JP3779152B2 - 2スプール環境制御システム - Google Patents

2スプール環境制御システム Download PDF

Info

Publication number
JP3779152B2
JP3779152B2 JP2000520348A JP2000520348A JP3779152B2 JP 3779152 B2 JP3779152 B2 JP 3779152B2 JP 2000520348 A JP2000520348 A JP 2000520348A JP 2000520348 A JP2000520348 A JP 2000520348A JP 3779152 B2 JP3779152 B2 JP 3779152B2
Authority
JP
Japan
Prior art keywords
air
high pressure
low pressure
turbine
spool subsystem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000520348A
Other languages
English (en)
Other versions
JP2001522762A5 (ja
JP2001522762A (ja
Inventor
マリー,ロジヤー,ピー.
クラーク,キヤサリン,ジエイ.
マツリク,ダン,エス.
Original Assignee
アライドシグナル インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アライドシグナル インコーポレイテッド filed Critical アライドシグナル インコーポレイテッド
Publication of JP2001522762A publication Critical patent/JP2001522762A/ja
Publication of JP2001522762A5 publication Critical patent/JP2001522762A5/ja
Application granted granted Critical
Publication of JP3779152B2 publication Critical patent/JP3779152B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0648Environmental Control Systems with energy recovery means, e.g. using turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/50Application for auxiliary power units (APU's)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/004Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Description

【0001】
【発明の属する技術分野】
本発明は空気循環環境制御システム(ECS)、特に直列に接続された2個のスプールサブシステムを利用して効率及び自由度を増加させる2スプールECS及び方法に関する。
【0002】
【従来の技術】
ECSは航空機の機内及びコックピットのような閉鎖空間に調整された空気を供給するために使用される。従来空気循環ECSは通常多圧縮段を有するジェットエンジン内の中間段あるいは高圧段から取られたブリード空気で動作させられる。ブリード空気は通常熱を外気(RAM)へ放出している一次熱交換器内で予め冷却され、次にコンプレッサへと送られる。圧縮した後、空気は一連の熱交換器及び凝縮器を通過される。次に空気は通常コンプレッサと機械的に連係されるタービンにより膨張され、最終的に空気は客室へ給送可能にされる。
【0003】
従来の空気循環ECSの構成には2,3及び4ホイールのブートトラップ、高圧水分離サイクルが含まれていた。これらの三構成間の一般的な違いは互いに機械的に連係される所謂ホイールの数である。3ブートトラップの構成のすべてでは、それぞれブリード空気及び前以て冷却し、ブリード空気内に含まれる水蒸気を凝縮させる再加熱器及び凝縮器が利用される。凝縮後、凝縮された水は水抽出器により除去される。この結果脱湿された空気は再加熱器へ送られ、ここで残留する水滴は気化され、蒸気状態の水分が残留する。膨張することにより、通常空気が凝固点以下まで冷却されるので、蒸気粒子は氷核を形成し結晶化して雪となり、下流へと掃き出される。タービンからの膨張した空気は凝縮熱交換器内の水を冷却し凝縮するために使用可能である。
【0004】
2及び3ホイールシステムでは、凝縮器内で加熱された膨張空気が次に客室へ直接供給可能である。一方、これらの2システム間の特徴的な違いは、2−ホイールシステムが通常コンプレッサと連係するタービンを有し、一方3−ホイールシステムがコンプレッサと連係するタービンとシステムを通過する外気を導入する送風機とを有していることである。例えば米国特許第5,086,622号に開示され4−ホイールシステムの場合、凝縮器内で加熱され膨張した空気は別のタービンにより更に膨張され、最終的に客室へ供給される。この構成ではコンプレッサ及び送風機と連係した2個のタービンを、即ち4個のホイールを有している。また米国特許第5,086,622号での構成においては、脱湿された空気は再加熱器を経、更に最初のタービンへ導入される。これは最初のタービンの導入部の流れの中の残留し、凝縮された水滴は冷たいタービン羽根及び導出部の壁部と衝突し、金属温度が凝固点より大幅に低ければ、凍結する欠点がある。氷は急速に蓄積するためサイクルが止まることを避けるため迅速に溶かす必要がある。
【0005】
3−及び4−ホイールブートトラップシステムの共通する欠点は“オフ構成”の制限を生じることにある。特に送風機は通常コンプレッサ及びタービンより低い速度で最適性能を示すが、送風機はコンプレッサ及びタービンと同じ速度で動作させられる。従って構成を最適化する際、通常コンプレッサとタービンが良好になるよう妥協点を見つける必要がある。米国特許第4,198,830号に示す2−ホイールシステムは2スプール構成を内蔵させることにより“オフ構成”の制限を一部改善される。換言するに送風機は1スプールにより一方のタービンと連係され、別のタービンが別のスプールによりコンプレッサと連係される。スプールはブートトラップを夫々のスプールへ別個へ送ることにより、互いに独立して動作する。従ってスプールは互いに“並列に”動作していると言うことができる。これにより送風機はコンプレッサ及びこれと連係するタービンの速度と独立した速度(コンプレッサ/タービンの速度の約1/4である場合が多い)で動作可能である。
【0006】
2ホイールブートトラップシステムではいに平行なスプールが含まれているので、エネルギ効率不足となる。この平行構成の場合、送風機およびこれに関連するタービンは圧縮され調整される前ブリード空気に対しは動作しない。これに対しコンプレッサおよびその関連するタービンが圧縮され、調整される際ブリード空気に対し動作しない。従って補助動力装置の動作中、大部分の(大略約87%)ブリード空気が調整されるが、ブリード空気のすべてではない。この結果特に冷却容量が減少される。また少量(大略約13%)ブリード空気のみを用いて送風機を回転している場合、すべてのブリード空気を用いる場合に比べ送風機動力が少ない。この少ない動力は所定の大きな外気熱交換器へ移動する。従来の2ホイールシステムにおける別のエネルギの効率不足は、これによる。凝縮及び好ましい冷却により生じる熱は供給空気に与えられる。これは供給空気が通常凝縮器から直接送られるが、下流には回収手段がないためである。更に従来の2ホイールシステムには通常一方のスプールが故障した場合別の調整スプールとして送風機を内蔵する別のスプールを利用する構成がとられている。
【0007】
【発明が解決しようとする課題】
熱交換器の所定の寸法を減少することにより冷却容量を効果的に増加される2スプールECS及び方法が必要とされることは理解されよう。また、高い使用 自由度を有し、2個のスプールの一方が非動作になっても、調整された空気を依然供給可能な2スプールECS及び方法が望まれている。
【0008】
【課題を解決するための手段】
本発明においては2スプール環境制御システムは低圧タービンを有する低圧スプールサブシステムと、低圧スプールサブシステムと空気を介在させて連通する高圧スプールサブシステムとを包有し、高圧スプールサブシステムは圧縮空気を調整して低圧スプールサブシステムへ供給し、圧縮空気を調整可能に設けられ、且つ高圧スプールサブシステムの高圧タービンが低圧タービンと独立して機械的に動作可能に設けられる。
【0009】
水分を含むブリード空気を調整する方法は、高圧タービン及びコンプレッサを有する高圧スプールサブシステムを設ける工程と、高圧スプールサブシステムの下流に設けられ高圧スプールサブシステムと空気を介在して連通されている低圧スプールサブシステムを配置する工程とを包有し、これらのサブシステムの一方が故障したとき上記の空気を介在させての連通が行われているようになされており、また、低圧サブシステムは低圧タービン及び送風機を有する。
【0010】
本発明の他の特徴、実施形態及び利点は以下の図面に沿った説明及び特許請求の範囲を参照するに従い容易に理解されよう。
【0011】
【発明の実施の形態】
図1には本発明の好適な実施形態による環境制御システム(ECS)10が簡略に示される。環境制御システム10には低圧スプールサブシステム40と、低圧スプールサブシステム40と空気を介在させて連通される高圧スプールサブシステム39とが包有される。一方スプールサブシステム39、40は、例えば従来の3−及び4−スプールシステムで使用される単一スプールあるいは回転シャフト等により互いに機械的に連係されていない。高圧スプールサブシステム39は主に水蒸気を含んだ空気を調整して例えば閉鎖空間へ供給するよう構成される。低圧スプールサブシステムもまた空気を調整するが、その主な機能は送風機を駆動し、例えば全体のシステム内の冷却媒体として機能する外気を移動させる。更に詳述するに、高圧スプールサブシステム39はコンプレッサ16、二次熱交換器13、再加熱器19、凝縮器26、水抽出器21、及び高圧タービン24を有する。低圧スプールサブシステム40は低圧タービン28及び送風機32を有する。スプールサブシステム39,40は互いに並列に対向する直列構成にされており、調整対象である水分を含む空気全体はまず高圧スプールサブシステム39を通過させ、次に低圧スプールサブシステム40を通過される。しかしながら本発明によれば、好ましい実施形態によれば流れが平行にできるものと考えられる。このような平行な流れは、水蒸気を含む空気が最初高圧スプールサブシステム39を流すことなく低圧スプールサブシステム40を流すことができることを意味する。
【0012】
本発明が適用される対象が航空機である場合、水蒸気を含む空気は航空機のタービンエンジンからのブリード空気11にできる。ブリード空気11は高圧スプールサブシステム39を流れ、水蒸気は凝縮器26内で凝縮され、凝縮された水は水抽出器21により抽出される。この空気は次に再加熱器19内で再度加熱され、更に高圧タービン24により膨張される。高圧タービン24からの空気は再度凝縮器26を通過され、次に供給空気31として放出されるか、あるいは低圧スプールサブシステム40内に移動される。低圧スプールサブシステム40内では空気は低圧タービン28により膨張され供給空気31として放出される。
【0013】
本発明をより具体的に説明するに、図1に示すようにブリード空気11は一次熱交換器12へ送られ、ブリード空気11は外気14と熱交換可能な状態にある。ブリード空気11が一次熱交換器12内で冷却され、この予め冷却された空気がダクト15を経てコンプレッサ16へ送られ、ここで空気は高圧に圧縮される。圧縮量は航空機のタービンエンジンからのブリード空気11の圧力により変化可能であるが、圧縮比は航空機では通常約1.4〜1.6であると考えられる。圧縮空気はダクト17を経てコンプレッサ16から放出され、二次熱交換器13に導入され、これにより圧縮空気が更に冷却される。圧縮され高圧で水蒸気を含む空気は二次熱交換器13からダクト18へ放出される。
【0014】
再加熱器19はダクト18が水蒸気を含む空気を入力し、この空気を脱湿した空気と熱交換可能な関係に置かれるが、これについては以下に更に詳述する。脱湿した空気は熱交換工程で冷却媒体手段として機能し、凝縮および好ましい冷却により生じる熱を吸収する。この熱交換工程のため、水蒸気を含む空気は冷却され、脱湿した空気が加熱される。水凝縮は冷却されないが大幅に生じる。本実施形態では、水蒸気内の全水分の約30%以下が再加熱器19内で凝縮されると考えられる。従って生成されるものは冷却された水蒸気を含む空気であり、低圧タービン28内へ送られる。
【0015】
凝縮器26は冷却され、水蒸気を含む空気を外気と熱交換可能な関係に置くが、これについては以下に更に詳述する。この熱交換工程により出る水蒸気の大幅な量が凝縮される。好ましくは本実施形態では全凝縮量が全水分の約80%より高い。更に凝縮器26における熱交換工程により、膨張した空気は凝縮で生じる熱及び好ましい冷却より生じる熱を回収可能であり、この回収熱は低圧スプールサブシステム40により有用なエネルギに変換可能であるが、これについては以下に更に説明する。熱交換工程が生じると、水分が凝縮された空気は凝縮器26からダクト20へ、更に水抽出器21内へ送られる。
【0016】
本実施形態では水抽出器21は好ましくは水凝縮された空気から約90%の凝縮水を抽出し脱湿した空気を得れる。設計変更として抽出された水がダクト36へ送られ外気14を更に冷却し、次に熱交換器12、13へ送られる。抽出された水が外気14による冷却に使用する場合、脱湿した空気はダクト22から再加熱器19へ送られる。ここで上述したように脱湿した空気は水蒸気を含む空気と熱交換可能な関係に置かれる。この熱交換可能な関係のより再加熱器19は脱湿した空気を加熱するだけではなく、残留する凝縮された水が気化され、好ましい熱吸収される。この吸収は吸収された熱が例えば供給空気31に完全に放出されるのではなく、シャフト動力として吸収した熱を最終的に回収するような構成で行われる。再加熱器19内の好ましい冷却による熱の回収量は、少なくとも一部であり、特定の回収量は再加熱器19のサイズ及び高圧タービン24間の好ましい温度降下により左右されることは当業者には理解されよう。好ましくは本実施形態では、回収量は回収可能な全熱量の約50〜80%である。回収量に関係なく、再加熱器19は脱湿した空気から再加熱された空気を発生する。
【0017】
再加熱された空気は再加熱器19からダクト23へ放出され、高圧タービン24へ送られ、この際高圧タービン24は航空機の場合約50psiで動作している。高圧タービン24は再加熱された空気を膨張させるばかりではなく、再加熱された空気内の好ましい冷却からの熱の一部をシャフト動力として回収し、その量はその膨張/圧力比に左右される。膨張/圧縮比が好ましくは約2.1〜2.4である本発明のこの実施形態の場合、回収量は回収可能な全熱量の約70〜80%である。回収された熱は高圧タービン24により使用され、例えばタービンの回転速度を上昇させ、その圧力比を増加させ再加熱された空気の膨張を促進させる。更に高圧タービン24は高圧シャフト37によりコンプレッサ16と機械的に連係され、シャフト37自体は航空機の場合通常以下に詳述する低圧シャフト38の速度の2倍の速度で動作していることは図1から理解されよう。従って高圧タービン24により吸収された熱であるエネルギはコンプレッサ16により有用なエネルギに変換可能である。高圧タービン24が再加熱された空気を膨張すると、中圧に膨張された空気が得られ高圧タービン24からダクト26へと送られる。
【0018】
次に中圧に膨張された空気は凝縮器26内を流れ、これによりこの膨張された空気は再加熱器19から導入され冷却された水蒸気を含む空気との熱交換可能な関係にあって加熱される。またこの熱交換工程のため、膨張された空気は水蒸気を含む空気により熱交換される、凝縮による熱及び好ましい冷却による熱を吸収する。凝縮器26のサイズにより熱吸収量を変更できるが、入手可能な全熱量の約70%が凝縮器26により吸収されると考えられる。加熱され中圧に膨張された空気が得られ凝縮器26からダクト27へ送られる。ダクト27内では加熱され中圧に膨張された空気がオプションとして弁30へ送られ、供給空気31の温度制御に使用できる。また加熱され中圧に膨張された空気は直接低圧スプールサブシステム40へ特に低圧タービン28へ送られ、低圧タービン28はタービンが上述した約50psiにあるとき通常約22psiで動作している。凝縮器26から低圧タービン28への直接の送入は従来の2ホイール設計の場合と異なり、低圧タービンは凝縮器から空気を入力しない。低圧タービン28内で空気は低圧タービン28により膨張され、更に冷却されて低圧膨張空気として放出される。高圧タービン24の場合と同様に低圧タービン28は加熱され、高圧に膨張された空気から凝縮熱及び好ましい冷却による熱を回収可能である。高圧タービン24の場合のように、低圧タービン28は膨張/圧縮比に相当する量の熱を回収する。低圧タービン28の膨張/圧縮比が好ましくは約1.5〜1.8である本発明のこの実施形態では、回収量は回収可能な全熱量の約10〜20%である。また回収された熱を用いて低圧タービン28の回転速度を増加可能である。低圧タービン28が低圧シャフト38により送風機32と機械的に連係されているので、このエネルギを用い送風機32を回転させる、あるいは熱交換器12、13を介しより多くの外気14を導入可能である。一方航空機の飛行中、外気14を送風機32でバイパスするため逆止め弁35が設けられる。
【0019】
低圧シャフト38及びその関連するホイール(例えば低圧タービン28、送風機32)は高圧シャフト37及びその関連するホイール(例えば高圧タービン24、コンプレッサ16)と独立して機械的に動作することは理解されよう。このような独立動作及びスプールサブシステム39,40の直列空気流路構成のため、熱交換器12,13のサイズは同一の冷却能力を有する従来の構成のものと比べ約10〜15%だけ小さくできる。また環境制御システム10の動作パラメータは以下に説明する弁システムを用いて性能が向上するよう最適に調整可能である。
【0020】
更に図1を参照するに、供給空気31の温度は弁30を介して制御されるばかりではなく弁34によっても制御されることは理解されよう。低圧タービン28からの空気温度が低すぎる場合供給空気31の温度を操作者が上げるための弁30のように、弁34も同様の動作を行うことができる。一方弁34により一次熱交換器12の出口部から分岐するダクト33を空気が通過可能であるので、弁34によりより多くの熱が供給空気31に加えることができることは理解されよう。無論一次熱交換器12の出口部の空気は調整され弁30を通過する空気に比べ多くの水蒸気を含み高い温度である。従って弁34を通過する空気は弁30と比べ好ましくは供給空気31に対し大きな変化を与えるに使用できる。
【0021】
図2には本発明の他の実施形態が簡略に示されている。図1及び図2の実施形態は全体として同じように動作するが、図2の実施形態の環境制御システム10′の方が可変性及び最適化性により優れている。例えば図2に 示す実施形態では、供給空気31′の温度及び湿度がより良好に制御できる。また低圧スプールサブシステム40′は高圧スプールサブシステム39′による調整と無関係に空気調整が可能である。従ってスプールサブシステム39′,40′の一方が故障したとき、他方のサブシステムを用い供給空気31′を連続して与えることができる。この他の実施形態の場合、高圧スプールサブシステム39′はコンプレッサ16′、二次熱交換器13′、再加熱器19′、凝縮器 26′、水抽出器21′、及び高圧タービン24′を有する。低圧スプールサブシステム40′は低圧タービン28′及び送風機32′を有する。一方図1の実施形態とは異り、本実施形態ではサブシステム39′,40′は直列あるいは並列に動作できる。
【0022】
図2に示すようにブリード空気11′は弁41′,42′により制御され一次熱交換器12′に入力され、そこでブリード空気11′は外気14′と熱交換可能な関係に置かれる。この結果予め冷却された空気はダクト15′へ、更にコンプレッサ16′内へ送られる。あるいは予め冷却された空気はコンプレッサ16′をパイパスし、例えばコンプレッサ16′が異常動作をしている場合水抽出器44′に送られる。この場合水抽出器44′は一次熱交換器12′内で凝縮された(全凝縮水の好ましくは約90%)水蒸気を抽出する。抽出後、一部脱湿された空気は水抽出器44′を出、付加された弁45′を経て低圧スプールサブシステム40′内へ、あるいは弁34′を経て供給空気31′へ送られる。一部脱湿した空気が低圧スプールサブシステム40′内へ送られる場合、空気は更に調整可能である。一方脱湿した空気が低圧スプールサブシステム40′をバイパスし、供給空気31′内へ進む前に低圧スプールサブシステム40′の空気調整がこれ以上行われない。
【0023】
一次熱交換器12′からの空気がコンプレッサ16′をバイパスしない場合、空気は第1の実施形態と同様の量圧縮されコンプレッサ16′からダクト17′へ送られる。ダクト17′から空気は二次熱交換器13′内に導入され、ここから水蒸気を含む高圧圧縮空気として放出される。水蒸気を含む空気が二次熱交換器13′からダクト18′へ送られ、再加熱器19′はその空気を入力する。図1に示す実施形態の場合のように、水蒸気を含む空気は脱湿した空気と熱交換可能な関係に置かれ、脱湿した空気が凝縮による熱及び好ましい冷却による熱を吸収する。吸収された熱量は第1の実施形態と同様である。また水凝縮は大幅には生じない(即ち本実施形態では約30%より大ではない)。従って冷却された水蒸気を含む空気は凝縮器26′内へ送られ、そこで本発明の第2の実施形態の場合のような別の熱交換工程が生じ、水蒸気が凝縮される。また第1の実施形態の場合のように、膨張された空気は凝縮による熱及び好ましい冷却による熱を回収し、この熱量は本発明の第1の実施形態と同様である。回収された熱は低圧スプールサブシステム40′により有用なエネルギに変換できる。
【0024】
水凝縮された空気は凝縮器26′からダクト20′を経て水抽出器21′内へ送られ、脱湿した空気はそこから放出される。丁度第1の実施形態の如く、抽出された水はダクト36′を経て送られ外気14′を更に冷却するために使用可能である。水抽出器21′から脱湿した空気はダクト22′を経て再加熱器19′へ送られる。ここで脱湿した空気は本発明の第1の実施形態と同様の量だけ好ましい冷却による熱を吸収する。再加熱された空気は再加熱器19′からダクト23′を経て高圧タービン24′内に導入される。高圧タービン24′もまた再加熱された空気内の好ましい冷却による熱の一部を回収する間、再加熱された空気は膨張する。高圧タービン24′はシャフト37′を介しコンプレッサ16′と連係されているので、回収された熱は有用なエネルギに変換可能である。
【0025】
高圧タービン24′から中圧に膨張された空気が作られ、ダクト25′を経て再び凝縮器26′へ送られる。膨張された空気は加熱され水蒸気を含む空気により影響されず、凝縮による熱及び好ましい冷却による熱を吸収する。また吸収量は第1の実施形態と同様の量である。加熱され中圧に膨張された空気は凝縮器26′からダクト27′へ送られ、次にオプションとして弁30′ダクト50′へあるいは逆止め弁47′へ送られ、後者の2素子により空気は低圧スプールサブシステム40′内に導入される。弁30′を介し供給空気31は加熱可能である。逆止め弁47′のため、ダクト46′を経て低圧タービン28′へ導入される空気が存在しない場合、空気は低圧スプールサブシステム40′により更に調整可能である。ダクト46′から導入されるこのような空気が存在する場合、ダクト26′からの空気はダクト50′を経て、低圧スプールサブシステム40′(例えばタービン28‘)内に送られる。
【0026】
凝縮器26′からの空気が逆止め弁47′を経て低圧タービン28′内に送られる場合、凝縮器26′内で影響を受けず、凝縮による熱及び好ましい冷却による熱は第1の実施形態と同様の程度回収可能である。この回収された熱は次に低圧タービン28′と低圧タービン28′と低圧シャフト38′を介し連係される送風機32′との一方あるいは両方により有用なエネルギに変換可能である。第1の実施形態の場合のように、逆止め弁35′により外気14′が送風機32′をバイパスされる。飛行機が飛行中に低圧スプールサブシステム40′が動作不能となり飛行から着陸した後遮断弁43′は有用である。この場合一次熱交換器12′,13′を横切って冷却空気を押し付けている外気14′の圧力は通常失われる。有効冷却を維持するため、弁43′は開放し追加のエンジンブリード空気11′を冷却内へ送りダクトから出る。この空気流のモーメントにより冷却空気が熱交換器12′,13′から引き出され、外気14の圧力と交換される。冷却空気流の流速が弁43′を経てのブリード空気11′の流速の約3倍になる。
【0027】
システムの2スプールを互いに独立して動作させることにより、本発明の効率が高くなることは当業者には理解されよう。この場合一方のスプールは最適のパラメータで動作し、一方他方のスプールは同様に動作することができる。更に本発明によればスプールが直列に動作可能であるので、低圧スプール(40,40′)の流速は環境制御システム(10,10′)に導入されるブリード空気(11,11′)の実質的に100%である。従って送風機(32,32′)の動力は約300%だけ従来のものより増加できる。この増加分が変換されて熱交換器(12,12′,13,13′)での流速を約60%増加させる。従って熱交換器の大きさはより小さくできる(約22重量%あるいは容量%)。更に本発明によれば、2個のスプールが、例えば故障があるときあるいは飛行中のようなブリード空気圧が低い場合、並列動作できる。
【0028】
以上本発明の好ましい実施形態について説明したが、添付の請求項に示された本発明の精神及び範囲から離れる事なく変更可能であることは無論理解されよう。
【図面の簡単な説明】
【図1】 図1は本発明の一の実施形態の環境制御システムの簡略説明図である。
【図2】 図2は本発明の他の実施形態の環境制御システムの簡略説明図である。
【符号の説明】
10 環境制御システム(ECS)
11 ブリード空気
12 一次熱交換器
13 二次熱交換器
14 外気
15 ダクト
16 コンプレッサ
17 ダクト
18 ダクト
19 再加熱器
21 水抽出器
24 高圧タービン
26 凝縮器
28 低圧タービン
30 弁
31 供給空気
32 送風機
34 弁
37 シャフト
38 シャフト
39 高圧スプールサブシステム
40 低圧スプールサブシステム

Claims (5)

  1. 高圧タービン及びコンプレッサを有する高圧スプールサブシステムを備える工程と、高圧スプールサブシステムの下流に設けられ且つ高圧スプールサブシステムと空気を介在させて連通する低圧スプールサブシステムを配置する工程とを包有し、これらのサブシステムの一方が故障したとき上記の空気を介在させての連通が行われているようになされており、また、低圧スプールサブシステムが低圧タービン及び送風機を有しており、高圧タービンが低圧タービン及び送風機と独立して機械的に動作可能であり、コンプレッサが低圧タービン及び送風機と独立して機械的に動作可能である、水分を含む圧縮空気を調整し調整空気として航空機の閉鎖空間に供給する方法。
  2. べての圧縮空気をまず高圧スプールサブシステムを通過させ、次に低圧スプールサブシステムを通過させる工程を包有してなる請求項1記載の方法。
  3. 高圧スプールサブシステムは低圧スプールサブシステムに直列な空気流構成体を有してなる請求項1記載の方法。
  4. 高圧スプールサブシステムは選択的に低圧スプールサブシステムに並列な空気流構成体に置くこともできる請求項記載の方法。
  5. 高圧タービンがコンプレッサと機械的に連係され、低圧タービンが送風機と機械的に連係される請求項1記載の方法。
JP2000520348A 1997-11-11 1998-11-11 2スプール環境制御システム Expired - Lifetime JP3779152B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/967,437 1997-11-11
US08/967,437 US5887445A (en) 1997-11-11 1997-11-11 Two spool environmental control system
PCT/US1998/023796 WO1999024318A1 (en) 1997-11-11 1998-11-11 Two spool environmental control system

Publications (3)

Publication Number Publication Date
JP2001522762A JP2001522762A (ja) 2001-11-20
JP2001522762A5 JP2001522762A5 (ja) 2006-02-16
JP3779152B2 true JP3779152B2 (ja) 2006-05-24

Family

ID=25512795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000520348A Expired - Lifetime JP3779152B2 (ja) 1997-11-11 1998-11-11 2スプール環境制御システム

Country Status (5)

Country Link
US (1) US5887445A (ja)
EP (1) EP1028891B1 (ja)
JP (1) JP3779152B2 (ja)
DE (1) DE69821134T2 (ja)
WO (1) WO1999024318A1 (ja)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058715A (en) * 1997-12-09 2000-05-09 Alliedsignal Inc. Environmental control system including air cycle machine and electrical machine
US6148622A (en) * 1998-04-03 2000-11-21 Alliedsignal Inc. Environmental control system no condenser high pressure water separation system
WO1999059867A1 (en) * 1998-05-20 1999-11-25 Alliedsignal Inc. Coanda water extractor
DE19935918B4 (de) * 1999-07-30 2006-08-31 Liebherr-Aerospace Lindenberg Gmbh Klimatisierungssystem für Flugzeugkabinen
US6199387B1 (en) 1999-07-30 2001-03-13 Liebherr-Aerospace Lindenberg Gmbh Air-conditioning system for airplane cabin
US6381969B1 (en) 1999-12-17 2002-05-07 Honeywell International Inc. ECS with 2-stage water separation
DE10009373C2 (de) * 2000-02-29 2002-03-14 Airbus Gmbh Klimatisierungssystem für ein Verkehrsflugzeug
DE10015570B4 (de) * 2000-03-29 2007-11-22 Airbus Deutschland Gmbh Anordnung zur Zwangsführung eines Kühlluftstromes innerhalb eines Kühlaggregates für ein Verkehrsflugzeug
DE10036443A1 (de) * 2000-07-26 2002-04-04 Liebherr Aerospace Gmbh Klimatisierungssystem für Flugzeuge
US6257003B1 (en) * 2000-08-04 2001-07-10 Hamilton Sundstrand Corporation Environmental control system utilizing two air cycle machines
DE10047623C1 (de) * 2000-09-26 2002-05-23 Liebherr Aerospace Gmbh Klimatisierungssystem für Flugzeuge
US6457318B1 (en) * 2000-11-07 2002-10-01 Honeywell International Inc. Recirculating regenerative air cycle
EP1354318A1 (en) * 2000-12-22 2003-10-22 Muvee Technologies Pte Ltd System and method for media production
US6681592B1 (en) * 2001-02-16 2004-01-27 Hamilton Sundstrand Corporation Electrically driven aircraft cabin ventilation and environmental control system
US6402812B1 (en) * 2001-04-25 2002-06-11 Sikorsky Aircraft Corporation Filtered environmental control system
DE10139483B4 (de) * 2001-08-10 2005-06-23 Liebherr-Aerospace Lindenberg Gmbh Klimatisierungssystem
US6705092B1 (en) * 2001-11-14 2004-03-16 Honeywell International Inc. Vapor membrane dehumidification for air cycle environment control system
DE10201426B8 (de) 2002-01-16 2004-09-02 Liebherr-Aerospace Lindenberg Gmbh Klimatisierungssystem
DE10201427A1 (de) * 2002-01-16 2003-07-24 Liebherr Aerospace Gmbh System zur Luftentfeuchtung in Klimaanlagen
US6568203B1 (en) * 2002-05-01 2003-05-27 Honeywell International, Inc. Aircraft ground support air conditioning unit with cooling turbine bypass
US6684660B1 (en) 2002-08-08 2004-02-03 Hamilton Sundstrand Pneumatic cabin super charger
US20070113579A1 (en) * 2004-08-25 2007-05-24 Claeys Henry M Low energy electric air cycle with portal shroud cabin air compressor
US7757502B2 (en) * 2004-09-22 2010-07-20 Hamilton Sundstrand Corporation RAM fan system for an aircraft environmental control system
US8347647B2 (en) * 2004-09-22 2013-01-08 Hamilton Sundstrand Corporation Air cycle machine for an aircraft environmental control system
CN1840576B (zh) * 2005-04-01 2010-07-14 上海金发科技发展有限公司 高性能低气味汽车仪表板专用聚丙烯及其制备方法
US8347640B2 (en) 2005-11-16 2013-01-08 Technologies Holdings Corp. Enhanced performance dehumidification apparatus, system and method
US8316660B2 (en) 2005-11-16 2012-11-27 Technologies Holdings Corp. Defrost bypass dehumidifier
US7334422B2 (en) * 2005-11-29 2008-02-26 Hamilton Sundstrand Corporation Cabin air conditioning system with liquid cooling for power electronics
DE102006016541B4 (de) 2006-04-07 2014-05-22 Airbus Operations Gmbh Klimatisierungssystem für Flugzeuge
US8079407B2 (en) * 2006-11-09 2011-12-20 Honeywell International Inc. Integrated heat exchangers for ECS and OBIGGS applications
US20080110193A1 (en) * 2006-11-10 2008-05-15 Honeywell International Inc. Environmental control system with adsorption based water removal
CA2673488A1 (en) * 2006-12-21 2008-06-26 Airbus Deutschland Gmbh Ram air based cooling and ventilation system for an aircraft
US8475114B2 (en) * 2010-02-08 2013-07-02 Hamilton Sundstrand Corporation Air cycle machine air bearing shaft
US20110259546A1 (en) * 2010-04-27 2011-10-27 Hamilton Sundstrand Corporation Ram flow modulation valve
US8978351B2 (en) 2011-10-21 2015-03-17 United Technologies Corporation Integrated thermal management system and environmental control system for a gas turbine engine
CN103256742B (zh) * 2013-05-16 2015-05-27 北京航空航天大学 电动分体式四轮高压除水空气循环制冷系统
US10184494B2 (en) * 2013-06-28 2019-01-22 Hamilton Sundstrand Corporation Enhance motor cooling system and method
US20150065023A1 (en) * 2013-09-03 2015-03-05 Hamilton Sundstrand Corporation Intercompressor bleed turbo compressor
GB201318572D0 (en) * 2013-10-21 2013-12-04 Rolls Royce Plc Pneumatic system for an aircraft
GB201319563D0 (en) * 2013-11-06 2013-12-18 Rolls Royce Plc Pneumatic system for an aircraft
US9580180B2 (en) 2014-03-07 2017-02-28 Honeywell International Inc. Low-pressure bleed air aircraft environmental control system
US9840333B2 (en) * 2015-04-24 2017-12-12 Hamilton Sundstrand Corporation Environmental control system mixing cabin discharge air with bleed air during a cycle
US10024557B2 (en) 2015-08-14 2018-07-17 Honeywell International Inc. Water extractor device using scuppers
US10730630B2 (en) * 2016-01-14 2020-08-04 Hamilton Sundstrand Corporation Low pressure pack
US10850853B2 (en) * 2016-04-22 2020-12-01 Hamilton Sunstrand Corporation Environmental control system utilizing bleed pressure assist
US11511867B2 (en) 2016-05-26 2022-11-29 Hamilton Sundstrand Corporation Mixing ram and bleed air in a dual entry turbine system
US11506121B2 (en) * 2016-05-26 2022-11-22 Hamilton Sundstrand Corporation Multiple nozzle configurations for a turbine of an environmental control system
US10429107B2 (en) * 2017-01-12 2019-10-01 Honeywell International Inc. Simplified recuperating electric ECS
US10486816B2 (en) 2017-04-07 2019-11-26 Hamilton Sundstrand Corporation Fan bypass and shutoff check valve
US10611487B2 (en) 2018-01-16 2020-04-07 The Boeing Company Vehicle air conditioning pack with air cycle assembly
US11053010B2 (en) * 2018-01-19 2021-07-06 Hamilton Sunstrand Corporation Aircraft environmental control system
US11661198B2 (en) 2018-03-21 2023-05-30 The Boeing Company Cooling system, air conditioning pack, and method for conditioning air
US10745138B2 (en) * 2018-03-23 2020-08-18 The Boeing Company Air drying system and method therefor
US11077949B2 (en) * 2018-10-05 2021-08-03 The Boeing Company Dual turbine thermal management system (TMS)
CN110239721B (zh) * 2019-06-23 2020-11-27 北京航空航天大学 针对电动空气循环制冷系统的优化设计方法
US11840344B2 (en) 2020-07-30 2023-12-12 Hamilton Sundstrand Corporation Aircraft environmental control system
EP3945030A1 (en) 2020-07-30 2022-02-02 Hamilton Sundstrand Corporation Aircraft environmental control system
US11939065B2 (en) 2020-07-30 2024-03-26 Hamilton Sundstrand Corporation Aircraft environmental control system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA687482A (en) * 1964-05-26 A. Connell Joseph Compound turbo air conditioning system
US2697917A (en) * 1951-09-15 1954-12-28 Garrett Corp Air conditioning apparatus for enclosures of aircraft
CH393683A (de) * 1962-07-03 1965-06-15 Saurer Ag Adolph Kühlanlage
GB994856A (en) * 1963-04-10 1965-06-10 Normalair Ltd Improvements in or relating to air conditioning systems
DE2336500C3 (de) * 1973-07-18 1979-09-06 Vereinigte Flugtechnische Werkefokker Gmbh, 2800 Bremen Vorrichtung zur Klimatisierung von Luftfahrzeugkabinen
US4198830B1 (en) * 1978-07-03 1995-04-18 Garrett Corp Fluid conditioning apparatus and system
US4352273A (en) * 1979-05-22 1982-10-05 The Garrett Corporation Fluid conditioning apparatus and system
US4312191A (en) * 1980-02-15 1982-01-26 Sundstrand Corporation Environmental control system for aircraft with improved efficiency
FR2652409A1 (fr) * 1989-09-25 1991-03-29 Air Liquide Procede de production frigorifique, cycle frigorifique correspondant et leur application a la distillation d'air.
US5086622A (en) * 1990-08-17 1992-02-11 United Technologies Corporation Environmental control system condensing cycle
US5704218A (en) * 1996-04-08 1998-01-06 United Technologies Corporation Integrated environmental control system

Also Published As

Publication number Publication date
JP2001522762A (ja) 2001-11-20
WO1999024318A1 (en) 1999-05-20
EP1028891A1 (en) 2000-08-23
DE69821134D1 (de) 2004-02-19
US5887445A (en) 1999-03-30
DE69821134T2 (de) 2004-11-18
EP1028891B1 (en) 2004-01-14

Similar Documents

Publication Publication Date Title
JP3779152B2 (ja) 2スプール環境制御システム
JP4906225B2 (ja) 2つのエアサイクルマシンを利用する環境制御装置
US6381969B1 (en) ECS with 2-stage water separation
US5461882A (en) Regenerative condensing cycle
US6148622A (en) Environmental control system no condenser high pressure water separation system
US6199387B1 (en) Air-conditioning system for airplane cabin
EP0994806B1 (en) Air cycle environmental control system with vapor cycle system assisted condensation
JP2003207221A (ja) 二重タービンブートストラップ循環による環境制御装置
US20080110193A1 (en) Environmental control system with adsorption based water removal
US6595010B2 (en) Air-conditioning system for aircraft
JP2003511311A (ja) 液体サイクル副装置を備えた空気サイクル環境制御システム
WO2003086859A1 (en) Air conditioning system
EP1418123B1 (en) Air conditioning system
GB2355520A (en) Air-conditioning system for airplane cabins
US5924293A (en) Air cycle environmental control system with fully energy regenerative high pressure water condensation and extraction
JP4211196B2 (ja) 航空機用空気調和装置
US5921093A (en) Air cycle environmental control system with energy regenerative high pressure water condensation and extraction
JP2003240375A (ja) エアサイクル式空気調和装置
JP4144414B2 (ja) 航空機用空調システム
JP2004245193A (ja) 航空機用エアサイクル式空気調和装置
JP4023006B2 (ja) 航空機用空気調和装置
JP4453795B2 (ja) 航空機用空調システム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20051004

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051012

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term