測定レンジを速やかに切り換えることができる電流測定装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明では、第1の端子と、第2の端子と、一端が第1の端子に接続された抵抗値の異なる高精度の複数の抵抗と、一端が第2の端子に接続され他端が複数の抵抗の他端に個別に接続された複数のスイッチ素子と、第1の入力端子が第1の端子に接続され第2の入力端子が第2の端子に接続された増幅回路を有し、第1の端子および第2の端子の一方に負荷抵抗を接続し他方に所定の電圧を印加して、複数のスイッチ素子のいずれか1つを導通させて第1の端子と第2の端子の間の電圧を増幅して測定することにより、負荷抵抗に流れる電流を測定する電流測定回路を備えた電流測定装置において、前記電流測定回路は、複数のスイッチ素子としてフォトモスリレーを備えるとともに、複数の抵抗のうち抵抗値が所定値未満のもののスイッチ素子側の端と増幅回路の第2の入力端子および第2の端子と増幅回路の第2の入力端子をそれぞれ接続する複数のアナログスイッチを備える。
【0011】
そして、複数のスイッチ素子のうち抵抗値が所定値未満の抵抗に接続されたものを導通させるときに、複数のアナログスイッチのうちその抵抗の端に接続されたもののみを導通させ、複数のスイッチ素子のうち抵抗値が所定値以上の抵抗に接続されたものを導通させるときに、複数のアナログスイッチのうち第2の端子に接続されたもののみを導通させるようにする。
また、積分回路を有するノイズ除去回路を備え、該ノイズ除去回路によってノイズが除去された所定電圧を前記電流測定回路に供給する。
【0012】
複数のスイッチ素子のうちどれを導通させるかによって測定レンジが切り換わるが、スイッチ素子として動作/復旧時間のきわめて短いフォトモスリレーを用いたことで、測定レンジの切り換えをきわめて速やかに行うことができる。抵抗値が所定値未満の抵抗に電流を流すときには、その抵抗に接続されたアナログスイッチによって抵抗と増幅回路が直接接続され、第2の端子と増幅回路とは遮断される。このとき、増幅回路には直列に接続された抵抗とフォトモスリレーの両端間の電圧ではなく、抵抗の両端間の電圧が与えられることになり、フォトモスリレーのオン抵抗は測定値に影響しない。
【0013】
しかも、増幅回路の入力インピーダンスはアナログスイッチの抵抗値を無視し得るほど大きいから、アナログスイッチのオン抵抗によって測定が不正確になることもない。したがって、抵抗値の小さな大レンジで測定するときでも、正確に電流を測定することができる。
【0014】
また、抵抗値が所定値以上の抵抗に電流を流すときには、第2の端子と増幅回路が接続され、直列に接続された抵抗とフォトモスリレーの両端間の電圧に基づいて測定を行うことになる。ここで、例えば、所定値を10kΩ程度以上にしておけばフォトモスリレーのオン抵抗の1000倍以上となり、そのオン抵抗の測定への影響は0.1%以下に抑えられる。したがって、小レンジでも精度よく電流を測定することができる。このように設定することで、アナログスイッチを不必要に多く備える無駄が避けられる。
【0015】
【発明の実施の形態】
以下、本発明の電流測定装置の一実施形態について図面を参照して説明する。図1に電流測定装置1の概略構成を示す。電流測定装置1は、ノイズ除去回路10、電流測定回路20、電圧検出回路30、およびフィードバック回路40を備えている。
【0016】
ノイズ除去回路10は積分回路11、反転増幅回路12およびバッファ13から成り、図外の定電圧源より抵抗10aを介して与えられる約8Vの所定電圧からノイズを除去し、ノイズ除去後の電圧を電流測定回路20に供給する。電流測定回路20は、電流測定の対象である負荷抵抗RLに2芯シールド線20aを介してノイズ除去回路10からの電圧を印加し、それによって自身の内部を流れる電流iを電圧に変換して出力する。電流測定回路20については後に詳述する。
【0017】
電圧検出回路30は、反転増幅回路31および電圧計32より成り、電流測定回路20が出力する電圧を反転増幅回路31によって所定の倍率で増幅し、増幅後の電圧を電圧計32で測定する。電圧計32で測定される電圧は負荷抵抗RLを流れる電流iに応じて変化するが、その電圧値は負荷抵抗RLを流れる電流値を直接表すものではなく、電圧値と電流値の対応関係は電流測定回路20の内部設定によって変わる。電流測定回路20から電圧検出回路30に与えられる電圧の基準レベルを調節するために、両回路間に可変抵抗30aが設けられている。
【0018】
フィードバック回路40は倍率1倍の差動増幅回路41より成り、電流測定回路20が負荷抵抗RLに印加する電圧と負荷抵抗RLを流れることによって低下した電圧の差をとって反転し、可変抵抗10bを介してノイズ除去回路10に帰還させる。差動増幅回路41の入力インピーダンスは高く、電流測定回路20からフィードバック回路40には電流は流れない。したがって、負荷抵抗RLを流れる電流iと電流測定回路20を流れる電流iは等しい。
【0019】
なお、図1および以下に説明する図の各回路の端子に付した+15および−15の数値は供給される駆動電圧(V)を、CGNDはグランド電位に接続されていることを表す。
【0020】
電流測定回路20の構成を図2に示す。電流測定回路20はノイズ除去回路10から供給される電圧を受ける入力端子21、その電圧を負荷抵抗RLに印加する出力端子22、5つの抵抗R1〜R5、およびスイッチ素子である6つのフォトモスリレーK1〜K6を備えている。
【0021】
抵抗R1〜R5は誤差0.1%以内の高精度のもので、それらの抵抗値は10倍ずつ相違する。具体的には、抵抗R1が100kΩで最大であり、抵抗R5が10Ωで最小である。抵抗R1〜R5の一端は入力端子21に接続されており、他端はそれぞれフォトモスリレーK1〜K5の一端に接続されている。フォトモスリレーK1〜K5の他端は出力端子22に接続されている。フォトモスリレーK6は、抵抗R5と出力端子22間に、フォトモスリレーK5に対して並列に接続されている。抵抗R5と出力端子22間に2つのフォトモスリレーK5、K6を並列に設けたのは、連続負荷電流の絶対最大定格を超えないようにするためである。
【0022】
直列に接続された抵抗R1〜R4とフォトモスリレーK1〜K4および抵抗R5とフォトモスリレーK5、K6は、入力端子21と出力端子22間に並列な5つの電流路を形成する。図示しないが、電流測定装置1は装置全体を制御する制御部を備えており、この制御部はフォトモスリレーK1〜K5を一時に1つだけ導通させる。フォトモスリレーK5とK6は同時に動作させられる。入力端子21と出力端子22の間を流れる電流の最大値は、動作する電流路に応じて、8μA〜80mAとなる。5つの電流路は電流測定装置1の5つの測定レンジR8UA、R80UA、R800UA、R8MA、R80MAに対応する。
【0023】
電流測定回路20はまた、計測増幅回路23および4つのアナログスイッチK7〜K10を備えている。計測増幅回路23の一方の入力端子23aは抵抗R6を介して入力端子21に接続されており、他方の入力端子23bは抵抗R7の一端に接続されている。抵抗R7の他端は、アナログスイッチK7、K8、K9をそれぞれ介して抵抗R5、R4、R3のフォトモスリレーK5、K4、K3側の端に接続され、アナログスイッチK10を介して出力端子22に接続されている。
【0024】
計測増幅回路23は、入力端子23a、23b間に加えられる電圧を10倍に増幅して、その出力端子23cより電圧検出回路30に出力する。計測増幅回路23には精度誤差0.1%以内の2つの抵抗R8およびR9が並列に接続されている。計測増幅回路23の構成を図3に示す。計測増幅回路23は、3つのオペアンプ51a、51b、52、および2つの過電圧保護回路53a、53bより成る。
【0025】
オペアンプ51aの入力端子(+)は過電圧保護回路53aを介して入力端子23aに接続されており、同様に、オペアンプ51bの入力端子(+)は過電圧保護回路53bを介して入力端子23bに接続されている。オペアンプ51a、51bの他方の入力端子(−)は抵抗R8、R9によって接続されている。オペアンプ51aの出力端子は、抵抗54aを介してオペアンプ52の入力端子(−)に接続され、抵抗55aを介して自身の入力端子(−)に接続されている。オペアンプ51bの出力端子は、抵抗54bを介してオペアンプ52の入力端子(+)に接続され、抵抗55bを介して自身の入力端子(−)に接続されている。
【0026】
オペアンプ52の出力端子は計測増幅回路23の出力端子23cとなっている。この出力端子23cは帰還のために抵抗56aを介してオペアンプ52の入力端子(−)に接続されている。オペアンプ52の入力端子(+)は抵抗56bを介してグランド電位に接続されている。このような構成により、計測増幅回路23は、与えられる電圧を精度よく増幅することが可能であり、また、1010Ω程度の高い入力インピーダンスをもつ。
【0027】
前述の制御部はアナログスイッチK7〜K10を一時に1つだけ導通させる。具体的には、フォトモスリレーK5、K6を導通させる時にアナログスイッチK7を導通させ、フォトモスリレーK4を導通させる時にアナログスイッチK8を導通させ、フォトモスリレーK3を導通させる時にアナログスイッチK9を導通させる。また、フォトモスリレーK1またはK2を導通させる時にアナログスイッチK10を導通させる。
【0028】
したがって、計測増幅回路23には、測定レンジR8UAまたはR80UAが選択されているときには、入力端子21と出力端子22の間の電圧が与えられ、測定レンジR800UA、R8MAまたはR80MAが選択されているときには、それぞれ抵抗R3、R4またはR5の両端間の電圧が与えられることになる。
【0029】
フォトモスリレーのオン抵抗は10Ω程度であり、これは抵抗R3、R4およびR5の抵抗値の1%、10%および100%に相当する。しかしながら、フォトモスリレーK3、K4、K5、K6に電流が流れる測定レンジR800UA、R8MA、R80MAで負荷抵抗RLに流れる電流を測定するときには、抵抗R3、R4、R5の両端間の電圧を直接測定することになり、それらのオン抵抗は測定に影響を及ぼさない。
【0030】
しかも、アナログスイッチのオン抵抗は175Ω程度であって計測増幅回路23の入力インピーダンスに比べて無視し得るほど小さいから、抵抗R3、R4、R5と計測増幅回路23を接続するアナログスイッチK7、K8、K9のオン抵抗も測定に影響を及ぼさない。したがって、測定レンジR800UA、R8MA、R80MAで測定される中電流ないし大電流の精度は高い。
【0031】
測定レンジR8UA、R80UAで測定するときは、フォトモスリレーK1、K2のオン抵抗が影響する。しかしながら、フォトモスリレーのオン抵抗は抵抗R1およびR2の抵抗値の0.01%および0.1%に過ぎず、この電流測定装置1で用いている高精度抵抗の精度誤差以下となって、その影響は無視し得る。したがって、測定レンジR8UA、R80UAで測定される微小ないし小電流の精度も高い。
【0032】
電流測定装置1はレンジ自動設定機能を備えている。レンジ自動設定に際して制御部は、計測増幅回路23から出力される電圧が、電圧検出回路30が測定し得る最大電圧以下でその最大電圧の5%以上の範囲に収まるように、測定レンジを最大レンジR80MAから始めて順次切り換える。電流測定装置1では動作/復旧時間が0.5/0.2msecときわめて短いフォトモスリレーを用いていることにより、測定レンジの切り換えを速やかに行うことができる。アナログスイッチの動作/復旧時間は1/0.5μsecとさらに短く、測定には全く影響しない。
【0033】
負荷抵抗RLを流れる電流が4〜80μAの場合の、レンジ自動設定での測定に要する時間を、水銀リレーを用いた従来の装置と対比して図4に示す。(a)は電流測定装置1で要する時間、(b)は図5の電流測定装置9で要する時間である。どちらもR80MAからR80UAまでの4つの測定レンジを切り換えることになるが、1回の動作時間に2.5msec、1回の復旧時間に2.8msecの差が生じるため、測定完了までに21.2msecの差異が生じる。すなわち、電流測定装置1では従来の約12%の時間で測定が完了する。
【0034】
なお、ここでは、電流測定回路20の入力端子21に抵抗R1〜R5を接続し、出力端子22にフォトモスリレーK1〜K6を接続する構成としたが、配列順序を逆にして、フォトモスリレーK1〜K6を入力端子21に接続し、抵抗R1〜R5を出力端子22に接続する構成としてもよい。その場合、抵抗R7を出力端子22に直接接続し、抵抗R6をアナログスイッチK10を介して入力端子21に接続し、抵抗R6をアナログスイッチK7、K8、K9に接続する。制御動作に違いは生じない。
【0035】
また、5つの抵抗R1〜R5のうち抵抗値の小さな3つのみをアナログスイッチK7〜K9を介して計測増幅回路23に接続する構成としたが、全ての抵抗R1〜R5をアナログスイッチを介して計測増幅回路23に接続するようにしてもよい。このとき、出力端子22と計測増幅回路23を接続するアナログスイッチK10は不要になる。ただし、抵抗の精度誤差よりもフォトモスリレーのオン抵抗が小さいときには、抵抗の両端の電圧のみを測定することは測定精度の向上には寄与しない。したがって、どの抵抗をアナログスイッチを介して計測増幅回路23に接続するかは、抵抗値の大きさと精度誤差を考慮して定めることが望ましい。
【0036】
【発明の効果】
本発明の電流測定装置によるときは、レンジの切り換えに要する時間がきわめて短いから、測定の能率が大きく向上する。しかも、どのレンジで測定するときでも誤差はほとんど生じず、微小な電流から大電流までを精度よく測定することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態の電流測定装置の概略構成を示す図。
【図2】 上記電流測定装置の電流測定回路の構成を示す図。
【図3】 上記電流測定回路の計測増幅回路の構成を示す図。
【図4】 上記電流測定装置と従来の電流測定装置の測定時間の比較例を示す図。
【図5】 従来の電流測定装置の要部の構成を示す図。
【符号の説明】
1 電流測定装置
10 ノイズ除去回路
11 積分回路
12 反転増幅回路
13 バッファ
20 電流測定回路
20a 2芯シールド線
21 入力端子
22 出力端子
23 計測増幅回路
R1〜R5 高精度抵抗
K1〜K6 フォトモスリレー
K7〜K10 アナログスイッチ
30 電圧検出回路
31 反転増幅回路
32 電圧計
40 フィードバック回路
41 差動増幅回路
51a、51b、52 オペアンプ
53a、53b 過電圧保護回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a current measuring device that measures a current flowing through a load resistance by applying a constant voltage.
[0002]
[Prior art]
FIG. 5 shows a configuration of a main part of a conventional current measuring apparatus that measures a current flowing through a load resistance to be measured by applying a constant voltage. The current measuring device 9 includes five high-precision resistors R1 to R5 whose resistance values are different by 10 times, five mercury relays S1 to S5 respectively connected to these resistors, and an amplifier circuit 93. The resistors R1 to R5 are connected to an input terminal 91 to which a predetermined voltage is applied, and the mercury relays S1 to S5 are connected to an output terminal 92 connected to a load resistor (not shown).
[0003]
When any one of the mercury relays S1 to S5 is turned on, the input terminal 91 and the output terminal 92 are connected, current flows from the output terminal 92 to the load resistance, and the resistance connected to the conducted mercury relay includes the load resistance. A current equal to the current flowing through Amplifying circuit 93 amplifies the voltage between input terminal 91 and output terminal 92, and measures the amplified voltage appearing at terminal 93c with a voltage detection circuit (not shown), thereby measuring the current flowing through the load resistance.
[0004]
By switching the mercury relay to be conducted and switching the resistance through which a current is passed, the voltage appearing between the input terminal 91 and the output terminal 92 is changed, thereby switching the measurement range. This current measuring device 9 has a five-step measurement range from the minimum range R8UA to the maximum range R80MA, and switches the measurement range sequentially starting from the maximum range R80MA so that the voltage applied to the voltage detection circuit is within a predetermined range. It has.
[0005]
[Problems to be solved by the invention]
As described above, the conventional current measuring apparatus uses a mercury relay as a switch element for switching the measurement range. However, in the mercury relay, both the operation / recovery time, that is, the time from the start of the conduction operation to the complete conduction and the time from the start of the conduction operation to the complete non-conduction are as long as about 3 msec (milliseconds).
[0006]
For this reason, when the current flowing through the load resistance is measured by frequently switching the measurement range, a considerable time is required for the measurement. For example, when the load resistance to be measured in the minimum range R8UA is automatically set in the range starting from the maximum range R80MA in the current measuring device 9, it takes about 27 msec to set the appropriate range.
[0007]
In order to enable quick measurement, a switch element having a short operation / recovery time may be used instead of the mercury relay. For example, the operation / recovery time of the photo moss relay is about 0.5 msec and 0.2 msec, respectively. By using this, the measurement range can be quickly switched. However, the on-resistance of the mercury relay, that is, the resistance value during conduction is about 100 mΩ, whereas the on-resistance of the photo-moss relay is about 10Ω, which is 100 times higher. For this reason, in a large-range measurement in which a current is passed through a resistor having a small resistance value, an on-resistance equivalent to the resistance value is newly added, and the current cannot be measured correctly.
[0008]
The same applies to other switch elements having a short operation / recovery time, and these switch elements cannot be used as they are instead of mercury relays.
[0009]
The present invention has been made in view of the above problems, and provides a current measuring device capable of accurately measuring from a minute current flowing through a load resistance to a large current and capable of quickly switching a measurement range. The purpose is to do.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, a first terminal, a second terminal, a plurality of high-precision resistors having one end connected to the first terminal and having different resistance values, and one end being a second terminal. A plurality of switch elements connected to the other terminal and the other end individually connected to the other end of the plurality of resistors, a first input terminal connected to the first terminal, and a second input terminal to the second terminal Having a connected amplifier circuit, connecting a load resistor to one of the first terminal and the second terminal, applying a predetermined voltage to the other, and causing any one of the plurality of switch elements to conduct; In a current measurement device including a current measurement circuit that measures a current flowing through a load resistor by amplifying and measuring a voltage between one terminal and a second terminal, the current measurement circuit includes a plurality of switch elements. As well as a photo MOS relay, and the resistance value of multiple resistors is A plurality of analog switches for connecting the second input terminal of the second input terminal and the second terminal and the amplifier circuit end the amplifier circuit of the switching element side of less than value respectively.
[0011]
When conducting a switch element connected to a resistor having a resistance value less than a predetermined value among the plurality of switch elements, only a switch connected to the end of the resistor among a plurality of analog switches is conducted. When an element connected to a resistor having a resistance value equal to or higher than a predetermined value is turned on, only one of the plurality of analog switches connected to the second terminal is turned on.
In addition, a noise removal circuit having an integration circuit is provided, and a predetermined voltage from which noise has been removed by the noise removal circuit is supplied to the current measurement circuit.
[0012]
The measurement range changes depending on which of the switch elements is turned on, but the measurement range can be switched very quickly by using a photoMOS relay with a very short operation / recovery time as the switch element. . When a current flows through a resistor having a resistance value less than a predetermined value, the resistor and the amplifier circuit are directly connected by an analog switch connected to the resistor, and the second terminal and the amplifier circuit are disconnected. At this time, the voltage between both ends of the resistor is applied to the amplifier circuit instead of the voltage between both ends of the resistor and the photo MOS relay connected in series, and the on-resistance of the photo MOS relay does not affect the measured value. .
[0013]
Moreover, since the input impedance of the amplifier circuit is so large that the resistance value of the analog switch can be ignored, the on-resistance of the analog switch does not make the measurement inaccurate. Therefore, even when measuring in a large range with a small resistance value, the current can be measured accurately.
[0014]
Also, when a current is passed through a resistor having a resistance value equal to or greater than a predetermined value, the second terminal and the amplifier circuit are connected, and measurement is performed based on the voltage between both ends of the resistor connected in series and the photoMOS relay. Become. Here, for example, if the predetermined value is about 10 kΩ or more, the on-resistance of the photo-moss relay is 1000 times or more, and the influence of the on-resistance on measurement is suppressed to 0.1% or less. Therefore, the current can be accurately measured even in a small range. By setting in this way, it is possible to avoid unnecessary provision of many analog switches.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a current measuring device of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of the current measuring apparatus 1. The current measuring device 1 includes a noise removing circuit 10, a current measuring circuit 20, a voltage detecting circuit 30, and a feedback circuit 40.
[0016]
The noise removal circuit 10 includes an integration circuit 11, an inverting amplification circuit 12, and a buffer 13. The noise removal circuit 10 removes noise from a predetermined voltage of about 8V given through a resistor 10a from a constant voltage source (not shown), and obtains a voltage after noise removal. This is supplied to the current measurement circuit 20. The current measurement circuit 20 applies the voltage from the noise removal circuit 10 to the load resistance RL, which is the object of current measurement, via the two-core shielded wire 20a, thereby converting the current i flowing in itself into a voltage. Output. The current measurement circuit 20 will be described in detail later.
[0017]
The voltage detection circuit 30 includes an inverting amplifier circuit 31 and a voltmeter 32. The voltage output from the current measurement circuit 20 is amplified by the inverting amplifier circuit 31 at a predetermined magnification, and the amplified voltage is measured by the voltmeter 32. The voltage measured by the voltmeter 32 changes according to the current i flowing through the load resistor RL, but the voltage value does not directly represent the current value flowing through the load resistor RL, and the correspondence between the voltage value and the current value is It varies depending on the internal setting of the current measurement circuit 20. In order to adjust the reference level of the voltage applied from the current measurement circuit 20 to the voltage detection circuit 30, a variable resistor 30a is provided between the two circuits.
[0018]
The feedback circuit 40 includes a differential amplification circuit 41 having a magnification of 1. The current measurement circuit 20 inverts the difference between the voltage applied to the load resistor RL and the voltage decreased by flowing through the load resistor RL, and the variable resistor 10b. Is fed back to the noise removal circuit 10 via The input impedance of the differential amplifier circuit 41 is high, and no current flows from the current measurement circuit 20 to the feedback circuit 40. Therefore, the current i flowing through the load resistor RL is equal to the current i flowing through the current measuring circuit 20.
[0019]
The numerical values of +15 and −15 attached to the terminals of each circuit in FIG. 1 and the drawings described below represent the supplied drive voltage (V), and CGND is connected to the ground potential.
[0020]
The configuration of the current measurement circuit 20 is shown in FIG. The current measurement circuit 20 includes an input terminal 21 that receives a voltage supplied from the noise removal circuit 10, an output terminal 22 that applies the voltage to the load resistor RL, five resistors R1 to R5, and six photo MOS relays that are switch elements. K1 to K6 are provided.
[0021]
The resistors R1 to R5 have high accuracy within an error of 0.1%, and their resistance values differ by 10 times. Specifically, the resistance R1 is maximum at 100 kΩ, and the resistance R5 is minimum at 10Ω. One end of the resistors R1 to R5 is connected to the input terminal 21, and the other end is connected to one end of each of the photoMOS relays K1 to K5. The other ends of the photo MOS relays K <b> 1 to K <b> 5 are connected to the output terminal 22. The photoMOS relay K6 is connected between the resistor R5 and the output terminal 22 in parallel with the photoMOS relay K5. The reason why the two photoMOS relays K5 and K6 are provided in parallel between the resistor R5 and the output terminal 22 is to prevent the absolute maximum rating of the continuous load current from being exceeded.
[0022]
The resistors R1 to R4 and the photomoss relays K1 to K4 and the resistor R5 and the photomoss relays K5 and K6 connected in series form five current paths in parallel between the input terminal 21 and the output terminal 22. Although not shown, the current measuring device 1 includes a control unit that controls the entire device, and this control unit conducts only one photoMOS relay K1 to K5 at a time. The photo moss relays K5 and K6 are operated simultaneously. The maximum value of the current flowing between the input terminal 21 and the output terminal 22 is 8 μA to 80 mA depending on the operating current path. The five current paths correspond to the five measurement ranges R8UA, R80UA, R800UA, R8MA, R80MA of the current measuring apparatus 1.
[0023]
The current measurement circuit 20 also includes a measurement amplification circuit 23 and four analog switches K7 to K10. One input terminal 23a of the measurement amplifier circuit 23 is connected to the input terminal 21 via the resistor R6, and the other input terminal 23b is connected to one end of the resistor R7. The other end of the resistor R7 is connected to the ends of the resistors R5, R4, and R3 on the photoMOS relays K5, K4, and K3 via analog switches K7, K8, and K9, and connected to the output terminal 22 via the analog switch K10. It is connected.
[0024]
The measurement amplifier circuit 23 amplifies the voltage applied between the input terminals 23a and 23b by 10 times and outputs the amplified voltage to the voltage detection circuit 30 from the output terminal 23c. Two resistors R8 and R9 having an accuracy error within 0.1% are connected in parallel to the measurement amplifier circuit 23. The configuration of the measurement amplifier circuit 23 is shown in FIG. The measurement amplifier circuit 23 includes three operational amplifiers 51a, 51b, 52 and two overvoltage protection circuits 53a, 53b.
[0025]
The input terminal (+) of the operational amplifier 51a is connected to the input terminal 23a via the overvoltage protection circuit 53a. Similarly, the input terminal (+) of the operational amplifier 51b is connected to the input terminal 23b via the overvoltage protection circuit 53b. ing. The other input terminals (−) of the operational amplifiers 51a and 51b are connected by resistors R8 and R9. The output terminal of the operational amplifier 51a is connected to the input terminal (−) of the operational amplifier 52 through the resistor 54a, and is connected to its own input terminal (−) through the resistor 55a. The output terminal of the operational amplifier 51b is connected to the input terminal (+) of the operational amplifier 52 through the resistor 54b, and is connected to its own input terminal (−) through the resistor 55b.
[0026]
The output terminal of the operational amplifier 52 is the output terminal 23 c of the measurement amplifier circuit 23. The output terminal 23c is connected to the input terminal (−) of the operational amplifier 52 via a resistor 56a for feedback. The input terminal (+) of the operational amplifier 52 is connected to the ground potential via the resistor 56b. With such a configuration, the measurement amplifier circuit 23 can amplify a given voltage with high accuracy and has a high input impedance of about 10 10 Ω.
[0027]
The above-described control unit conducts only one analog switch K7 to K10 at a time. Specifically, the analog switch K7 is turned on when the photoMOS relays K5 and K6 are turned on, the analog switch K8 is turned on when the photomoss relay K4 is turned on, and the analog switch K9 is turned on when the photomoss relay K3 is turned on. Let Further, the analog switch K10 is turned on when the photoMOS relay K1 or K2 is turned on.
[0028]
Therefore, when the measurement range R8UA or R80UA is selected, the voltage between the input terminal 21 and the output terminal 22 is given to the measurement amplifier circuit 23, and when the measurement range R800UA, R8MA or R80MA is selected, The voltage between both ends of the resistor R3, R4 or R5 is given, respectively.
[0029]
The on-resistance of the photo MOS relay is about 10Ω, which corresponds to 1%, 10%, and 100% of the resistance values of the resistors R3, R4, and R5. However, when measuring the current flowing through the load resistor RL in the measurement ranges R800UA, R8MA, R80MA where the current flows through the photoMOS relays K3, K4, K5, K6, the voltage across the resistors R3, R4, R5 is directly measured. As a result, their on-resistance does not affect the measurement.
[0030]
Moreover, since the on-resistance of the analog switch is about 175Ω and is negligibly small compared to the input impedance of the measurement amplifier circuit 23, the analog switches K7, K8, which connect the resistors R3, R4, R5 and the measurement amplifier circuit 23, The on-resistance of K9 does not affect the measurement. Therefore, the accuracy of medium current or large current measured in the measurement ranges R800UA, R8MA, R80MA is high.
[0031]
When measuring in the measurement ranges R8UA and R80UA, the on-resistance of the photoMOS relays K1 and K2 is affected. However, the on-resistance of the photo-moss relay is only 0.01% and 0.1% of the resistance values of the resistors R1 and R2, which is less than the accuracy error of the high-precision resistor used in the current measuring device 1, The effect is negligible. Therefore, the precision of minute or small currents measured in the measurement ranges R8UA and R80UA is high.
[0032]
The current measuring device 1 has a range automatic setting function. When the range is automatically set, the control unit sets the measurement range to the maximum range so that the voltage output from the measurement amplification circuit 23 falls within the maximum voltage that can be measured by the voltage detection circuit 30 and within 5% of the maximum voltage. Start with R80MA and switch sequentially. The current measuring device 1 can quickly switch the measurement range by using a photo moss relay with an extremely short operation / recovery time of 0.5 / 0.2 msec. The operation / recovery time of the analog switch is further shortened to 1 / 0.5 μsec and does not affect the measurement at all.
[0033]
FIG. 4 shows the time required for measurement in the automatic range setting when the current flowing through the load resistance RL is 4 to 80 μA, in comparison with a conventional apparatus using a mercury relay. (A) is the time required for the current measuring device 1, and (b) is the time required for the current measuring device 9 of FIG. In both cases, the four measurement ranges from R80MA to R80UA will be switched. However, there is a difference of 2.5 msec in one operation time and 2.8 msec in one recovery time, so 21.2 msec until the measurement is completed. The difference arises. That is, the current measuring device 1 completes the measurement in about 12% of the conventional time.
[0034]
Here, the resistors R1 to R5 are connected to the input terminal 21 of the current measuring circuit 20, and the photo MOS relays K1 to K6 are connected to the output terminal 22. However, the arrangement order is reversed, and the photo MOS relay is connected. K1 to K6 may be connected to the input terminal 21 and resistors R1 to R5 may be connected to the output terminal 22. In this case, the resistor R7 is directly connected to the output terminal 22, the resistor R6 is connected to the input terminal 21 via the analog switch K10, and the resistor R6 is connected to the analog switches K7, K8, and K9. There is no difference in control action.
[0035]
In addition, only three of the five resistors R1 to R5 having a small resistance value are connected to the measurement amplifier circuit 23 via the analog switches K7 to K9. However, all the resistors R1 to R5 are connected via the analog switch. You may make it connect to the measurement amplification circuit 23. FIG. At this time, the analog switch K10 that connects the output terminal 22 and the measurement amplifier circuit 23 becomes unnecessary. However, when the on-resistance of the photoMOS relay is smaller than the accuracy error of the resistance, measuring only the voltage across the resistor does not contribute to the improvement of the measurement accuracy. Therefore, it is desirable to determine which resistor is connected to the measurement amplifier circuit 23 through the analog switch in consideration of the resistance value and the accuracy error.
[0036]
【The invention's effect】
When using the current measuring device of the present invention, the time required for switching the range is extremely short, so that the measurement efficiency is greatly improved. In addition, there is almost no error when measuring in any range, and a minute current to a large current can be accurately measured.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a current measuring device according to an embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a current measuring circuit of the current measuring device.
FIG. 3 is a diagram showing a configuration of a measurement amplification circuit of the current measurement circuit.
FIG. 4 is a diagram showing a comparative example of measurement times of the current measuring device and a conventional current measuring device.
FIG. 5 is a diagram showing a configuration of a main part of a conventional current measuring device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Current measurement apparatus 10 Noise removal circuit 11 Integration circuit 12 Inversion amplification circuit 13 Buffer 20 Current measurement circuit 20a Two-core shielded wire 21 Input terminal 22 Output terminal 23 Measurement amplification circuit R1-R5 High precision resistance K1-K6 Photo-moss relay K7- K10 analog switch 30 voltage detection circuit 31 inverting amplifier circuit 32 voltmeter 40 feedback circuit 41 differential amplifier circuits 51a, 51b, 52 operational amplifiers 53a, 53b overvoltage protection circuit

Claims (1)

第1の端子と、
第2の端子と、
一端が前記第1の端子に接続された抵抗値の異なる高精度の複数の抵抗と、
一端が前記第2の端子に接続され他端が前記複数の抵抗の他端に個別に接続された複数のスイッチ素子と、
第1の入力端子が前記第1の端子に接続され第2の入力端子が前記第2の端子に接続された増幅回路を有し、前記第1の端子および前記第2の端子の一方に負荷抵抗を接続し他方に所定の電圧を印加して、前記複数のスイッチ素子のいずれか1つを導通させて前記第1の端子と前記第2の端子の間の電圧を増幅して測定することにより、負荷抵抗に流れる電流を測定する電流測定回路を備えた電流測定装置において、
積分回路を有するノイズ除去回路を備え、該ノイズ除去回路によってノイズが除去された所定電圧が前記電流測定回路に供給され、
前記ノイズ除去回路は、所定の電圧に加えて、前記電流測定回路が前記負荷抵抗に印加する電圧と;前記負荷抵抗を流れることによって低下した電圧と;の差に応じた電圧が入力されるものであり、
前記電流測定回路は、前記複数のスイッチ素子としてフォトモスリレーを備えるとともに、前記複数の抵抗のうち抵抗値が所定値未満のものの前記スイッチ素子側の端と前記増幅回路の第2の入力端子、および前記第2の端子と前記増幅回路の第2の入力端子を、それぞれ接続する複数のアナログスイッチを備えて、前記複数のスイッチ素子のうち抵抗値が前記所定値未満の抵抗に接続されたものを導通させるときに、前記複数のアナログスイッチのうちその抵抗の端に接続されたもののみを導通させ、前記複数のスイッチ素子のうち抵抗値が前記所定値以上の抵抗に接続されたものを導通させるときに、前記複数のアナログスイッチのうち前記第2の端子に接続されたもののみを導通させることを特徴とする電流測定装置。
A first terminal;
A second terminal;
A plurality of high-precision resistors having one end connected to the first terminal and having different resistance values;
A plurality of switch elements having one end connected to the second terminal and the other end individually connected to the other ends of the plurality of resistors;
A first input terminal connected to the first terminal and a second input terminal connected to the second terminal; and a load on one of the first terminal and the second terminal. Connecting a resistor and applying a predetermined voltage to the other to make one of the plurality of switch elements conductive to amplify and measure the voltage between the first terminal and the second terminal In the current measuring device having a current measuring circuit for measuring the current flowing through the load resistance,
A noise removal circuit having an integration circuit is provided, and a predetermined voltage from which noise has been removed by the noise removal circuit is supplied to the current measurement circuit,
In addition to a predetermined voltage, the noise elimination circuit receives a voltage corresponding to a difference between a voltage applied to the load resistor by the current measuring circuit; and a voltage reduced by flowing through the load resistor. And
The current measurement circuit includes a photo moss relay as the plurality of switch elements, the switch element side end of the plurality of resistors having a resistance value less than a predetermined value, and a second input terminal of the amplifier circuit, And a plurality of analog switches that respectively connect the second terminal and the second input terminal of the amplifier circuit, and a resistance value of the plurality of switch elements is connected to a resistance that is less than the predetermined value. Of the plurality of analog switches that are connected to the ends of the resistors, and one of the plurality of switch elements that is connected to a resistor having a resistance value greater than or equal to the predetermined value is conducted. A current measuring device for conducting only the one connected to the second terminal among the plurality of analog switches.
JP08339498A 1998-03-30 1998-03-30 Current measuring device Expired - Fee Related JP3784168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08339498A JP3784168B2 (en) 1998-03-30 1998-03-30 Current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08339498A JP3784168B2 (en) 1998-03-30 1998-03-30 Current measuring device

Publications (2)

Publication Number Publication Date
JPH11281677A JPH11281677A (en) 1999-10-15
JP3784168B2 true JP3784168B2 (en) 2006-06-07

Family

ID=13801226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08339498A Expired - Fee Related JP3784168B2 (en) 1998-03-30 1998-03-30 Current measuring device

Country Status (1)

Country Link
JP (1) JP3784168B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193939B2 (en) * 2018-07-10 2022-12-21 株式会社日立産機システム Insulation monitor
US11499995B2 (en) 2020-10-26 2022-11-15 Analog Devices, Inc. Leakage compensation technique for current sensor
CN115993478B (en) * 2023-03-21 2023-05-16 海的电子科技(苏州)有限公司 Current detection circuit, current detection method and electronic equipment

Also Published As

Publication number Publication date
JPH11281677A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
KR101127891B1 (en) Output amplifier circuit and sensor device using the same
CN110361646B (en) Operational amplifier test circuit and test method
JP3784168B2 (en) Current measuring device
JP4642413B2 (en) Current detector
JPS6041882B2 (en) An amplifier comprising first and second amplification elements
JPS6382377A (en) Current measuring circuit
JP3961995B2 (en) Multi-channel strain measurement circuit
JP4451415B2 (en) Current / voltage conversion circuit
JP2862296B2 (en) Voltage applied current measuring device and current applied voltage measuring device
JP3628948B2 (en) Current / voltage conversion circuit
JP3730323B2 (en) CURRENT DETECTION CIRCUIT, VOLTAGE APPLICATION CURRENT MEASUREMENT CIRCUIT AND CONSTANT CURRENT SOURCE CIRCUIT USING THE CIRCUIT
JP2008232636A (en) Voltage-applied current measuring circuit
JP3332660B2 (en) Electric quantity measuring device
JPH0752369B2 (en) Constant current circuit
JPH02134575A (en) Power supply current measuring circuit
JPH0634705Y2 (en) IC test equipment
JPH09178811A (en) I/o circuit for lsi tester
JPS63135879A (en) Power source circuit
KR100603971B1 (en) Amplification circuit of a multiplexed sensor signal
JPS63135881A (en) Power source circuit
SU789982A1 (en) Voltage-to-current converter
JPS6031301Y2 (en) dc amplifier
JP3664009B2 (en) Current supply circuit
KR890007825Y1 (en) Checking circuit of ohm
JPH0830667B2 (en) Multi-point signal measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060314

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees