JP3778080B2 - Optical fiber array manufacturing method and resin material layer forming jig used in the manufacturing method - Google Patents

Optical fiber array manufacturing method and resin material layer forming jig used in the manufacturing method Download PDF

Info

Publication number
JP3778080B2
JP3778080B2 JP2001388990A JP2001388990A JP3778080B2 JP 3778080 B2 JP3778080 B2 JP 3778080B2 JP 2001388990 A JP2001388990 A JP 2001388990A JP 2001388990 A JP2001388990 A JP 2001388990A JP 3778080 B2 JP3778080 B2 JP 3778080B2
Authority
JP
Japan
Prior art keywords
optical fiber
resin material
plate
temporary fixing
flat surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001388990A
Other languages
Japanese (ja)
Other versions
JP2003185871A (en
Inventor
厚 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001388990A priority Critical patent/JP3778080B2/en
Publication of JP2003185871A publication Critical patent/JP2003185871A/en
Application granted granted Critical
Publication of JP3778080B2 publication Critical patent/JP3778080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一対の板状部材間に整列保持された複数の光ファイバ素線を備え、対向して配置される接続対象(例えば、光回路基板上の光ファイバ列、光導波路列若しくは光学素子等)と上記光ファイバ素線との光学的および機械的結合作業を容易にさせる光ファイバアレイの製造方法に係り、特に、光ファイバ素線における整列間隔の精度が改善される光ファイバアレイの製造方法およびこの製造方法に使用される樹脂材料層形成治具に関するものである。
【0002】
【従来の技術】
この種の光ファイバアレイにおいて複数の光ファイバ素線は、±1ミクロン以下の平面精度に設定された平坦面を有するガラス等板状部材の上記平坦面に整列して配置されている。上記板状部材は光ファイバアレイの機械強度を担うと共に、その平坦面上において光ファイバ素線(外被が剥されて露出した光ファイバ自体すなわちコアとクラッドで構成されたものを光ファイバ素線と称するが、狭義には光ファイバ心線の先端側外被が剥されて露出した部位を称する)の並びを一定の水平面から±1ミクロン以内に規定している。また、各光ファイバ素線の整列間隔も誤差±1ミクロン以下の精度に設定されており、同一の整列間隔で例えば光回路基板上に形成された光導波路列等との位置整合および光学的結合が可能となるように調整されている。
【0003】
ところで、上記光ファイバアレイにおいて各光ファイバ素線の整列間隔を高い精度に設定するため、従来技術においては複数の案内溝が長さ方向に亘り上記整列間隔と同一の間隔を介し高い精度で形成されている光ファイバ素線整列治具を用いて行なう方法が採られている。
【0004】
すなわち、図5(b)および図6(a)に示すように複数の案内溝10が長さ方向に亘り形成された光ファイバ素線整列治具11の上記案内溝10内に光ファイバ素線1をそれぞれ収容して所定の整列間隔を整えた後、図5(a)に示すように仮固着層用樹脂材料20が平坦面21に一様に塗布された板状部材2をその仮固着層用樹脂材料20を内側にして光ファイバ素線1が整列された光ファイバ素線整列治具11上に重ね合わせる(図5cおよび図6b参照)。
【0005】
尚、上記仮固着層用樹脂材料としては加熱あるいは紫外線等の照射により硬化する流動性樹脂材料等が適用される。
【0006】
そして、加熱あるいは紫外線等の照射にて仮固着層用樹脂材料20を硬化させて仮固着層3とし、この仮固着層3を介して板状部材2の平坦面21に上記光ファイバ素線1を一時的に固定(仮固着)させる(図5d参照)。
【0007】
更に、補強のため、図5(e)に示すように同じく平坦面を有する板状部材4を光ファイバ素線1が仮固着された板状部材2に重ね合せて光ファイバ素線1を一対の板状部材2、4により挟持し、かつ、補強用の樹脂材料を隙間部に充填しこれを硬化させて補強樹脂層5とし強固な一体構造としている。
【0008】
尚、上記板状部材2、4としては、一般に、石英、パイレックス(登録商標)なる商品名のコーニング社製耐熱ガラス等のガラス板が利用され、その表面を平坦に研磨加工することにより平坦度±1ミクロン以下の高精度平坦面が形成されている。また、上記光ファイバ素線整列治具11は、アルミナ、ジルコニア等のセラミックス材料にて構成され、砥石研削等の手段により断面略V字形状の案内溝10が複数形成されていると共に、上記案内溝10の間隔は±1ミクロン以下の誤差で規定の値に設定されている。
【0009】
【発明が解決しようとする課題】
ところで、図5(a)〜(e)に示した従来法にて光ファイバアレイを製造する場合、上記板状部材2の平坦面21に一様に塗布された仮固着層用樹脂材料20を硬化させて仮固着層3としこの仮固着層3を介し上記平坦面21に光ファイバ素線1を一時的に固定(仮固着)させた後、平坦面を有する板状部材4を上記光ファイバ素線1に接触させて配置するまでの組立て過程において、平坦面21に仮固着された光ファイバ素線1が上記板状部材2から脱落あるいは部分的に脱落してしまうことがあり、これに起因して光ファイバ素線1の整列精度が劣化する問題があった。
【0010】
この問題を回避するため上記仮固着層用樹脂材料20の塗布量を増やして仮固着層3の膜厚を増大させた場合、仮固着層用樹脂材料20の硬化に伴い発生する収縮応力が強力となって上記板状部材2を収縮方向へ湾曲させてしまい、板状部材2における平坦面21の平面精度が低下して光ファイバ素線1の整列精度が劣化する問題を有していた。
【0011】
一方、上記収縮応力の低減を図るため仮固着層用樹脂材料20の塗布量を減らして仮固着層3の膜厚を低下させた場合、上記組立て過程における光ファイバ素線1の脱落あるいは部分的脱落が顕著となり、かつ、脱落まで至らなくとも光ファイバ素線1の整列位置が微妙に変化してしまうことから、光ファイバ素線1の整列精度が劣化する問題を有していた。
【0012】
本発明はこの様な問題点に着目してなされたもので、その課題とするところは、上記組立て過程における光ファイバ素線の板状部材からの脱落あるいは部分的な脱落などが回避されて光ファイバ素線の整列精度を改善できる光ファイバアレイの製造方法およびこの製造方法に使用される樹脂材料層形成治具を提供することにある。
【0013】
【課題を解決するための手段】
すなわち、請求項1に係る発明は、
平坦面を有する一対の板状部材間に複数の光ファイバ素線が整列して配置され、かつ、各光ファイバ素線間および板状部材間に充填された樹脂材料により光ファイバ素線および板状部材が固定されていると共に、上記樹脂材料が、光ファイバアレイの組立て過程において一方の板状部材の平坦面上に整列された各光ファイバ素線を上記平坦面に一時的に固定するための仮固着層と、この仮固着層の形成後において仮固着層を除く部位の各光ファイバ素線間および板状部材間に形成される補強樹脂層とを構成している光ファイバアレイの製造方法を前提とし、
上記光ファイバ素線の整列間隔と同一若しくはこれより小さい間隔を介し複数の直線状凹溝が表面に形成された樹脂材料層形成治具の上記表面に仮固着層用樹脂材料を供給して保持させる工程と、
上記樹脂材料層形成治具の表面を板状部材の平坦面に接触させてこの平坦面に仮固着層用樹脂材料を転移させ、かつ、仮固着層用樹脂材料が転移された板状部材の平坦面上において樹脂材料層形成治具をその直線状凹溝方向に沿って移動させて上記平坦面上に仮固着層形成用の樹脂材料層を形成する工程と、
上記光ファイバ素線の整列間隔と同一の間隔を介し複数の案内溝が形成された光ファイバ素線整列治具の各案内溝内に光ファイバ素線を収容し、これ等光ファイバ素線が整列された光ファイバ素線整列治具に対し上記樹脂材料層が形成された板状部材をその樹脂材料層を内側にしかつ光ファイバ素線整列治具と板状部材との位置を整合させた状態で重ね合せて光ファイバ素線の長さ方向と直交する方向の硬化前における厚さ寸法が周期的に変化する仮固着層を形成する工程、
を具備し、かつ、光ファイバ素線の長さ方向と直交する方向の硬化後における仮固着層の厚さ寸法が周期的に変化し、その周期が光ファイバ素線の整列間隔と同一若しくはこれより小さく設定されていると共に、各光ファイバ素線間の上記平坦面上における厚さ寸法の極小部分において仮固着層が分断されていることを特徴とする。
【0014】
また、請求項2に係る発明は、
平坦面を有する一対の板状部材間に複数の光ファイバ素線が整列して配置され、かつ、各光ファイバ素線間および板状部材間に充填された樹脂材料により光ファイバ素線および板状部材が固定されていると共に、上記樹脂材料が、光ファイバアレイの組立て過程において一方の板状部材の平坦面上に整列された各光ファイバ素線を上記平坦面に一時的に固定するための仮固着層と、この仮固着層の形成後において仮固着層を除く部位の各光ファイバ素線間および板状部材間に形成される補強樹脂層とを構成している光ファイバアレイの製造方法を前提とし、
板状部材の平坦面に仮固着層用樹脂材料を供給して一様に形成する工程と、
仮固着層用樹脂材料が一様に形成された板状部材の平坦面に対し、光ファイバ素線の整列間隔と同一若しくはこれより小さい間隔を介し複数の直線状凹溝が表面に形成された樹脂材料層形成治具の上記表面を接触させると共に、樹脂材料層形成治具をその直線状凹溝方向に沿って移動させて上記平坦面上に仮固着層形成用の樹脂材料層を形成する工程と、
上記光ファイバ素線の整列間隔と同一の間隔を介し複数の案内溝が形成された光ファイバ素線整列治具の各案内溝内に光ファイバ素線を収容し、これ等光ファイバ素線が整列された光ファイバ素線整列治具に対し上記樹脂材料層が形成された板状部材をその樹脂材料層を内側にしかつ光ファイバ素線整列治具と板状部材との位置を整合させた状態で重ね合せて光ファイバ素線の長さ方向と直交する方向の硬化前における厚さ寸法が周期的に変化する仮固着層を形成する工程、
を具備し、かつ、光ファイバ素線の長さ方向と直交する方向の硬化後における仮固着層の厚さ寸法が周期的に変化し、その周期が光ファイバ素線の整列間隔と同一若しくはこれより小さく設定されていると共に、各光ファイバ素線間の上記平坦面上における厚さ寸法の極小部分において仮固着層が分断されていることを特徴とするものである。
【0015】
次に、請求項に係る発明は、
請求項若しくは請求項記載の光ファイバアレイの製造方法に使用される樹脂材料層形成治具を前提とし、
光ファイバ素線の整列間隔と同一若しくはこれより小さい間隔を介し複数の直線状凹溝が表面に形成されていることを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0017】
[第一実施の形態]
この実施の形態に係る光ファイバアレイの製造方法は、従来技術と同様、所定の間隔を介し複数の案内溝10が長さ方向に亘り形成されている光ファイバ素線整列治具11を用いることを前提としている(図1b参照)。
【0018】
まず、図1(a)に示すように板状部材2の平坦面21上に光ファイバ素線1の整列間隔と同一の間隔を介し断面三角形状でかつ平坦面21の長さ方向に亘り直線状に延びる複数の仮固着層形成用樹脂材料層200を形成する。
【0019】
尚、これ等樹脂材料層200は、図4(a)に示すようにその表面に複数の断面略V字形状の直線状凹溝101が形成された樹脂材料層形成治具100を用いて形成されている。すなわち、この樹脂材料層形成治具100に仮固着層形成用の樹脂材料を供給して保持させると共に、樹脂材料層形成治具100の表面を板状部材2の平坦面21に接触させてこの平坦面21に仮固着層用樹脂材料を転移させ、かつ、仮固着層用樹脂材料が転移された板状部材2の平坦面21上において樹脂材料層形成治具100をその直線状凹溝101方向に沿って移動させることにより余分な樹脂材料を掻き取って平坦面21上に断面三角形状の仮固着層形成用樹脂材料層200が形成される。
【0020】
次に、光ファイバ素線1の整列間隔と同一の間隔を介し複数の案内溝10が長さ方向に亘り形成されている光ファイバ素線整列治具11の各案内溝10内に図1(b)に示すように光ファイバ素線1を収容すると共に、これ等光ファイバ素線1が整列された光ファイバ素線整列治具11に対し上記樹脂材料層200が形成された板状部材2をその樹脂材料層200を内側にしかつ光ファイバ素線整列治具11と板状部材2との位置を整合させて各光ファイバ素線1と各樹脂材料層200をそれぞれ重ね合せることにより、断面三角形状の樹脂材料層200の頭部が一様に押し潰され、光ファイバ素線1と板状部材2との隙間部周辺に樹脂材料層200の一部が充填されて図1(c)に示すような硬化前におけるその厚さ寸法が周期的に変化している仮固着層3を形成する。
【0021】
この状態で上記樹脂材料層200を硬化させると共に光ファイバ素線整列治具11を板状部材2から取り外すことにより、図1(d)に示すように光ファイバ素線1の長さ方向と直交する方向の厚さ寸法が周期的に変化し、その周期が光ファイバ素線1の整列間隔と同一に設定されていると共に、各光ファイバ素線1間の上記平坦面21上における厚さ寸法の極小部分において分断されている(尚、極小部分における厚さ寸法は厳密には0でないため近似的な分断となる)硬化後における仮固着層3を形成することができる。
【0022】
このとき、硬化前における仮固着層3を構成する上記樹脂材料層200は、図1(c)に示すように光ファイバ素線1の長さ方向と直交する方向の厚さ寸法が周期的に変化し、その周期が光ファイバ素線1の整列間隔と同一に設定されていると共に、各光ファイバ素線1間の平坦面21上における厚さ寸法の極小部分において近似的に分断された構造になっていることから、各光ファイバ素線1の周辺部位における樹脂材料層200の厚さ寸法が大きい場合でも樹脂材料層200の硬化に伴い発生する収縮応力は分断されて低減されるため、従来、樹脂材料層200の硬化時において板状部材2が湾曲してしまう現象を回避することが可能となる。更に、各光ファイバ素線1の周辺部位における樹脂材料層200の厚さ寸法については、上述のようにこれを大きく設定できるため組立て過程における光ファイバ素線1の脱落あるいは部分的脱落を回避することができ、かつ、光ファイバ素線1における整列位置の微小な変化をも回避することが可能となる。
【0023】
そして、補強のため、図1(e)に示すように同じく平坦面を有する板状部材4を光ファイバ素線1が仮固着された板状部材2に重ね合せて光ファイバ素線1を一対の板状部材2、4により挟持し、かつ、補強用の樹脂材料を隙間部に充填しこれを硬化させて補強樹脂層5とし、更に一対の板状部材2、4の端面を研磨により平坦化し光ファイバ素線1の先端側を露出させることにより、この実施の形態に係る光ファイバアレイが得られる。
【0024】
[第二実施の形態]
この実施の形態に係る光ファイバアレイの製造方法も、従来技術と同様、所定の間隔を介し複数の案内溝10が長さ方向に亘り形成されている光ファイバ素線整列治具11を用いることを前提としている(図2b参照)。
【0025】
まず、図2(a)に示すように板状部材2の平坦面21上に光ファイバ素線1の整列間隔より小さい間隔を介し断面三角形状でかつ平坦面21の長さ方向に亘り直線状に延びる複数の仮固着層形成用樹脂材料層300を形成する。
【0026】
尚、これ等樹脂材料層300は、図4(b)に示すようにその表面に複数の断面略V字形状の直線状凹溝103が形成された樹脂材料層形成治具104(但し、第一実施の形態において使用した樹脂材料層形成治具より直線状凹溝の間隔が狭くかつ凹溝の形状も小さく設定されている)を用いて形成されている。すなわち、板状部材2の平坦面21上に仮固着層形成用の樹脂材料を供給して一様に形成し、この平坦面21に対し上記樹脂材料層形成治具104の表面を接触させ、かつ、板状部材2の平坦面21上において樹脂材料層形成治具104をその直線状凹溝103方向に沿って移動させることにより余分な樹脂材料が掻き取られると共に、樹脂材料層形成治具104の表面形状が転写されて平坦面21上に断面三角形状の仮固着層形成用樹脂材料層300が形成される。
【0027】
次に、光ファイバ素線1の整列間隔と同一の間隔を介し複数の案内溝10が長さ方向に亘り形成されている光ファイバ素線整列治具11の各案内溝10内に図2(b)に示すように光ファイバ素線1を収容すると共に、これ等光ファイバ素線1が整列された光ファイバ素線整列治具11に対し上記樹脂材料層300が形成された板状部材2をその樹脂材料層300を内側にしかつ光ファイバ素線整列治具11と板状部材2との位置を整合させて各光ファイバ素線1と各樹脂材料層300をそれぞれ重ね合せることにより、断面三角形状の樹脂材料層300の接触部が一様に押し潰されてその一部が光ファイバ素線1と板状部材2との隙間部周辺に充填され、図2(c)に示すような硬化前におけるその厚さ寸法が周期的に変化している仮固着層3を形成する。
【0028】
この状態で樹脂材料層300を硬化させると共に光ファイバ素線整列治具11を板状部材2から取り外すことにより、図2(d)に示すように光ファイバ素線1の長さ方向と直交する方向の厚さ寸法が周期的に変化し、その周期が光ファイバ素線1の整列間隔と同一に設定されている(但し、ここでの周期は、樹脂材料層形成治具104により形成されかつ光ファイバ素線1の整列間隔より小さく設定された樹脂材料層300の周期と、この樹脂材料層300が光ファイバ素線1により押し潰されて形成されかつ光ファイバ素線1の整列間隔と同一の潰され凹部の周期とが合成された周期を意味している。以下、同様)と共に、各光ファイバ素線1間の平坦面21上における厚さ寸法の極小部分において分断されている(尚、この実施の形態においても上記極小部分における厚さ寸法は厳密には0でないため近似的な分断となる)硬化後における仮固着層3を形成することができる。
【0029】
このとき、硬化前における仮固着層3を構成する上記樹脂材料層300は、図2(c)に示すように光ファイバ素線1の長さ方向と直交する方向の厚さ寸法が周期的に変化し、その周期が光ファイバ素線1の整列間隔と同一に設定されていると共に、各光ファイバ素線1間の平坦面21上における厚さ寸法の極小部分において近似的に分断された構造になっていることから、各光ファイバ素線1の周辺部位における樹脂材料層300の厚さ寸法が大きい場合でも樹脂材料層300の硬化に伴い発生する収縮応力は分断されて低減されるため、従来、樹脂材料層300の硬化時において板状部材2が湾曲してしまう現象を回避することが可能となる。更に、各光ファイバ素線1の周辺部位における樹脂材料層300の厚さ寸法については、上述のようにこれを大きく設定できるため組立て過程における光ファイバ素線1の脱落あるいは部分的脱落を回避することができ、かつ、光ファイバ素線1における整列位置の微小な変化をも回避することが可能となる。
【0030】
そして、第一実施の形態と同様、図2(e)に示すように同じく平坦面を有する板状部材4を光ファイバ素線1が仮固着された板状部材2に重ね合せて光ファイバ素線1を一対の板状部材2、4により挟持し、かつ、補強用の樹脂材料を隙間部に充填しこれを硬化させて補強樹脂層5とし、更に一対の板状部材2、4の端面を研磨により平坦化し光ファイバ素線1の先端側を露出させることにより、この実施の形態に係る光ファイバアレイが得られる。
【0031】
[第三実施の形態]
この実施の形態に係る光ファイバアレイの製造方法も、従来技術と同様、所定の間隔を介し複数の案内溝10が長さ方向に亘り形成されている光ファイバ素線整列治具11を用いることを前提としている(図3b参照)。
【0032】
まず、図3(a)に示すように板状部材2の平坦面21上に光ファイバ素線1の整列間隔と同一の間隔を介し断面矩形状でかつ平坦面21の長さ方向に亘り直線状に延びる複数の仮固着層形成用樹脂材料層400を形成する。
【0033】
尚、これ等樹脂材料層400は、図4(c)に示すようにその表面に複数の断面矩形状の直線状凹溝106が形成された樹脂材料層形成治具105を用いて形成されている。すなわち、この樹脂材料層形成治具105に仮固着層形成用の樹脂材料を供給して保持させると共に、樹脂材料層形成治具105の表面を板状部材2の平坦面21に接触させてこの平坦面21に仮固着層用樹脂材料を転移させ、かつ、仮固着層用樹脂材料が転移された板状部材2の平坦面21上において樹脂材料層形成治具105をその直線状凹溝106方向に沿って移動させることにより余分な樹脂材料を掻き取って平坦面21上に断面矩形状の仮固着層形成用樹脂材料層400が形成される。
【0034】
次に、光ファイバ素線1の整列間隔と同一の間隔を介し複数の案内溝10が長さ方向に亘り形成されている光ファイバ素線整列治具11の各案内溝10内に図3(b)に示すように光ファイバ素線1を収容すると共に、これ等光ファイバ素線1が整列された光ファイバ素線整列治具11に対し上記樹脂材料層400が形成された板状部材2をその樹脂材料層400を内側にしかつ光ファイバ素線整列治具11と板状部材2との位置を整合させて各光ファイバ素線1と各樹脂材料層400をそれぞれ重ね合せることにより、断面矩形状の樹脂材料層400の頭部が一様に押し潰され、その一部が光ファイバ素線1と板状部材2との隙間部周辺に充填されて図3(c)に示すような硬化前におけるその厚さ寸法が周期的に変化している仮固着層3を形成する。
【0035】
この状態で上記樹脂材料層400を硬化させると共に光ファイバ素線整列治具11を板状部材2から取り外すことにより、図3(d)に示すように光ファイバ素線1の長さ方向と直交する方向の厚さ寸法が周期的に変化し、その周期が光ファイバ素線1の整列間隔と同一に設定されていると共に、各光ファイバ素線1間の上記平坦面21上における厚さ寸法の極小部分において分断されている(この実施の形態においては上記極小部分における厚さ寸法が0であるため完全な分断となる)硬化後における仮固着層3を形成することができる。
【0036】
このとき、硬化前における仮固着層3を構成する上記樹脂材料層400は、図3(c)に示すように光ファイバ素線1の長さ方向と直交する方向の厚さ寸法が周期的に変化し、その周期が光ファイバ素線1の整列間隔と同一に設定されていると共に、各光ファイバ素線1間の平坦面21上における厚さ寸法の極小部分において完全に分断された構造になっていることから、各光ファイバ素線1の周辺部位における樹脂材料層400の厚さ寸法が大きい場合でも樹脂材料層400の硬化に伴い発生する収縮応力は分断されて低減されるため、従来、樹脂材料層400の硬化時において板状部材2が湾曲してしまう現象を回避することが可能となる。更に、各光ファイバ素線1の周辺部位における樹脂材料層400の厚さ寸法については、上述のようにこれを大きく設定できるため組立て過程における光ファイバ素線1の脱落あるいは部分的脱落を回避することができ、かつ、光ファイバ素線1における整列位置の微小な変化をも回避することが可能となる。
【0037】
そして、第一実施の形態と同様、図3(e)に示すように同じく平坦面を有する板状部材4を光ファイバ素線1が仮固着された板状部材2に重ね合せて光ファイバ素線1を一対の板状部材2、4により挟持し、かつ、補強用の樹脂材料を隙間部に充填しこれを硬化させて補強樹脂層5とし、更に一対の板状部材2、4の端面を研磨により平坦化し光ファイバ素線1の先端側を露出させることにより、この実施の形態に係る光ファイバアレイが得られる。
【0038】
【実施例】
以下、本発明の実施例について具体的に説明する。
【0039】
[実施例1]
この実施例は第一実施の形態を具体化したものである。
【0040】
まず、図4(a)に示した樹脂材料層形成治具100の表面に紫外線硬化エポキシ樹脂を滴下して付着させる。尚、樹脂材料層形成治具100における断面略V字形状の直線状凹溝101は、深さ60ミクロン、開口幅120ミクロン、溝間隔は250ミクロンである。
【0041】
次に、上記樹脂材料層形成治具100の表面に付着させた樹脂材料を板状部材2の平坦面21に塗り付けて図1(a)に示すように断面三角形状の仮固着層形成用樹脂材料層200を形成する。このとき、板状部材2の平坦面21上において樹脂材料層形成治具100をその直線状凹溝101方向に沿って移動させることにより余分な樹脂材料は掻き取られると共に、樹脂材料層形成治具100の凹凸形状が転写されて仮固着層形成用樹脂材料層200が形成される。この仮固着層形成用樹脂材料層200の断面形状は上記樹脂材料層形成治具100の表面形状を略反映して250ミクロン間隔で並んだ三角形状をしており、頂点の高さは約40ミクロン、底辺の幅は約120ミクロンである。各仮固着層形成用樹脂材料層200の間には実質的に樹脂材料のない領域が存在し、この領域において各仮固着層形成用樹脂材料層200は分断されている。また、樹脂材料の粘度は、上記分断が自然に無くならない程度の比較的高い粘度に調整されている。
【0042】
次に、複数の案内溝10が長さ方向に亘り形成されているセラミックス製の光ファイバ素線整列治具11の各案内溝10内に図1(b)に示すように光ファイバ素線1を収容し、かつ、整列する。尚、断面略V字形状の案内溝10間隔は250ミクロン、光ファイバ素線1の直径は125ミクロンである。
【0043】
次いで、図1(c)に示すように光ファイバ素線1が整列された光ファイバ素線整列治具11に対し上記樹脂材料層200が形成された板状部材2をその樹脂材料層200を内側にしかつ光ファイバ素線整列治具11と板状部材2との位置を整合させて各光ファイバ素線1と局在する各樹脂材料層200をそれぞれ重ね合せながら荷重を加えることにより、断面三角形状の樹脂材料層200の頭部が一様に押し潰され、その一部が光ファイバ素線1と板状部材2との隙間部周辺に充填されて硬化前におけるその厚さ寸法が周期的に変化している仮固着層3を形成する。
【0044】
そして、この状態で上記板状部材2を介して紫外線硬化エポキシ樹脂の樹脂材料で構成される仮固着層3へ向けて紫外線を照射しこれを硬化させると共に光ファイバ素線整列治具11を板状部材2から取り外すことにより、図1(d)に示すように光ファイバ素線1の長さ方向と直交する方向の厚さ寸法が周期的に変化し、その周期が光ファイバ素線1の整列間隔と同一に設定されていると共に、各光ファイバ素線1間の上記平坦面21上における厚さ寸法の極小部分において分断されている硬化後における仮固着層3を形成することができる。
【0045】
次に、図1(e)に示すように同じく平坦面を有する板状部材4を光ファイバ素線1が仮固着された板状部材2に重ね合せて光ファイバ素線1を一対の板状部材2、4により挟持し、かつ、熱硬化エポキシ樹脂から成る樹脂材料を端面から充填すると共に、一対の板状部材2、4間に荷重を加えながら加熱硬化させて補強樹脂層5とし、更に、上記板状部材2、4端面を研磨により平坦化し光ファイバ素線1の先端側を露出させることにより実施例1に係る光ファイバアレイが得られる。
【0046】
[実施例2]
この実施例は第二実施の形態を具体化したものである。
【0047】
まず、板状部材2の平坦面上に紫外線硬化エポキシ樹脂を滴下して一様に付着させた後、この樹脂材料が一様に付着された平坦面に対し、図4(b)に示した樹脂材料層形成治具104の表面を接触させ、かつ、板状部材2の平坦面21上において樹脂材料層形成治具104をその直線状凹溝103方向に沿って移動させることにより余分な樹脂材料が掻き取られると共に、樹脂材料層形成治具104の凹凸形状が転写されて仮固着層形成用樹脂材料層300が形成される。尚、樹脂材料層形成治具104における断面略V字形状の直線状凹溝103は、深さ45ミクロン、開口幅40ミクロン、溝間隔は40ミクロンであるので溝同士は隣接している。また、仮固着層形成用樹脂材料層300の断面形状は上記樹脂材料層形成治具104の表面形状を略反映して三角形状をしており、頂点の高さは約40ミクロン、底辺の幅は約40ミクロンである。また、各仮固着層形成用樹脂材料層300はその裾部位において接しており、かつ、接触領域でその厚さ寸法は極小となってその値は10ミクロン以下であった。従って、上記接触領域において各仮固着層形成用樹脂材料層200は近似的に分断されている。また、樹脂材料の粘度は、上記極小領域が流動により自然に無くならない程度の比較的高い粘度に調整されている。
【0048】
次に、複数の案内溝10が長さ方向に亘り形成されているセラミックス製の光ファイバ素線整列治具11の各案内溝10内に図2(b)に示すように光ファイバ素線1を収容し、かつ、整列する。尚、断面略V字形状の案内溝10間隔は250ミクロン、光ファイバ素線1の直径は125ミクロンである。
【0049】
次いで、図2(c)に示すように光ファイバ素線1が整列された光ファイバ素線整列治具11に対し上記樹脂材料層300が形成された板状部材2をその樹脂材料層300を内側にしかつ各光ファイバ素線1と各樹脂材料層300をそれぞれ重ね合せながら荷重を加えることにより、断面三角形状の樹脂材料層300の頭部が一様に押し潰されその一部が光ファイバ素線1と板状部材2との隙間部周辺に充填されて硬化前におけるその厚さ寸法が周期的に変化している仮固着層3を形成する。
【0050】
そして、この状態で上記板状部材2を介して紫外線硬化エポキシ樹脂の樹脂材料で構成される仮固着層3へ向けて紫外線を照射しこれを硬化させると共に光ファイバ素線整列治具11を板状部材2から取り外すことにより、図2(d)に示すように光ファイバ素線1の長さ方向と直交する方向の厚さ寸法が周期的に変化し、その周期が光ファイバ素線1の整列間隔と同一に設定されていると共に、各光ファイバ素線1間の上記平坦面21上における厚さ寸法の極小部分において近似的に分断されている硬化後における仮固着層3を形成することができる。
【0051】
次に、図2(e)に示すように同じく平坦面を有する板状部材4を光ファイバ素線1が仮固着された板状部材2に重ね合せて光ファイバ素線1を一対の板状部材2、4により挟持し、かつ、熱硬化エポキシ樹脂から成る樹脂材料を端面から充填すると共に、一対の板状部材2、4間に荷重を加えながら加熱硬化させて補強樹脂層5とし、更に、上記板状部材2、4端面を研磨により平坦化し光ファイバ素線1の先端側を露出させることにより実施例2に係る光ファイバアレイが得られる。
【0052】
【発明の効果】
請求項1〜2に記載の発明に係る光ファイバアレイの製造方法によれば、
一方の板状部材の平坦面に各光ファイバ素線を一時的に固定する仮固着層について、光ファイバ素線の長さ方向と直交する方向の厚さ寸法が周期的に変化し、その周期が光ファイバ素線の整列間隔と同一若しくはこれより小さく設定されていると共に、各光ファイバ素線間の平坦面上における厚さ寸法の極小部分において分断される構造になっているため、
仮固着層を構成する硬化前における樹脂材料の厚さ寸法が部分的に大きく設定されていても、上記樹脂材料の硬化時において発生する収縮応力は上記極小部分において分断され低減される。
【0053】
このため、樹脂材料の収縮応力に起因して板状部材が湾曲してしまう弊害を回避でき、かつ、各光ファイバ素線の周辺部位における樹脂材料の厚さ寸法を部分的に大きく設定できることから組立て過程における光ファイバ素線の脱落若しくは部分的脱落を回避することができ、更に、光ファイバ素線における整列位置の微小な変化をも回避することが可能となる。
【0054】
従って、光ファイバ素線が高精度で整列された光ファイバアレイを提供できる効果を有する。
【0055】
また、請求項記載の発明に係る樹脂材料層形成治具によれば、
請求項記載の光ファイバアレイの製造方法に使用されて光ファイバアレイの製造を容易にさせる効果を有する。
【図面の簡単な説明】
【図1】図1(a)〜(e)は、本発明の第一実施の形態に係る光ファイバアレイの製造方法についてその工程を示す工程説明図。
【図2】図2(a)〜(e)は、本発明の第二実施の形態に係る光ファイバアレイの製造方法についてその工程を示す工程説明図。
【図3】図3(a)〜(e)は、本発明の第三実施の形態に係る光ファイバアレイの製造方法についてその工程を示す工程説明図。
【図4】図4(a)および(b)は本発明に係る光ファイバアレイの製造方法で使用される樹脂材料層形成治具の概略斜視図。
【図5】図5(a)〜(e)は、光ファイバ素線整列治具を用いた従来例に係る光ファイバアレイの製造方法についてその工程を示す工程説明図。
【図6】図6(a)〜(b)は、光ファイバ素線整列治具を用いた従来法に係る光ファイバアレイの製造方法についてその工程を示す概略斜視図。
【符号の説明】
1 光ファイバ素線
2 板状部材
3 仮固着層
4 板状部材
5 補強樹脂層
10 案内溝
11 光ファイバ素線整列治具
21 平坦面
200 仮固着層形成用樹脂材料層
[0001]
BACKGROUND OF THE INVENTION
  The present invention includes a plurality of optical fiber strands aligned and held between a pair of plate-like members, and a connection object (for example, an optical fiber array, an optical waveguide array or an optical element on an optical circuit board) Etc.) and an optical fiber array that facilitates the optical and mechanical coupling work of the optical fiber, and in particular, the manufacture of an optical fiber array in which the accuracy of the alignment interval in the optical fiber is improved The present invention relates to a method and a resin material layer forming jig used in the manufacturing method.
[0002]
[Prior art]
In this type of optical fiber array, a plurality of optical fiber strands are arranged in alignment with the flat surface of a plate member such as a glass having a flat surface set to a plane accuracy of ± 1 micron or less. The plate-shaped member bears the mechanical strength of the optical fiber array, and on the flat surface thereof, the optical fiber strand (the optical fiber itself, that is, the one constituted by the optical fiber itself, that is, the core and the clad, which is exposed by peeling off the outer sheath) However, in a narrow sense, the arrangement is defined to be within ± 1 micron from a certain horizontal plane). Also, the alignment interval of each optical fiber is set to an accuracy of ± 1 micron or less, and the alignment and optical coupling with, for example, an optical waveguide array formed on the optical circuit board at the same alignment interval. Has been adjusted to be possible.
[0003]
By the way, in order to set the alignment interval of each optical fiber in the optical fiber array with high accuracy, in the prior art, a plurality of guide grooves are formed with high accuracy over the length direction through the same interval as the alignment interval. A method of using an optical fiber strand aligning jig is adopted.
[0004]
That is, as shown in FIG. 5B and FIG. 6A, an optical fiber strand is formed in the guide groove 10 of the optical fiber strand alignment jig 11 in which a plurality of guide grooves 10 are formed in the length direction. 1 is accommodated, and the predetermined alignment interval is adjusted. Then, as shown in FIG. 5A, the plate-like member 2 in which the temporary fixing layer resin material 20 is uniformly applied to the flat surface 21 is temporarily fixed. The layered resin material 20 is placed on the optical fiber strand alignment jig 11 in which the optical fiber strands 1 are aligned (see FIGS. 5c and 6b).
[0005]
In addition, as the resin material for the temporary fixing layer, a fluid resin material that is cured by heating or irradiation with ultraviolet rays or the like is applied.
[0006]
Then, the temporary fixing layer resin material 20 is cured by heating or irradiation with ultraviolet rays or the like to form the temporary fixing layer 3, and the optical fiber 1 is placed on the flat surface 21 of the plate-like member 2 through the temporary fixing layer 3. Is temporarily fixed (temporarily fixed) (see FIG. 5d).
[0007]
Further, as shown in FIG. 5 (e), a pair of optical fiber strands 1 having a flat surface are overlapped with a plate-like member 2 to which the optical fiber strands 1 are temporarily fixed as shown in FIG. The plate-like members 2 and 4 are sandwiched, and a resin material for reinforcement is filled in the gap portion and cured to form a reinforcing resin layer 5 having a strong integrated structure.
[0008]
As the plate-like members 2 and 4, glass plates such as quartz and heat-resistant glass made by Corning under the trade name of Pyrex (registered trademark) are generally used, and the flatness is obtained by polishing the surface flatly. A high-precision flat surface of ± 1 micron or less is formed. The optical fiber alignment jig 11 is made of a ceramic material such as alumina or zirconia, and a plurality of guide grooves 10 having a substantially V-shaped cross section are formed by means such as grinding of a grindstone. The interval between the grooves 10 is set to a specified value with an error of ± 1 micron or less.
[0009]
[Problems to be solved by the invention]
By the way, when manufacturing an optical fiber array by the conventional method shown to Fig.5 (a)-(e), the resin material 20 for temporary adhering layers uniformly apply | coated to the flat surface 21 of the said plate-shaped member 2 is used. The optical fiber 1 is temporarily fixed (temporarily fixed) to the flat surface 21 via the temporary fixing layer 3 after being cured, and then the plate member 4 having the flat surface is bonded to the optical fiber. In the assembly process until contact is made with the element wire 1, the optical fiber element wire 1 temporarily fixed to the flat surface 21 may fall off or partially drop off from the plate-like member 2. As a result, there is a problem that the alignment accuracy of the optical fiber 1 is deteriorated.
[0010]
In order to avoid this problem, when the coating amount of the temporary fixing layer resin material 20 is increased to increase the film thickness of the temporary fixing layer 3, the shrinkage stress generated along with the hardening of the temporary fixing layer resin material 20 is strong. As a result, the plate-like member 2 is bent in the contraction direction, and the planar accuracy of the flat surface 21 of the plate-like member 2 is lowered, and the alignment accuracy of the optical fiber 1 is deteriorated.
[0011]
On the other hand, when the thickness of the temporary fixing layer 3 is reduced by reducing the coating amount of the resin material 20 for the temporary fixing layer in order to reduce the shrinkage stress, the optical fiber 1 is dropped or partially removed in the assembly process. There has been a problem that the alignment accuracy of the optical fiber 1 is deteriorated because the disconnection becomes noticeable and the alignment position of the optical fiber 1 is slightly changed even if the disconnection does not occur.
[0012]
  The present invention has been made paying attention to such problems, and the object of the present invention is to avoid dropping or partial dropping of the optical fiber strand from the plate-like member in the assembly process. An object of the present invention is to provide an optical fiber array manufacturing method capable of improving the alignment accuracy of fiber strands and a resin material layer forming jig used in the manufacturing method.
[0013]
[Means for Solving the Problems]
  That is, the invention according to claim 1
  A plurality of optical fiber strands are arranged in alignment between a pair of plate-like members having a flat surface, and the optical fiber strands and the plates are made of a resin material filled between the optical fiber strands and between the plate-like members. And the resin material temporarily fixes the optical fiber wires aligned on the flat surface of one plate-like member to the flat surface in the process of assembling the optical fiber array. And a reinforcing resin layer formed between the optical fiber strands and between the plate-like members at portions other than the temporary fixing layer after the temporary fixing layer is formed.Manufacturing methodAssuming
  Supply and hold the resin material for the temporary fixing layer on the surface of the resin material layer forming jig in which a plurality of linear grooves are formed on the surface through an interval equal to or smaller than the alignment interval of the optical fiber strands. A process of
The surface of the resin material layer forming jig is brought into contact with the flat surface of the plate-like member to transfer the temporary fixing layer resin material to the flat surface, and the temporary fixing layer resin material is transferred to the plate-like member. A step of moving a resin material layer forming jig along the linear groove direction on the flat surface to form a resin material layer for temporarily fixing layer formation on the flat surface;
  An optical fiber strand is accommodated in each guide groove of an optical fiber strand alignment jig in which a plurality of guide grooves are formed at the same interval as the alignment interval of the optical fiber strands. The plate-shaped member on which the resin material layer is formed is aligned with the aligned optical fiber strand alignment jig, and the positions of the optical fiber strand alignment jig and the plate-shaped member are aligned. A step of forming a temporary fixing layer in which the thickness dimension before curing in a direction orthogonal to the length direction of the optical fiber strand is periodically changed by overlapping in a state;
And the thickness dimension of the temporary fixing layer after curing in a direction orthogonal to the length direction of the optical fiber strands is periodically changed, and the period is the same as or equal to the alignment interval of the optical fiber strands. In addition to being set smaller, the temporary fixing layer is divided at the minimum portion of the thickness dimension on the flat surface between the optical fiber strands.It is characterized by that.
[0014]
  The invention according to claim 2
  A plurality of optical fiber strands are arranged in alignment between a pair of plate-like members having a flat surface, and the optical fiber strands and the plates are made of a resin material filled between the optical fiber strands and between the plate-like members. And the resin material temporarily fixes the optical fiber wires aligned on the flat surface of one plate-like member to the flat surface in the process of assembling the optical fiber array. And a reinforcing resin layer formed between the optical fiber strands and between the plate-like members at portions other than the temporary fixing layer after the temporary fixing layer is formed.Assuming an optical fiber array manufacturing method,
  Supplying the resin material for the temporary fixing layer to the flat surface of the plate-like member and forming it uniformly;
  A plurality of linear concave grooves are formed on the surface of the flat surface of the plate-like member on which the resin material for the temporary fixing layer is uniformly formed at intervals equal to or smaller than the alignment interval of the optical fiber strands. The resin material layer forming jig is brought into contact with the surface, and the resin material layer forming jig is moved along the direction of the linear groove to form a resin material layer for temporarily fixing layer formation on the flat surface. Process,
  An optical fiber strand is accommodated in each guide groove of an optical fiber strand alignment jig in which a plurality of guide grooves are formed at the same interval as the alignment interval of the optical fiber strands. The plate-shaped member on which the resin material layer is formed is aligned with the aligned optical fiber strand alignment jig, and the positions of the optical fiber strand alignment jig and the plate-shaped member are aligned. Overlapping in stateIn the direction perpendicular to the length direction of the optical fiberA step of forming a temporary fixing layer in which the thickness dimension before curing periodically changes;
Equipped withIn addition, the thickness dimension of the temporary fixing layer after curing in the direction perpendicular to the length direction of the optical fiber strands periodically changes, and the period is equal to or smaller than the alignment interval of the optical fiber strands. In addition to being set, the temporary fixing layer is divided at the minimum portion of the thickness dimension on the flat surface between the optical fiber strands.It is characterized by this.
[0015]
  Next, the claim3The invention according to
  Claim1Or claims2Assuming a resin material layer forming jig used in the manufacturing method of the optical fiber array described,
  A plurality of linear concave grooves are formed on the surface at intervals equal to or smaller than the alignment interval of the optical fiber strands.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
[First embodiment]
The optical fiber array manufacturing method according to this embodiment uses an optical fiber strand alignment jig 11 in which a plurality of guide grooves 10 are formed in a length direction with a predetermined interval, as in the prior art. (See FIG. 1b).
[0018]
First, as shown in FIG. 1A, the flat surface 21 of the plate-like member 2 has a triangular cross section and a straight line extending in the length direction of the flat surface 21 through the same interval as the alignment interval of the optical fiber strands 1. A plurality of temporarily fixed layer forming resin material layers 200 extending in a shape are formed.
[0019]
These resin material layers 200 are formed by using a resin material layer forming jig 100 having a plurality of substantially V-shaped linear grooves 101 formed on the surface thereof as shown in FIG. 4A. Has been. That is, the resin material layer forming jig 100 is supplied with the resin material for temporarily fixing layer formation and held, and the surface of the resin material layer forming jig 100 is brought into contact with the flat surface 21 of the plate-like member 2 to The resin material for the temporary fixing layer is transferred to the flat surface 21, and the resin material layer forming jig 100 is placed on the linear concave groove 101 on the flat surface 21 of the plate-like member 2 to which the resin material for the temporary fixing layer is transferred. By moving along the direction, the excess resin material is scraped off, and the temporary fixing layer forming resin material layer 200 having a triangular cross section is formed on the flat surface 21.
[0020]
Next, in each guide groove 10 of the optical fiber strand alignment jig 11 in which a plurality of guide grooves 10 are formed in the length direction through the same interval as the alignment interval of the optical fiber strands 1, FIG. As shown in b), the plate-like member 2 in which the optical fiber 1 is accommodated and the resin material layer 200 is formed on the optical fiber alignment jig 11 on which the optical fibers 1 are aligned. By aligning the positions of the optical fiber strand aligning jig 11 and the plate-like member 2 with the resin material layer 200 on the inside, the optical fiber strands 1 and the resin material layers 200 are overlapped, respectively. The head portion of the triangular resin material layer 200 is uniformly crushed, and a part of the resin material layer 200 is filled around the gap between the optical fiber element 1 and the plate-like member 2 as shown in FIG. The thickness dimension before curing as shown in Forming a temporary fixing layer 3 are.
[0021]
In this state, the resin material layer 200 is cured, and the optical fiber strand aligning jig 11 is removed from the plate-like member 2, thereby orthogonal to the length direction of the optical fiber strand 1 as shown in FIG. The thickness dimension in the direction in which the optical fiber strands 1 and 2 are periodically changed, and the period is set to be the same as the alignment interval of the optical fiber strands 1. It is possible to form a temporary fixing layer 3 after curing that is divided at the minimum portion (the thickness dimension at the minimum portion is not strictly zero and thus is approximately divided).
[0022]
At this time, the resin material layer 200 constituting the temporary fixing layer 3 before curing has a thickness dimension in a direction orthogonal to the length direction of the optical fiber 1 periodically as shown in FIG. The structure is changed and the period is set to be the same as the alignment interval of the optical fiber strands 1 and is approximately divided at the minimum portion of the thickness dimension on the flat surface 21 between the optical fiber strands 1. Therefore, even when the thickness dimension of the resin material layer 200 in the peripheral portion of each optical fiber 1 is large, the shrinkage stress generated with the hardening of the resin material layer 200 is divided and reduced. Conventionally, it is possible to avoid the phenomenon that the plate-like member 2 is curved when the resin material layer 200 is cured. Furthermore, since the thickness dimension of the resin material layer 200 in the peripheral portion of each optical fiber 1 can be set large as described above, the optical fiber 1 is not dropped or partially dropped during the assembly process. In addition, it is possible to avoid a minute change in the alignment position in the optical fiber 1.
[0023]
Then, for reinforcement, as shown in FIG. 1 (e), a pair of optical fiber strands 1 having a flat surface are overlapped with a plate-like member 2 to which the optical fiber strands 1 are temporarily fixed. Are sandwiched between the plate-like members 2 and 4, and a reinforcing resin material is filled in the gap portion and cured to form the reinforcing resin layer 5, and the end surfaces of the pair of plate-like members 2 and 4 are flattened by polishing. By exposing the tip end side of the optical fiber 1 to the optical fiber array according to this embodiment, the optical fiber array is obtained.
[0024]
[Second Embodiment]
The manufacturing method of the optical fiber array according to this embodiment also uses the optical fiber strand alignment jig 11 in which a plurality of guide grooves 10 are formed across the length direction with a predetermined interval, as in the prior art. (See FIG. 2b).
[0025]
First, as shown in FIG. 2A, the flat surface 21 of the plate-like member 2 has a triangular cross-section and a linear shape over the length of the flat surface 21 with an interval smaller than the alignment interval of the optical fiber strands 1. A plurality of temporary adhering layer forming resin material layers 300 extending in a straight line are formed.
[0026]
The resin material layer 300 has a resin material layer forming jig 104 (provided that a plurality of linear concave grooves 103 having a substantially V-shaped cross section are formed on the surface thereof as shown in FIG. The distance between the linear grooves is narrower than that of the resin material layer forming jig used in the embodiment, and the shape of the grooves is set smaller. That is, a resin material for temporarily fixing layer formation is supplied and uniformly formed on the flat surface 21 of the plate-like member 2, and the surface of the resin material layer forming jig 104 is brought into contact with the flat surface 21. Further, by moving the resin material layer forming jig 104 along the direction of the linear groove 103 on the flat surface 21 of the plate-like member 2, excess resin material is scraped off and the resin material layer forming jig is removed. The surface shape 104 is transferred, and a temporary fixing layer forming resin material layer 300 having a triangular cross section is formed on the flat surface 21.
[0027]
Next, a plurality of guide grooves 10 are formed in the length direction along the same interval as the alignment interval of the optical fiber 1 in each guide groove 10 of the optical fiber alignment jig 11 shown in FIG. The plate-like member 2 in which the resin material layer 300 is formed with respect to the optical fiber strand aligning jig 11 in which the optical fiber strands 1 are accommodated as shown in FIG. By aligning the positions of the optical fiber strand alignment jig 11 and the plate-like member 2 with the resin material layer 300 on the inside, the optical fiber strands 1 and the resin material layers 300 are overlapped with each other. The contact portion of the triangular resin material layer 300 is uniformly crushed, and a part of the contact portion is filled around the gap between the optical fiber 1 and the plate-like member 2, as shown in FIG. Temporary sticking with its thickness dimension periodically changing before curing 3 to form.
[0028]
In this state, the resin material layer 300 is cured, and the optical fiber strand aligning jig 11 is removed from the plate-like member 2 so as to be orthogonal to the length direction of the optical fiber strand 1 as shown in FIG. The thickness dimension in the direction changes periodically, and the period is set to be the same as the alignment interval of the optical fiber 1 (however, this period is formed by the resin material layer forming jig 104 and The period of the resin material layer 300 set to be smaller than the alignment interval of the optical fiber strands 1, and the resin material layer 300 formed by being crushed by the optical fiber strand 1 and the same as the alignment interval of the optical fiber strands 1 In addition, the period of the squeezed recesses is a combined period (the same applies hereinafter) and is divided at the minimum portion of the thickness dimension on the flat surface 21 between the optical fiber strands 1 (note that This embodiment Oite thickness even in the minimum portion strictly an approximate division for not 0 in) can form a temporary fixing layer 3 after curing.
[0029]
At this time, the resin material layer 300 constituting the temporary fixing layer 3 before curing has a thickness dimension in a direction perpendicular to the length direction of the optical fiber 1 periodically as shown in FIG. The structure is changed and the period is set to be the same as the alignment interval of the optical fiber strands 1 and is approximately divided at the minimum portion of the thickness dimension on the flat surface 21 between the optical fiber strands 1. Therefore, even when the thickness of the resin material layer 300 in the peripheral portion of each optical fiber 1 is large, the shrinkage stress generated with the hardening of the resin material layer 300 is divided and reduced. Conventionally, it is possible to avoid the phenomenon that the plate-like member 2 is curved when the resin material layer 300 is cured. Furthermore, since the thickness dimension of the resin material layer 300 in the peripheral portion of each optical fiber 1 can be set large as described above, the optical fiber 1 is not dropped or partially dropped during the assembly process. In addition, it is possible to avoid a minute change in the alignment position in the optical fiber 1.
[0030]
Similarly to the first embodiment, as shown in FIG. 2 (e), a plate-like member 4 having a flat surface is overlapped with the plate-like member 2 to which the optical fiber strand 1 is temporarily fixed to overlap the optical fiber element. The wire 1 is sandwiched between a pair of plate-like members 2 and 4, and a reinforcing resin material is filled in a gap portion and cured to form a reinforcing resin layer 5. Further, end surfaces of the pair of plate-like members 2 and 4 Is flattened by polishing, and the tip end side of the optical fiber 1 is exposed to obtain the optical fiber array according to this embodiment.
[0031]
[Third embodiment]
The manufacturing method of the optical fiber array according to this embodiment also uses the optical fiber strand alignment jig 11 in which a plurality of guide grooves 10 are formed across the length direction with a predetermined interval, as in the prior art. (See FIG. 3b).
[0032]
First, as shown in FIG. 3A, the flat surface 21 of the plate-like member 2 has a rectangular cross section and a straight line extending in the length direction of the flat surface 21 through the same interval as the alignment interval of the optical fiber strands 1. A plurality of temporarily fixed layer forming resin material layers 400 extending in a shape are formed.
[0033]
These resin material layers 400 are formed using a resin material layer forming jig 105 in which a plurality of rectangular grooves 106 having a rectangular cross section are formed on the surface thereof as shown in FIG. Yes. That is, the resin material layer forming jig 105 is supplied with the resin material for temporarily fixing layer formation and held, and the surface of the resin material layer forming jig 105 is brought into contact with the flat surface 21 of the plate-like member 2 to The resin material for temporary fixing layer is transferred to the flat surface 21, and the resin material layer forming jig 105 is placed on the linear concave groove 106 on the flat surface 21 of the plate-like member 2 to which the resin material for temporary fixing layer is transferred. By moving along the direction, the excess resin material is scraped off, and the temporarily fixed layer forming resin material layer 400 having a rectangular cross section is formed on the flat surface 21.
[0034]
Next, in each guide groove 10 of the optical fiber strand alignment jig 11 in which a plurality of guide grooves 10 are formed in the length direction through the same interval as the alignment interval of the optical fiber strands 1, FIG. The plate-like member 2 in which the resin material layer 400 is formed with respect to the optical fiber strand aligning jig 11 in which the optical fiber strands 1 are accommodated as shown in FIG. By aligning the positions of the optical fiber strand aligning jig 11 and the plate-like member 2 with the resin material layer 400 inside, the optical fiber strands 1 and the resin material layers 400 are respectively overlapped, The head portion of the rectangular resin material layer 400 is uniformly crushed, and a portion thereof is filled around the gap between the optical fiber 1 and the plate member 2 as shown in FIG. Temporary fixing layer 3 whose thickness dimension before curing is periodically changed Formation to.
[0035]
In this state, the resin material layer 400 is cured, and the optical fiber strand aligning jig 11 is removed from the plate-like member 2, thereby orthogonal to the length direction of the optical fiber strand 1 as shown in FIG. The thickness dimension in the direction in which the optical fiber strands 1 and 2 are periodically changed, and the period is set to be the same as the alignment interval of the optical fiber strands 1. It is possible to form the temporary fixing layer 3 after curing (in this embodiment, the thickness dimension at the minimum portion is 0, resulting in complete division).
[0036]
At this time, the resin material layer 400 constituting the temporary fixing layer 3 before curing has a periodic thickness dimension in a direction orthogonal to the length direction of the optical fiber 1 as shown in FIG. The period is set to be the same as the alignment interval of the optical fiber strands 1, and the structure is completely divided at the minimum portion of the thickness dimension on the flat surface 21 between the optical fiber strands 1. Therefore, even when the thickness dimension of the resin material layer 400 in the peripheral portion of each optical fiber 1 is large, the contraction stress generated with the hardening of the resin material layer 400 is divided and reduced. It is possible to avoid the phenomenon that the plate-like member 2 is curved when the resin material layer 400 is cured. Further, the thickness dimension of the resin material layer 400 at the peripheral portion of each optical fiber 1 can be set large as described above, so that the optical fiber 1 is not dropped or partially dropped during the assembly process. In addition, a minute change in the alignment position in the optical fiber 1 can be avoided.
[0037]
Similarly to the first embodiment, as shown in FIG. 3 (e), a plate-like member 4 having a flat surface is overlapped with a plate-like member 2 to which the optical fiber 1 is temporarily fixed to overlap the optical fiber element. The wire 1 is sandwiched between a pair of plate-like members 2 and 4, and a reinforcing resin material is filled in a gap portion and cured to form a reinforcing resin layer 5. Further, end surfaces of the pair of plate-like members 2 and 4 Is flattened by polishing, and the tip end side of the optical fiber 1 is exposed to obtain the optical fiber array according to this embodiment.
[0038]
【Example】
Examples of the present invention will be specifically described below.
[0039]
[Example 1]
This example embodies the first embodiment.
[0040]
First, an ultraviolet curable epoxy resin is dropped onto the surface of the resin material layer forming jig 100 shown in FIG. The linear groove 101 having a substantially V-shaped cross section in the resin material layer forming jig 100 has a depth of 60 microns, an opening width of 120 microns, and a groove interval of 250 microns.
[0041]
Next, the resin material adhered to the surface of the resin material layer forming jig 100 is applied to the flat surface 21 of the plate-like member 2 to form a temporary fixing layer having a triangular cross section as shown in FIG. A resin material layer 200 is formed. At this time, the resin material layer forming jig 100 is moved along the direction of the linear groove 101 on the flat surface 21 of the plate-like member 2 to scrape off the excess resin material and to cure the resin material layer. The concavo-convex shape of the tool 100 is transferred to form the temporarily fixed layer forming resin material layer 200. The cross-sectional shape of the resin material layer 200 for forming the temporary fixing layer has a triangular shape arranged approximately at an interval of 250 microns substantially reflecting the surface shape of the resin material layer forming jig 100, and the apex height is about 40. The width of the base is about 120 microns. A region having substantially no resin material exists between the resin material layers 200 for forming the temporary fixing layer, and the resin material layers 200 for forming the temporary fixing layer are divided in this region. Further, the viscosity of the resin material is adjusted to a relatively high viscosity so that the above-mentioned division is not lost naturally.
[0042]
Next, as shown in FIG. 1 (b), the optical fiber strand 1 is formed in each guide groove 10 of the ceramic optical fiber strand alignment jig 11 in which a plurality of guide grooves 10 are formed in the length direction. And align. The interval between the guide grooves 10 having a substantially V-shaped cross section is 250 microns, and the diameter of the optical fiber 1 is 125 microns.
[0043]
Next, as shown in FIG. 1 (c), the plate-like member 2 on which the resin material layer 200 is formed with respect to the optical fiber strand alignment jig 11 in which the optical fiber strands 1 are aligned is replaced with the resin material layer 200. By aligning the positions of the optical fiber strand aligning jig 11 and the plate-like member 2 on the inner side and applying a load while superimposing the respective optical fiber strands 1 and the respective resin material layers 200 on each side, The head portion of the triangular resin material layer 200 is uniformly crushed, and a part thereof is filled around the gap between the optical fiber 1 and the plate-like member 2, and the thickness dimension before curing is periodic. Thus, the temporary fixing layer 3 that is changing is formed.
[0044]
In this state, ultraviolet rays are applied to the temporary fixing layer 3 made of the resin material of the ultraviolet curable epoxy resin through the plate-like member 2 to cure it, and the optical fiber alignment jig 11 is attached to the plate. As shown in FIG. 1 (d), the thickness dimension in the direction orthogonal to the length direction of the optical fiber strand 1 is periodically changed, and the period is the same as that of the optical fiber strand 1. It is possible to form the temporarily fixed layer 3 after curing which is set to be the same as the alignment interval and is divided at the minimum portion of the thickness dimension on the flat surface 21 between the optical fiber strands 1.
[0045]
Next, as shown in FIG. 1E, a plate-like member 4 having a flat surface is overlapped with a plate-like member 2 to which the optical fiber strand 1 is temporarily fixed, thereby making the optical fiber strand 1 a pair of plate-like shapes. It is sandwiched between the members 2 and 4 and filled with a resin material composed of a thermosetting epoxy resin from the end face, and is cured by heating while applying a load between the pair of plate-like members 2 and 4 to form the reinforcing resin layer 5. By flattening the end surfaces of the plate-like members 2 and 4 by polishing and exposing the tip side of the optical fiber 1, the optical fiber array according to Example 1 is obtained.
[0046]
[Example 2]
This example embodies the second embodiment.
[0047]
First, an ultraviolet curable epoxy resin is dropped on the flat surface of the plate-like member 2 and uniformly attached thereto, and then the flat surface on which the resin material is uniformly attached is shown in FIG. The surface of the resin material layer forming jig 104 is brought into contact, and the resin material layer forming jig 104 is moved along the direction of the linear concave groove 103 on the flat surface 21 of the plate-like member 2 to remove excess resin. The material is scraped off, and the uneven shape of the resin material layer forming jig 104 is transferred to form the temporarily fixed layer forming resin material layer 300. In addition, since the linear concave groove 103 having a substantially V-shaped cross section in the resin material layer forming jig 104 has a depth of 45 microns, an opening width of 40 microns, and a groove interval of 40 microns, the grooves are adjacent to each other. In addition, the cross-sectional shape of the resin material layer 300 for forming the temporary fixing layer has a triangular shape substantially reflecting the surface shape of the resin material layer forming jig 104, the apex height is about 40 microns, and the bottom width is Is about 40 microns. Further, each temporary fixing layer forming resin material layer 300 is in contact with the bottom portion thereof, and its thickness dimension is minimized in the contact region, and its value is 10 microns or less. Therefore, each temporary fixing layer forming resin material layer 200 is approximately divided in the contact region. In addition, the viscosity of the resin material is adjusted to a relatively high viscosity so that the minimum region does not naturally disappear due to flow.
[0048]
Next, as shown in FIG. 2B, the optical fiber strand 1 is formed in each guide groove 10 of the ceramic optical fiber strand alignment jig 11 in which a plurality of guide grooves 10 are formed in the length direction. And align. The interval between the guide grooves 10 having a substantially V-shaped cross section is 250 microns, and the diameter of the optical fiber 1 is 125 microns.
[0049]
Next, as shown in FIG. 2 (c), the plate-like member 2 on which the resin material layer 300 is formed is applied to the optical fiber strand aligning jig 11 on which the optical fiber strands 1 are aligned. By applying a load while superimposing each optical fiber 1 and each resin material layer 300 on the inside, the head of the resin material layer 300 having a triangular cross section is uniformly crushed, and a part of the head is part of the optical fiber. A temporary fixing layer 3 is formed which is filled in the periphery of the gap between the element wire 1 and the plate-like member 2 and whose thickness dimension before curing is periodically changed.
[0050]
In this state, ultraviolet rays are applied to the temporary fixing layer 3 made of the resin material of the ultraviolet curable epoxy resin through the plate-like member 2 to cure it, and the optical fiber strand aligning jig 11 is attached to the plate. As shown in FIG. 2 (d), the thickness dimension in the direction perpendicular to the length direction of the optical fiber 1 is periodically changed, and the period is the same as that of the optical fiber 1. Forming a temporary fixing layer 3 after curing that is set to be the same as the alignment interval and is approximately divided at the minimum portion of the thickness dimension on the flat surface 21 between the optical fiber strands 1 Can do.
[0051]
Next, as shown in FIG. 2 (e), the plate-like member 4 having a flat surface is overlapped with the plate-like member 2 to which the optical fiber strand 1 is temporarily fixed, so that the optical fiber strand 1 is paired with a pair of plates. It is sandwiched between the members 2 and 4 and filled with a resin material composed of a thermosetting epoxy resin from the end face, and is cured by heating while applying a load between the pair of plate-like members 2 and 4 to form the reinforcing resin layer 5. By flattening the end surfaces of the plate-like members 2 and 4 by polishing and exposing the distal end side of the optical fiber 1, an optical fiber array according to the second embodiment is obtained.
[0052]
【The invention's effect】
  Claim 1~ 2An optical fiber array according to the inventionManufacturing methodAccording to
  For the temporary fixing layer for temporarily fixing each optical fiber to the flat surface of one plate-like member, the thickness dimension in the direction perpendicular to the length direction of the optical fiber changes periodically, and the period Is set to be equal to or smaller than the alignment interval of the optical fiber strands, and is divided at the minimum portion of the thickness dimension on the flat surface between the optical fiber strands,
  Even if the thickness dimension of the resin material before the curing constituting the temporary fixing layer is set to be partially large, the shrinkage stress generated during the curing of the resin material is divided and reduced at the minimum portion.
[0053]
For this reason, it is possible to avoid the disadvantage that the plate-like member is bent due to the shrinkage stress of the resin material, and it is possible to partially set the thickness dimension of the resin material in the peripheral portion of each optical fiber strand. It is possible to avoid dropping or partial dropping of the optical fiber in the assembly process, and it is also possible to avoid a minute change in the alignment position in the optical fiber.
[0054]
Therefore, there is an effect that an optical fiber array in which optical fiber strands are aligned with high accuracy can be provided.
[0055]
  Claims3According to the resin material layer forming jig according to the described invention,
  Claim1~2It is used for the manufacturing method of an optical fiber array of the description, and has an effect which makes manufacture of an optical fiber array easy.
[Brief description of the drawings]
FIGS. 1A to 1E are process explanatory views showing the process of a method for manufacturing an optical fiber array according to a first embodiment of the present invention.
FIGS. 2 (a) to 2 (e) are process explanatory views showing the process of the method for manufacturing an optical fiber array according to the second embodiment of the present invention.
FIGS. 3A to 3E are process explanatory views showing the processes of the method for manufacturing an optical fiber array according to the third embodiment of the present invention. FIGS.
4 (a) and 4 (b) are schematic perspective views of a resin material layer forming jig used in the method of manufacturing an optical fiber array according to the present invention.
FIGS. 5A to 5E are process explanatory views showing the steps of a method for manufacturing an optical fiber array according to a conventional example using an optical fiber strand alignment jig. FIGS.
FIGS. 6A to 6B are schematic perspective views showing the steps of a method for manufacturing an optical fiber array according to a conventional method using an optical fiber strand aligning jig.
[Explanation of symbols]
1 Optical fiber
2 Plate members
3 Temporary fixing layer
4 Plate members
5 Reinforced resin layer
10 Guide groove
11 Optical fiber alignment tool
21 Flat surface
200 Resin material layer for temporarily fixing layer formation

Claims (3)

平坦面を有する一対の板状部材間に複数の光ファイバ素線が整列して配置され、かつ、各光ファイバ素線間および板状部材間に充填された樹脂材料により光ファイバ素線および板状部材が固定されていると共に、上記樹脂材料が、光ファイバアレイの組立て過程において一方の板状部材の平坦面上に整列された各光ファイバ素線を上記平坦面に一時的に固定するための仮固着層と、この仮固着層の形成後において仮固着層を除く部位の各光ファイバ素線間および板状部材間に形成される補強樹脂層とを構成している光ファイバアレイの製造方法において、
上記光ファイバ素線の整列間隔と同一若しくはこれより小さい間隔を介し複数の直線状凹溝が表面に形成された樹脂材料層形成治具の上記表面に仮固着層用樹脂材料を供給して保持させる工程と、
上記樹脂材料層形成治具の表面を板状部材の平坦面に接触させてこの平坦面に仮固着層用樹脂材料を転移させ、かつ、仮固着層用樹脂材料が転移された板状部材の平坦面上において樹脂材料層形成治具をその直線状凹溝方向に沿って移動させて上記平坦面上に仮固着層形成用の樹脂材料層を形成する工程と、
上記光ファイバ素線の整列間隔と同一の間隔を介し複数の案内溝が形成された光ファイバ素線整列治具の各案内溝内に光ファイバ素線を収容し、これ等光ファイバ素線が整列された光ファイバ素線整列治具に対し上記樹脂材料層が形成された板状部材をその樹脂材料層を内側にしかつ光ファイバ素線整列治具と板状部材との位置を整合させた状態で重ね合せて光ファイバ素線の長さ方向と直交する方向の硬化前における厚さ寸法が周期的に変化する仮固着層を形成する工程、
を具備し、かつ、光ファイバ素線の長さ方向と直交する方向の硬化後における仮固着層の厚さ寸法が周期的に変化し、その周期が光ファイバ素線の整列間隔と同一若しくはこれより小さく設定されていると共に、各光ファイバ素線間の上記平坦面上における厚さ寸法の極小部分において仮固着層が分断されていることを特徴とする光ファイバアレイの製造方法。
A plurality of optical fiber strands are arranged in alignment between a pair of plate-like members having a flat surface, and the optical fiber strands and the plates are made of a resin material filled between the optical fiber strands and between the plate-like members. And the resin material temporarily fixes the optical fiber wires aligned on the flat surface of one plate-like member to the flat surface in the process of assembling the optical fiber array. Of an optical fiber array comprising a temporary fixing layer of the optical fiber and a reinforcing resin layer formed between the optical fiber strands and between the plate-like members in a portion excluding the temporary fixing layer after the temporary fixing layer is formed In the method
Supply and hold the resin material for the temporary fixing layer on the surface of the resin material layer forming jig in which a plurality of linear grooves are formed on the surface through an interval equal to or smaller than the alignment interval of the optical fiber strands. A process of
The surface of the resin material layer forming jig is brought into contact with the flat surface of the plate-like member to transfer the temporary fixing layer resin material to the flat surface, and the temporary fixing layer resin material is transferred to the plate-like member. A step of moving a resin material layer forming jig along the linear groove direction on the flat surface to form a resin material layer for temporarily fixing layer formation on the flat surface;
An optical fiber strand is accommodated in each guide groove of an optical fiber strand alignment jig in which a plurality of guide grooves are formed at the same interval as the alignment interval of the optical fiber strands. The plate-shaped member on which the resin material layer is formed is aligned with the aligned optical fiber strand alignment jig, and the positions of the optical fiber strand alignment jig and the plate-shaped member are aligned. A step of forming a temporary fixing layer in which the thickness dimension before curing in a direction orthogonal to the length direction of the optical fiber strand is periodically changed by overlapping in a state;
And the thickness dimension of the temporary fixing layer after curing in a direction orthogonal to the length direction of the optical fiber strands is periodically changed, and the period is the same as or equal to the alignment interval of the optical fiber strands. A method for manufacturing an optical fiber array, characterized in that the temporary fixing layer is divided at a minimum portion of a thickness dimension on the flat surface between the optical fiber strands, and is set smaller .
平坦面を有する一対の板状部材間に複数の光ファイバ素線が整列して配置され、かつ、各光ファイバ素線間および板状部材間に充填された樹脂材料により光ファイバ素線および板状部材が固定されていると共に、上記樹脂材料が、光ファイバアレイの組立て過程において一方の板状部材の平坦面上に整列された各光ファイバ素線を上記平坦面に一時的に固定するための仮固着層と、この仮固着層の形成後において仮固着層を除く部位の各光ファイバ素線間および板状部材間に形成される補強樹脂層とを構成している光ファイバアレイの製造方法において、
板状部材の平坦面に仮固着層用樹脂材料を供給して一様に形成する工程と、
仮固着層用樹脂材料が一様に形成された板状部材の平坦面に対し、光ファイバ素線の整列間隔と同一若しくはこれより小さい間隔を介し複数の直線状凹溝が表面に形成された樹脂材料層形成治具の上記表面を接触させると共に、樹脂材料層形成治具をその直線状凹溝方向に沿って移動させて上記平坦面上に仮固着層形成用の樹脂材料層を形成する工程と、
上記光ファイバ素線の整列間隔と同一の間隔を介し複数の案内溝が形成された光ファイバ素線整列治具の各案内溝内に光ファイバ素線を収容し、これ等光ファイバ素線が整列された光ファイバ素線整列治具に対し上記樹脂材料層が形成された板状部材をその樹脂材料層を内側にしかつ光ファイバ素線整列治具と板状部材との位置を整合させた状態で重ね合せて光ファイバ素線の長さ方向と直交する方向の硬化前における厚さ寸法が周期的に変化する仮固着層を形成する工程、
を具備し、かつ、光ファイバ素線の長さ方向と直交する方向の硬化後における仮固着層の厚さ寸法が周期的に変化し、その周期が光ファイバ素線の整列間隔と同一若しくはこれより小さく設定されていると共に、各光ファイバ素線間の上記平坦面上における厚さ寸法の極小部分において仮固着層が分断されていることを特徴とする光ファイバアレイの製造方法。
A plurality of optical fiber strands are arranged in alignment between a pair of plate-like members having a flat surface, and the optical fiber strands and the plates are made of a resin material filled between the optical fiber strands and between the plate-like members. And the resin material temporarily fixes the optical fiber wires aligned on the flat surface of one plate-like member to the flat surface in the process of assembling the optical fiber array. Of an optical fiber array comprising a temporary fixing layer of the optical fiber and a reinforcing resin layer formed between the optical fiber strands and between the plate-like members in a portion excluding the temporary fixing layer after the temporary fixing layer is formed In the method
Supplying the resin material for the temporary fixing layer to the flat surface of the plate-like member and forming it uniformly;
A plurality of linear concave grooves are formed on the surface of the flat surface of the plate-like member on which the resin material for the temporary fixing layer is uniformly formed at intervals equal to or smaller than the alignment interval of the optical fiber strands. The resin material layer forming jig is brought into contact with the surface, and the resin material layer forming jig is moved along the direction of the linear groove to form a resin material layer for temporarily fixing layer formation on the flat surface. Process,
An optical fiber strand is accommodated in each guide groove of an optical fiber strand alignment jig in which a plurality of guide grooves are formed at the same interval as the alignment interval of the optical fiber strands. The plate-shaped member on which the resin material layer is formed is aligned with the aligned optical fiber strand alignment jig, and the positions of the optical fiber strand alignment jig and the plate-shaped member are aligned. A step of forming a temporary fixing layer in which the thickness dimension before curing in a direction orthogonal to the length direction of the optical fiber strand is periodically changed by overlapping in a state;
And the thickness dimension of the temporary fixing layer after curing in a direction orthogonal to the length direction of the optical fiber strands is periodically changed, and the period is the same as or equal to the alignment interval of the optical fiber strands. A method for manufacturing an optical fiber array, characterized in that the temporary fixing layer is divided at a minimum portion of a thickness dimension on the flat surface between the optical fiber strands, and is set smaller .
請求項若しくは請求項記載の光ファイバアレイの製造方法に使用される樹脂材料層形成治具において、
上記光ファイバ素線の整列間隔と同一若しくはこれより小さい間隔を介し複数の直線状凹溝が表面に形成されていることを特徴とする樹脂材料層形成治具。
In the resin material layer forming jig used for the manufacturing method of the optical fiber array according to claim 1 or claim 2 ,
A resin material layer forming jig, wherein a plurality of linear grooves are formed on a surface at an interval equal to or smaller than an alignment interval of the optical fiber strands.
JP2001388990A 2001-12-21 2001-12-21 Optical fiber array manufacturing method and resin material layer forming jig used in the manufacturing method Expired - Fee Related JP3778080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001388990A JP3778080B2 (en) 2001-12-21 2001-12-21 Optical fiber array manufacturing method and resin material layer forming jig used in the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001388990A JP3778080B2 (en) 2001-12-21 2001-12-21 Optical fiber array manufacturing method and resin material layer forming jig used in the manufacturing method

Publications (2)

Publication Number Publication Date
JP2003185871A JP2003185871A (en) 2003-07-03
JP3778080B2 true JP3778080B2 (en) 2006-05-24

Family

ID=27597329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001388990A Expired - Fee Related JP3778080B2 (en) 2001-12-21 2001-12-21 Optical fiber array manufacturing method and resin material layer forming jig used in the manufacturing method

Country Status (1)

Country Link
JP (1) JP3778080B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11914193B2 (en) 2021-06-22 2024-02-27 Corning Research & Development Corporation Optical assembly for coupling with two-dimensionally arrayed waveguides and associated methods
US11880071B2 (en) 2021-08-23 2024-01-23 Corning Research & Development Corporation Optical assembly for interfacing waveguide arrays, and associated methods

Also Published As

Publication number Publication date
JP2003185871A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
US6368441B1 (en) Method for manufacturing optical fiber array
JP4735599B2 (en) Optical fiber mounting waveguide element and method for manufacturing the same
US20040081403A1 (en) Optical coupling device and method for fabricating the same, and master used in fabricating optical coupling device and method for fabricating the same
JP3778080B2 (en) Optical fiber array manufacturing method and resin material layer forming jig used in the manufacturing method
JP2012185261A (en) Optical fiber component and method for manufacturing the same, and optical fiber/lens substrate assembly and method for manufacturing the same
JPWO2021187178A5 (en)
JP3778064B2 (en) Manufacturing method of optical fiber array
JP4462097B2 (en) Manufacturing method of optical waveguide module
JP3778063B2 (en) Manufacturing method of optical fiber array
JP2004109778A (en) Optical fiber array and its manufacturing method
JP2003185872A (en) Method for manufacturing optical fiber array
JP3931940B2 (en) Optical fiber array element and manufacturing method thereof
US20020094178A1 (en) Ribbon fiber and manufacturing method therefor, and optical fiber array using the same
JP4380166B2 (en) Optical device manufacturing method
JPH10197755A (en) Optical waveguide module and production thereof
JPH02308207A (en) Formation of reflection preventive film of optical connector
JPH07253522A (en) Optical fiber terminal part, its production and connecting structure of terminal part and optical device
JPH0862433A (en) Optical fiber alignment body
JP4301245B2 (en) Optical fiber array
JP2003185880A (en) Optical fiber array
JP2005025051A (en) Optical fiber array and manufacturing method therefor
JP2000066057A (en) Optical fiber array
JPH0854519A (en) Optical fiber aligning body
WO2018012075A1 (en) Optical module and method for manufacturing optical module
JP4525635B2 (en) Manufacturing method of optical fiber array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees