JP7193939B2 - Insulation monitor - Google Patents

Insulation monitor Download PDF

Info

Publication number
JP7193939B2
JP7193939B2 JP2018130315A JP2018130315A JP7193939B2 JP 7193939 B2 JP7193939 B2 JP 7193939B2 JP 2018130315 A JP2018130315 A JP 2018130315A JP 2018130315 A JP2018130315 A JP 2018130315A JP 7193939 B2 JP7193939 B2 JP 7193939B2
Authority
JP
Japan
Prior art keywords
value
leakage current
burden
monitoring device
insulation monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018130315A
Other languages
Japanese (ja)
Other versions
JP2020008442A (en
Inventor
明樹 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2018130315A priority Critical patent/JP7193939B2/en
Publication of JP2020008442A publication Critical patent/JP2020008442A/en
Application granted granted Critical
Publication of JP7193939B2 publication Critical patent/JP7193939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は、絶縁監視装置の計測精度の向上に関する。 The present invention relates to improving the measurement accuracy of an insulation monitoring device.

配電系統が正常な絶縁状態を維持しているかを監視する絶縁監視装置として、基本波有効分方式(以下、Ior方式と記載)がある。Ior方式の絶縁監視装置は、零相変流器ZCTから監視対象電路の漏れ電流を入力し、商用周波数と同じ基本波漏れ電流Ioを抽出し、取り込んだ電圧との位相差(θ)から、対地相電圧と同相成分の有効分漏れ電流Iorの演算を行う。そして、この値の変化から配線、機器の劣化を判断し予防保全する。
特許文献1には、Ior方式の絶縁監視装置の一例が開示されている。
As an insulation monitoring device for monitoring whether a distribution system maintains a normal insulation state, there is a fundamental wave active component method (hereinafter referred to as an Ior method). The Ior type insulation monitoring device inputs the leakage current of the monitored circuit from the zero-phase current transformer ZCT, extracts the fundamental wave leakage current Io that is the same as the commercial frequency, and from the phase difference (θ) with the captured voltage, An effective leakage current Ior of the phase-to-ground voltage and the in-phase component is calculated. From the change in this value, deterioration of wiring and equipment is judged and preventive maintenance is performed.
Patent Literature 1 discloses an example of an Ior-type insulation monitoring device.

特開2011-149959号公報JP 2011-149959 A

従来の絶縁監視装置の一例を、図5に示す。配電系統の配線101に設けた零相変流器102で漏れ電流を検出し、絶縁監視装置100に入力する。絶縁監視装置100では、漏れ電流を負担抵抗111にて電圧に変換し、オペアンプ114で増幅し、AD変換器115でデジタル値に変換する。CPU116では、AD変換された漏れ電流値から、演算により高調波成分を除去して基本波有効分(Io)を演算し、計測用トランスVTを介して取り込んだ電圧との位相差からベクトル演算で有効分漏れ電流(Ior)を演算する。 An example of a conventional insulation monitoring device is shown in FIG. Leakage current is detected by a zero-phase current transformer 102 provided in the wiring 101 of the distribution system and input to the insulation monitoring device 100 . In the insulation monitoring device 100 , the leakage current is converted into a voltage by the burden resistor 111 , amplified by the operational amplifier 114 , and converted into a digital value by the AD converter 115 . The CPU 116 removes the harmonic component from the AD-converted leakage current value by calculation to calculate the fundamental wave active component (Io). Calculate the active leakage current (Ior).

図6に、図5の絶縁監視装置において、AD変換器115に最大入力と微少入力が入力された場合のAD変換のイメージを示す。最大入力が入力された場合にはAD変換器の分解能(2の*乗)を十分使うことができるが、微少入力の場合はAD変換器の分解能の一部しか使うことができないため、漏れ電流の微少な変化を捉えることができず、計測精度を向上することができなかった。 FIG. 6 shows an AD conversion image when the maximum input and the minute input are input to the AD converter 115 in the insulation monitoring device of FIG. When the maximum input is input, the resolution of the AD converter (2*th power) can be fully used, but when the input is minute, only a part of the resolution of the AD converter can be used, so the leakage current However, it was not possible to capture minute changes in , and it was not possible to improve the measurement accuracy.

また、零相変流器には、1000ターンの他、2000ターン、3000ターンなど様々な巻数の製品があり、巻数の違いによりAD変換器の入力電圧が変わり、分解能を十分に使うことができない場合があった。 In addition to 1000 turns, there are products with various numbers of turns, such as 2000 turns and 3000 turns. there was a case.

また、絶縁監視装置において、漏れ電流は計測する電流が小さいことから、微小な漏れ電流の計測精度が安定しないことがある。この原因としてはノイズやオフセット電圧の影響が考えられ、ノイズ等の影響を抑える手段としてコンデンサを挿入することが一般的ではある。しかし、コンデンサを挿入すると信号の遅れが発生し有効分漏れ電流Iorの精度に影響を及ぼすため、Ior方式の絶縁監視装置では有効な手段ではなく、微小な漏れ電流の計測精度の向上は難しかった。 In addition, in the insulation monitoring device, since the current to be measured is small, the measurement accuracy of minute leakage current may not be stable. The cause of this is thought to be the influence of noise and offset voltage, and it is common to insert a capacitor as a means of suppressing the influence of noise and the like. However, inserting a capacitor causes a signal delay and affects the accuracy of the effective leakage current Ior. Therefore, it is not an effective means for the Ior type insulation monitoring device, and it is difficult to improve the accuracy of minute leakage current measurement. .

本発明は、有効分漏れ電流Iorには影響を及ぼさずに、微小な漏れ電流も安定した精度で計測することができる絶縁監視装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an insulation monitoring device capable of measuring even a minute leakage current with stable accuracy without affecting the effective leakage current Ior.

本発明は、上記課題を解決するために、絶縁監視装置の計測回路に複数の負担抵抗を備え、その負担抵抗を計測する漏れ電流の大きさにより自動で切り替えることを特徴とする。 In order to solve the above problems, the present invention is characterized by providing a plurality of load resistors in the measurement circuit of the insulation monitoring device and automatically switching the load resistors according to the magnitude of the leakage current to be measured.

本発明の「絶縁監視装置」の一例を挙げるならば、
零相変流器からの漏れ電流を入力し、基本波有効分漏れ電流を演算することにより、電路の絶縁状態を監視する絶縁監視装置において、前記零相変流器からの漏れ電流が供給される複数の負担抵抗と、前記複数の負担抵抗の接続を切り替える負担抵抗切替スイッチと、前記負担抵抗の電圧を増幅する増幅器と、前記増幅器の出力をAD変換するAD変換器と、前記AD変換器の出力から漏れ電流値を求め、前記負担抵抗切替スイッチにより前記負担抵抗の接続を切り替える計測処理部を備え、前記計測処理部は、前記複数の負担抵抗の内の一つの負担抵抗を接続した漏れ電流のサンプリング値と、所定の基準値とを比較し、前記サンプリング値が前記所定の基準値以上の場合は、前記サンプリング値を格納し、前記サンプリング値が前記所定の基準値より小さい場合は、前記AD変換器の入力の大きさが前記一つの負担抵抗を接続した場合の値よりも大きくなる負担抵抗値を計算して前記複数の負担抵抗を切り替える切替信号を作成し、切り替えた負担抵抗を接続した漏れ電流のサンプリング値を格納することを特徴とするものである。
To give an example of the "insulation monitoring device" of the present invention,
An insulation monitoring device for monitoring the insulation state of an electric circuit by inputting a leakage current from a zero-phase current transformer and calculating a fundamental wave active component leakage current, wherein the leakage current from the zero-phase current transformer is supplied. a load resistor switch for switching connection of the plurality of load resistors; an amplifier for amplifying the voltage of the load resistors; an AD converter for AD-converting the output of the amplifier; A leakage current value is obtained from the output of the load resistor, and a measurement processing unit for switching connection of the load resistors by the load resistor switching switch, wherein the measurement processing unit is connected to one of the plurality of load resistors. A current sampled value is compared with a predetermined reference value, and if the sampled value is equal to or greater than the predetermined reference value, the sampled value is stored; if the sampled value is smaller than the predetermined reference value, calculating a burden resistance value at which the magnitude of the input of the AD converter becomes larger than the value when the one burden resistance is connected , creating a switching signal for switching the plurality of burden resistances, and switching the burden resistance to It is characterized by storing a sampling value of the connected leakage current.

本発明によれば、有効分漏れ電流Iorには影響を及ぼさずに、微小な漏れ電流も安定した精度で計測することが可能になる。
また、種々の入力レンジの製品も同一機器で対応可能となり、零相変流器ZCTの巻数の違いに影響されない計測精度を確保することができる。
According to the present invention, even a minute leakage current can be measured with stable accuracy without affecting the effective leakage current Ior.
In addition, products with various input ranges can be handled by the same equipment, and measurement accuracy that is not affected by the difference in the number of turns of the zero-phase current transformer ZCT can be ensured.

上記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

実施例1の絶縁監視装置の全体構成図を示す。1 shows an overall block diagram of an insulation monitoring device of Example 1. FIG. 実施例1の絶縁監視装置のCPUのブロック構成図を示す。FIG. 2 shows a block configuration diagram of a CPU of the insulation monitoring device of Example 1. FIG. 実施例1の絶縁監視装置の処理フロー図を示す。4 shows a processing flow diagram of the insulation monitoring device of the first embodiment. FIG. 実施例1の絶縁監視装置内でサンプリングする電圧波形の例を示す。4 shows an example of a voltage waveform sampled in the insulation monitoring device of Example 1. FIG. 従来の絶縁監視装置の一例の全体構成図を示す。1 shows an overall configuration diagram of an example of a conventional insulation monitoring device; FIG. 従来のAD変換のイメージを示す。An image of conventional AD conversion is shown.

以下、本発明の実施の形態について図面を用いて説明する。なお、実施の形態を説明するための各図において、同一の構成要素には同一の名称、符号を付して、その繰り返しの説明を省略する。 BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In addition, in each drawing for describing the embodiments, the same component is given the same name and reference numeral, and the repeated description thereof is omitted.

図1に、本発明の実施例1の絶縁監視装置の全体構成を示す。
図1は、計測回路に複数の負担抵抗を備え、その負担抵抗値を計測する電流の大きさにより自動で切り替える機能を有する絶縁監視装置の全体構成を示す。
FIG. 1 shows the overall configuration of an insulation monitoring device according to Example 1 of the present invention.
FIG. 1 shows the overall configuration of an insulation monitoring device that has a plurality of burden resistances in a measurement circuit and has a function of automatically switching the burden resistance value according to the magnitude of the current to be measured.

図1において、符号101は配電系統の漏れ電流計測箇所の配線を、符号102は零相変流器ZCTを、符号103および符号104は零相変流器からの入力信号線を示す。また、符号121は計測用トランス(VT)を、符号122は計測用トランスからの入力信号線を示す。零相変流器102からの漏れ電流と計測用トランス121からの計測電圧が、絶縁監視装置100へ入力される。 In FIG. 1, reference numeral 101 denotes wiring for measuring leakage current in a distribution system, reference numeral 102 denotes a zero-phase current transformer ZCT, and reference numerals 103 and 104 denote input signal lines from the zero-phase current transformer. Reference numeral 121 denotes a measuring transformer (VT), and reference numeral 122 denotes an input signal line from the measuring transformer. A leakage current from the zero-phase current transformer 102 and a measured voltage from the measuring transformer 121 are input to the insulation monitoring device 100 .

絶縁監視装置100において、符号111は定格用負担抵抗を、符号112および符号113は切替用負担抵抗を、符号117は負担抵抗を切り替える負担抵抗切替スイッチを示す。また、符号114はオペアンプ(増幅器)を、符号115はAD変換器を、符号116はCPUを、符号118は電圧入力回路を示す。 In the insulation monitoring device 100, reference numeral 111 denotes a rated burden resistance, reference numerals 112 and 113 denote switching burden resistances, and reference numeral 117 denotes a burden resistance switching switch for switching the burden resistance. Further, reference numeral 114 denotes an operational amplifier (amplifier), reference numeral 115 denotes an AD converter, reference numeral 116 denotes a CPU, and reference numeral 118 denotes a voltage input circuit.

絶縁監視装置100の動作の概略は次のとおりである。配電系統の配線101に流れている零相電流を零相変流器102で変流し入力信号線103、104を通じて絶縁監視装置に入力する。その入力された電流信号(漏れ電流)を負担抵抗111、112、113の最適な組み合わせで電圧に変換し、オペアンプ114で信号を増幅する。その信号をAD変換器115に入力し、デジタル値に変換する。漏れ電流値を示すそのデジタル値と、電圧入力回路118で入力した電圧信号に基づいてCPU116で演算し、基本波漏れ電流Ioおよび基本波有効分漏れ電流Iorの演算を行う。負担抵抗111、112、113の最適な組み合わせの切り替えは、CPU116で作成した切替信号で負担抵抗切替スイッチ117を切り替えることにより、行う。
なお、図1では、負担抵抗111,112,113を複数配置し、負担抵抗切替スイッチ117で切り替えるようにしたが、負担抵抗としてデジタル抵抗を用いて、CPU116からの切替信号によりデジタル抵抗の抵抗値を変更するように構成しても良い。
The outline of the operation of the insulation monitoring device 100 is as follows. The zero-phase current flowing in the wiring 101 of the distribution system is transformed by the zero-phase current transformer 102 and input to the insulation monitoring device through the input signal lines 103 and 104 . The input current signal (leakage current) is converted into a voltage by an optimum combination of load resistors 111, 112, and 113, and the operational amplifier 114 amplifies the signal. The signal is input to the AD converter 115 and converted into a digital value. Based on the digital value indicating the leakage current value and the voltage signal input by the voltage input circuit 118, the CPU 116 performs calculations to calculate the fundamental wave leakage current Io and the fundamental wave effective component leakage current Ior. The optimum combination of the load resistors 111 , 112 , 113 is switched by switching the load resistor switch 117 with a switching signal generated by the CPU 116 .
In FIG. 1, a plurality of load resistors 111, 112, and 113 are arranged and switched by the load resistor selector switch 117. However, digital resistors are used as the load resistors, and the resistance values of the digital resistors are changed according to the switching signal from the CPU 116. may be configured to change

図2に、実施例1の絶縁監視装置に関連するCPUのブロック構成図を示す。 FIG. 2 shows a block configuration diagram of a CPU related to the insulation monitoring device of the first embodiment.

入力部206には、AD変換器115からの信号や、電圧入力回路118からの電圧信号などが入力される。漏れ電流値測定部201は、漏れ電流値に対応するAD変換器からの入力信号のサンプリング値を求める。比較部202は、定格の負担抵抗に切り替えた場合に、漏れ電流値と記憶部203に記憶した所定の基準値、例えば定格の50%の漏れ電流値(AD変換器の入力電圧範囲の50%に対応する漏れ電流値)とを比較する。漏れ電流値が所定の基準値以上の場合は、漏れ電流値測定部201で測定したサンプリング値を、記憶部203のサンプリング値格納部に格納する。漏れ電流値が所定の基準値よりも小さい場合は、比較結果信号を切替信号作成部204へ出力する。切替信号作成部204では、比較部202からの比較結果信号に基づいて、最適な負担抵抗値を演算し、最適な負担抵抗に切り替えるための切替信号を負担抵抗切替スイッチ117へ出力する。なお、定格の負担抵抗から最適な負担抵抗に切り替えている場合は、漏れ電流値測定部201で測定したサンプリング値を、記憶部203のサンプリング値格納部に格納する。漏れ電流測定部201、比較部202、および切替信号作成部204で、計測処理部200を構成している。 A signal from the AD converter 115 and a voltage signal from the voltage input circuit 118 are input to the input unit 206 . Leakage current value measuring section 201 obtains a sampled value of the input signal from the AD converter corresponding to the leakage current value. When switching to the rated load resistor, the comparison unit 202 compares the leakage current value and a predetermined reference value stored in the storage unit 203, for example, a leakage current value of 50% of the rating (50% of the input voltage range of the AD converter). Leakage current value corresponding to %). If the leakage current value is greater than or equal to the predetermined reference value, the sampling value measured by the leakage current value measurement section 201 is stored in the sampling value storage section of the storage section 203 . If the leakage current value is smaller than the predetermined reference value, the comparison result signal is output to switching signal generator 204 . Switching signal generating section 204 calculates an optimum burden resistance value based on the comparison result signal from comparing section 202 and outputs a switching signal for switching to the optimum burden resistance to burden resistance switching switch 117 . Note that when the rated burden resistance is switched to the optimum burden resistance, the sampling value measured by the leakage current value measurement unit 201 is stored in the sampling value storage unit of the storage unit 203 . Leakage current measurement unit 201 , comparison unit 202 , and switching signal generation unit 204 constitute measurement processing unit 200 .

記憶部203は、所定の基準値を格納する基準値格納部や漏れ電流のサンプリング値を格納するサンプリング値格納部などを備え、必要なデータを記憶する。基本波漏れ電流演算部205は、漏れ電流のサンプリング値と電圧入力回路118から入力した電圧信号から、基本波漏れ電流Ioや基本波有効分漏れ電流Iorを演算し、記憶部203へ出力する。CPU116は、更に、基本波有効分漏れ電流Iorの演算結果などを表示する表示部206や、上位装置とデータのやり取りをする通信部208や、全体を制御する制御部209を備えている。 The storage unit 203 includes a reference value storage unit that stores a predetermined reference value, a sampling value storage unit that stores a sampling value of leakage current, and the like, and stores necessary data. Fundamental wave leakage current computing section 205 computes fundamental wave leakage current Io and fundamental wave effective component leakage current Ior from the sampling value of the leakage current and the voltage signal input from voltage input circuit 118 , and outputs them to storage section 203 . The CPU 116 further includes a display unit 206 that displays the calculation result of the fundamental wave active component leakage current Ior, a communication unit 208 that exchanges data with a host device, and a control unit 209 that controls the entire system.

なお、測定する漏れ電流の最大入力が大きい零相変流器ZCTに対応するために、定格の負担抵抗よりも小さい値の負担抵抗を設けておき、比較部202の比較結果が、サンプリング値が所定の基準値よりも十分大きくて飽和状態ある場合には、その負担抵抗に切り替えるように構成してもよい。 In addition, in order to correspond to the zero-phase current transformer ZCT with a large maximum input of leakage current to be measured, a burden resistance having a value smaller than the rated burden resistance is provided, and the comparison result of the comparison unit 202 is that the sampling value is If it is sufficiently larger than a predetermined reference value and is in a saturated state, it may be configured to switch to that burden resistance.

次に、図1に示す絶縁監視装置の処理フローを、図3を用いて説明する。 Next, the processing flow of the insulation monitoring device shown in FIG. 1 will be explained using FIG.

絶縁監視装置が計測処理を開始すると(S301)、先ず、定格用負担抵抗111を接続し、漏れ電流に対応する入力信号のサンプリング処理を行う(S302)。比較部202で、そのサンプリングされたデータから、所定の基準値、例えば漏れ電流値が定格の50%以上か判定する(S303)。50%以上であればサンプリング値を記憶部203へ格納する(S306)。50%以下であれば切替信号作成部204で適切な負担抵抗を計算して切替信号を作成し、負担抵抗切替スイッチ117にて適切な負担抵抗に切り替える(S304)。そして、切り替えた負担抵抗での漏れ電流に対応する入力信号を再度サンプリングを行い(S305)、記憶部203へサンプリング値の格納を行う(S306)。その格納したサンプリング値から、負担抵抗の値に連動した係数によりサンプリング値の補正を行い(S307)、計算処理が終了する(S308)。その後、基本波漏れ電流演算部205で、基本波漏れ電流Io、有効分基本波漏れ電流Iorの演算処理を行う。 When the insulation monitoring device starts the measurement process (S301), first, the load resistor 111 for rating is connected, and the input signal corresponding to the leakage current is sampled (S302). The comparison unit 202 determines whether a predetermined reference value, for example, a leakage current value is 50% or more of the rated value from the sampled data (S303). If it is 50% or more, the sampling value is stored in the storage unit 203 (S306). If it is 50% or less, the switching signal generating unit 204 calculates an appropriate burden resistance to generate a switching signal, and the burden resistance switching switch 117 switches to an appropriate burden resistance (S304). Then, the input signal corresponding to the leakage current in the switched burden resistor is sampled again (S305), and the sampled value is stored in the storage unit 203 (S306). Based on the stored sampled values, the sampled values are corrected by a coefficient linked to the value of the burden resistance (S307), and the calculation process ends (S308). After that, the fundamental wave leakage current calculation unit 205 performs calculation processing of the fundamental wave leakage current Io and the effective component fundamental wave leakage current Ior.

負担抵抗は、定格用負担抵抗をαとすれば、漏れ電流値が10%の入力であれば10α、漏れ電流値が20%の入力であれば5αの様に選択すれば良い。負担抵抗の組み合わせの一例として、α、5α(5倍)、10α(10倍)と設定することができるが、更に範囲を拡げても良い。漏れ電流の最大入力が大きくて、飽和に対応する場合には、例えばα/5(1/5)、α/10(1/10)などの値とすればよい。 Assuming that the rated burden resistance is α, the burden resistor may be selected as 10α for an input with a leakage current value of 10%, and 5α for an input with a leakage current value of 20%. As an example of a combination of burden resistances, α, 5α (five times), and 10α (10 times) can be set, but the range may be further expanded. If the maximum input leakage current is large and corresponds to saturation, a value such as α/5 (1/5) or α/10 (1/10) may be used.

図1に示す絶縁監視装置において、微少な漏れ電流の場合のAD変換器115に入力される電圧波形の一例を、図4に示す。図4において、符号401はS302で定格用負担抵抗で入力される電圧波形を、符号402はS304で適切な負担抵抗を切り替えた時にS305で入力される電圧波形を示す。
電圧波形401ではA/D変換器の分解能(2の*乗)の一部しか使用できず小さな信号の変化が計測できないが、電圧波形402では分解能を広く使用できるため、信号の変化を精度よく計測できる。そして、AD変換器の入力電圧を大きくすることにより、AD変換器の量子化誤差を小さくすることができる。
FIG. 4 shows an example of a voltage waveform input to the AD converter 115 in the case of a minute leakage current in the insulation monitoring device shown in FIG. In FIG. 4, reference numeral 401 denotes the voltage waveform input at the rated load resistor in S302, and reference numeral 402 denotes the voltage waveform input in S305 when the appropriate load resistor is switched in S304.
With the voltage waveform 401, only part of the resolution (2* power) of the A/D converter can be used, and small signal changes cannot be measured. can be measured. By increasing the input voltage of the AD converter, the quantization error of the AD converter can be reduced.

本実施例によれば、定格用負担抵抗で漏れ電流値を求め、漏れ電流値が小さい場合には、最適な負担抵抗に切り替えるようにしたので、微少な漏れ電流もAD変換器には大きな電圧として入力され、AD変換器の分解能の広範囲を使うことができる。そのため、漏れ電流の微少な変化を捉えることができ、計測精度を向上することができる。 According to this embodiment, the leakage current value is obtained from the rated burden resistor, and when the leakage current value is small, the optimum burden resistance is selected. , and a wide range of AD converter resolutions can be used. Therefore, minute changes in leakage current can be captured, and measurement accuracy can be improved.

また、ノイズ等の影響を抑える手段としてコンデンサを挿入するものではないので、基本波有効分漏れ電流Iorには影響を及ぼさずに、微小な漏れ電流も安定した精度で計測することができる。 In addition, since no capacitor is inserted as a means for suppressing the influence of noise or the like, even a minute leakage current can be measured with stable accuracy without affecting the fundamental wave active component leakage current Ior.

零相変流器ZCTには、1000ターンの巻線を備えるものの他、2000ターン、3000ターンなど様々なものがある。ターン数の異なるZCTに対して、図1および図2に示す絶縁監視装置を接続することにより、ZCTのターン数に応じて負担抵抗が自動で切り替えられ、例えば2000ターンの零相変流器が接続された時でも、1000ターンの零相変流器と同様の精度で漏れ電流のサンプリングを行うことができる。 There are various types of zero-phase current transformers ZCT, such as those with windings of 1000 turns, 2000 turns, and 3000 turns. By connecting the insulation monitoring devices shown in FIGS. 1 and 2 to ZCTs with different numbers of turns, the load resistance can be automatically switched according to the number of turns of the ZCT. Even when connected, leakage current can be sampled with the same accuracy as a 1000-turn zero-phase current transformer.

なお、有効分基本波漏れ電流Iorの絶対値を求めるためには、巻線のターン数の情報が必要であり、そのためには、巻数の情報を含むZCT形式などを事前に入力すればよい。 In order to obtain the absolute value of the effective fundamental wave leakage current Ior, information on the number of turns of the winding is required. For this purpose, the ZCT format including the information on the number of turns may be input in advance.

本実施例によれば、零相変流器ZCTの巻数の違いに影響されない計測精度を確保することができる。 According to this embodiment, it is possible to ensure measurement accuracy that is not affected by the difference in the number of turns of the zero-phase current transformer ZCT.

100…絶縁監視装置
101…配電系統の配線
102…零相変流器ZCT
103、104…零相変流器からの入力信号線
111…定格用負担抵抗
112、113…切替用負担抵抗
114…オペアンプ(増幅器)
115…AD変換器
116…CPU
117…負担抵抗切替スイッチ
118…電圧入力回路
121…計測用トランス(VT)
122…計測用トランスからの入力信号線
200…計測処理部
201…漏れ電流値測定部
202…比較部
203…記憶部
204…切替信号作成部
205…基本波漏れ電流演算部
206…入力部
207…表示部
208…通信部
209…制御部
401…定格用負担抵抗で入力される電圧波形
402…切替用負担抵抗で入力される電圧波形
DESCRIPTION OF SYMBOLS 100... Insulation monitoring device 101... Wiring of a distribution system 102... Zero-phase current transformer ZCT
Reference numerals 103, 104: Input signal line from zero-phase current transformer 111: Rated burden resistor 112, 113: Switching burden resistor 114: Operational amplifier (amplifier)
115...AD converter 116...CPU
117... Burden resistance changeover switch 118... Voltage input circuit 121... Measurement transformer (VT)
122...Input signal line from measuring transformer 200...Measurement processing unit 201...Leakage current value measuring unit 202...Comparing unit 203...Storage unit 204...Switching signal generating unit 205...Fundamental wave leakage current calculating unit 206...Input unit 207... Display unit 208 Communication unit 209 Control unit 401 Voltage waveform input from rated load resistor 402 Voltage waveform input from switching load resistor

Claims (6)

零相変流器からの漏れ電流を入力し、基本波有効分漏れ電流を演算することにより、電路の絶縁状態を監視する絶縁監視装置において、
前記零相変流器からの漏れ電流が供給される複数の負担抵抗と、
前記複数の負担抵抗の接続を切り替える負担抵抗切替スイッチと、
前記負担抵抗の電圧を増幅する増幅器と、
前記増幅器の出力をAD変換するAD変換器と、
前記AD変換器の出力から漏れ電流値を求め、前記負担抵抗切替スイッチにより前記負担抵抗の接続を切り替える計測処理部を備え、
前記計測処理部は、前記複数の負担抵抗の内の一つの負担抵抗を接続した漏れ電流のサンプリング値と、所定の基準値とを比較し、前記サンプリング値が前記所定の基準値以上の場合は、前記サンプリング値を格納し、前記サンプリング値が前記所定の基準値より小さい場合は、前記AD変換器の入力の大きさが前記一つの負担抵抗を接続した場合の値よりも大きくなる負担抵抗値を計算して前記複数の負担抵抗を切り替える切替信号を作成し、切り替えた負担抵抗を接続した漏れ電流のサンプリング値を格納することを特徴とする絶縁監視装置。
In an insulation monitoring device that monitors the insulation state of an electric circuit by inputting a leakage current from a zero-phase current transformer and calculating a fundamental wave active component leakage current,
a plurality of burden resistors supplied with leakage current from the zero-phase current transformer;
a burden resistance changeover switch for switching connection of the plurality of burden resistances;
an amplifier that amplifies the voltage of the burden resistor;
an AD converter that AD converts the output of the amplifier;
A measurement processing unit that obtains a leakage current value from the output of the AD converter and switches connection of the burden resistance by the burden resistance switching switch,
The measurement processing unit compares a sampled value of leakage current obtained by connecting one of the plurality of burden resistors to a predetermined reference value, and if the sampled value is equal to or greater than the predetermined reference value, a load resistor value that stores the sampled value, and when the sampled value is smaller than the predetermined reference value, the magnitude of the input of the AD converter becomes larger than the value when the one load resistor is connected; is calculated to create a switching signal for switching the plurality of burden resistors, and a sampling value of leakage current connecting the switched burden resistors is stored.
請求項1記載の絶縁監視装置において、
前記計測処理部は、負担抵抗を前記一つの負担抵抗から切り替える場合は、サンプリング値を負担抵抗に応じた所定の係数で補正することを特徴とする絶縁監視装置。
The insulation monitoring device of claim 1,
The insulation monitoring device, wherein the measurement processing unit corrects the sampling value by a predetermined coefficient according to the burden resistance when the burden resistance is switched from the one burden resistance.
請求項1記載の絶縁監視装置において、
前記計測処理部は、
漏れ電流のサンプリング値を求める漏れ電流値測定部と、
前記漏れ電流のサンプリング値と前記所定の基準値を比較する比較部と、
前記サンプリング値が前記所定の基準値より小さい場合に、前記AD変換器の入力の大きさが前記一つの負担抵抗を接続した場合の値よりも大きくなる負担抵抗値を計算して前記複数の負担抵抗を切り替える切替信号を作成する切替信号作成部と、
を備えることを特徴とする絶縁監視装置。
The insulation monitoring device of claim 1,
The measurement processing unit
a leakage current value measuring unit that obtains a sampling value of the leakage current;
a comparison unit that compares the sampling value of the leakage current with the predetermined reference value;
When the sampling value is smaller than the predetermined reference value, the load resistance value is calculated so that the magnitude of the input of the AD converter becomes larger than the value when the one load resistor is connected, and the load resistance is calculated. a switching signal creation unit that creates a switching signal for switching the resistance;
An insulation monitoring device comprising:
請求項1記載の絶縁監視装置において、
前記所定の基準値と前記サンプリング値を格納する記憶部を備えることを特徴とする絶縁監視装置。
The insulation monitoring device of claim 1,
An insulation monitoring device comprising a storage unit for storing the predetermined reference value and the sampling value.
請求項1記載の絶縁監視装置において、
前記負担抵抗はデジタル抵抗であり、
前記計測処理部からの切替信号により前記負担抵抗のデジタル抵抗値が変更されることを特徴とする絶縁監視装置。
The insulation monitoring device of claim 1,
the burden resistor is a digital resistor;
An insulation monitoring device, wherein a digital resistance value of the burden resistor is changed by a switching signal from the measurement processing unit.
請求項1記載の絶縁監視装置において、
漏れ電流値と電路の電圧信号に基づいて、基本波漏れ電流Ioおよび基本波有効分漏れ電流Iorを演算することを特徴とする絶縁監視装置。
The insulation monitoring device of claim 1,
An insulation monitoring device that calculates a fundamental wave leakage current Io and a fundamental wave active component leakage current Ior based on a leakage current value and a voltage signal of an electric circuit.
JP2018130315A 2018-07-10 2018-07-10 Insulation monitor Active JP7193939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018130315A JP7193939B2 (en) 2018-07-10 2018-07-10 Insulation monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018130315A JP7193939B2 (en) 2018-07-10 2018-07-10 Insulation monitor

Publications (2)

Publication Number Publication Date
JP2020008442A JP2020008442A (en) 2020-01-16
JP7193939B2 true JP7193939B2 (en) 2022-12-21

Family

ID=69151463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018130315A Active JP7193939B2 (en) 2018-07-10 2018-07-10 Insulation monitor

Country Status (1)

Country Link
JP (1) JP7193939B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172617A (en) 2003-12-11 2005-06-30 Hitachi Industrial Equipment Systems Co Ltd Leakage current measuring device
JP2005304148A (en) 2004-04-09 2005-10-27 Hitachi Industrial Equipment Systems Co Ltd Insulation monitoring system
JP2006127888A (en) 2004-10-28 2006-05-18 Hitachi Industrial Equipment Systems Co Ltd Ground fault interrupter and insulation monitoring system using it
JP2006250831A (en) 2005-03-14 2006-09-21 Hioki Ee Corp Current measuring system and insulation resistance measuring system
JP2008277168A (en) 2007-04-27 2008-11-13 Tempearl Ind Co Ltd Ground fault interrupter
JP6174754B2 (en) 2016-04-28 2017-08-02 バンドー化学株式会社 Sheet material and method for producing sheet material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169370A (en) * 1987-12-25 1989-07-04 Hioki Ee Corp Measuring range setter
JPH0719008Y2 (en) * 1989-03-31 1995-05-01 横河電機株式会社 Current measuring device
JPH06174754A (en) * 1992-12-03 1994-06-24 Mitsubishi Electric Corp Wide range current sensor
JPH0850150A (en) * 1994-08-08 1996-02-20 Mitsubishi Electric Corp Wide range current sensor and current detecting device for three-phase circuit
JPH11274930A (en) * 1998-03-25 1999-10-08 Nec Corp Current detection circuit
JP3784168B2 (en) * 1998-03-30 2006-06-07 ローム株式会社 Current measuring device
JP2013044700A (en) * 2011-08-26 2013-03-04 Hioki Ee Corp Current detection circuit and current measuring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172617A (en) 2003-12-11 2005-06-30 Hitachi Industrial Equipment Systems Co Ltd Leakage current measuring device
JP2005304148A (en) 2004-04-09 2005-10-27 Hitachi Industrial Equipment Systems Co Ltd Insulation monitoring system
JP2006127888A (en) 2004-10-28 2006-05-18 Hitachi Industrial Equipment Systems Co Ltd Ground fault interrupter and insulation monitoring system using it
JP2006250831A (en) 2005-03-14 2006-09-21 Hioki Ee Corp Current measuring system and insulation resistance measuring system
JP2008277168A (en) 2007-04-27 2008-11-13 Tempearl Ind Co Ltd Ground fault interrupter
JP6174754B2 (en) 2016-04-28 2017-08-02 バンドー化学株式会社 Sheet material and method for producing sheet material

Also Published As

Publication number Publication date
JP2020008442A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP3955706B2 (en) Circuit breaker with energization information measuring device and correction method thereof
JP6799068B2 (en) Systems and methods for detecting turn-to-turn failures of windings
US7309993B2 (en) Three- or four-pole low-voltage power switch with Rogowski coils operating as current sensors
US20100187916A1 (en) Magnetic flux measuring device and magnetic flux measuring method for stationary induction electrical apparatus, and synchronous switching control gear for circuit breaker
JP5638729B1 (en) Anomaly diagnosis device for current transformer for Rogowski instrument
US11757282B2 (en) Method and device for controlling at least one circuit breaker of a power system
JP7193939B2 (en) Insulation monitor
JP2002311061A (en) Processor for electric power
KR101021242B1 (en) Apparatus for current measurement
JP7084330B2 (en) Ground fault direction determination device, ground fault direction determination system, ground fault direction determination method and program
JP2015231270A (en) Digital protection relay device
Kang et al. Development of a compensation algorithm for a measurement current transformer
JP5063282B2 (en) Transformer protection relay
JP2008309681A (en) Insulation deterioration monitoring device and its method
EP4431958A1 (en) Measurement device for measuring operation current and fault current of circuit breaker by using single rogowski coil
JP4527346B2 (en) Insulation state monitoring method and device
JP6689217B2 (en) Analog input circuit and protective relay
US11784486B2 (en) Low-voltage circuit breaker and power measuring arrangement
JP5383519B2 (en) Current differential protection relay device
JP3221128B2 (en) Current detector
KR0179877B1 (en) Break-down decision method of grounded overvoltage relay
JP2014199718A (en) Electric leakage detector
US20240053388A1 (en) Method and device for correcting sensor data
JP6887113B2 (en) Computational system and measurement system
JP2009079958A (en) Apparatus for detecting ground-fault current of resistance value

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221209

R150 Certificate of patent or registration of utility model

Ref document number: 7193939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150