JP3778663B2 - High performance tire tread rubber composition - Google Patents

High performance tire tread rubber composition Download PDF

Info

Publication number
JP3778663B2
JP3778663B2 JP21319697A JP21319697A JP3778663B2 JP 3778663 B2 JP3778663 B2 JP 3778663B2 JP 21319697 A JP21319697 A JP 21319697A JP 21319697 A JP21319697 A JP 21319697A JP 3778663 B2 JP3778663 B2 JP 3778663B2
Authority
JP
Japan
Prior art keywords
weight
rubber
parts
diene
eff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21319697A
Other languages
Japanese (ja)
Other versions
JPH1149894A (en
Inventor
直也 網野
資二 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP21319697A priority Critical patent/JP3778663B2/en
Publication of JPH1149894A publication Critical patent/JPH1149894A/en
Application granted granted Critical
Publication of JP3778663B2 publication Critical patent/JP3778663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高性能タイヤトレッド用ゴム組成物に関し、更に詳しくは特定の相互作用パラメータの関係にある高ガラス転移温度(Tg)ジエン系ゴムと低ガラス転移温度(Tg)ジエン系ゴムとのブレンド系に芳香族ビニル化合物を主成分とした重合体(樹脂)を配合することによってタイヤの転がり抵抗をあげることなくウェットグリップを高めた高性能タイヤトレッド用ゴム組成物に関する。
【0002】
【従来の技術】
高性能タイヤ用トレッドの配合として、従来からタイヤのウェットグリップと転がり抵抗をバランスさせる技術が開発されている。そのような技術として、例えば、特開平8−231767号公報、特開平1−135845号公報、特開昭55−110136号公報などにはポリマーブレンドによる方法が提案され、例えば、特開昭62−1735号公報、特開平7−90124号公報、7−70370号公報などには、クマロン・インデン樹脂やp−t−ブチルフェノールを配合する方法が提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、かかる方法によっても高性能タイヤトレッド用として好適なウェットグリップと転がり抵抗とのバランスが必ずしも得られなかった。従って、本発明はかかる従来技術の問題点を排除して、ウェットグリップと転がり抵抗とのバランスに優れた高性能タイヤトレッド用ゴム組成物を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明に従えば、ガラス転移温度Tgが−45〜0℃であるジエン系ゴムA10〜90重量部、ガラス転移温度Tgが−110〜−45℃であるジエン系ゴムB90〜10重量部から成るジエン系ゴム100重量部に対し、ガラス転移温度Tgが5〜100℃である芳香族ビニル化合物を主成分とした重合体1〜60重量部を配合して成り、ジエン系ゴムA及びBのゴム同士の相互作用パラメータ(χeff )とそのゴムブレンド系のスピノーダル点の相互作用パラメータ(χs )とが下記関係:
0.0002≦χeff −χs ≦0.012
を満たし、かつ、ジエン系ゴムA及びBのTgの差が20℃以上であるタイヤトレッド用ゴム組成物が提供される。
【0005】
【発明の実施の形態】
本発明に従えば、前述の如く、Tgが−45〜0℃、好ましくは−40〜−10℃であるジエン系ゴムA10〜90重量部、好ましくは20〜80重量部とTgが−110〜−45℃、好ましくは−105〜−50℃であるジエン系ゴムB90〜10重量部、好ましくは80〜20重量部とを配合したジエン系ゴム100重量部に対し、α−メチルスチレン、ビニルトルエン、核置換α−メチルスチレン、核置換ビニルトルエン等の芳香族ビニル化合物を主成分とした重合体(樹脂)を1〜60重量部、好ましくは3〜30重量部配合する。
【0006】
前記ジエン系ゴムA及びBは、それぞれのTgの差が20℃以上、好ましくは25〜60℃である。またA−B間のχパラメータの値が、
0.0002≦χeff −χs ≦0.012
好ましくは
0.0005≦χeff −χs ≦0.0015
の関係を満たすことが必要である。
【0007】
本発明において使用するジエン系ゴムAのTgが−45℃未満ではウエットグリップが不十分で好ましくなく、逆に0℃を超えると常温で硬く、逆にグリップ力が低下するので好ましくない。また、ジエン系ゴムBのTgが−110℃未満のジエン系ゴムは入手困難であり好ましくなく、逆に−45℃を超えると転がり抵抗耐摩耗性が悪化するので好ましくない。更にジエン系ゴムA及びBのTgの差が20℃未満ではウエットグリップと転がり抵抗を高度にバランスすることができないので好ましくない。
【0008】
ジエン系ゴムAの配合量が10重量部未満であったり、ジエン系ゴムBの配合量が90重量部より多い場合には高いウエットグリップ力が得られないので好ましくなく、逆にジエン系ゴムAの配合量が90重量部を超えたり、ジエン系ゴムBの配合量が10重量部未満では転がり抵抗、耐摩耗性が悪化するので好ましくない。
【0009】
本発明において使用されるジエン系ゴムA及びBとしては、スチレン−ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、天然ゴム(NR)、ポリイソプレンゴム(IR)などをあげることができ、これらは単独又は任意の混合物として使用することができる。またこれらのガラス転移温度(Tg)は、例えば、SBRの場合のスチレン含量、ブタジエンの場合のビニル含量、シス及びトランス比、分子量などを適宜制御することにより調節することができる。全ジエン系ゴム組成物100重量部中にSBRが60重量部以上含まれるのが好ましい。
【0010】
本発明においては、ジエン系ゴムA及びBのゴム同士の相互作用パラメータ(χeff )及びそのブレンド系のスピノーダル点の相互作用パラメータ(χs )が前記関係式を満足することが必須でこの差(χeff −χs )が0.0002未満ではA,Bは相溶に近く、ブレンドした効果が発現されないので好ましくなく、逆に0.012を超えると分散相のドメインサイズが大きくなりすぎ、引張強度や耐摩耗性が悪化するので好ましくない。
【0011】
ここでχeff はMacromolewles, 24 , 4844 (1991) に示される下記式(1)によって計算される。
χeff =χ1 −χ2 …(1)
【0012】
また、χs は下記の熱力学の一般式(2)により計算される。
2χs =1/N1 φ1 +1/N2 φ2 …(2)
1 :1成分の重合度、N2 :2成分の重合度、φ1 :1成分のモル分率、φ2 :2成分のモル分率
【0013】
χeff <χs :相溶、χeff >χs :非相溶
χ1 =aeχsv+afχSB+bdχsv+bfχVB+cd
χSB+ceχVB
χ2 =abχsv+acχSB+bcχVB+deχsv+df
χSB+efχVB
χsv=56.5×10-3+5.62/T
χSB=8.43×10-3+10.2/T
χVB=2.69×10-3+1.87/T
【0014】
a:一方のジエン系ゴムのスチレン量
b:一方のジエン系ゴムのビニル量
c:一方のジエン系ゴムのブタジエン量
d:他方のジエン系ゴムのスチレン量
e:他方のジエン系ゴムのビニル量
f:他方のジエン系ゴムのブタジエン量
χsv:スチレンユニットと1,2−結合ブタジエンユニットの相互作用パラメータ
χSB:スチレンユニットと1,4−結合ブタジエンユニットの相互作用パラメータ
χVB:1,2−結合ブタジエンユニットと1,4−結合ブタジエンユニットの相互作用パラメータ
χeff :ポリマー間の相互作用パラメータ
χ1 :ポリマー分子間の相互作用パラメータ
χ2 :ポリマー分子内の相互作用パラメータ
χs ポリマーブレンド系のスピノーダル点の相互作用パラメータ
【0015】
本発明において使用する芳香族ビニル化合物重合体は、前記した通りα−メチルスチレン、ビニルトルエン、核置換α−メチルスチレン、核置換ビニルトルエン等の芳香族ビニル化合物を主成分とした重合体(樹脂)であり、そのTgが5〜100℃、好ましくは10〜90℃のものである。この重合体樹脂Tgが5℃未満では、樹脂の軟化温度が低すぎてブロッキングしやすく、取り扱いが困難となるので好ましくなく、逆にTgが100℃を超えると、転がり抵抗が悪化したり、ムーニー粘度が上昇したりすることによって加工性の悪化を招くので好ましくない。
【0016】
本発明によれば、以下の実施例にも示すように、転がり抵抗を維持しつつウェットグリップを高めたゴム組成物を得ることができる。これはα−メチルスチレンなどの芳香族ビニル化合物を主成分とする重合体はtanδ曲線のピークを高温側にシフトさせるが、40〜60℃のtanδは上昇させない。そのため、−10〜−40℃付近に高いtanδのピークを有するゴムに配合することが望ましく、非相溶となる高Tgゴムと低Tgゴムのブレンド系への配合が最も効果が高い。
【0017】
本発明に係るゴム組成物には、前記した必須成分に加えて、通常の補強剤、加硫または架橋剤、加硫または架橋促進剤、各種オイル、老化防止剤、充填剤、可塑化剤、軟化剤、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができ、かかる配合物は、一般的な方法で混練、加硫して組成物とし、加硫または架橋することができる。これらの添加剤の配合量も、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。
【0018】
【実施例】
以下、実施例及び比較例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことは言うまでもない。
【0019】
実施例1〜7及び比較例1〜6
1.7リットルの密閉型バンバリーミキサーを用いて、表Iに示す配合(重量部)のゴムおよびカーボンブラック等の加硫促進剤及び硫黄を除く配合剤を5分間混合した後、オープンロールにて、加硫促進剤及び硫黄を混合した。
【0020】
【表1】

Figure 0003778663
【0021】
【表2】
Figure 0003778663
【0022】
ポリマー1〜5のスチレン量、ビニル量は、常法の赤外分光分析法(スチレン量:ハンプト法、ビニル量:モレロ法)により測定した。分子量(Mw)はゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した。
ガラス転移温度(Tg)は、示差走査熱量計(DSC)を用い、昇温速度10℃/min で測定した。
【0023】
ショーブラック(SHOBLACK)N220:昭和キャボット(株)製
サントフレックス(SANTOFLEX)6PPD:FLEXSIS製
酸化亜鉛3種:正同化学工業(株)製
ステアリン酸:日本油脂(株)製
アロマオイル:富士興産(株)製
サントキュア(SANTOCURE)NS:FLEXSIS製
硫黄:(株)軽井沢精練所製
エスクロンG−90:新日鉄化学(株)製 クマロン・インデン樹脂(Tg=25℃)
エンデックス160:理化ハーキュレス製 芳香族ビニル化合物重合体樹脂(Tg=103℃)
FTR7080:三井石油化学工業(株)製 芳香族化合物C5 留分共重合体樹脂(Tg=15℃)
FTR0120:三井石油化学工業(株)製 α−メチルスチレン重合体樹脂(Tg=60℃)
FTR9135:三井石油化学工業(株)製 芳香族ビニル化合物重合体樹脂(Tg=70℃)
【0024】
次に、この組成物を15×15×0.2cmの金型中で160℃で20分間プレス加硫して目的とする試験片(ゴムシート)を調製し、χeff −χs 及びtanδ(0℃および60℃)を測定した。結果は表III に示す。
【0025】
各例において得られた組成物の加硫物性の試験方法は、以下のとおりである。
(1)χeff −χs
表IIの値を式(1)及び(2)に代入して計算
【0026】
(2)tanδ(0℃および60℃)
東洋精機製作所製レオログラフソリッドを用い、初期歪み=10%、動的歪み=2%、周波数=20Hzで粘弾性を測定(試料幅:5mm)。
【0027】
【表3】
Figure 0003778663
【0028】
樹脂未配合の比較例1に対し、本発明の範囲外の樹脂を配合すると比較例2,3のようにtanδ(0℃)が上昇する反面tanδ(60℃)も上昇するので好ましくない(注:tanδ(0℃)はウェット路面の摩擦力と相関し、値が大きい程、摩擦力が高く、tanδ(60℃)はタイヤの転がり抵抗と相関し、値が小さい程転がり抵抗が低い)。これに対し、本発明の範囲内の樹脂を配合すると実施例1〜5に示すようにtanδ(60℃)を上げることなく、tanδ(0℃)だけを上昇させることができる。
【0029】
一方、比較例4及び6のように(χeff −χs )の値が本発明の範囲外では、本発明の目的が達成されない。また、比較例5のようにポリマーのガラス転移温度が本発明の範囲外の場合も同様である。
【0030】
【発明の効果】
以上の通り、χパラメータの値が、0.0002≦(χeff −χs )≦0.012の関係にある高Tgゴムと低Tgゴムのブレンド系は、ウェットグリップ、耐摩耗性及び転がり抵抗のバランスが良く、これに芳香族ビニル化合物重合体を配合することにより、さらにウェットグリップを向上させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber composition for a high-performance tire tread, and more particularly, a blend system of a high glass transition temperature (Tg) diene rubber and a low glass transition temperature (Tg) diene rubber having a specific interaction parameter relationship. The present invention relates to a rubber composition for a high-performance tire tread in which a wet grip is enhanced without increasing the rolling resistance of a tire by blending a polymer (resin) containing an aromatic vinyl compound as a main component.
[0002]
[Prior art]
As a blend of high-performance tire treads, a technology that balances tire wet grip and rolling resistance has been developed. As such techniques, for example, methods using polymer blends are proposed in JP-A-8-231767, JP-A-1-135845, JP-A-55-11136, and the like. No. 1735, JP-A-7-90124, 7-70370, etc. propose methods for blending coumarone-indene resin and pt-butylphenol.
[0003]
[Problems to be solved by the invention]
However, even with such a method, a balance between a wet grip suitable for high-performance tire treads and rolling resistance cannot always be obtained. Accordingly, an object of the present invention is to provide a rubber composition for a high-performance tire tread excellent in the balance between wet grip and rolling resistance by eliminating such problems of the prior art.
[0004]
[Means for Solving the Problems]
According to the present invention, it comprises 10 to 90 parts by weight of a diene rubber A having a glass transition temperature Tg of −45 to 0 ° C. and 90 to 10 parts by weight of a diene rubber B having a glass transition temperature Tg of −110 to −45 ° C. Diene rubbers A and B rubber comprising 100 parts by weight of diene rubber and 1-60 parts by weight of a polymer mainly composed of an aromatic vinyl compound having a glass transition temperature Tg of 5 to 100 ° C. The interaction parameter (χ eff ) between the two and the interaction parameter (χ s ) of the spinodal point of the rubber blend system are as follows:
0.0002 ≦ χ eff −χ s ≦ 0.012
And a rubber composition for a tire tread in which the difference in Tg between the diene rubbers A and B is 20 ° C. or more is provided.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, as mentioned above, Tg is −45 to 0 ° C., preferably −40 to −10 ° C., 10 to 90 parts by weight, preferably 20 to 80 parts by weight, and Tg is −110. Α-methylstyrene, vinyltoluene with respect to 100 parts by weight of diene rubber blended with 90 to 10 parts by weight, preferably 80 to 20 parts by weight of diene rubber B at −45 ° C., preferably −105 to −50 ° C. 1 to 60 parts by weight, preferably 3 to 30 parts by weight of a polymer (resin) mainly composed of an aromatic vinyl compound such as nucleus-substituted α-methylstyrene or nucleus-substituted vinyltoluene.
[0006]
The diene rubbers A and B have a difference in Tg of 20 ° C. or more, preferably 25 to 60 ° C. The value of the χ parameter between A and B is
0.0002 ≦ χ eff −χ s ≦ 0.012
Preferably 0.0005 ≦ χ eff −χ s ≦ 0.0015
It is necessary to satisfy this relationship.
[0007]
When the Tg of the diene rubber A used in the present invention is less than −45 ° C., the wet grip is not preferable because it is insufficient. Further, a diene rubber having a Tg of less than −110 ° C. is not preferable because it is less than −110 ° C., and conversely if it exceeds −45 ° C., rolling resistance and wear resistance are deteriorated. Furthermore, if the difference in Tg between the diene rubbers A and B is less than 20 ° C., the wet grip and the rolling resistance cannot be highly balanced, which is not preferable.
[0008]
When the blending amount of the diene rubber A is less than 10 parts by weight or when the blending amount of the diene rubber B is more than 90 parts by weight, a high wet grip force cannot be obtained. If the blending amount exceeds 90 parts by weight or the blending amount of the diene rubber B is less than 10 parts by weight, the rolling resistance and wear resistance are deteriorated.
[0009]
Examples of the diene rubbers A and B used in the present invention include styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), natural rubber (NR), and polyisoprene rubber (IR). These can be used alone or as any mixture. These glass transition temperatures (Tg) can be adjusted by appropriately controlling, for example, the styrene content in the case of SBR, the vinyl content in the case of butadiene, the cis and trans ratio, the molecular weight, and the like. It is preferable that 60 parts by weight or more of SBR is contained in 100 parts by weight of the total diene rubber composition.
[0010]
In the present invention, it is essential that the interaction parameter (χ eff ) between the rubbers of the diene rubbers A and B and the interaction parameter (χ s ) of the spinodal point of the blend system satisfy the above relational expression. If (χ eff −χ s ) is less than 0.0002, A and B are close to each other and are not preferable because the blended effect is not expressed. Conversely, if it exceeds 0.012, the domain size of the dispersed phase becomes too large. Since tensile strength and abrasion resistance deteriorate, it is not preferable.
[0011]
Here, χ eff is calculated by the following equation (1) shown in Macromolewles, 24 , 4844 (1991).
χ eff = χ 1 −χ 2 (1)
[0012]
Χ s is calculated by the following general formula (2) of thermodynamics.
s = 1 / N 1 φ 1 + 1 / N 2 φ 2 (2)
N 1 : degree of polymerization of one component, N 2 : degree of polymerization of two components, φ 1 : molar fraction of one component, φ 2 : molar fraction of two components
χ effs : compatible, χ eff > χ s : incompatible χ 1 = ae χ sv + afχ SB + bdχ sv + bfχ VB + cd
χ SB + ceχ VB
χ 2 = abχ sv + acχ SB + bcχ VB + deχ sv + df
χ SB + efχ VB
χ sv = 56.5 × 10 −3 + 5.62 / T
χ SB = 8.43 × 10 −3 + 10.2 / T
χ VB = 2.69 × 10 −3 + 1.87 / T
[0014]
a: styrene content of one diene rubber b: vinyl content of one diene rubber c: butadiene content of one diene rubber d: styrene content of the other diene rubber e: vinyl content of the other diene rubber f: butadiene amount of the other diene rubber χ sv : interaction parameter of styrene unit and 1,2-bonded butadiene unit χ SB : interaction parameter of styrene unit and 1,4-bonded butadiene unit χ VB : 1,2 -Interaction parameter of bonded butadiene unit and 1,4-bonded butadiene unit χ eff : Interaction parameter between polymers χ 1 : Interaction parameter between polymer molecules χ 2 : Interaction parameter within polymer molecule χ s Polymer blend system Interaction parameters of spinodal points
As described above, the aromatic vinyl compound polymer used in the present invention is a polymer (resin) mainly composed of an aromatic vinyl compound such as α-methylstyrene, vinyltoluene, nucleus-substituted α-methylstyrene, and nucleus-substituted vinyltoluene. And the Tg is 5 to 100 ° C., preferably 10 to 90 ° C. If the polymer resin Tg is less than 5 ° C., the softening temperature of the resin is too low, and it is easy to block and handling becomes difficult. On the contrary, if the Tg exceeds 100 ° C., rolling resistance deteriorates, Mooney It is not preferable because the workability is deteriorated by increasing the viscosity.
[0016]
According to the present invention, as shown in the following examples, it is possible to obtain a rubber composition having improved wet grip while maintaining rolling resistance. This is because a polymer mainly composed of an aromatic vinyl compound such as α-methylstyrene shifts the peak of the tan δ curve to the high temperature side, but does not increase tan δ at 40 to 60 ° C. Therefore, it is desirable to mix with a rubber having a high tan δ peak in the vicinity of −10 to −40 ° C., and blending into a blend system of incompatible high Tg rubber and low Tg rubber is most effective.
[0017]
In addition to the above-described essential components, the rubber composition according to the present invention includes ordinary reinforcing agents, vulcanization or crosslinking agents, vulcanization or crosslinking accelerators, various oils, anti-aging agents, fillers, plasticizers, Various additives generally blended for softeners and other general rubbers can be blended, and these blends are kneaded and vulcanized by a general method to form a composition, which is then vulcanized or crosslinked. be able to. The blending amounts of these additives can be set to conventional general blending amounts as long as the object of the present invention is not violated.
[0018]
【Example】
Hereinafter, although an example and a comparative example explain the present invention further, it cannot be overemphasized that the scope of the present invention is not limited to these examples.
[0019]
Examples 1-7 and Comparative Examples 1-6
Using a 1.7 liter closed-type Banbury mixer, after mixing for 5 minutes, the rubbers of the compounding (parts by weight) shown in Table I and vulcanization accelerators such as carbon black and compounding agents excluding sulfur were mixed in an open roll. The vulcanization accelerator and sulfur were mixed.
[0020]
[Table 1]
Figure 0003778663
[0021]
[Table 2]
Figure 0003778663
[0022]
The styrene content and vinyl content of the polymers 1 to 5 were measured by a conventional infrared spectroscopic analysis method (styrene content: hump method, vinyl content: Morero method). The molecular weight (Mw) was measured using gel permeation chromatography (GPC).
The glass transition temperature (Tg) was measured using a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min.
[0023]
SHOBLACK N220: SANTOFLEX 6PPD manufactured by Showa Cabot Co., Ltd. 3PPD: FLEXSIS Zinc Oxide 3 types: Zocho Chemical Industry Co., Ltd. Stearic Acid: Nippon Oil & Fats Co., Ltd. Aroma Oil: Fuji Kosan ( SANTOCURE NS: FLEXSIS Sulfur: Karuizawa Seisakusho Escron G-90: Nippon Steel Chemical Co., Ltd. Coumaron Inden Resin (Tg = 25 ° C)
Endex 160: Rika Hercules aromatic vinyl compound polymer resin (Tg = 103 ° C.)
FTR7080: Aromatic compound C 5 fraction copolymer resin (Tg = 15 ° C.) manufactured by Mitsui Petrochemical Co., Ltd.
FTR0120: α-methylstyrene polymer resin (Tg = 60 ° C.) manufactured by Mitsui Petrochemical Co., Ltd.
FTR 9135: Aromatic vinyl compound polymer resin (Tg = 70 ° C.) manufactured by Mitsui Petrochemical Industries, Ltd.
[0024]
Next, this composition was press vulcanized at 160 ° C. for 20 minutes in a 15 × 15 × 0.2 cm mold to prepare a target test piece (rubber sheet), and χ eff −χ s and tan δ ( 0 ° C. and 60 ° C.). The results are shown in Table III.
[0025]
The test method of the vulcanization | cure property of the composition obtained in each case is as follows.
(1) χ eff −χ s
Substituting the values in Table II into equations (1) and (2)
(2) tan δ (0 ° C. and 60 ° C.)
Using rheograph solid manufactured by Toyo Seiki Seisakusho, viscoelasticity was measured at initial strain = 10%, dynamic strain = 2%, frequency = 20 Hz (sample width: 5 mm).
[0027]
[Table 3]
Figure 0003778663
[0028]
When a resin outside the range of the present invention is blended with respect to Comparative Example 1 in which the resin is not blended, tan δ (0 ° C.) increases as in Comparative Examples 2 and 3, but tan δ (60 ° C.) also increases. : Tan δ (0 ° C.) correlates with the frictional force of the wet road surface, and the larger the value, the higher the frictional force, and tan δ (60 ° C.) correlates with the rolling resistance of the tire, and the smaller the value, the lower the rolling resistance. On the other hand, when a resin within the range of the present invention is blended, only tan δ (0 ° C.) can be increased without increasing tan δ (60 ° C.) as shown in Examples 1 to 5.
[0029]
On the other hand, if the value of (χ eff −χ s ) is outside the scope of the present invention as in Comparative Examples 4 and 6, the object of the present invention is not achieved. The same applies when the glass transition temperature of the polymer is outside the range of the present invention as in Comparative Example 5.
[0030]
【The invention's effect】
As described above, the blend system of high Tg rubber and low Tg rubber in which the value of χ parameter is in the relationship of 0.0002 ≦ (χ eff −χ s ) ≦ 0.012, is wet grip, wear resistance, and rolling resistance. The wet grip can be further improved by adding an aromatic vinyl compound polymer thereto.

Claims (2)

ガラス転移温度Tgが−45〜0℃であるジエン系ゴムA10〜90重量部、ガラス転移温度Tgが−110〜−45℃であるジエン系ゴムB90〜10重量部から成るジエン系ゴム100重量部に対し、ガラス転移温度Tgが5〜100℃である芳香族ビニル化合物を主成分とした重合体1〜60重量部を配合して成り、ジエン系ゴムA及びBのゴム同士の相互作用パラメータ(χeff )とそのゴムブレンド系のスピノーダル点の相互作用パラメータ(χs )とが下記関係:
0.0002≦χeff −χs ≦0.012
を満たし、かつ、ジエン系ゴムA及びBのTgの差が20℃以上であるタイヤトレッド用ゴム組成物。
100 parts by weight of diene rubber consisting of 10 to 90 parts by weight of diene rubber A having a glass transition temperature Tg of −45 to 0 ° C. and 90 to 10 parts by weight of diene rubber B having a glass transition temperature Tg of −110 to −45 ° C. On the other hand, it is formed by blending 1 to 60 parts by weight of a polymer mainly composed of an aromatic vinyl compound having a glass transition temperature Tg of 5 to 100 ° C., and an interaction parameter between the rubbers of the diene rubbers A and B ( χ eff ) and its rubber blend system interaction parameter (χ s ) at the spinodal point:
0.0002 ≦ χ eff −χ s ≦ 0.012
And a difference in Tg between diene rubbers A and B is 20 ° C. or more.
前記ジエン系ゴム100重量部のうちの60重量部以上がスチレン−ブタジエン共重合体ゴムである請求項1に記載のゴム組成物。The rubber composition according to claim 1, wherein 60 parts by weight or more of 100 parts by weight of the diene rubber is a styrene-butadiene copolymer rubber.
JP21319697A 1997-08-07 1997-08-07 High performance tire tread rubber composition Expired - Fee Related JP3778663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21319697A JP3778663B2 (en) 1997-08-07 1997-08-07 High performance tire tread rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21319697A JP3778663B2 (en) 1997-08-07 1997-08-07 High performance tire tread rubber composition

Publications (2)

Publication Number Publication Date
JPH1149894A JPH1149894A (en) 1999-02-23
JP3778663B2 true JP3778663B2 (en) 2006-05-24

Family

ID=16635134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21319697A Expired - Fee Related JP3778663B2 (en) 1997-08-07 1997-08-07 High performance tire tread rubber composition

Country Status (1)

Country Link
JP (1) JP3778663B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3811548B2 (en) * 1997-08-07 2006-08-23 東洋ゴム工業株式会社 Rubber composition for tire tread
DE602006020668D1 (en) * 2005-09-26 2011-04-28 Sumitomo Rubber Ind Rubber composition for tires and tires made therefrom
JP4607077B2 (en) * 2005-09-26 2011-01-05 住友ゴム工業株式会社 Rubber composition for tire and tire using the same
JP5002186B2 (en) * 2006-05-08 2012-08-15 住友ゴム工業株式会社 Rubber composition for tire and tire using the same
US8722806B2 (en) 2008-02-15 2014-05-13 Bridgestone Corporation Rubber composition and tire using the same
FR2940303B1 (en) * 2008-12-19 2011-02-25 Michelin Soc Tech RUBBER COMPOSITION
FR2968006B1 (en) 2010-11-26 2012-12-21 Michelin Soc Tech TIRE TREAD TIRE
US11499038B2 (en) * 2017-12-26 2022-11-15 Bridgestone Corporation Tread composition and tire produced by using the same
JP7222181B2 (en) * 2018-05-09 2023-02-15 住友ゴム工業株式会社 Tire rubber composition and pneumatic tire
JP7485976B2 (en) * 2022-10-14 2024-05-17 横浜ゴム株式会社 Rubber composition for tires

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3366452B2 (en) * 1994-08-19 2003-01-14 株式会社ブリヂストン Rubber composition for tire tread
JP2900306B2 (en) * 1994-12-28 1999-06-02 横浜ゴム株式会社 Rubber composition
JP2853986B2 (en) * 1996-01-19 1999-02-03 横浜ゴム株式会社 Rubber compounding agent and rubber composition using the same

Also Published As

Publication number Publication date
JPH1149894A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
JP5900036B2 (en) Rubber composition for tire tread
JP5737324B2 (en) Rubber composition for tire
JP5291858B2 (en) Rubber composition and pneumatic tire using the same
JP5691682B2 (en) Rubber composition for tire tread
WO2015076049A1 (en) Pneumatic tire
WO2017126633A1 (en) Rubber composition and tire
JP7172165B2 (en) Rubber composition and tire
JP6993189B2 (en) Rubber composition for tires and pneumatic tires using them
JP2008138086A (en) Rubber composition for tire tread
JP3778663B2 (en) High performance tire tread rubber composition
WO2018003526A1 (en) Rubber composition for tires
JP2005146115A (en) Tire tread rubber composition
JP2016003274A (en) Rubber composition and pneumatic tire using the same
JP6926711B2 (en) Rubber composition for tires, treads and tires
US20190144644A1 (en) Rubber composition for tires, and pneumatic tire using the same
JP7009768B2 (en) Rubber composition and tires
JP6245033B2 (en) Rubber composition and pneumatic tire using the same
JPH11209519A (en) Rubber composition for tire tread
JP7473795B2 (en) Rubber composition and studless tire using same
JP2019089986A (en) Tire rubber composition, and pneumatic tire prepared therewith
JP2019137281A (en) Rubber composition for tire
JPH08231767A (en) Rubber composition
JP2018172639A (en) Rubber composition, and tire
JP2529858B2 (en) Rubber composition for tire tread
JP3494548B2 (en) Rubber composition for tire tread

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees