JP3778915B2 - Method for restarting raw material air purifier - Google Patents

Method for restarting raw material air purifier Download PDF

Info

Publication number
JP3778915B2
JP3778915B2 JP2004101690A JP2004101690A JP3778915B2 JP 3778915 B2 JP3778915 B2 JP 3778915B2 JP 2004101690 A JP2004101690 A JP 2004101690A JP 2004101690 A JP2004101690 A JP 2004101690A JP 3778915 B2 JP3778915 B2 JP 3778915B2
Authority
JP
Japan
Prior art keywords
adsorption
adsorption tower
air
raw material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004101690A
Other languages
Japanese (ja)
Other versions
JP2005279597A (en
Inventor
守光 中村
雅人 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2004101690A priority Critical patent/JP3778915B2/en
Priority to KR1020067020919A priority patent/KR100771002B1/en
Priority to US10/594,665 priority patent/US7749306B2/en
Priority to CNB2005800099891A priority patent/CN100453145C/en
Priority to TW094109723A priority patent/TWI330246B/en
Priority to PCT/JP2005/005922 priority patent/WO2005094970A1/en
Publication of JP2005279597A publication Critical patent/JP2005279597A/en
Application granted granted Critical
Publication of JP3778915B2 publication Critical patent/JP3778915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、空気液化分離装置における原料空気中の水分、二酸化炭素などの不純物を除去する原料空気精製装置の迅速な再起動方法に関するものである。   The present invention relates to a method for quickly restarting a raw material air purifier that removes impurities such as moisture and carbon dioxide in raw material air in an air liquefaction separator.

空気液化分離装置とは、原料空気を液化し、これを蒸留して窒素と酸素などに分離する装置である。この蒸留を行う際、低温で凝固して配管などを閉塞させる物質である水分、二酸化炭素などの不純物を原料空気から除去する、前処理と称する工程が原料空気精製装置において行われる。この前処理として、並列して置かれた二つ以上の吸着塔を用いる温度スイング吸着法が一般に用いられている。この吸着塔には、原料空気が流入する上流側に活性アルミナ、シリカゲル、ゼオライトなどの水分を吸着する吸着剤が充填され、下流側にNa−X型ゼオライトなどの二酸化炭素を吸着する吸着剤が充填されている。温度スイング吸着法とは、この吸着塔を用いて、原料空気から水分、二酸化炭素などの不純物を低い温度において吸着して除去する吸着工程と、吸着剤から不純物を高い温度において脱着して除去し、吸着剤を再生する再生工程を交互に行う手法である。   The air liquefaction separation device is a device that liquefies raw material air and distills the raw air to separate it into nitrogen and oxygen. When this distillation is performed, a process called pretreatment is performed in the raw material air purifier to remove impurities such as moisture and carbon dioxide, which are solidified at a low temperature and block the pipes, from the raw material air. As this pretreatment, a temperature swing adsorption method using two or more adsorption towers placed in parallel is generally used. This adsorption tower is filled with an adsorbent that adsorbs moisture such as activated alumina, silica gel, and zeolite on the upstream side where the raw material air flows, and an adsorbent that adsorbs carbon dioxide such as Na-X zeolite on the downstream side. Filled. The temperature swing adsorption method uses this adsorption tower to adsorb and remove impurities such as moisture and carbon dioxide from raw air at a low temperature, and desorbs and removes impurities from the adsorbent at a high temperature. This is a method of alternately performing a regeneration step of regenerating the adsorbent.

以下、図1により、このような原料空気精製装置の定常運転時における操作の一例を説明する。この例では、吸着塔5aが吸着工程、吸着塔5bが再生工程を行っているものとする。図1は、空気液化分離装置の原料空気の前処理部分の一例を示す構成図である。先ず、大気から取り込まれた原料空気が、原料空気圧縮機1により所定の圧力(400〜1000kPa(以下、本明細書における圧力は全て絶対圧を示す。))に圧縮された後、冷却装置2により冷却(5〜45℃)される。この際、発生する凝縮水はドレインセパレーター3により排出される。次に、弁4aを経て、圧縮された原料空気が冷却温度における飽和水分を含んだまま吸着塔5aに流入し、この原料空気中の水分、二酸化炭素などの不純物が、吸着塔5a内の吸着剤により吸着される。続いて弁6a、18を経て、精製された原料空気がライン7を介して空気分離部8に流入する。   Hereinafter, an example of the operation during steady operation of such a raw material air purifier will be described with reference to FIG. In this example, it is assumed that the adsorption tower 5a is performing an adsorption process and the adsorption tower 5b is performing a regeneration process. FIG. 1 is a configuration diagram illustrating an example of a pretreatment portion of raw material air of an air liquefaction separation apparatus. First, after the raw material air taken in from air | atmosphere is compressed by the raw material air compressor 1 to the predetermined pressure (400-1000 kPa (all the pressures in this specification show absolute pressure hereafter)), the cooling device 2 To cool (5 to 45 ° C.). At this time, the condensed water generated is discharged by the drain separator 3. Next, the compressed raw material air flows into the adsorption tower 5a through the valve 4a while containing saturated moisture at the cooling temperature, and impurities such as moisture and carbon dioxide in the raw material air are adsorbed in the adsorption tower 5a. Adsorbed by the agent. Subsequently, the purified raw material air flows into the air separation unit 8 via the line 7 through the valves 6 a and 18.

吸着工程を行っている吸着塔5aにおいて、吸着剤の吸着成分の飽和領域は、原料空気が流入する上流側から下流側に向かって進行する。従って、精製空気中の不純物濃度が空気分離部へ送ガスされた際に問題となる限界値に達する前に、吸着工程を終了する。   In the adsorption tower 5a performing the adsorption process, the saturated region of the adsorbent component of the adsorbent proceeds from the upstream side into which the raw material air flows into the downstream side. Therefore, the adsorption step is terminated before the impurity concentration in the purified air reaches a critical value that becomes a problem when gas is sent to the air separation unit.

吸着工程の終了後、再生工程が開始される。再生工程は減圧、加熱、冷却および加圧の4つのステップからなる。減圧ステップにおいて、弁4a、6aが閉じられ、大気開放弁9aが開かれる。結果、吸着塔5a内に保持されていたガスがサイレンサー10を介して大気へ放出され、吸着塔5a内の圧力が大気圧まで減少する。   After the adsorption process is completed, the regeneration process is started. The regeneration process consists of four steps: decompression, heating, cooling and pressurization. In the pressure reducing step, the valves 4a and 6a are closed, and the air release valve 9a is opened. As a result, the gas held in the adsorption tower 5a is released to the atmosphere through the silencer 10, and the pressure in the adsorption tower 5a decreases to atmospheric pressure.

次の加熱ステップにおいて、弁12、14aが開かれる。結果、空気分離部8からの排ガスの一部がパージガスとして、ライン11を介して加熱設備13に流入し、150〜250℃に加熱された後、弁14aを通って吸着塔5aに流入する。この加熱パージガスの流入により吸着剤が加熱され、これにより、吸着剤に吸着されている水分、二酸化炭素などの不純物が吸着剤から脱着し、パージガス流とともに流出する。   In the next heating step, the valves 12, 14a are opened. As a result, a part of the exhaust gas from the air separation unit 8 flows into the heating equipment 13 through the line 11 as a purge gas, is heated to 150 to 250 ° C., and then flows into the adsorption tower 5a through the valve 14a. The adsorbent is heated by the inflow of the heated purge gas, whereby impurities such as moisture and carbon dioxide adsorbed on the adsorbent are desorbed from the adsorbent and flow out together with the purge gas flow.

図2は、再生工程を行っている吸着塔5a内のパージガスの位置的温度変化の一例を模式的に示すグラフである。図2(a)に示すように、加熱パージガスの流入により、吸着塔5a内に温度が高い領域(ヒートゾーン)が生じる。このヒートゾーンはパージガス流に従って徐々に大気開放弁9a側に向かって移動する。加熱ステップが終了すると、冷却ステップに移行される。冷却ステップでは、弁12が閉じられ、弁15が開かれる。結果、パージガスが加熱設備13を通らずに、低温状態で吸着塔5aに直接流入する。このパージガスにより吸着剤が冷却される。また、図2(b)、(c)、(d)に示されるように、ヒートゾーンは低温のパージガス流に押され、大気開放弁9a側に移動し、やがて吸着塔5a内から押し出される。これにより、不純物が吸着剤から完全に追い出されるとともに、吸着剤の温度が次回の吸着工程に適した温度となる。なお、図2の例は、吸着塔5bが再生工程を行った場合も同様である。   FIG. 2 is a graph schematically showing an example of the positional temperature change of the purge gas in the adsorption tower 5a performing the regeneration process. As shown in FIG. 2A, a high temperature region (heat zone) is generated in the adsorption tower 5a by the inflow of the heated purge gas. The heat zone gradually moves toward the atmosphere release valve 9a according to the purge gas flow. When the heating step is completed, the process proceeds to the cooling step. In the cooling step, the valve 12 is closed and the valve 15 is opened. As a result, the purge gas directly flows into the adsorption tower 5a at a low temperature without passing through the heating equipment 13. The adsorbent is cooled by the purge gas. Further, as shown in FIGS. 2B, 2C, and 2D, the heat zone is pushed by the low-temperature purge gas flow, moves to the atmosphere release valve 9a side, and is finally pushed out of the adsorption tower 5a. Thereby, the impurities are completely expelled from the adsorbent, and the temperature of the adsorbent becomes a temperature suitable for the next adsorption step. In addition, the example of FIG. 2 is the same when the adsorption tower 5b performs the regeneration process.

図3は、定常運転時において、再生工程を行っている吸着塔5a内のパージガスの時間的温度変化の一例を示すグラフである。吸着塔5aには、下層側に水分吸着剤、上層側に二酸化炭素吸着剤が積層されているものとする。図中、実線で表した二酸化炭素吸着剤の最上部での温度は、加熱ステップに入ると、吸着塔5a上部からの加熱されたパージガスの流入に伴って急激に上昇し、冷却ステップへ入ったところで急下降する。破線で表したパージガス流の下流に位置する二酸化炭素吸着剤と水分吸着剤の境界部分での温度は、加熱ステップに入ってからしばらくして、なだらかに上昇をはじめ、一定温度を保った後、冷却ステップに入ってからしばらくして、なだらかに下降していく。太い実線で表した、さらに下流(大気開放弁9a側)に位置する水分吸着剤最下部を出たところ(パージガスの流出部)での温度は、冷却ステップに入ってしばらく経過した後、なだらかに上昇・下降していく。なお、図3の例は、吸着塔5bが再生工程を行った場合も同様である。   FIG. 3 is a graph showing an example of the temporal temperature change of the purge gas in the adsorption tower 5a performing the regeneration process during the steady operation. In the adsorption tower 5a, a moisture adsorbent is laminated on the lower layer side, and a carbon dioxide adsorbent is laminated on the upper layer side. In the figure, the temperature at the top of the carbon dioxide adsorbent indicated by the solid line suddenly rose with the inflow of heated purge gas from the upper part of the adsorption tower 5a when entering the heating step, and entered the cooling step. By the way, it descends rapidly. The temperature at the boundary between the carbon dioxide adsorbent and the water adsorbent located downstream of the purge gas flow indicated by the broken line begins to rise gradually after entering the heating step, and after maintaining a constant temperature, After a while after entering the cooling step, it slowly descends. The temperature at the bottom of the moisture adsorbent (purge gas outflow part) located further downstream (at the air release valve 9a side), represented by a thick solid line, gradually changes after a while after entering the cooling step. It goes up and down. In addition, the example of FIG. 3 is the same also when the adsorption tower 5b performs the regeneration process.

このように冷却ステップ中に水分吸着剤の温度が計画値まで上がり、かつ、吸着工程の開始までに原料空気供給温度近くまで温度が下がるようにするため、パージガスの量と加熱設備のヒーター容量、加熱と冷却の時間配分などが決められている。   In this way, the amount of the purge gas and the heater capacity of the heating equipment, so that the temperature of the moisture adsorbent rises to the planned value during the cooling step and falls to near the raw material air supply temperature by the start of the adsorption process. The time distribution for heating and cooling is determined.

ついで、加圧ステップにおいて、弁14a、15および大気開放弁9aが閉じられ、弁17aが開かれる。結果、吸着工程を行っている吸着塔5bからの精製空気の一部が、ライン7、ライン16を介して吸着塔5aに戻され、次の吸着工程に必要な圧力まで吸着塔5aを加圧する。   Next, in the pressurizing step, the valves 14a and 15 and the air release valve 9a are closed, and the valve 17a is opened. As a result, a part of the purified air from the adsorption tower 5b performing the adsorption process is returned to the adsorption tower 5a through the lines 7 and 16, and the adsorption tower 5a is pressurized to a pressure required for the next adsorption process. .

加圧ステップの終了時には、弁17aが閉じられ、弁4a、6aが再び開かれ、吸着塔5aにおいて、吸着工程が再び開始される。例えば、2塔式の場合なら、減圧ステップから加圧ステップの終了までの再生工程の時間と、吸着工程の時間は対応し、各工程に要する時間は2〜4時間である。この場合、吸着塔5a、5bを交互に切り替えることで、精製された原料空気が連続して空気分離部8へ送られる。   At the end of the pressurization step, the valve 17a is closed, the valves 4a and 6a are opened again, and the adsorption process is started again in the adsorption tower 5a. For example, in the case of a two-column system, the time for the regeneration process from the decompression step to the end of the pressurization step corresponds to the time for the adsorption process, and the time required for each process is 2 to 4 hours. In this case, the purified raw material air is continuously sent to the air separation unit 8 by alternately switching the adsorption towers 5a and 5b.

通常、空気液化分離装置は、起動の際、空気分離部8内を常温から極低温に冷やすのに長時間かかるため、頻繁な停止は行わず連続運転を行っている。しかし、空気液化分離装置は、何らかの理由によって緊急停止したり、保安点検のために計画停止を行うことがあり、原料空気精製装置も同時に緊急停止したり、計画停止させることがある。   Usually, since the air liquefaction separation apparatus takes a long time to cool the inside of the air separation unit 8 from room temperature to extremely low temperature at the time of activation, the air liquefaction separation apparatus is continuously operated without frequent stoppage. However, the air liquefaction / separation apparatus may be stopped urgently for some reason, or may be scheduled to stop for security inspection, and the raw material air purifier may be urgently stopped or stopped at the same time.

定常運転をしていた原料空気精製装置が停止した場合、吸着塔を封止して維持したとしても、停止時間が長時間に渡ると、吸着工程を行っていた吸着塔5a内で、水分、二酸化炭素などの不純物が拡散する。従って、再起動後に吸着工程をそのまま停止時点から行うと不純物が破過する場合があり、精製空気中の不純物濃度が定常運転時よりも増加し、限界値を超える可能性が生じる。   When the raw material air purification apparatus that has been in a steady operation is stopped, even if the adsorption tower is sealed and maintained, if the stop time is extended for a long time, moisture, Impurities such as carbon dioxide diffuse. Therefore, if the adsorption process is performed as it is after the restart, the impurities may break through, and the impurity concentration in the purified air may increase from that during steady operation, possibly exceeding the limit value.

一方、再生工程を行っていた吸着塔5b内では、原料空気精製装置が長時間停止した場合、吸着剤の再生のために導入された熱が、伝熱により外部へ放出されることがある。従って、再起動後に再生工程を停止時点から行うと、加熱不足により吸着剤の再生が不十分となり、切り替え後の吸着工程において、精製空気中の不純物濃度が定常運転時よりも増加する可能性が生じる。   On the other hand, in the adsorption tower 5b where the regeneration process has been performed, when the raw material air purifier is stopped for a long time, the heat introduced for regeneration of the adsorbent may be released to the outside by heat transfer. Therefore, if the regeneration process is performed after restarting from the point of stoppage, the regeneration of the adsorbent becomes insufficient due to insufficient heating, and in the adsorption process after switching, there is a possibility that the concentration of impurities in the purified air will increase from that during steady operation. Arise.

上記の問題を解決するため、従来では、原料空気精製装置の再起動後、空気分離部8への送ガスを行う前に、単独再生運転を行っていた。この単独再生運転とは、原料空気圧縮機1から吸着塔5aに流入する原料空気流量を、定常運転時よりも減らして低負荷の状態にし、原料空気精製装置と空気分離部間の弁18を閉じた上で、吸着塔5aから流出した精製空気を吸着塔5bに流入させ、吸着工程および再生工程を各1回以上行う操作である。この単独再生運転により、各吸着塔内の吸着剤の状態を定常運転時の状態に戻すことができる。   In order to solve the above problem, conventionally, after the raw material air purifier is restarted, the single regeneration operation is performed before the gas is supplied to the air separation unit 8. In this single regeneration operation, the flow rate of the raw material air flowing into the adsorption tower 5a from the raw material air compressor 1 is reduced to a lower load than that in the steady operation, and the valve 18 between the raw material air purifier and the air separation unit is turned on. In this operation, the purified air that has flowed out of the adsorption tower 5a is allowed to flow into the adsorption tower 5b, and the adsorption process and the regeneration process are performed once or more. By this single regeneration operation, the state of the adsorbent in each adsorption tower can be returned to the state during steady operation.

また、緊急停止ではなく計画停止を行った場合など、単独再生運転以外の方法が、特開2002−168561号公報に開示されている。この先行出願明細書の段落0029において、「休止中の吸着塔内の吸着材が空気分離部S2で得られた窒素ガスによって再生され、これによって吸着精製装置12の精製効率の低下が防止されるようになっている」と記載されており、停止している吸着精製装置(原料空気精製装置)に窒素ガスを流し続け、原料空気精製装置の精製効率の低下を防止する方法が記載されている。
特開2002−168561号公報
In addition, a method other than the single regeneration operation is disclosed in Japanese Patent Laid-Open No. 2002-168561, such as when a planned stop is performed instead of an emergency stop. In paragraph 0029 of this prior application specification, “the adsorbent in the dormant adsorption tower is regenerated by the nitrogen gas obtained in the air separation section S2, thereby preventing the purification efficiency of the adsorption purification apparatus 12 from being lowered. ”And describes a method for preventing a decrease in the purification efficiency of the raw material air purification device by continuously flowing nitrogen gas through the stopped adsorption purification device (raw material air purification device). .
JP 2002-168561 A

しかしながら、吸着工程、再生工程に要する時間は各々2〜4時間であるため、例えば2塔切り替え式では準備操作に要する時間は少なくとも4時間となり、この間は空気液化分離装置への送ガスが行えないから、空気液化分離装置の再起動が遅れるという問題があった。   However, since the time required for the adsorption process and the regeneration process is 2 to 4 hours each, for example, in the two-column switching type, the time required for the preparation operation is at least 4 hours, and during this time, gas cannot be sent to the air liquefaction separation apparatus. Therefore, there is a problem that the restart of the air liquefaction separation apparatus is delayed.

本発明は、上記従来技術の問題点に鑑み、原料空気精製装置の迅速な再起動方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a method for quickly restarting a raw material air purifier.

かかる課題を解決するため、
請求項1にかかる発明は、空気液化分離装置の原料空気中の水分、二酸化炭素などの不純物を除去する温度スイング吸着法を用いた原料空気精製装置の再起動方法であって、再生工程を行っていた第1吸着塔のパージガスの流出部におけるパージガスの温度の時間的変化において、このパージガスの温度が再生工程中のパージガスのピーク温度を既に過ぎた時点で原料空気精製装置が停止した場合、停止後、吸着工程を行っていた第2吸着塔の出入口弁を閉じるとともに大気開放弁を開き、この第2吸着塔内のガスを原料空気の精製時における原料空気流に対して向流方向に放出した後、大気開放弁を閉じ、再起動直前には、第2吸着塔の原料空気の入口弁を開けて原料空気を流入させ、吸着工程に必要な圧力まで第2吸着塔内を加圧するとともに、装置停止時に吸着工程もしくは再生工程を行っていた各吸着塔において、吸着工程もしくは再生工程を停止時点以降から再開することにより再起動を開始する原料空気精製装置の再起動方法である。
To solve this problem,
The invention according to claim 1 is a method for restarting a raw material air purification apparatus using a temperature swing adsorption method for removing impurities such as moisture and carbon dioxide in the raw air of the air liquefaction separation apparatus, wherein the regeneration step is performed. In the temporal change of the purge gas temperature at the purge gas outlet of the first adsorption tower, if the feed air purification device stops when the purge gas temperature has already passed the peak temperature of the purge gas during the regeneration process, stop After that, the inlet / outlet valve of the second adsorption tower that was performing the adsorption process is closed and the air release valve is opened, and the gas in the second adsorption tower is released in the countercurrent direction with respect to the raw air flow during purification of the raw air. After that, when the atmosphere release valve is closed and immediately before restarting, the inlet valve of the raw air of the second adsorption tower is opened to flow in the raw air, and the inside of the second adsorption tower is pressurized to the pressure required for the adsorption process. Moni, in each adsorption tower was going to adsorption step or regeneration step when the device is stopped, it is restarted method the feed air purification system initiates a reboot by resuming the adsorption step or regeneration step from later stop time.

請求項2にかかる発明は、原料空気精製装置に供給される原料空気の温度が5〜45℃、圧力が400〜1000kPaである請求項1記載の原料空気精製装置の再起動方法である。   The invention according to claim 2 is the method for restarting the raw material air purifier according to claim 1, wherein the temperature of the raw air supplied to the raw material air purifier is 5 to 45 ° C. and the pressure is 400 to 1000 kPa.

本発明によれば、原料空気精製装置が停止した時点が、パージガスの流出部におけるパージガスの温度の時間的変化において、このパージガスの温度が再生工程中のパージガスのピーク温度を既に過ぎた時点であった場合、吸着工程にあった吸着塔の圧力を減圧してこれを維持し、再起動前に、再度、吸着工程圧力まで戻すことで、長時間の停止後にも高純度の精製空気を供給することができる。   According to the present invention, the time when the raw material air purifier is stopped is the time when the purge gas temperature has already passed the peak temperature of the purge gas during the regeneration process in the temporal change of the purge gas temperature at the purge gas outlet. In this case, the pressure of the adsorption tower that was in the adsorption process is reduced and maintained, and before the restart, it is returned to the adsorption process pressure again to supply high-purity purified air even after a long stoppage. be able to.

また、本発明によれば、単独再生運転が不要であるため、再起動から、空気液化分離装置への送ガスまでに要する時間を短縮させることができる。   Further, according to the present invention, since a single regeneration operation is not required, the time required from restart to gas feeding to the air liquefaction separation apparatus can be shortened.

以下、本発明にかかる原料空気精製装置の再起動方法の一実施形態について、図面を用いて詳しく説明する。この説明の中では、原料空気精製装置の停止時に、吸着塔5aが吸着工程、吸着塔5bが再生工程を行っているものとする。   Hereinafter, an embodiment of a restart method for a raw material air purifier according to the present invention will be described in detail with reference to the drawings. In this description, it is assumed that the adsorption tower 5a is performing the adsorption process and the adsorption tower 5b is performing the regeneration process when the raw material air purifier is stopped.

図3に示すように、再生工程を行っている吸着塔5bのパージガスの流出部におけるパージガスの温度は、冷却ステップの途中でピーク温度に達し、やがて次の吸着工程に適した温度まで冷却されていく。このパージガスの温度がピーク温度に達した以降の時点において、原料空気精製装置が停止した場合、弁14b、15および大気開放弁9bを閉じておく。   As shown in FIG. 3, the purge gas temperature at the purge gas outlet of the adsorption tower 5b performing the regeneration process reaches a peak temperature during the cooling step, and is eventually cooled to a temperature suitable for the next adsorption process. Go. When the raw material air purifier stops at a time after the purge gas reaches the peak temperature, the valves 14b and 15 and the air release valve 9b are closed.

原料空気精製装置の停止後、吸着工程を行っていた吸着塔5aにおいて、その出入口にある弁4a、6aを閉じ、大気開放弁9aを開く。結果、吸着塔5a内に保持されていたガスが原料空気流に対して向流方向に流出する。この時、この流出ガスにともなって吸着剤に吸着されていた不純物が脱着される。このガスの流出および不純物の脱着は吸着塔5a内の温度を低下させる。吸着塔5a内の圧力が大気圧まで減少したら、大気開放弁9aを閉じる。また、原料空気精製装置の停止後、吸着塔5a内の熱は伝熱により外部へ放出されるため、吸着塔5a内の温度は徐々に低下する。原料空気精製装置の再起動後、吸着工程を行っていた吸着塔5a内は原料空気の流入により再び加圧されるため、ガスの流出による温度の低下が解消されるが、不純物の脱着もしくは外部への伝熱による温度の低下の効果はそのまま残る。従って、吸着塔5aは原料空気精製装置の停止時点よりも低い温度で吸着工程を開始することになる。   In the adsorption tower 5a that has been performing the adsorption process after the raw material air purifier is stopped, the valves 4a and 6a at the entrance and exit are closed, and the air release valve 9a is opened. As a result, the gas held in the adsorption tower 5a flows out in the counterflow direction with respect to the raw material air flow. At this time, the impurities adsorbed on the adsorbent are desorbed along with the outflow gas. This outflow of gas and desorption of impurities lower the temperature in the adsorption tower 5a. When the pressure in the adsorption tower 5a decreases to atmospheric pressure, the air release valve 9a is closed. Moreover, since the heat | fever in the adsorption tower 5a is discharge | released outside by heat transfer after the raw material air refinement | purification apparatus stops, the temperature in the adsorption tower 5a falls gradually. After restarting the raw material air purification apparatus, the inside of the adsorption tower 5a that has been performing the adsorption step is pressurized again by the inflow of the raw material air, so that the temperature drop due to the outflow of gas is eliminated. The effect of lowering the temperature due to heat transfer to the remains. Therefore, the adsorption tower 5a starts the adsorption process at a temperature lower than that at which the raw material air purifier is stopped.

一般に、吸着剤の吸着容量は温度の低下に従って増加する。従って、原料空気精製装置の再起動後、吸着塔5a内の吸着剤の吸着容量は停止時点よりも増えており、この増加は、原料空気精製装置の停止中における不純物の拡散を解消するのに十分な効果を有する。   In general, the adsorption capacity of the adsorbent increases with decreasing temperature. Therefore, after the restart of the raw material air purification apparatus, the adsorption capacity of the adsorbent in the adsorption tower 5a has increased from the point of stoppage, and this increase eliminates the diffusion of impurities during the stoppage of the raw material air purification apparatus. It has a sufficient effect.

吸着塔5a、5bにおいて上記の操作を行った上で、停止後の原料空気精製装置を保持する。再起動を行う際は、先ず空気圧縮機2を起動し、弁4aを開く。結果、吸着塔5a内が原料空気の流入により吸着工程圧力まで加圧される。加圧の終了後、吸着塔5aにおいて、吸着工程を停止時点以降から開始するとともに、弁6a、18を開き、精製された原料空気をライン7を介して空気分離部8へ送ガスする。   After performing the above-described operation in the adsorption towers 5a and 5b, the raw material air purifier after being stopped is held. When restarting, the air compressor 2 is first started and the valve 4a is opened. As a result, the inside of the adsorption tower 5a is pressurized to the adsorption process pressure by the inflow of the raw material air. After the pressurization is completed, in the adsorption tower 5a, the adsorption process is started after the stop point, the valves 6a and 18 are opened, and the purified raw material air is sent to the air separation unit 8 through the line 7.

一方、再生工程を行っていた吸着塔5bにおいて、再生工程を停止時点以降から開始する。弁14b、15および大気開放弁9bを開く。結果、空気分離部8から流出する排気ガスの一部がライン11を介して吸着塔5bに流入した後、サイレンサー10を通って大気に放出される。   On the other hand, in the adsorption tower 5b in which the regeneration process has been performed, the regeneration process is started after the stop point. The valves 14b and 15 and the air release valve 9b are opened. As a result, a part of the exhaust gas flowing out from the air separation unit 8 flows into the adsorption tower 5b through the line 11, and then is released to the atmosphere through the silencer 10.

なお、本発明では、定常運転時のパージガスの流出部におけるパージガスの温度を測定しておくか、もしくはシミュレーションすることにより、パージガスの温度がピーク温度に達する時間をあらかじめ予測し、再生工程開始から停止時点までの経過時間を測定しておくことで、原料空気精製装置が停止した時点で本発明の再起動方法が適用できるか判断することができる。   In the present invention, the time for the purge gas to reach the peak temperature is predicted in advance by measuring or simulating the purge gas temperature at the purge gas outflow portion during steady operation, and then stopped from the start of the regeneration process. By measuring the elapsed time up to the time point, it can be determined whether or not the restart method of the present invention can be applied when the raw material air purifier stops.

以下、実施例により、本発明をさらに詳しく説明する。本発明は、下記実施例に何ら制限されるものではない。なお、以下の実施例および比較例において、原料空気精製装置の停止時に、吸着塔5aが吸着工程を、吸着塔5bが再生工程を行っているものとする。   Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the following examples. In the following Examples and Comparative Examples, it is assumed that the adsorption tower 5a is performing an adsorption process and the adsorption tower 5b is performing a regeneration process when the raw material air purifier is stopped.

本発明の効果を判断するため、シミュレーションを行った。
例えば、吸着塔におけるガスの流出入がない停止期間において、吸着塔内のガスの濃度や温度の分布は時間の経過とともに均一化する。このような状況を模擬できるように、このシミュレーションでは、吸着塔内の物質収支および熱収支の計算式中に、軸方向ガス分散および軸方向熱伝導を考慮した。すなわち、停止中におけるガスの濃度分布の変化を、濃度分布を推進力とする拡散および温度分布に基づく対流として、停止中におけるガスの温度分布の変化を、温度分布を推進力とする伝熱として表現した。そして、再起動後の吸着工程の終了時点で得られる、吸着塔の精製空気の流出部における二酸化炭素濃度を計算した。また、この結果を定常運転中に吸着工程を行っている吸着塔の精製空気の流出部における二酸化炭素濃度と比較した。なお、シミュレーションの詳細は、日本酸素技報No.22,13−18(2003)に開示されている。
In order to determine the effect of the present invention, a simulation was performed.
For example, in a stop period in which no gas flows in and out of the adsorption tower, the gas concentration and temperature distribution in the adsorption tower are made uniform over time. In order to simulate such a situation, in this simulation, axial gas dispersion and axial heat conduction were taken into account in the calculation formulas of the mass balance and heat balance in the adsorption tower. That is, the change in gas concentration distribution during stoppage is defined as convection based on diffusion and temperature distribution with the concentration distribution as driving force, and the change in gas temperature distribution during stoppage is defined as heat transfer with temperature distribution as driving force. Expressed. And the carbon dioxide density | concentration in the outflow part of the purified air of an adsorption tower obtained at the time of completion | finish of the adsorption | suction process after restart was calculated. Moreover, this result was compared with the carbon dioxide concentration in the outflow part of the purified air of the adsorption tower which is performing the adsorption process during steady operation. For details of the simulation, refer to Japan Oxygen Technical Report No. 22, 13-18 (2003).

[実施例1]
図1に示された空気液化分離装置を想定し、シミュレーションを行った。シミュレーションで用いた各操作条件を以下に示す。
水分吸着剤:プロカタリーゼ社製活性アルミナ(層高:0.88m)
二酸化炭素吸着剤:グレース社製Na−Xゼオライト(層高:0.65m)
原料空気圧力:620kPa(絶対圧)
原料空気温度:40℃
パージガス率(パージガス流量/原料空気流量):40%
加熱ガス温度:200℃
吸着工程時間:120分
再生工程時間:120分(減圧ステップ:3分、加熱ステップ:43分、冷却ステップ:62分、加圧ステップ:12分)
[Example 1]
A simulation was performed assuming the air liquefaction separation apparatus shown in FIG. Each operation condition used in the simulation is shown below.
Moisture absorbent: Activated alumina manufactured by Procatalyze (layer height: 0.88 m)
Carbon dioxide adsorbent: Grace Na-X zeolite (layer height: 0.65 m)
Raw material air pressure: 620 kPa (absolute pressure)
Raw material air temperature: 40 ° C
Purge gas rate (purge gas flow rate / raw material air flow rate): 40%
Heating gas temperature: 200 ° C
Adsorption process time: 120 minutes Regeneration process time: 120 minutes (decompression step: 3 minutes, heating step: 43 minutes, cooling step: 62 minutes, pressurization step: 12 minutes)

上記の各操作条件を用いて、定常運転中に再生工程を行っている吸着塔5b内の温度変化を計算した。吸着塔内のパージガスの流出部では、再生工程の開始から約60分後に温度が上昇し、約75分後にピーク温度に達し、その後なだらかに下降することが明らかとなった。従って、本シミュレーションの操作条件においては、再生工程の開始から約75分後に、全ての吸着剤が加熱されることが明らかとなった。そこで、パージガスの温度がピーク温度を既に過ぎた時点として、再生工程の開始から90分後を設定し、この時点で原料空気精製装置が停止したものとした。   Using each of the above operating conditions, the temperature change in the adsorption tower 5b performing the regeneration process during steady operation was calculated. At the purge gas outflow part in the adsorption tower, it became clear that the temperature increased about 60 minutes after the start of the regeneration process, reached the peak temperature after about 75 minutes, and then gradually decreased. Therefore, under the operating conditions of this simulation, it became clear that all of the adsorbent is heated about 75 minutes after the start of the regeneration process. Therefore, 90 minutes after the start of the regeneration process is set as the time when the temperature of the purge gas has already passed the peak temperature, and the raw material air purifier is stopped at this time.

原料空気精製装置の停止後、再生工程を行っていた吸着塔5bを全ての弁を閉じた状態で維持し、一方、吸着工程を行っていた吸着塔5aを、吸着塔内を減圧した後、全ての弁を閉じた状態で維持したものとした。本シミュレーションでは、72時間経過後、再起動に先立ち、吸着塔5a内を原料空気により620kPaまで加圧し、その後、吸着工程を停止時点から再開したものとした。一方、吸着塔5bにおいて、再起動後、再生工程を停止時点から再開したものとした。   After stopping the raw material air purification apparatus, the adsorption tower 5b that has been performing the regeneration process is maintained with all the valves closed, while the adsorption tower 5a that has been performing the adsorption process is decompressed in the adsorption tower, All valves were kept closed. In this simulation, after 72 hours, prior to restarting, the inside of the adsorption tower 5a was pressurized to 620 kPa with raw material air, and then the adsorption process was restarted from the stop point. On the other hand, in the adsorption tower 5b, after the restart, the regeneration process was resumed from the stop point.

図4は、上記条件に従って再開された吸着工程が終了した時点における、吸着塔5a内の二酸化炭素濃度分布を示すグラフである。なお、基準吸着工程とは、定常運転時の吸着工程終了時点における吸着塔5a内の二酸化炭素濃度分布のことである。結果、吸着塔の精製空気の流出部(層高:1.53m)において、基準吸着工程の二酸化炭素濃度が約1.7ppm、上記条件における吸着塔5aの二酸化炭素濃度が約0.8ppmであった。この結果は、定常運転時と比べて、再起動後に吸着塔5aから流出する精製空気中の二酸化炭素濃度が低いことを示す。   FIG. 4 is a graph showing the carbon dioxide concentration distribution in the adsorption tower 5a when the adsorption process resumed according to the above conditions is completed. The reference adsorption process is a carbon dioxide concentration distribution in the adsorption tower 5a at the end of the adsorption process during steady operation. As a result, the carbon dioxide concentration in the standard adsorption step was about 1.7 ppm and the carbon dioxide concentration in the adsorption tower 5a under the above conditions was about 0.8 ppm at the purified air outlet (bed height: 1.53 m) of the adsorption tower. It was. This result shows that the concentration of carbon dioxide in the purified air flowing out from the adsorption tower 5a after restart is lower than that in the steady operation.

一方、再生工程を行っていた吸着塔5bにおいて、再起動後、続けて再生工程を行い、次の吸着工程が終了した時点での、吸着塔5b内の二酸化炭素濃度は、基準吸着工程と同じであることを、シミュレーションにより確認した。   On the other hand, in the adsorption tower 5b which has been performing the regeneration process, the carbon dioxide concentration in the adsorption tower 5b is the same as that in the reference adsorption process at the time when the regeneration process is continued after the restart and the next adsorption process is completed. That was confirmed by simulation.

従って、72時間という長時間停止しても、本発明の再起動方法を用いることで、精製空気中の二酸化炭素濃度が定常運転時よりも増加することなく、原料空気精製装置を再起動できることが明らかとなった。なお、このシミュレーションでは、停止時点として再生工程の開始から90分後を設定したが、この停止時点は流出ガスの温度がピーク温度を示す75分後以降であれば、どの時点においても二酸化炭素濃度は定常運転時よりも増加しないことを、シミュレーションにより確認した。   Therefore, even if it is stopped for a long time of 72 hours, the raw material air purifier can be restarted by using the restarting method of the present invention without increasing the concentration of carbon dioxide in the purified air compared with that in steady operation. It became clear. In this simulation, 90 minutes after the start of the regeneration process was set as the stop point, but this stop point is at or after 75 minutes after the temperature of the effluent gas shows the peak temperature. It was confirmed by simulation that no increase was observed during steady operation.

[比較例1]
比較例1として、本発明において、再生工程を行っていた吸着塔5b内のパージガスの流出部におけるパージガスの温度が、ピーク温度に達する前に原料空気精製装置が停止し、再起動を行った場合、得られる吸着塔5b内の二酸化炭素濃度を計算した。本シミュレーションで用いられた各操作条件は、実施例1のものと同じである。
[Comparative Example 1]
As comparative example 1, in the present invention, when the temperature of the purge gas at the purge gas outflow portion in the adsorption tower 5b that was performing the regeneration step reaches the peak temperature, the raw material air purifier is stopped and restarted. The carbon dioxide concentration in the resulting adsorption tower 5b was calculated. Each operation condition used in this simulation is the same as that in the first embodiment.

実施例1の操作条件において、再生工程開始から75分後に、吸着塔内のパージガスの流出部におけるパージガスの温度がピーク温度に達することが明らかとなっている。そこで、本シミュレーションでは、再生工程開始から73分後に原料空気精製装置が停止したものとした。その後、実施例1と同様の操作を行い、吸着塔5aにおいて、吸着工程を停止時点から再開し、続いて再生工程を行ったものとした。一方、吸着塔5bにおいて、再起動後、再生工程を停止時点から再開し、続いて吸着工程を行ったものとした。   Under the operating conditions of Example 1, it is clear that the purge gas temperature reaches the peak temperature at the purge gas outlet in the adsorption tower 75 minutes after the start of the regeneration step. Therefore, in this simulation, the raw material air purifier was stopped 73 minutes after the start of the regeneration process. Thereafter, the same operation as in Example 1 was performed, and in the adsorption tower 5a, the adsorption process was restarted from the stop point, and then the regeneration process was performed. On the other hand, in the adsorption tower 5b, after restarting, the regeneration process was restarted from the stop point, and then the adsorption process was performed.

図5は、上記条件に従って行われた吸着工程が終了した時点における、吸着塔5b内の二酸化炭素濃度分布を示すグラフである。結果、吸着塔の精製空気の流出部(層高:1.53m)において、基準吸着工程の二酸化炭素濃度が約1.7ppm、上記条件における吸着塔5bの二酸化炭素濃度が約2.5ppmであった。この結果は、定常運転時と比べて、再起動後に吸着塔5bから流出する精製空気中の二酸化炭素濃度が高いことを示す。従って、本発明の再起動方法から逸脱して原料空気精製装置を運転すると、精製空気中の二酸化炭素濃度が定常運転時よりも増加することが明らかとなった。   FIG. 5 is a graph showing the carbon dioxide concentration distribution in the adsorption tower 5b at the time when the adsorption step performed according to the above conditions is completed. As a result, the carbon dioxide concentration in the standard adsorption step was about 1.7 ppm and the carbon dioxide concentration in the adsorption tower 5b under the above conditions was about 2.5 ppm at the purified air outlet (bed height: 1.53 m) of the adsorption tower. It was. This result shows that the concentration of carbon dioxide in the purified air flowing out from the adsorption tower 5b after restarting is higher than in the steady operation. Accordingly, it was found that when the raw material air purifier is operated outside the restart method of the present invention, the concentration of carbon dioxide in the purified air increases compared to that during steady operation.

一方、再起動後、吸着塔5aにおいて、開始された吸着工程が終了した時点における、吸着塔5a内の二酸化炭素濃度は、図4に示された再起動後の二酸化炭素濃度と同様に、基準吸着工程と比べて減少することを、シミュレーションにより確認した。   On the other hand, the carbon dioxide concentration in the adsorption tower 5a at the time when the adsorption process started in the adsorption tower 5a is completed after the restart is the same as the carbon dioxide concentration after the restart shown in FIG. It was confirmed by simulation that it decreased compared with the adsorption process.

[比較例2]
比較例2として、本発明において、原料空気精製装置の停止後、吸着工程を行っていた吸着塔5a内を減圧せずに維持した場合、得られる吸着塔5a内の精製空気の二酸化炭素濃度を計算した。本シミュレーションで用いられた各操作条件は、実施例1のものと同じである。
[Comparative Example 2]
As Comparative Example 2, in the present invention, when the inside of the adsorption tower 5a that has been performing the adsorption step is maintained without depressurization after the raw material air purification apparatus is stopped, the carbon dioxide concentration of the purified air in the obtained adsorption tower 5a is Calculated. Each operation condition used in this simulation is the same as that in the first embodiment.

本シミュレーションでは、再生工程開始から76分後に原料空気精製装置を停止したものとした。その後、吸着塔5bを、全ての弁を閉じた状態で維持し、一方、吸着塔5aを減圧せずに、全ての弁を閉じた状態で維持したものとした。本シミュレーションでは、吸着塔5aが吸着工程圧力を維持しているため、72時間経過後、再起動に先立ち、吸着塔5aを加圧することなく、吸着工程を停止時点から再開したものとした。一方、吸着塔5bにおいて、再起動後、再生工程を停止時点から再開したものとした。   In this simulation, the raw material air purifier was stopped 76 minutes after the start of the regeneration process. Thereafter, the adsorption tower 5b was maintained with all the valves closed, while the adsorption tower 5a was maintained with all the valves closed without reducing the pressure. In this simulation, since the adsorption tower 5a maintains the adsorption process pressure, it was assumed that after 72 hours, the adsorption process was restarted from the stop point without pressurizing the adsorption tower 5a before restarting. On the other hand, in the adsorption tower 5b, after the restart, the regeneration process was resumed from the stop point.

図6は、上記条件に従って再開された吸着工程が終了した時点における、吸着塔5a内の二酸化炭素濃度分布を示すグラフである。結果、吸着塔の精製空気の流出部(層高:1.53m)において、基準吸着工程の二酸化炭素濃度が約1.7ppm、上記条件における吸着塔5aの二酸化炭素濃度が約2.4ppmであった。この結果は、定常運転時と比べて、再起動後に吸着塔5aから流出する精製空気中の二酸化炭素濃度が高いことを示す。従って、本発明の再起動方法から逸脱して原料空気精製装置を運転すると、精製空気中の二酸化炭素濃度が定常運転時よりも増加することが明らかとなった。   FIG. 6 is a graph showing the carbon dioxide concentration distribution in the adsorption tower 5a when the adsorption process resumed according to the above conditions is completed. As a result, the carbon dioxide concentration in the standard adsorption step was about 1.7 ppm, and the carbon dioxide concentration in the adsorption tower 5a under the above conditions was about 2.4 ppm at the purified air outlet (bed height: 1.53 m) of the adsorption tower. It was. This result shows that the concentration of carbon dioxide in the purified air flowing out from the adsorption tower 5a after restarting is higher than in the steady operation. Accordingly, it has been clarified that when the raw material air purifier is operated outside the restart method of the present invention, the concentration of carbon dioxide in the purified air increases more than that in the steady operation.

[実施例2]
実施例2では、実施例1で用いられた各条件の数値を変更して、シミュレーションを行った。本シミュレーションで用いられた各操作条件を以下に示す。
水分吸着剤:プロカタリーゼ社製活性アルミナ(層高:0.28m)
二酸化炭素吸着剤:グレース社製Na−Xゼオライト(層高:0.32m)
原料空気圧力:620kPa
原料空気温度:10℃
パージガス率(パージガス流量/原料空気流量):15%
加熱ガス温度:150℃
吸着工程時間:240分
再生工程時間:240分(減圧ステップ:6分、加熱ステップ:86分、冷却ステップ:124分、加圧ステップ:24分)
[Example 2]
In Example 2, the simulation was performed by changing the numerical values of the conditions used in Example 1. Each operation condition used in this simulation is shown below.
Moisture absorbent: Activated alumina by Procatalyze (layer height: 0.28 m)
Carbon dioxide adsorbent: Grace Na-X zeolite (layer height: 0.32 m)
Raw material air pressure: 620 kPa
Raw material air temperature: 10 ° C
Purge gas rate (purge gas flow rate / raw material air flow rate): 15%
Heating gas temperature: 150 ° C
Adsorption process time: 240 minutes Regeneration process time: 240 minutes (decompression step: 6 minutes, heating step: 86 minutes, cooling step: 124 minutes, pressurization step: 24 minutes)

上記の各操作条件を用いて、定常運転中に再生工程を行っている吸着塔5b内のパージガスの流出部におけるパージガスの温度を計算した結果、再生工程開始から142分後にピーク温度に達することを確認した。そこで、145分後において原料空気精製装置を停止したものとした。その後、実施例1と同様の操作を行い、吸着塔5aにおいて、吸着工程を停止時点から再開したものとした。一方、吸着塔5bにおいて、再起動後、再生工程を停止時点から再開したものとした。   As a result of calculating the purge gas temperature at the purge gas outlet in the adsorption tower 5b performing the regeneration process during steady operation using the above operating conditions, the peak temperature is reached 142 minutes after the start of the regeneration process. confirmed. Therefore, the raw material air purifier was stopped after 145 minutes. Thereafter, the same operation as in Example 1 was performed, and in the adsorption tower 5a, the adsorption process was resumed from the stop point. On the other hand, in the adsorption tower 5b, after the restart, the regeneration process was resumed from the stop point.

図7は、上記条件に従って再開された吸着工程が終了した時点における、吸着塔5a内の二酸化炭素濃度分布を示すグラフである。結果、吸着塔の精製空気の流出部(層高:1.53m)において、基準吸着工程の二酸化炭素濃度が約0.2ppm、上記条件における吸着塔5aの二酸化炭素濃度が約0.2ppmであった。この結果は、停止前と再起動後の精製空気中の二酸化炭素濃度がほぼ同じであることを示す。   FIG. 7 is a graph showing the carbon dioxide concentration distribution in the adsorption tower 5a when the adsorption process resumed according to the above conditions is completed. As a result, the carbon dioxide concentration in the reference adsorption step was about 0.2 ppm and the carbon dioxide concentration in the adsorption tower 5a under the above conditions was about 0.2 ppm at the purified air outlet (bed height: 1.53 m) of the adsorption tower. It was. This result shows that the carbon dioxide concentration in the purified air before stopping and after restarting is almost the same.

一方、再生工程を行っていた吸着塔5bにおいて、再起動後、続けて再生工程を行い、次の吸着工程が終了した時点での、吸着塔5b内の二酸化炭素濃度分布は、基準吸着工程と同じであることを、シミュレーションにより確認した。   On the other hand, in the adsorption tower 5b that has been performing the regeneration process, after the restart, the regeneration process is performed continuously, and the carbon dioxide concentration distribution in the adsorption tower 5b at the time when the next adsorption process is completed is the same as the reference adsorption process. It was confirmed by simulation that they were the same.

従って、72時間という長時間停止しても、本発明の再起動方法を用いることで、精製空気中の二酸化炭素濃度が定常運転時よりも増加することなく、原料空気精製装置を再起動できることが明らかとなった。なお、このシミュレーションでは、停止時点として再生工程の開始から145分後を設定したが、この停止時点は流出ガスの温度がピーク温度を示す145分後以降であれば、どの時点においても二酸化炭素濃度は定常運転時よりも増加しないことを、シミュレーションにより確認した。   Therefore, even if it is stopped for a long time of 72 hours, the raw material air purifier can be restarted by using the restarting method of the present invention without increasing the concentration of carbon dioxide in the purified air compared with that in steady operation. It became clear. In this simulation, 145 minutes after the start of the regeneration process was set as the stop point, but this stop point is after 145 minutes when the temperature of the outflow gas shows the peak temperature, and the carbon dioxide concentration at any point It was confirmed by simulation that no increase was observed during steady operation.

本発明における空気液化分離装置の一例を示す構成図である。It is a block diagram which shows an example of the air liquefaction separation apparatus in this invention. (a)再生工程を行っている吸着塔5a、5b内のパージガスの時間tにおける位置的温度変化を示すグラフである。(b)(a)に示すパージガスの時間tにおける位置的温度変化を示すグラフである。(c)(a)に示すパージガスの時間tにおける位置的温度変化を示すグラフである。(d)(a)に示すパージガスの時間tにおける位置的温度変化を示すグラフである。(A) the adsorption tower 5a are performed regeneration step is a graph showing the positional temperature variation at time t a of the purge gas in 5b. (B) is a graph showing the positional temperature variation at time t b of the purge gas as shown in (a). Is a graph showing the positional temperature variation at time t c of the purge gas as shown in (c) (a). Is a graph showing the positional temperature variation in time t d of the purge gas as shown in (d) (a). 再生工程を行っている吸着塔5a、5b内のパージガス流出部におけるパージガスの時間的温度変化を示すグラフである。It is a graph which shows the time temperature change of the purge gas in the purge gas outflow part in adsorption tower 5a, 5b which is performing the reproduction | regeneration process. 実施例1において、再起動時に行われた吸着工程が終了した時点における吸着塔5a内の二酸化炭素濃度分布を示すグラフである。In Example 1, it is a graph which shows the carbon dioxide concentration distribution in the adsorption tower 5a in the time of the adsorption | suction process performed at the time of restarting having been complete | finished. 比較例1において、再起動時に行われた吸着工程が終了した時点における吸着塔5b内の二酸化炭素濃度分布を示すグラフである。In the comparative example 1, it is a graph which shows the carbon dioxide concentration distribution in the adsorption tower 5b in the time of the adsorption | suction process performed at the time of restarting having been complete | finished. 比較例2において、再起動時に行われた吸着工程が終了した時点における吸着塔5a内の二酸化炭素濃度分布を示すグラフである。In the comparative example 2, it is a graph which shows the carbon dioxide concentration distribution in the adsorption tower 5a at the time of completion | finish of the adsorption process performed at the time of restart. 実施例2において、再起動時に行われた吸着工程が終了した時点における吸着塔5a内の二酸化炭素濃度分布を示すグラフである。In Example 2, it is a graph which shows the carbon dioxide concentration distribution in the adsorption tower 5a in the time of the adsorption | suction process performed at the time of restarting having been complete | finished.

符号の説明Explanation of symbols

5a、5b 吸着塔
9a、9b 大気開放弁

5a, 5b Adsorption tower 9a, 9b Air release valve

Claims (2)

空気液化分離装置の原料空気を精製する温度スイング吸着法を用いた原料空気精製装置の再起動方法であって、
再生工程を行っていた第1吸着塔のパージガスの流出部におけるパージガスの温度の時間的変化において、このパージガスの温度が再生工程中のパージガスのピーク温度を既に過ぎた時点で原料空気精製装置が停止した場合、停止後、吸着工程を行っていた第2吸着塔の出入口弁を閉じるとともに大気開放弁を開き、この第2吸着塔内のガスを原料空気の精製時における原料空気流に対して向流方向に放出した後、大気開放弁を閉じ、再起動直前には、第2吸着塔の原料空気の入口弁を開けて原料空気を流入させ、吸着工程に必要な圧力まで第2吸着塔内を加圧するとともに、停止時に吸着工程もしくは再生工程を行っていた各吸着塔において、吸着工程もしくは再生工程を停止時点以降から再開することにより再起動を開始する原料空気精製装置の再起動方法。
A method for restarting a raw material air purification device using a temperature swing adsorption method for purifying the raw material air of an air liquefaction separation device,
In the temporal change of the purge gas temperature at the purge gas outlet of the first adsorption tower that was performing the regeneration process, the raw material air purifier stops when the purge gas temperature has already passed the peak temperature of the purge gas during the regeneration process. In this case, after stopping, the inlet / outlet valve of the second adsorption tower that has been performing the adsorption process is closed and the air release valve is opened, and the gas in the second adsorption tower is directed to the raw air flow during the purification of the raw air. After releasing in the flow direction, the air release valve is closed, and immediately before restarting, the raw air inlet valve of the second adsorption tower is opened to feed the raw air into the second adsorption tower up to the pressure required for the adsorption process. with pressurizing, feed air spinning to start in each adsorption tower it was going to adsorption step or regeneration step when stopping, restarting by resuming the adsorption step or regeneration step from later stop time How to restart the device.
原料空気精製装置に供給される原料空気の温度が5〜45℃、圧力が400〜1000kPa(絶対圧)である請求項1記載の原料空気精製装置の再起動方法。

The method for restarting a raw air purification apparatus according to claim 1, wherein the temperature of the raw air supplied to the raw air purification apparatus is 5 to 45 ° C and the pressure is 400 to 1000 kPa (absolute pressure).

JP2004101690A 2004-03-31 2004-03-31 Method for restarting raw material air purifier Expired - Lifetime JP3778915B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004101690A JP3778915B2 (en) 2004-03-31 2004-03-31 Method for restarting raw material air purifier
KR1020067020919A KR100771002B1 (en) 2004-03-31 2005-03-29 Method of re-starting device for cleaning raw air
US10/594,665 US7749306B2 (en) 2004-03-31 2005-03-29 Method of restarting feed air purifier
CNB2005800099891A CN100453145C (en) 2004-03-31 2005-03-29 Restarting method of raw material air refining apparatus
TW094109723A TWI330246B (en) 2004-03-31 2005-03-29 Method of restarting feed air purifier
PCT/JP2005/005922 WO2005094970A1 (en) 2004-03-31 2005-03-29 Method of re-starting device for cleaning raw air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101690A JP3778915B2 (en) 2004-03-31 2004-03-31 Method for restarting raw material air purifier

Publications (2)

Publication Number Publication Date
JP2005279597A JP2005279597A (en) 2005-10-13
JP3778915B2 true JP3778915B2 (en) 2006-05-24

Family

ID=35178544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101690A Expired - Lifetime JP3778915B2 (en) 2004-03-31 2004-03-31 Method for restarting raw material air purifier

Country Status (2)

Country Link
JP (1) JP3778915B2 (en)
CN (1) CN100453145C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010020283A1 (en) * 2010-05-12 2011-11-17 Linde Aktiengesellschaft Method for analyzing gas mixture by adsorption process, particularly temperature swing adsorption process, involves carrying out cooling of regenerated adsorbent to adsorption temperature with partial stream of gas mixture to be analyzed
JP6745694B2 (en) * 2016-09-27 2020-08-26 株式会社クラレ Operation method of gas separation device and control device
JP7465126B2 (en) * 2020-03-23 2024-04-10 株式会社豊田中央研究所 Gas separation apparatus, methane production apparatus, gas separation method, and method for controlling gas separation apparatus
WO2024095618A1 (en) * 2022-10-31 2024-05-10 大陽日酸株式会社 Air purification device and air purification method
CN115826656A (en) * 2023-02-22 2023-03-21 中国空气动力研究与发展中心高速空气动力研究所 Low-temperature wind tunnel simulation environment rapid adjusting device and adjusting method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770676A (en) * 1986-05-16 1988-09-13 Air Products And Chemicals, Inc. Recovery of methane from land fill gas
CA2132384A1 (en) * 1993-09-30 1995-03-31 Ravi Jain Purification of fluids by adsorption
JPH10225610A (en) * 1997-02-17 1998-08-25 Kawasaki Steel Corp Method and device for regenerating adsorber
JPH1157371A (en) * 1997-08-11 1999-03-02 Taiyo Toyo Sanso Co Ltd Production of ultraclean air
US6409800B1 (en) * 2000-08-28 2002-06-25 The Boc Group, Inc. Temperature swing adsorption process
JP3676668B2 (en) * 2000-11-30 2005-07-27 株式会社神戸製鋼所 Air separation device
JP3545377B2 (en) * 2001-08-07 2004-07-21 日本酸素株式会社 Apparatus and method for purifying air for air liquefaction separation

Also Published As

Publication number Publication date
CN100453145C (en) 2009-01-21
CN1938073A (en) 2007-03-28
JP2005279597A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
KR101317618B1 (en) Improvements in cyclical swing adsorption processes
US8690990B2 (en) Method of purifying air
JP5689733B2 (en) Recovery of NF3 from adsorption operation
JP2000317244A (en) Method and device for purifying gas
KR100771002B1 (en) Method of re-starting device for cleaning raw air
JP2010029855A (en) Process and apparatus for nitrous oxide removal
JPH0459926B2 (en)
JP4590287B2 (en) Purification method of raw material air in air liquefaction separation device
JP3778915B2 (en) Method for restarting raw material air purifier
JP3778917B2 (en) Method for restarting raw material air purifier
JP4621252B2 (en) Method and apparatus for purifying raw material air in air liquefaction separation
JPS63107720A (en) Method for separating and removing water content and carbon dioxide gas in air
JP3778916B2 (en) Method for restarting raw material air purifier
JP4845334B2 (en) Purification method of raw material air in air liquefaction separation device
JP4719598B2 (en) Pretreatment method and apparatus in air liquefaction separation
KR101018388B1 (en) Gas purification apparatus and reactivation method of catalyst therein
JPH1015331A (en) Heat regeneration type pressure swing adsorbing apparatus
JP3841792B2 (en) Pretreatment method in air separation apparatus and apparatus used therefor
JPH0596119A (en) Pressure variable adsorption separation
JPS5826515B2 (en) How to start up and operate an air separation device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Ref document number: 3778915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term