WO2018012075A1 - Optical module and method for manufacturing optical module - Google Patents

Optical module and method for manufacturing optical module Download PDF

Info

Publication number
WO2018012075A1
WO2018012075A1 PCT/JP2017/015795 JP2017015795W WO2018012075A1 WO 2018012075 A1 WO2018012075 A1 WO 2018012075A1 JP 2017015795 W JP2017015795 W JP 2017015795W WO 2018012075 A1 WO2018012075 A1 WO 2018012075A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
resin layer
resin
recess
Prior art date
Application number
PCT/JP2017/015795
Other languages
French (fr)
Japanese (ja)
Inventor
拓弥 小田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2018012075A1 publication Critical patent/WO2018012075A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Definitions

  • the present invention relates to an optical module that includes an optical waveguide and an optical fiber, and transmits an optical signal between them, and a method for manufacturing the optical module.
  • an optical module that includes an optical waveguide and an optical fiber and transmits an optical signal between them is known.
  • an optical waveguide is formed on a substrate, and the optical waveguide and the optical fiber are optically connected so that an optical signal propagates between the end of the optical waveguide and the optical fiber.
  • a guide groove for arranging the optical fiber is formed on the substrate on which the optical waveguide is formed, and the optical fiber is arranged in the guide groove, The optical fiber in the guide groove is fixed with an adhesive.
  • a V-groove is formed as a guide groove in which the optical fiber is disposed, and the optical fiber disposed in the V-groove is fixed with an adhesive.
  • the optical fiber is arranged in the guide groove (V groove) in an unaligned state with respect to the optical waveguide. Therefore, the guide groove is formed so that the optical axis of the optical fiber arranged in the guide groove and the optical axis of the optical waveguide coincide.
  • optical fiber is required to have a high positioning accuracy of, for example, 1 ⁇ m or less with respect to the optical waveguide.
  • the optical fiber is positioned with respect to the optical waveguide by disposing the optical fiber in a guide groove (V groove) formed in the substrate in an unaligned state.
  • V groove guide groove
  • the optical fiber positioning accuracy depends on the guide groove processing accuracy, and the optical fiber positioning accuracy required for the optical device cannot be obtained.
  • a so-called active alignment method is adopted as a method for positioning the optical fiber with higher accuracy.
  • alignment is performed as follows as an example. For example, an optical signal is incident on an optical fiber, the intensity of the optical signal is measured at the output side end of the optical waveguide (the end opposite to the incident side), and the optical signal is measured at the position where the intensity of the optical signal is maximum. Position the fiber.
  • a recess is formed in the substrate instead of the guide groove, and the aligned optical fiber is fixed with an adhesive (resin) filled in the recess.
  • the optical fiber after the optical fiber is positioned, if the concave portion of the substrate is filled with an adhesive or the like, a mechanical force acts on the optical fiber when the adhesive is filled, and the optical fiber moves from the positioned position. In addition, since the adhesive shrinks upon curing, the optical fiber also moves from the position where it is positioned.
  • the optical fiber movement from the positioning position due to adhesive shrinkage is predicted, and the optical fiber is positioned in advance so that the optical fiber is placed at the predetermined positioning position after the movement. It is conceivable to dispose at a position deviated from the position, that is, to place an offset.
  • an object of the present invention is to provide an optical module and an optical module manufacturing method capable of positioning an optical fiber with respect to an optical waveguide with high accuracy.
  • an optical module is an optical module in which a concave portion is formed on a surface and an optical waveguide extending along the surface from the inner side surface of the concave portion is formed inside. And an optical fiber at least partially disposed in the recess so that the tip faces the end face of the optical waveguide, and the optical fiber wets and spreads evenly in the width direction in the recess.
  • the first resin layer is fixed to the optical element.
  • the optical fiber can be positioned with respect to the optical waveguide with high accuracy.
  • FIG. 4A is a longitudinal sectional view of the optical module showing a state where the resin forming the first resin layer shown in FIG. 1 is injected in a state of being biased in the width direction of the concave portion of the optical element.
  • FIG. 5A is a longitudinal sectional view of the optical module showing a state in which the optical fiber has moved from the normal positioning position when the resin of the first resin layer is injected into the concave portion of the optical element
  • FIG. ) Is a longitudinal sectional view of the optical module showing a state in which the optical fiber is fixed at a position shifted from the normal positioning position due to the curing shrinkage of the resin of the first resin layer from the state shown in FIG. It is. (A) of FIG.
  • FIG. 6 is a longitudinal sectional view of the optical module of the present embodiment showing a state in which the resin is injected into the concave portion of the optical element so as to be wet and spread in the width direction when the first resin layer is formed
  • FIG. 6B shows a state in which the optical fiber is fixed by suppressing the deviation from the normal positioning position by the curing shrinkage of the resin of the first resin layer from the state shown in FIG.
  • It is a longitudinal cross-sectional view of the optical module of this embodiment shown.
  • 7A is a longitudinal sectional view of the optical module showing a state in which the optical fiber is embedded in the resin of the first resin layer 13
  • FIG. 7B is a view from the state of FIG.
  • FIG. 8B shows another example of the shape of the concave portion shown in FIG. 2B.
  • FIG. 8A shows a case where the concave portion is U-shaped
  • FIG. 8 (e) shows a semicircular shape
  • FIG. 8 (e) shows a case where the concave portion is V-shaped
  • FIG. 8 (g) shows a case where the concave portion is a trapezoidal shape
  • FIG. 8A shows a case where the concave portion is U-shaped
  • FIG. 8 (e) shows a semicircular shape
  • FIG. 8 (e) shows a case where the concave portion is V-shaped
  • FIG. 8 (g) shows a case where the concave portion is a trapezoidal shape
  • FIG. 8 (k) shows a shape in which the concave portion changes in two steps (the lower portion is narrower). It is a longitudinal cross-sectional view of the optical element in the case of (shape). 8 (b), FIG. 8 (d), FIG. 8 (f), FIG. 8 (h), FIG. 8 (j), and FIG. 8 (l) are respectively shown in FIG. ), FIG. 8C, FIG. 8E, FIG. 8G, FIG. 8I, and FIG. 8K are provided with the first resin layer and the optical fiber.
  • FIG. It is a perspective view which shows the structure of the optical module of other embodiment of this invention.
  • 10A is a cross-sectional view taken along the line AA in FIG. 9, and FIG.
  • 10B is a cross-sectional view taken along the line BB in FIG. It is explanatory drawing which shows the manufacturing process by the 1st manufacturing method of the optical module shown in FIG. It is explanatory drawing which shows the manufacturing process by the 2nd manufacturing method of the optical module shown in FIG.
  • FIG. 1 is a perspective view showing the configuration of the optical module of the present embodiment.
  • 2A is a cross-sectional view taken along the line AA in FIG. 1
  • FIG. 2B is a cross-sectional view taken along the line BB in FIG.
  • the optical module 1 includes an optical element 11 and an optical fiber 12.
  • the optical element 11 has a rectangular parallelepiped substrate shape whose end face in the longitudinal direction is a rectangle whose width is longer than the height, and has an optical waveguide 11c and a recess 11b.
  • the concave portion 11b has a length that reaches the first end surface 11d on one side in the longitudinal direction from the vicinity of the central portion of the optical element 11, and on the upper surface (front surface) 11a of the optical element 11, for example, the center in the width direction of the optical element 11 It is formed in the part.
  • the shape of the concave portion 11b seen in the longitudinal section of the optical element 11 is a rectangle having a longer width than a height.
  • the optical waveguide 11c is formed in a region on the opposite side of the region where the concave portion 11b is formed in the longitudinal direction of the optical element 11.
  • the optical waveguide 11c extends in the longitudinal direction along the upper surface 11a of the optical element 11 from the inner surface parallel to the width direction of the recess 11b, and reaches the second end surface 11e opposite to the first end surface 11d.
  • the end portion on the concave portion 11b side of the optical waveguide 11c is a light incident portion, and the end portion on the second end face 11e side is a light emitting portion. The light incident part and the light emitting part may be reversed.
  • FIG. 1 and 2 show a structure in which the optical fiber 12 is connected to the end of the optical waveguide 11c via the recess 11b only at one end of the optical element 11.
  • FIG. 1 and 2 show a structure in which the optical fiber 12 is connected to the end of the optical waveguide 11c via the recess 11b only at one end of the optical element 11.
  • FIG. 1 and 2 show a structure in which the optical fiber 12 is connected to the end of the optical waveguide 11c via the recess 11b only at one end of the optical element 11.
  • FIG. 1 and 2 show a structure in which the optical fiber 12 is connected to the end of the optical waveguide 11c via the recess 11b only at one end of the optical element 11.
  • FIG. 1 and 2 show a structure in which the optical fiber 12 is connected to the end of the optical waveguide 11c via the recess 11b only at one end of the optical element 11.
  • various structures for connecting the optical fiber 12 to the end of the optical waveguide 11c via the recess 11b are conceivable
  • FIGS. 1 and 2 may be regarded as only one of the structures in which the optical fiber 12 is connected to the end of the optical waveguide 11c of the optical element 11 via the recess 11b.
  • the first resin layer 13 is provided inside the recess 11b, and the optical fiber 12 is provided on the first resin layer 13.
  • the optical fiber 12 is arranged in a state extending in the longitudinal direction of the optical element 11, and the end surface on the optical waveguide 11c side faces the end surface of the light incident portion of the optical waveguide 11c with a predetermined interval. That is, the optical fiber 12 is positioned with respect to the optical waveguide 11c, and is optically connected to the optical waveguide 11c so that an optical signal propagated through the optical fiber 12 enters the optical waveguide 11c.
  • the optical fiber 12 is arranged so that the optical axis coincides with the optical axis of the optical waveguide 11c.
  • the recess 11b is symmetrical with respect to the center in the width direction, and the optical fiber 12 is disposed at the center position in the width direction of the recess 11b.
  • the first resin layer 13 is formed by filling the resin in a wet and spread state without unevenness in the width direction of the recess 11b.
  • the first resin layer 13 covers the optical fiber 12 in a state where a portion located on the upper side of the side surface of the optical fiber 12 is exposed. That is, the optical fiber 12 is embedded in the first resin layer 13 except for the portion located on the upper side of the side surface.
  • the first resin layer 13 is not provided at the tip portion that is the end portion of the optical fiber 12 on the optical waveguide 11 c side and the vicinity thereof, and is not covered with the first resin layer 13.
  • the second resin layer 14 is provided on the first resin layer 13 and on the portion of the optical fiber 12 located on the first resin layer 13. However, the second resin layer 14 is not on the first resin layer 13 and not on the entire portion of the optical fiber 12 located on the first resin layer 13, but near the first end surface 11 d of the optical element 11. Is provided. Therefore, the second resin layer 14 does not cover the tip portion of the optical fiber 12 and the vicinity thereof.
  • the first resin layer 13 fixes the optical fiber 12 at a position where the optical fiber 12 can be optically connected to the optical waveguide 11c.
  • the second resin layer 14 prevents the optical fiber 12 from peeling upward from the first resin layer 13.
  • the first resin layer 13 and the second resin layer 14 are made of, for example, an epoxy resin. Moreover, the 1st resin layer 13 and the 2nd resin layer 14 may contain the filler, for example. When the first resin layer 13 and the second resin layer 14 contain a filler, the shrinkage rate during curing decreases and the strength increases. On the other hand, the larger the amount of filler, the lower the function of the first resin layer 13 and the second resin layer 14 as an adhesive.
  • the first resin layer 13 and the second resin layer 14 may contain a filler
  • the first resin layer 13 may contain a larger amount of filler than the second resin layer 14.
  • the contraction rate when the first resin layer 13 is cured decreases. Therefore, in the process of positioning and arranging the optical fiber 12 on the first resin layer 13 and curing the first resin layer 13, the movement of the optical fiber 12 from the positioning position can be suppressed.
  • the amount of filler in the second resin layer 14 is small, it is possible to adhere to the first resin layer 13 with a high adhesion function, and to make it difficult to peel the optical fiber 12 from the first resin layer 13.
  • the filler content is, for example, 70% to 90% for the first resin layer 13 and 10% to 30% for the second resin layer 14.
  • FIG. 3 is an explanatory diagram showing a manufacturing process of the optical module 1.
  • the optical module 1 When the optical module 1 is manufactured, the optical element 11 in the state where the optical waveguide 11c and the recess 11b are formed, the optical fiber 12, the resin 13a that becomes the first resin layer 13, the resin 14a that becomes the second resin layer 14, A UV light source 21 is prepared.
  • a UV curable resin is used for the resin 13a and the resin 14a.
  • the optical module 1 is manufactured by the steps (1) to (8) shown in FIG.
  • the resin 13a of the first resin layer 13 is injected (applied) into the recess 11b of the optical module 1.
  • the waiting time in this case varies depending on the viscosity of the resin 13a.
  • the resin 13a having a viscosity of 100,000 cps takes about 1 minute.
  • optical fiber 12 is held right above the recess 11b.
  • the optical fiber 12 is lowered toward the concave portion 11b and disposed on the resin 13a of the first resin layer 13. As a result, the optical fiber 12 is attached to the resin 13a, and a state where the optical fiber 12 is embedded in the resin 13a except for a portion located on the upper side of the side surface is obtained.
  • the optical fiber 12 is positioned with respect to the optical waveguide 11c. This positioning is performed by the active alignment method described above. The positioning position of the optical fiber 12 is preferably determined in consideration of the amount of movement of the optical fiber 12 due to the curing shrinkage of the resin 13a of the first resin layer 13.
  • the resin 13a of the first resin layer 13 is irradiated with UV light 21a from the UV light source 21 to cure the resin 13a. Thereby, the first resin layer 13 is formed.
  • the resin 14a of the second resin layer 14 is irradiated with UV light 21a from the UV light source 21 to cure the resin 14a. Thereby, the second resin layer 14 is formed.
  • the optical module 1 of the present embodiment has the following first configuration. That is, the optical element 11 and the optical fiber 12 are provided.
  • the optical element 11 has a recess 11b formed on the upper surface (front surface) 11a, and an optical waveguide 11c extending along the upper surface 11a from the inner surface of the recess 11b. At least a part of the optical fiber 12 is disposed in the recess 11b so that the tip thereof faces the end face of the optical waveguide 11c.
  • the optical fiber 12 is fixed to the optical element 11 by the first resin layer 13 that spreads wet in the concave portion 11b without deviation in the width direction.
  • the optical fiber 12 is fixed to the optical element 11 by the first resin layer 13 wetted and spread in the concave portion 11b without deviation in the width direction.
  • the optical fiber 12 can be positioned with high accuracy with respect to the optical waveguide 11c.
  • the first resin layer 13 Is formed in a biased state in the width direction of the recess 11b.
  • the arrow in a figure has shown the stress which acts on the optical fiber 12 at the time of hardening shrinkage
  • the optical fiber 12 moves in the direction in which the resin 13a is biased and is fixed at a position shifted from the normal positioning position, as shown in FIG. As a result, the positioning accuracy of the optical fiber 12 decreases.
  • the optical fiber 12 moves from a normal positioning position (a position indicated by a two-dot chain line). Also in this case, as shown in FIG. 5B, the optical fiber 12 is fixed at a position shifted from the normal positioning position after the resin 13a is cured and contracted (after the formation of the first resin layer 13). As a result, the positioning accuracy of the optical fiber 12 decreases.
  • the optical fiber 12 in the first configuration in which the optical fiber 12 is fixed to the optical element 11 by the first resin layer 13 wetted and spread in the concave portion 11b without deviation in the width direction, as shown in FIG.
  • the resin 13a is injected into the concave portion 11b so as to be wet and spread in the width direction. Therefore, as shown in FIG. 6B, the optical fiber 12 has a width within the recess 11b of the resin 13a when the resin 13a of the first resin layer 13 is cured and contracted (when the first resin layer 13 is formed). The movement due to the deviation in the direction hardly occurs, and the displacement of the optical fiber 12 from the normal positioning position can be suppressed. As a result, the optical fiber 12 can be positioned with high accuracy with respect to the optical waveguide 11c.
  • the optical fiber 12 is disposed at the center position in the width direction of the recess 11b, it is difficult to move in the width direction of the recess 11b when the resin 13a is cured and contracted (when the first resin layer 13 is formed). Further, the positional deviation of the optical fiber 12 from the regular positioning position can be further suppressed.
  • the movement of the optical fiber 12 at the time of curing shrinkage of the resin 13a need only consider mainly the downward movement. Therefore, the optical fiber 12 is arranged in advance at a position deviated from the normal positioning position mainly considering the amount of movement only in the downward direction, and is arranged at the normal positioning position after the resin 13a is cured and contracted. It is also possible to do so.
  • the optical module 1 of the present embodiment has the following second configuration. That is, the optical module 1 includes an optical element 11, an optical fiber 12, a first resin layer 13, and a second resin layer 14.
  • the optical element 11 has a recess 11b formed on the upper surface (front surface) 11a, and an optical waveguide 11c extending along the upper surface 11a from the inner surface of the recess 11b.
  • the optical fiber 12 is disposed in the recess 11b so that the tip thereof faces the end surface of the optical waveguide 11c.
  • the first resin layer 13 is provided in the recess 11b and covers and fixes the optical fiber 12 in a state in which a portion located above the side surface of the optical fiber 12 is exposed.
  • the second resin layer 14 is provided on the first resin layer 13 and on a portion of the optical fiber 12 located on the first resin layer 13.
  • the first resin layer 13 is provided in the recess 11b and covers and fixes the optical fiber 12 in a state where the portion located on the upper side of the side surface of the optical fiber 12 is exposed.
  • the second resin layer 14 is provided on the first resin layer 13 and on the portion of the optical fiber 12 located on the first resin layer 13. Therefore, in manufacturing the optical module 1, the optical fiber 12 can be positioned with respect to the optical waveguide 11c with high accuracy.
  • the optical fiber 12 when the optical fiber 12 is fixed to the optical element 11, that is, the recess 11 b only by the first resin layer 13, for example, the optical fiber 12 needs to be embedded in the first resin layer 13.
  • the resin 13a of the first resin layer 13 exists around the optical fiber 12, and the light Curing shrinkage of the resin 13a occurs around the entire periphery of the fiber 12.
  • FIG. 7B when the resin 13a is cured and contracted, it is difficult to predict the moving direction and the moving amount of the optical fiber 12 when the resin 13a is cured and contracted.
  • the resin 13a of the first resin layer 13 is injected into the recess 11b, and the optical fiber 12 is placed thereon.
  • the optical fiber 12 can be covered and fixed by the first resin layer 13 in a state where the first resin layer 13 is positioned and the portion located above the side surface of the optical fiber 12 is exposed.
  • the resin 13a when the resin 13a is injected, the resin 13a can be injected into the recess 11b so as to be wet and spread in the width direction without being biased.
  • the optical fiber 12 has a width within the recess 11b of the resin 13a when the resin 13a of the first resin layer 13 is cured and contracted (when the first resin layer 13 is formed).
  • the movement due to the deviation in the direction hardly occurs, and the displacement of the optical fiber 12 from the normal positioning position can be suppressed.
  • the optical fiber can be positioned with respect to the optical waveguide 11c with high accuracy.
  • the optical fiber 12 is arranged at the center position in the width direction of the recess 11b, it is difficult to move in the width direction of the recess 11b when the resin 13a is cured and contracted (when the first resin layer 13 is formed).
  • the positional deviation of the optical fiber 12 from the positioning position can be further suppressed.
  • the movement of the optical fiber 12 at the time of curing and shrinking of the resin 13a is mainly considered only in the downward direction. Therefore, the optical fiber 12 is arranged in advance at a position deviated from the normal positioning position mainly considering the amount of movement only in the downward direction, and is arranged at the normal positioning position after the resin 13a is cured and contracted. It is also possible to do so.
  • the optical fiber 12 is separated from the first resin layer 13. The situation where it peels off can be prevented.
  • photocurable resin such as UV curable resin
  • photocurable resin such as UV curable resin
  • the resin of the first resin layer 13 and the second resin layer 14 due to a temperature change during the heat curing, the optical element 11, etc. Due to thermal expansion, the optical fiber 12 may be displaced before the first resin layer 13 and the second resin layer 14 are cured. Such a problem can be avoided when UV curable resin is used for the first resin layer 13 and the second resin layer 14.
  • the resin 13a of the first resin layer 13 uses a resin having a smaller curing shrinkage than the resin of the second resin layer 14 in order to suppress the displacement of the optical fiber 12 due to the curing shrinkage.
  • the first resin layer 13 may contain a larger amount of filler than the second resin layer 14, and the curing shrinkage rate may be smaller than that of the second resin layer 14.
  • the optical fiber 12 is properly positioned in consideration of the shift amount and the shift direction due to the curing shrinkage of the resin 13a of the first resin layer 13 when positioning with respect to the optical waveguide 11c. You may arrange
  • the concave portion 11b of the optical element 11 is bilaterally symmetric with respect to the center in the width direction, and the optical fiber 12 is disposed at the center position in the width direction of the concave portion 11b.
  • the thickness of the first resin layer 13 can be made the same on the left and right in the width direction of the recess 11b, and the movement of the optical fiber 12 in the left and right direction when the resin 13a of the first resin layer 13 is cured and contracted is prevented. can do.
  • the depth of the recess 11b is preferably as thin as possible in order to suppress downward movement of the optical fiber 12 when the resin 13a is cured and contracted.
  • tip part of the optical fiber 12 is not covered with the 1st resin layer 13 and the 2nd resin layer 14, for example, the 1st resin layer 13 and the 2nd resin layer 14 resulting from a temperature change, or these It is difficult for the tip portion of the optical fiber 12 to be displaced due to one expansion or contraction. Thereby, the favorable positioning accuracy of the optical fiber 12 with respect to the optical waveguide 11c can be maintained. Further, even when the first resin layer 13 and the second resin layer 14 contain a filler, the transmission of the optical signal between the tip portion of the optical fiber 12 and the end portion of the optical waveguide 11c is performed by the filler. There is no hindrance.
  • the shape of the recess 11b is not limited to a rectangle, but is a shape that is symmetrical in the width direction, and in the state in which the resin 13a of the first resin layer 13 is injected, the position adjustment of the optical fiber 12 disposed on the resin 13a Any size that can be used.
  • FIG. 8 shows a specific example of the shape of the recess 11b other than the rectangle.
  • FIG. 8A shows a case where the recess 11b is U-shaped
  • FIG. 8C shows a case where the recess 11b is semicircular
  • FIG. 8E shows a case where the recess 11b is V-shaped
  • 8 (g) shows a trapezoidal shape in which the concave portion 11b is widened upward
  • FIG. 8 (i) shows that the concave portion 11b is widened downward (upside down from FIG. 8 (g)).
  • (k) in FIG. 8 is a vertical cross-sectional view of the optical element 11 when the concave portion has a shape whose width has changed in two steps (a shape in which the lower side is narrower).
  • FIG. 8C FIG. 8E, FIG. 8G, FIG. 8I, FIG. 8K
  • the first resin layer 13 and the optical fiber in the recess 11b shown in FIG. 12 is a longitudinal sectional view of the optical element 11 in a state where 12 is provided.
  • the recessed part 11b shown to (c) and (d) of FIG. 8 can make the thickness of the 1st resin layer 13 (resin 13a) substantially uniform in all directions. Therefore, compared with the other recessed part 11b, it is easy to assume the influence by expansion
  • the angle formed between the bottom surface and the side surface is an obtuse angle (an angle greater than 90 degrees). Therefore, the resin 13a can be injected (applied) more easily than the recesses 11b shown in FIGS. 8 (a) and 8 (b) and FIGS. 8 (g) and 8 (h).
  • FIG. 9 is a perspective view showing the configuration of the optical module of the present embodiment.
  • 10A is a cross-sectional view taken along the line AA in FIG. 9, and
  • FIG. 10B is a cross-sectional view taken along the line BB in FIG.
  • the optical module 2 of this embodiment includes an end face of the light incident portion of the optical waveguide 11c formed in the optical element 11 and a tip portion of the optical fiber 12.
  • a connecting resin layer 15 is provided between the two.
  • the connection resin layer 15 connects the end face of the light incident portion of the optical waveguide 11c formed in the optical element 11 and the tip portion of the optical fiber 12, and the tip portion of the optical fiber 12 is positioned with respect to the optical waveguide 11c. It is fixed in position.
  • the connection resin layer 15 is formed of a translucent adhesive.
  • Other configurations of the optical module 2 are the same as those of the optical module 1.
  • FIG. 11 is an explanatory diagram illustrating a manufacturing process of the optical module 2 according to the first manufacturing method.
  • the optical element 11 in the state in which the optical waveguide 11c and the recess 11b are formed, the optical fiber 12, the resin 13a that becomes the first resin layer 13, the resin 14a that becomes the second resin layer 14, A resin to be the connection resin layer 15 and a UV light source 21 are prepared.
  • a UV curable resin is used for the resin 13a and the resin 14a.
  • the optical module 2 is manufactured by the steps (1) to (9) shown in FIG.
  • the steps (1) to (8) are the same as the steps (1) to (8) shown in FIG.
  • connection resin layer 15 A resin for forming the connection resin layer 15 is applied and cured between the end face of the light incident portion of the optical waveguide 11c formed in the optical element 11 and the end portion of the optical fiber 12, and the connection resin layer 15 is cured.
  • the resin forming the connection resin layer 15 is a UV curable resin
  • the resin is cured by irradiating the UV light 21 a from the UV light source 21.
  • the resin forming the connection resin layer 15 is a thermosetting resin
  • the resin is cured by applying heat.
  • FIG. 12 is an explanatory diagram showing a manufacturing process of the optical module 2 according to the second manufacturing method.
  • the optical element 11 in the state in which the optical waveguide 11c and the recess 11b are formed, the optical fiber 12, the resin 13a that becomes the first resin layer 13, the resin 14a that becomes the second resin layer 14, A resin 15a to be the connection resin layer 15 and a UV light source 21 are prepared.
  • UV curable resin is used for the resin 13a, the resin 14a, and the resin 15a.
  • optical module 2 is manufactured by the steps (1) to (9) shown in FIG.
  • the resin 13a of the first resin layer 13 is injected (applied) into the recess 11b of the optical module 1.
  • the waiting time in this case varies depending on the viscosity of the resin 13a.
  • the resin 13a having a viscosity of 100,000 cps takes about 1 minute.
  • connection resin layer 15 is applied to the tip of the optical fiber 12 in advance.
  • the optical fiber 12 is lowered toward the concave portion 11b and disposed on the resin 13a of the first resin layer 13. In this case, a gap is secured between the end face of the light incident portion of the optical waveguide 11 c (the inner wall surface of the recess 11 b) and the resin 15 a at the tip of the optical fiber 12.
  • the optical fiber 12 is attached to the resin 13a, and a state where the optical fiber 12 is embedded in the resin 13a except for a portion located on the upper side surface; To do.
  • the optical fiber 12 is positioned with respect to the optical waveguide 11c. This positioning is performed by the active alignment method described above. The positioning position of the optical fiber 12 is preferably determined in consideration of the amount of movement of the optical fiber 12 due to the curing shrinkage of the resin 13a of the first resin layer 13. Thereafter, the optical fiber 12 is moved in the direction of the optical waveguide 11c, and the resin 15a is abutted against the end face of the light incident portion of the optical waveguide 11c (the inner wall surface of the recess 11b).
  • the resin 13a of the first resin layer 13 and the resin 15a of the connection resin layer 15 are irradiated with UV light 21a from the UV light source 21 to cure the resin 13a and the resin 15a. Thereby, the first resin layer 13 and the connection resin layer 15 are formed.
  • the resin 14a of the second resin layer 14 is irradiated with UV light 21a from the UV light source 21 to cure the resin 14a. Thereby, the second resin layer 14 is formed.
  • the resin 15a is a thermosetting resin, it is not necessary to irradiate the resin 15a with the UV light 21a in the step (6), and the following step (9) is performed.
  • the end face of the light incident portion of the optical waveguide 11c and the tip of the optical fiber 12 are connected by the connecting resin layer 15, and the tip of the optical fiber 12 is positioned with respect to the optical waveguide 11c. It is fixed at the position. Therefore, the optical fiber 12 does not deviate from the positioning position with respect to the optical waveguide 11c. Thereby, the optical module 2 can maintain the state in which the optical fiber 12 is positioned with high accuracy with respect to the optical waveguide 11c.
  • the resin 15 a is applied to the optical waveguide 11 c after the resin 15 a for forming the connection resin layer 15 is applied to the tip of the optical fiber 12.
  • the refractive index of the connection resin layer 15 close to the refractive index of the optical fiber 12 or the optical waveguide 11c, light attenuation due to light reflection at the material interface between the connection resin layer 15 and the optical fiber 12 or the optical waveguide 11c is suppressed. can do.
  • optical module 2 and the manufacturing method of the optical module 2 are the same as the advantages of the optical module 1 and the manufacturing method of the optical module 1.
  • An optical module includes an optical element in which a recess is formed on a surface and an optical waveguide extending along the surface from an inner surface of the recess, and a tip of the optical waveguide.
  • An optical fiber at least partially disposed in the recess so as to face the end face, and the optical fiber is formed by the first resin layer wetted and spread in the width direction in the recess without unevenness. It is the structure fixed to.
  • the optical fiber for the optical waveguide is manufactured in the manufacture of the optical module. Can be positioned with high accuracy.
  • the resin forming the first resin layer is injected into the concave portion of the optical element so as to be wet and spread in the width direction without unevenness. Therefore, the optical fiber hardly moves due to the bias in the width direction of the concave portion when the resin is cured and contracted, and the positional deviation of the optical fiber from the normal positioning position can be suppressed. As a result, the optical fiber can be positioned with respect to the optical waveguide with high accuracy.
  • the movement of the optical fiber at the time of curing shrinkage of the resin forming the first resin layer is mainly considered only in the downward direction. Therefore, the optical fiber is arranged in advance at a position deviated from the normal positioning position mainly in consideration of the amount of movement only in the downward direction, and is arranged at the normal positioning position after the resin is cured and contracted. It is also possible to do.
  • a part of the optical fiber may protrude outside the recess without being embedded in the first resin layer.
  • the optical fiber can be positioned with respect to the optical waveguide with higher accuracy.
  • the first resin layer is formed around the optical fiber in the step of fixing the optical fiber with the first resin layer at the time of manufacturing the optical module. Resin that cures and shrinks in the entire circumference of the optical fiber. Therefore, when the resin is cured and contracted, it is difficult to predict the moving direction and the moving amount of the optical fiber when the resin is cured and contracted.
  • the movement of the optical fiber at the time of curing shrinkage of the resin forming the first resin layer is There is no need to consider movement in the direction protruding out of the recess of the optical fiber. Therefore, it is easy to predict the moving amount and moving direction of the optical fiber at the time of curing shrinkage of the resin forming the first resin layer, and the optical fiber is arranged in advance at a position deviated from the normal positioning position to cure the resin. After contraction, it can be arranged at a normal positioning position. Thereby, positioning of the optical fiber with respect to the optical waveguide can be performed with higher accuracy.
  • the first resin layer may be configured so as to spread symmetrically with respect to an axis orthogonal to the surface in each cross section orthogonal to the optical axis of the optical fiber.
  • the first resin layer wets and spreads symmetrically with respect to the axis orthogonal to the surface on which the recess is formed in each cross section orthogonal to the optical axis of the optical fiber.
  • the movement of the optical fiber at the time of curing shrinkage of the resin forming the first resin layer does not need to consider movement in a direction symmetric with respect to an axis orthogonal to the surface on which the concave portion of the optical element is formed. .
  • This makes it easy to predict the amount and direction of movement of the optical fiber when the resin forming the first resin layer is cured and contracted, and the optical fiber is placed in advance at a position deviated from the normal positioning position. After the curing shrinkage, it can be arranged at a normal positioning position. As a result, the optical fiber can be positioned with respect to the optical waveguide with higher accuracy.
  • the first resin layer may be spread so as not to contact the first section including the tip of the optical fiber.
  • the 1st resin layer since the 1st resin layer has spread so that it may not contact the 1st area containing the front-end
  • the transmission of the optical signal between the tip portion of the optical fiber and the end portion of the optical waveguide is not hindered by the filler.
  • the optical fiber in addition to the first resin layer, is covered with a part of the optical fiber so as not to contact the second section including the tip portion of the optical fiber. It is good also as a structure fixed to the said optical element with the layer.
  • the optical fiber is fixed to the optical element by the second resin layer that covers a part of the optical fiber so as not to contact the second section including the tip of the optical fiber. Therefore, for example, the optical fiber is unlikely to be displaced due to expansion or contraction of the first resin layer and the second resin layer due to temperature change, and the optical fiber is peeled off from the first resin layer, that is, an optical element. It is possible to prevent the optical fiber from being peeled off.
  • the optical module includes a translucent connecting resin that fixes the tip of the optical fiber to the optical waveguide between an end face of the optical waveguide facing the optical fiber and the tip of the optical fiber. It is good also as a structure in which the layer is provided.
  • the tip portion of the optical fiber is fixed in a state of being positioned with respect to the optical waveguide by the connecting resin layer, so that the optical fiber is not displaced from the positioning position with respect to the optical waveguide.
  • the state in which the optical fiber is positioned with high accuracy with respect to the optical waveguide can be maintained.
  • the side surface of the optical fiber may be separated from the bottom surface and the inner surface of the recess.
  • the optical fiber can be actively aligned in the manufacture of the optical module, the optical fiber can be positioned with respect to the optical waveguide with high accuracy.
  • the optical signal is incident on the optical fiber, and the intensity of the optical signal is measured at the output side end (the end opposite to the incident side) of the optical waveguide.
  • the optical fiber is positioned at a position where
  • the first resin layer may be formed of a resin having a smaller shrinkage rate when cured than the second resin layer.
  • the first resin layer is formed of a resin having a smaller shrinkage rate when cured than the second resin layer.
  • the movement amount of the accompanying optical fiber can be reduced, and the displacement of the optical fiber can be suppressed. This facilitates positioning of the optical fiber with respect to the optical waveguide with high accuracy.
  • the first resin layer may include more filler than the second resin layer.
  • the shrinkage rate during curing can be made smaller than that of the second resin layer. Therefore, for example, even when the same resin is used in the first resin layer and the second resin layer, the shrinkage rate when the first resin layer is cured can be easily reduced.
  • the first resin layer contains a large amount of filler, the first resin layer has high strength and can hold the optical fiber firmly.
  • An optical module includes an optical element in which a recess is formed on a surface, an optical waveguide extending along the surface from the inner side surface of the recess, and a tip portion of the optical element.
  • An optical fiber disposed in the recess so as to face the end face of the optical waveguide, and the optical fiber provided in the recess and covered with the portion located on the upper side of the side surface of the optical fiber are covered and fixed. It is the structure provided with the 1st resin layer and the 2nd resin layer provided on the part located on the 1st resin layer and the 1st resin layer in the optical fiber.
  • the resin for forming the first resin layer is injected into the recess in the manufacture of the optical module.
  • the optical fiber can be positioned and disposed thereon, and the first resin layer can cover and fix the optical fiber in a state where the portion located above the side surface of the optical fiber is exposed.
  • resin can be inject
  • the optical fiber hardly moves due to the resin bias in the width direction of the recess when the resin of the first resin layer is cured and contracted, and the optical fiber can be prevented from being displaced from the normal positioning position.
  • the optical fiber can be positioned with respect to the optical waveguide with high accuracy.
  • the movement of the optical fiber at the time of curing shrinkage of the resin forming the first resin layer is mainly considered only in the downward direction. Therefore, the optical fiber is arranged in advance at a position deviated from the normal positioning position mainly in consideration of the amount of movement only in the downward direction, and is arranged at the normal positioning position after the resin is cured and contracted. It is also possible to do.
  • An optical module manufacturing method includes: an optical element in which a recess is formed on a surface; and an optical waveguide extending along the surface from an inner surface of the recess;
  • a manufacturing method for manufacturing an optical module comprising an optical fiber at least partially disposed in the recess so as to face the end face of the optical waveguide, an injection step of injecting uncured resin into the recess, After the injecting step, the optical fiber waits until the uncured resin wets and spreads in the recess without unevenness, and after the waiting step, the optical fiber is arranged so that the tip portion faces the end face of the optical waveguide.
  • Nde is a configuration you are.
  • the uncured resin in the injection process, the uncured resin is injected into the concave portion of the optical element.
  • the process waits until the uncured resin spreads evenly in the recess.
  • the placement step after the standby step, at least a part of the optical fiber is placed in the recess so that the tip portion faces the end face of the optical waveguide.
  • the optical fiber is fixed to the optical element by curing the uncured resin after the placing step.
  • the standby process it waits until the uncured resin spreads evenly in the recess, and in the placement process, the optical fiber is placed in the recess so that the tip portion faces the end face of the optical waveguide.
  • the uncured resin is cured, it is difficult for the optical fiber to move from the positioning position due to the unevenness of the uncured resin in the recess. Thereby, positioning of the optical fiber with respect to the optical waveguide can be performed with high accuracy.
  • the movement of the optical fiber at the time of curing shrinkage of the uncured resin only needs to consider only the downward movement. Therefore, the optical fiber is arranged in advance at a position deviated from the normal positioning position mainly in consideration of the amount of movement only in the downward direction, and is arranged at the normal positioning position after the uncured resin is cured and contracted. It is also possible to do so.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The present invention makes it possible to position an optical fiber with high precision. This optical module (1) includes: an optical element (11) having a recess (11b) formed in the surface thereof, and an optical waveguide (11c) formed inside the optical element and extending from the inner surface of the recess (11b) along the surface; and an optical fiber (12) disposed in the recess (11b) so that the tip end thereof faces the end face of the optical element (11). The optical fiber (12) is secured by a wet first resin layer spread evenly inside the recess (11b) along the width direction thereof.

Description

光モジュールおよび光モジュールの製造方法Optical module and optical module manufacturing method
 本発明は、光導波路と光ファイバとを備え、これら両者間にて光信号の伝達を行う光モジュールおよび光モジュールの製造方法に関する。 The present invention relates to an optical module that includes an optical waveguide and an optical fiber, and transmits an optical signal between them, and a method for manufacturing the optical module.
 従来、光導波路と光ファイバとを備え、これら両者間にて光信号の伝達を行う光モジュールが知られている。この種の光モジュールでは、基板に光導波路が形成され、光導波路の端部と光ファイバとの間で光信号が伝播するように、光導波路と光ファイバとを光接続している。 Conventionally, an optical module that includes an optical waveguide and an optical fiber and transmits an optical signal between them is known. In this type of optical module, an optical waveguide is formed on a substrate, and the optical waveguide and the optical fiber are optically connected so that an optical signal propagates between the end of the optical waveguide and the optical fiber.
 具体的には、従来の光モジュールでは、特許文献1に開示されているように、光導波路を形成する基板に、光ファイバを配置するガイド溝を形成し、ガイド溝に光ファイバを配置し、ガイド溝の光ファイバを接着剤にて固定している。また、特許文献2および3に記載の構成では、光ファイバを配置するガイド溝としてV溝を形成し、V溝に配置した光ファイバを接着剤にて固定している。 Specifically, in the conventional optical module, as disclosed in Patent Document 1, a guide groove for arranging the optical fiber is formed on the substrate on which the optical waveguide is formed, and the optical fiber is arranged in the guide groove, The optical fiber in the guide groove is fixed with an adhesive. In the configurations described in Patent Documents 2 and 3, a V-groove is formed as a guide groove in which the optical fiber is disposed, and the optical fiber disposed in the V-groove is fixed with an adhesive.
 これら特許文献1~3に開示された構成では、光ファイバは光導波路に対して無調心の状態でガイド溝(V溝)に配置される。したがって、ガイド溝は、ガイド溝に配置した光ファイバの光軸と光導波路の光軸とが一致するように形成されている。 In the configurations disclosed in these Patent Documents 1 to 3, the optical fiber is arranged in the guide groove (V groove) in an unaligned state with respect to the optical waveguide. Therefore, the guide groove is formed so that the optical axis of the optical fiber arranged in the guide groove and the optical axis of the optical waveguide coincide.
日本国公開特許公報「特開昭63-58304号公報」Japanese Patent Publication “JP-A 63-58304” 日本国公開特許公報「特開平8-313756号公報」Japanese Patent Publication “JP-A-8-313756” 日本国公開特許公報「特開2006-350014号公報」Japanese Published Patent Publication "Japanese Patent Laid-Open No. 2006-350014"
 近年、シリコンフォトニクスなど、シリコン基板に微細な光導波路を形成した非常に小型かつ高速の光デバイスが開発されている。このような光デバイスでは、光ファイバについて、光導波路に対して例えば1μm以下といった高い位置決め精度が求められる。 Recently, very small and high-speed optical devices such as silicon photonics, in which a fine optical waveguide is formed on a silicon substrate, have been developed. In such an optical device, the optical fiber is required to have a high positioning accuracy of, for example, 1 μm or less with respect to the optical waveguide.
 これに対し、上記従来の構成では、基板に形成したガイド溝(V溝)に光ファイバを無調心の状態にて配置することにより、光導波路に対して光ファイバを位置決めしている。このため、上記従来のガイド溝による光ファイバの位置決め方式では、光ファイバの位置決め精度がガイド溝の加工精度に依存し、上記光デバイスに求められる光ファイバの位置決め精度が得られない。 On the other hand, in the above-described conventional configuration, the optical fiber is positioned with respect to the optical waveguide by disposing the optical fiber in a guide groove (V groove) formed in the substrate in an unaligned state. For this reason, in the conventional optical fiber positioning method using the guide groove, the optical fiber positioning accuracy depends on the guide groove processing accuracy, and the optical fiber positioning accuracy required for the optical device cannot be obtained.
 そこで、光ファイバの位置決めをより高精度に行う方式として、いわゆるアクティブ調心方式が採用されている。この方式では、一例として次のようにして調心を行う。例えば、光ファイバに光信号を入射させ、光導波路の出射側端部(入射側とは反対側の端部)にて光信号の強度を測定し、光信号の強度が最大となる位置に光ファイバを位置決めする。この場合、基板にはガイド溝に代えて凹部を形成し、調心後の光ファイバを凹部に充填した接着剤(樹脂)にて固定する。 Therefore, a so-called active alignment method is adopted as a method for positioning the optical fiber with higher accuracy. In this method, alignment is performed as follows as an example. For example, an optical signal is incident on an optical fiber, the intensity of the optical signal is measured at the output side end of the optical waveguide (the end opposite to the incident side), and the optical signal is measured at the position where the intensity of the optical signal is maximum. Position the fiber. In this case, a recess is formed in the substrate instead of the guide groove, and the aligned optical fiber is fixed with an adhesive (resin) filled in the recess.
 しかしながら、光ファイバの位置決め後に、基板の凹部に接着剤を塗布等により充填すると、接着剤の充填の際に機械的力が光ファイバに作用し、光ファイバは位置決めされた位置から移動する。また、接着剤は硬化時に収縮するので、これによっても光ファイバは位置決めされた位置から移動する。 However, after the optical fiber is positioned, if the concave portion of the substrate is filled with an adhesive or the like, a mechanical force acts on the optical fiber when the adhesive is filled, and the optical fiber moves from the positioned position. In addition, since the adhesive shrinks upon curing, the optical fiber also moves from the position where it is positioned.
 なお、接着剤の硬化収縮による位置決め位置からの光ファイバの移動に対し、光ファイバの移動量を予測し、光ファイバが移動後に所定の位置決め位置に配置されるように、光ファイバを予め位置決め位置からずれた位置に配置すること、すなわちオフセット配置することが考えられる。しかしながら、光ファイバを接着剤の層内に埋設して配置するような構成では、接着剤の硬化収縮による光ファイバの移動方向および移動量を予測するのが困難である。このため、光ファイバをオフセット配置することによっても、接着剤の硬化収縮による光ファイバの位置決め位置からのずれに対応することができない。 Note that the optical fiber movement from the positioning position due to adhesive shrinkage is predicted, and the optical fiber is positioned in advance so that the optical fiber is placed at the predetermined positioning position after the movement. It is conceivable to dispose at a position deviated from the position, that is, to place an offset. However, in the configuration in which the optical fiber is embedded and disposed in the adhesive layer, it is difficult to predict the moving direction and moving amount of the optical fiber due to the curing shrinkage of the adhesive. For this reason, even if the optical fiber is offset, it cannot cope with the deviation from the positioning position of the optical fiber due to curing shrinkage of the adhesive.
 したがって、本発明は、光導波路に対する光ファイバの位置決めを高精度に行うことができる光モジュールおよび光モジュールの製造方法の提供を目的としている。 Therefore, an object of the present invention is to provide an optical module and an optical module manufacturing method capable of positioning an optical fiber with respect to an optical waveguide with high accuracy.
 上記の課題を解決するために、本発明の一態様に係る光モジュールは、凹部が表面に形成されるとともに、該凹部の内側面から前記表面に沿って伸びる光導波路が内部に形成された光学素子と、先端が前記光導波路の端面と対向するように、少なくとも一部が前記凹部に配置された光ファイバと、を備え、前記光ファイバは、前記凹部内の幅方向に偏りなく濡れ広がった第1樹脂層によって、前記光学素子に固定されている。 In order to solve the above problems, an optical module according to an aspect of the present invention is an optical module in which a concave portion is formed on a surface and an optical waveguide extending along the surface from the inner side surface of the concave portion is formed inside. And an optical fiber at least partially disposed in the recess so that the tip faces the end face of the optical waveguide, and the optical fiber wets and spreads evenly in the width direction in the recess. The first resin layer is fixed to the optical element.
 本発明の一態様によれば、光導波路に対する光ファイバの位置決めを高精度に行うことができるという効果を奏する。 According to one aspect of the present invention, there is an effect that the optical fiber can be positioned with respect to the optical waveguide with high accuracy.
本発明の実施形態の光モジュールの構成を示す斜視図である。It is a perspective view which shows the structure of the optical module of embodiment of this invention. 図2の(a)は、図1におけるA-A矢視断面図、図2の(b)は、図1におけるB-B矢視断面図である。2A is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 2B is a cross-sectional view taken along the line BB in FIG. 図1に示した光モジュールの製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the optical module shown in FIG. 図4の(a)は、図1に示した第1樹脂層を形成する樹脂が光学素子の凹部の幅方向において偏った状態で注入された状態を示す光モジュールの縦断面図、図4の(b)は、図4の(a)に示した状態からの第1樹脂層の樹脂の硬化収縮により、光ファイバが正規の位置決め位置からずれた位置に固定された状態を示す光モジュールの縦断面図である。FIG. 4A is a longitudinal sectional view of the optical module showing a state where the resin forming the first resin layer shown in FIG. 1 is injected in a state of being biased in the width direction of the concave portion of the optical element. (B) is a longitudinal section of the optical module showing a state in which the optical fiber is fixed at a position shifted from the normal positioning position due to the curing shrinkage of the resin of the first resin layer from the state shown in FIG. FIG. 図5の(a)は、光学素子の凹部に第1樹脂層の樹脂を注入した場合に、光ファイバが正規の位置決め位置から移動した状態を示す光モジュールの縦断面図、図5の(b)は、図5の(a)に示した状態からの第1樹脂層の樹脂の硬化収縮により、光ファイバが正規の位置決め位置からずれた位置に固定された状態を示す光モジュールの縦断面図である。FIG. 5A is a longitudinal sectional view of the optical module showing a state in which the optical fiber has moved from the normal positioning position when the resin of the first resin layer is injected into the concave portion of the optical element, and FIG. ) Is a longitudinal sectional view of the optical module showing a state in which the optical fiber is fixed at a position shifted from the normal positioning position due to the curing shrinkage of the resin of the first resin layer from the state shown in FIG. It is. 図6の(a)は、第1樹脂層の形成時に、樹脂を光学素子の凹部内に幅方向に偏りなく濡れ広がった状態に注入した状態を示す本実施形態の光モジュールの縦断面図、図6の(b)は、図6の(a)に示した状態からの第1樹脂層の樹脂の硬化収縮により、光ファイバが正規の位置決め位置からのずれを抑制されて固定された状態を示す本実施形態の光モジュールの縦断面図である。(A) of FIG. 6 is a longitudinal sectional view of the optical module of the present embodiment showing a state in which the resin is injected into the concave portion of the optical element so as to be wet and spread in the width direction when the first resin layer is formed, FIG. 6B shows a state in which the optical fiber is fixed by suppressing the deviation from the normal positioning position by the curing shrinkage of the resin of the first resin layer from the state shown in FIG. It is a longitudinal cross-sectional view of the optical module of this embodiment shown. 図7の(a)は、光ファイバを第1樹脂層13の樹脂に埋め込んで配置した状態を示す光モジュールの縦断面図、図7の(b)は、図7の(a)の状態から樹脂が硬化収縮した状態を示す光モジュールの縦断面図である。7A is a longitudinal sectional view of the optical module showing a state in which the optical fiber is embedded in the resin of the first resin layer 13, and FIG. 7B is a view from the state of FIG. It is a longitudinal cross-sectional view of the optical module which shows the state which resin hardened | cured and contracted. 図2の(b)に示した凹部の形状の他の例を示すものであって、図8の(a)は、凹部がU字形状である場合、図8の(c)は、凹部が半円形状である場合、図8の(e)は、凹部がV字形状である場合、図8の(g)は、凹部が上広がりの台形状である場合、図8の(i)は、凹部が下広がり(図8の(g)とは上下逆)の台形状である場合、図8の(k)は、凹部が2段階に幅が変化した形状(下の方が幅狭な形状)である場合の光学素子の縦断面図である。図8の(b)、図8の(d)、図8の(f)、図8の(h)、図8の(j)、図8の(l)は、それぞれ、図8の(a)、図8の(c)、図8の(e)、図8の(g)、図8の(i)、図8の(k)に示した凹部に第1樹脂層および光ファイバを設けた状態の光学素子の縦断面図である。FIG. 8B shows another example of the shape of the concave portion shown in FIG. 2B. FIG. 8A shows a case where the concave portion is U-shaped, and FIG. 8 (e) shows a semicircular shape, FIG. 8 (e) shows a case where the concave portion is V-shaped, FIG. 8 (g) shows a case where the concave portion is a trapezoidal shape, and FIG. In the case of a trapezoidal shape in which the concave portion spreads downward (upside down with respect to (g) in FIG. 8), FIG. 8 (k) shows a shape in which the concave portion changes in two steps (the lower portion is narrower). It is a longitudinal cross-sectional view of the optical element in the case of (shape). 8 (b), FIG. 8 (d), FIG. 8 (f), FIG. 8 (h), FIG. 8 (j), and FIG. 8 (l) are respectively shown in FIG. ), FIG. 8C, FIG. 8E, FIG. 8G, FIG. 8I, and FIG. 8K are provided with the first resin layer and the optical fiber. FIG. 本発明の他の実施形態の光モジュールの構成を示す斜視図である。It is a perspective view which shows the structure of the optical module of other embodiment of this invention. 図10の(a)は、図9におけるA-A矢視断面図、図10の(b)は、図9におけるB-B矢視断面図である。10A is a cross-sectional view taken along the line AA in FIG. 9, and FIG. 10B is a cross-sectional view taken along the line BB in FIG. 図9に示した光モジュールの第1の製造方法による製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process by the 1st manufacturing method of the optical module shown in FIG. 図9に示した光モジュールの第2の製造方法による製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process by the 2nd manufacturing method of the optical module shown in FIG.
 〔実施形態1〕
 本発明の実施形態を図面に基づいて以下に説明する。図1は、本実施形態の光モジュールの構成を示す斜視図である。図2の(a)は、図1におけるA-A矢視断面図、図2の(b)は、図1におけるB-B矢視断面図である。
Embodiment 1
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing the configuration of the optical module of the present embodiment. 2A is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 2B is a cross-sectional view taken along the line BB in FIG.
 (光モジュールの構成)
 図1および図2の(a)(b)に示すように、光モジュール1は、光学素子11および光ファイバ12を備えている。
(Configuration of optical module)
As shown in FIGS. 1 and 2A and 2B, the optical module 1 includes an optical element 11 and an optical fiber 12.
 光学素子11は、長手方向の端面が高さよりも幅の方が長い長方形である直方体の基板形状であり、光導波路11cおよび凹部11bを有している。 The optical element 11 has a rectangular parallelepiped substrate shape whose end face in the longitudinal direction is a rectangle whose width is longer than the height, and has an optical waveguide 11c and a recess 11b.
 凹部11bは、光学素子11の中央部付近から長手方向の一方側の第1端面11dに達する長さを有し、光学素子11の上面(表面)11aにおいて、光学素子11の例えば幅方向の中央部に形成されている。光学素子11の縦断面にて見た凹部11bの形状は、高さよりも幅の方が長い長方形である。 The concave portion 11b has a length that reaches the first end surface 11d on one side in the longitudinal direction from the vicinity of the central portion of the optical element 11, and on the upper surface (front surface) 11a of the optical element 11, for example, the center in the width direction of the optical element 11 It is formed in the part. The shape of the concave portion 11b seen in the longitudinal section of the optical element 11 is a rectangle having a longer width than a height.
 光導波路11cは、光学素子11の長手方向の、凹部11bが形成されている領域とは反対側の領域に形成されている。光導波路11cは、凹部11bの幅方向に平行な内側面から光学素子11の上面11aに沿って長手方向へ延び、第1端面11dとは反対側の第2端面11eに達している。光導波路11cの凹部11b側の端部は光入射部であり、第2端面11e側の端部は光出射部である。なお、光入射部と光出射部とが逆であってもよい。 The optical waveguide 11c is formed in a region on the opposite side of the region where the concave portion 11b is formed in the longitudinal direction of the optical element 11. The optical waveguide 11c extends in the longitudinal direction along the upper surface 11a of the optical element 11 from the inner surface parallel to the width direction of the recess 11b, and reaches the second end surface 11e opposite to the first end surface 11d. The end portion on the concave portion 11b side of the optical waveguide 11c is a light incident portion, and the end portion on the second end face 11e side is a light emitting portion. The light incident part and the light emitting part may be reversed.
 なお、図1および図2には、光学素子11の一端部のみにおいて、光導波路11cの端部に凹部11bを介して光ファイバ12を接続した構造を示した。しかしながら、光導波路11cの端部に凹部11bを介して光ファイバ12を接続する構造については種々考えられる。例えば、光学素子11の両端部において、直線状に延びた光導波路11cの両端部に凹部11bを介して光ファイバ12を接続した構造である。あるいは、光学素子11の一端部から他端部方向へ延びた後、他端部に達する前に折り返して一端部に達した光導波路11c、すなわち両端部が光学素子11の一端部側に存在する光導波路11cに凹部11bを介して光ファイバ12を接続した構造である。したがって、図1および図2は、光学素子11での光導波路11cの端部に凹部11bを介して光ファイバ12を接続した構造の一つのみを抜き出して示したものと見なしてもよい。 1 and 2 show a structure in which the optical fiber 12 is connected to the end of the optical waveguide 11c via the recess 11b only at one end of the optical element 11. FIG. However, various structures for connecting the optical fiber 12 to the end of the optical waveguide 11c via the recess 11b are conceivable. For example, at both ends of the optical element 11, the optical fiber 12 is connected to both ends of a linearly extending optical waveguide 11c via a recess 11b. Alternatively, the optical waveguide 11c extends from one end portion of the optical element 11 toward the other end portion and then folds before reaching the other end portion to reach the one end portion, that is, both end portions exist on one end portion side of the optical element 11. In this structure, the optical fiber 12 is connected to the optical waveguide 11c through the recess 11b. Accordingly, FIGS. 1 and 2 may be regarded as only one of the structures in which the optical fiber 12 is connected to the end of the optical waveguide 11c of the optical element 11 via the recess 11b.
 凹部11bの内部には第1樹脂層13が設けられ、第1樹脂層13の上に光ファイバ12が設けられている。光ファイバ12は、光学素子11の長手方向に延びた状態に配置され、光導波路11c側の端面が光導波路11cの光入射部の端面と所定の間隔をおいて対向している。すなわち、光ファイバ12は、光導波路11cに対して位置決めされ、光ファイバ12内を伝播した光信号が光導波路11cへ入射するように、光導波路11cと光接続されている。理想的には、光ファイバ12は、光軸が光導波路11cの光軸と一致するように配置されている。 The first resin layer 13 is provided inside the recess 11b, and the optical fiber 12 is provided on the first resin layer 13. The optical fiber 12 is arranged in a state extending in the longitudinal direction of the optical element 11, and the end surface on the optical waveguide 11c side faces the end surface of the light incident portion of the optical waveguide 11c with a predetermined interval. That is, the optical fiber 12 is positioned with respect to the optical waveguide 11c, and is optically connected to the optical waveguide 11c so that an optical signal propagated through the optical fiber 12 enters the optical waveguide 11c. Ideally, the optical fiber 12 is arranged so that the optical axis coincides with the optical axis of the optical waveguide 11c.
 なお、本実施形態において、凹部11bは、幅方向の中心に対して左右対称形であり、光ファイバ12は、凹部11bの幅方向の中心位置に配置されている。 In this embodiment, the recess 11b is symmetrical with respect to the center in the width direction, and the optical fiber 12 is disposed at the center position in the width direction of the recess 11b.
 第1樹脂層13は、凹部11bの幅方向において、樹脂を偏りなく濡れ広がった状態に充填することにより形成されている。第1樹脂層13は、光ファイバ12の側面の上側に位置する部分を露出させた状態にて光ファイバ12を覆っている。すなわち、光ファイバ12は、側面における上側に位置する部分を除いて、第1樹脂層13に埋設されている。ただし、光ファイバ12における光導波路11c側の端部である先端部およびその付近は、第1樹脂層13が設けられておらず、第1樹脂層13に覆われていない。 The first resin layer 13 is formed by filling the resin in a wet and spread state without unevenness in the width direction of the recess 11b. The first resin layer 13 covers the optical fiber 12 in a state where a portion located on the upper side of the side surface of the optical fiber 12 is exposed. That is, the optical fiber 12 is embedded in the first resin layer 13 except for the portion located on the upper side of the side surface. However, the first resin layer 13 is not provided at the tip portion that is the end portion of the optical fiber 12 on the optical waveguide 11 c side and the vicinity thereof, and is not covered with the first resin layer 13.
 第1樹脂層13の上、および光ファイバ12における第1樹脂層13の上に位置する部分の上には、第2樹脂層14が設けられている。ただし、第2樹脂層14は、第1樹脂層13の上、および光ファイバ12における第1樹脂層13の上に位置する部分の上の全体ではなく、光学素子11の第1端面11d付近に設けられている。したがって、第2樹脂層14は、光ファイバ12の先端部およびその付近を覆っていない。 The second resin layer 14 is provided on the first resin layer 13 and on the portion of the optical fiber 12 located on the first resin layer 13. However, the second resin layer 14 is not on the first resin layer 13 and not on the entire portion of the optical fiber 12 located on the first resin layer 13, but near the first end surface 11 d of the optical element 11. Is provided. Therefore, the second resin layer 14 does not cover the tip portion of the optical fiber 12 and the vicinity thereof.
 ここで、第1樹脂層13は、光ファイバ12を光導波路11cに対して光接続可能な位置に固定している。第2樹脂層14は、光ファイバ12の第1樹脂層13対する上方への剥がれを防止している。 Here, the first resin layer 13 fixes the optical fiber 12 at a position where the optical fiber 12 can be optically connected to the optical waveguide 11c. The second resin layer 14 prevents the optical fiber 12 from peeling upward from the first resin layer 13.
 第1樹脂層13および第2樹脂層14は、例えばエポキシ樹脂にて形成されている。また、第1樹脂層13および第2樹脂層14は、例えばフィラーを含んでいてもよい。第1樹脂層13および第2樹脂層14は、フィラーを含むことにより、硬化時の収縮率が低下し、かつ強度が大きくなる。一方、フィラーの量が多くなるほど、第1樹脂層13および第2樹脂層14は、接着剤としての機能が低下する。 The first resin layer 13 and the second resin layer 14 are made of, for example, an epoxy resin. Moreover, the 1st resin layer 13 and the 2nd resin layer 14 may contain the filler, for example. When the first resin layer 13 and the second resin layer 14 contain a filler, the shrinkage rate during curing decreases and the strength increases. On the other hand, the larger the amount of filler, the lower the function of the first resin layer 13 and the second resin layer 14 as an adhesive.
 第1樹脂層13および第2樹脂層14がフィラーを含む場合、第1樹脂層13は第2樹脂層14よりもフィラーの量を多く含んでいてもよい。この場合、第1樹脂層13は、硬化する場合の収縮率が低下する。したがって、光ファイバ12を第1樹脂層13の上に位置決めして配置し、第1樹脂層13を硬化する工程において、位置決め位置からの光ファイバ12の移動を抑制することができる。一方、第2樹脂層14は、フィラーの量が少ないので、高い接着機能にて第1樹脂層13に接着し、第1樹脂層13から光ファイバ12を剥がれ難くすることができる。 When the first resin layer 13 and the second resin layer 14 contain a filler, the first resin layer 13 may contain a larger amount of filler than the second resin layer 14. In this case, the contraction rate when the first resin layer 13 is cured decreases. Therefore, in the process of positioning and arranging the optical fiber 12 on the first resin layer 13 and curing the first resin layer 13, the movement of the optical fiber 12 from the positioning position can be suppressed. On the other hand, since the amount of filler in the second resin layer 14 is small, it is possible to adhere to the first resin layer 13 with a high adhesion function, and to make it difficult to peel the optical fiber 12 from the first resin layer 13.
 フィラーの含有率は、一例として、第1樹脂層13が70%~90%、第2樹脂層14が10%~30%である。 The filler content is, for example, 70% to 90% for the first resin layer 13 and 10% to 30% for the second resin layer 14.
 (光モジュールの製造方法)
 上記の構成において、光モジュール1の製造方法を以下に説明する。図3は、光モジュール1の製造工程を示す説明図である。
(Optical module manufacturing method)
In the above configuration, a method for manufacturing the optical module 1 will be described below. FIG. 3 is an explanatory diagram showing a manufacturing process of the optical module 1.
 光モジュール1を製造する際には、光導波路11cおよび凹部11bが形成された状態の光学素子11、光ファイバ12、第1樹脂層13となる樹脂13a、第2樹脂層14となる樹脂14a、およびUV光源21を用意する。なお、ここでは、樹脂13aおよび樹脂14aには、UV硬化樹脂を使用する。 When the optical module 1 is manufactured, the optical element 11 in the state where the optical waveguide 11c and the recess 11b are formed, the optical fiber 12, the resin 13a that becomes the first resin layer 13, the resin 14a that becomes the second resin layer 14, A UV light source 21 is prepared. Here, a UV curable resin is used for the resin 13a and the resin 14a.
 次に、図3に示す(1)~(8)の工程により光モジュール1を製造する。 Next, the optical module 1 is manufactured by the steps (1) to (8) shown in FIG.
 (1)光モジュール1の凹部11bに第1樹脂層13の樹脂13aを注入(塗布)する。 (1) The resin 13a of the first resin layer 13 is injected (applied) into the recess 11b of the optical module 1.
 (2)樹脂13aが、凹部11bの幅方向において、十分に濡れ広がるのを待つ。これにより、樹脂13aは、凹部11bの幅方向において、偏りなく濡れ広がった状態に充填される。この場合の待ち時間は樹脂13aの粘度によって変わる。例えば粘度100,000cpsの樹脂13aであれば1分程度である。 (2) Wait for the resin 13a to be sufficiently wet and spread in the width direction of the recess 11b. Thereby, the resin 13a is filled in a state where the resin 13a is wet and spread in the width direction of the recess 11b. The waiting time in this case varies depending on the viscosity of the resin 13a. For example, the resin 13a having a viscosity of 100,000 cps takes about 1 minute.
 (3)光ファイバ12を凹部11bの真上に保持する。 (3) The optical fiber 12 is held right above the recess 11b.
 (4)光ファイバ12を凹部11bに向って降下させ、第1樹脂層13の樹脂13a上に配置する。これによって、光ファイバ12を樹脂13aに付着させ、側面の上側に位置する部分を除いて、樹脂13aに埋設された状態とする。 (4) The optical fiber 12 is lowered toward the concave portion 11b and disposed on the resin 13a of the first resin layer 13. As a result, the optical fiber 12 is attached to the resin 13a, and a state where the optical fiber 12 is embedded in the resin 13a except for a portion located on the upper side of the side surface is obtained.
 (5)光ファイバ12を光導波路11cに対して位置決めする。この位置決めは、前述したアクティブ調心方式にて行う。また、光ファイバ12の位置決め位置は、第1樹脂層13の樹脂13aの硬化収縮による光ファイバ12の移動分を考慮して決定することが好ましい。 (5) The optical fiber 12 is positioned with respect to the optical waveguide 11c. This positioning is performed by the active alignment method described above. The positioning position of the optical fiber 12 is preferably determined in consideration of the amount of movement of the optical fiber 12 due to the curing shrinkage of the resin 13a of the first resin layer 13.
 (6)第1樹脂層13の樹脂13aにUV光源21からUV光21aを照射して樹脂13aを硬化させる。これにより、第1樹脂層13を形成する。 (6) The resin 13a of the first resin layer 13 is irradiated with UV light 21a from the UV light source 21 to cure the resin 13a. Thereby, the first resin layer 13 is formed.
 (7)第1樹脂層13の上、および光ファイバ12における第1樹脂層13の上に位置する部分の上であって、光学素子11の第1端面11d付近に、第2樹脂層14の樹脂14aを注入(塗布)する。 (7) On the first resin layer 13 and on the portion of the optical fiber 12 located on the first resin layer 13, in the vicinity of the first end surface 11 d of the optical element 11, the second resin layer 14 Resin 14a is injected (coated).
 (8)第2樹脂層14の樹脂14aにUV光源21からUV光21aを照射して樹脂14aを硬化させる。これにより、第2樹脂層14を形成する。 (8) The resin 14a of the second resin layer 14 is irradiated with UV light 21a from the UV light source 21 to cure the resin 14a. Thereby, the second resin layer 14 is formed.
 (光モジュールおよび光モジュールの製造方法の利点)
 本実施形態の光モジュール1は、次のような第1の構成を備えている。すなわち、光学素子11および光ファイバ12を備えている。光学素子11は、凹部11bが上面(表面)11aに形成されるとともに、凹部11bの内側面から上面11aに沿って伸びる光導波路11cが内部に形成されている。光ファイバ12は、先端が光導波路11cの端面と対向するように、少なくとも一部が凹部11bに配置されている。また、光ファイバ12は、凹部11b内に幅方向に偏りなく濡れ広がった第1樹脂層13によって光学素子11に固定されている。
(Advantages of optical module and optical module manufacturing method)
The optical module 1 of the present embodiment has the following first configuration. That is, the optical element 11 and the optical fiber 12 are provided. The optical element 11 has a recess 11b formed on the upper surface (front surface) 11a, and an optical waveguide 11c extending along the upper surface 11a from the inner surface of the recess 11b. At least a part of the optical fiber 12 is disposed in the recess 11b so that the tip thereof faces the end face of the optical waveguide 11c. In addition, the optical fiber 12 is fixed to the optical element 11 by the first resin layer 13 that spreads wet in the concave portion 11b without deviation in the width direction.
 第1の構成を備えている光モジュール1では、光ファイバ12は、凹部11b内に幅方向に偏りなく濡れ広がった第1樹脂層13によって光学素子11に固定されているので、光モジュール1の製造において、光導波路11cに対する光ファイバ12の位置決めを高精度に行うことができるようになっている。 In the optical module 1 having the first configuration, the optical fiber 12 is fixed to the optical element 11 by the first resin layer 13 wetted and spread in the concave portion 11b without deviation in the width direction. In manufacturing, the optical fiber 12 can be positioned with high accuracy with respect to the optical waveguide 11c.
 すなわち、図4の(a)に示すように、第1樹脂層13を形成する樹脂13aが光学素子11の凹部11bの幅方向において偏った状態で注入された場合には、第1樹脂層13は凹部11bの幅方向において偏った状態に形成される。なお、図中の矢印は、樹脂13aの硬化収縮時に光ファイバ12に作用する応力を示している。この場合、光ファイバ12は、樹脂13aの硬化収縮時に、図4の(b)に示すように、樹脂13aの偏った方向へ移動し、正規の位置決め位置からずれた位置に固定される。この結果、光ファイバ12の位置決め精度は低下する。 That is, as shown in FIG. 4A, when the resin 13a forming the first resin layer 13 is injected in a state of being biased in the width direction of the concave portion 11b of the optical element 11, the first resin layer 13 Is formed in a biased state in the width direction of the recess 11b. In addition, the arrow in a figure has shown the stress which acts on the optical fiber 12 at the time of hardening shrinkage | contraction of resin 13a. In this case, when the resin 13a is cured and contracted, the optical fiber 12 moves in the direction in which the resin 13a is biased and is fixed at a position shifted from the normal positioning position, as shown in FIG. As a result, the positioning accuracy of the optical fiber 12 decreases.
 また、光モジュール1の製造において、光ファイバ12を正規の位置決め位置に配置した後、凹部11bに第1樹脂層13の樹脂13aを注入した場合、図5の(a)に示すように、光ファイバ12が正規の位置決め位置(二点鎖線にて示す位置)から移動する事態が生じる。この場合にも光ファイバ12は、図5の(b)に示すように、樹脂13aの硬化収縮後(第1樹脂層13の形成後)に正規の位置決め位置からずれた位置に固定される。この結果、光ファイバ12の位置決め精度は低下する。 Further, in the manufacture of the optical module 1, when the resin 13a of the first resin layer 13 is injected into the concave portion 11b after the optical fiber 12 is arranged at the regular positioning position, as shown in FIG. A situation occurs in which the fiber 12 moves from a normal positioning position (a position indicated by a two-dot chain line). Also in this case, as shown in FIG. 5B, the optical fiber 12 is fixed at a position shifted from the normal positioning position after the resin 13a is cured and contracted (after the formation of the first resin layer 13). As a result, the positioning accuracy of the optical fiber 12 decreases.
 これに対し、光ファイバ12が、凹部11b内に幅方向に偏りなく濡れ広がった第1樹脂層13により光学素子11に固定されている第1の構成では、図6の(a)に示すように、第1樹脂層13の形成時に、樹脂13aは、凹部11b内に幅方向に偏りなく濡れ広がった状態に注入される。したがって、光ファイバ12は、図6の(b)に示すように、第1樹脂層13の樹脂13aの硬化収縮時(第1樹脂層13の形成時)に、樹脂13aの凹部11b内の幅方向への偏りによる移動が生じ難く、正規の位置決め位置からの光ファイバ12の位置ずれを抑制することができる。この結果、光導波路11cに対する光ファイバ12の位置決めを高精度に行うことができる。 On the other hand, in the first configuration in which the optical fiber 12 is fixed to the optical element 11 by the first resin layer 13 wetted and spread in the concave portion 11b without deviation in the width direction, as shown in FIG. In addition, when the first resin layer 13 is formed, the resin 13a is injected into the concave portion 11b so as to be wet and spread in the width direction. Therefore, as shown in FIG. 6B, the optical fiber 12 has a width within the recess 11b of the resin 13a when the resin 13a of the first resin layer 13 is cured and contracted (when the first resin layer 13 is formed). The movement due to the deviation in the direction hardly occurs, and the displacement of the optical fiber 12 from the normal positioning position can be suppressed. As a result, the optical fiber 12 can be positioned with high accuracy with respect to the optical waveguide 11c.
 この場合、光ファイバ12は、特に、凹部11bの幅方向の中心位置に配置すれば、樹脂13aの硬化収縮時(第1樹脂層13の形成時)に凹部11bの幅方向へは移動し難く、正規の位置決め位置からの光ファイバ12の位置ずれをさらに抑制することができる。 In this case, in particular, if the optical fiber 12 is disposed at the center position in the width direction of the recess 11b, it is difficult to move in the width direction of the recess 11b when the resin 13a is cured and contracted (when the first resin layer 13 is formed). Further, the positional deviation of the optical fiber 12 from the regular positioning position can be further suppressed.
 また、第1の構成では、樹脂13aの硬化収縮時における光ファイバ12の移動は、主に下方向への移動のみを考慮すればよい。したがって、光ファイバ12は、主に下方向のみの移動量を考慮して、予め正規の位置決め位置からずれた位置に配置しておき、樹脂13aの硬化収縮後に、正規の位置決め位置に配置されるようにすることも可能である。 Further, in the first configuration, the movement of the optical fiber 12 at the time of curing shrinkage of the resin 13a need only consider mainly the downward movement. Therefore, the optical fiber 12 is arranged in advance at a position deviated from the normal positioning position mainly considering the amount of movement only in the downward direction, and is arranged at the normal positioning position after the resin 13a is cured and contracted. It is also possible to do so.
 また、本実施形態の光モジュール1は、次のような第2の構成を備えていると表現することができる。すなわち、光モジュール1は、光学素子11、光ファイバ12、第1樹脂層13および第2樹脂層14を備えている。光学素子11は、凹部11bが上面(表面)11aに形成されるとともに、凹部11bの内側面から上面11aに沿って伸びる光導波路11cが内部に形成されている。光ファイバ12は、先端が光導波路11cの端面と対向するように凹部11bに配置されている。第1樹脂層13は、凹部11bに設けられ、光ファイバ12の側面の上側に位置する部分を露出させた状態にて光ファイバ12を覆い固定している。第2樹脂層14は、第1樹脂層13の上、および光ファイバ12における第1樹脂層13の上に位置する部分の上に設けられている。 Moreover, it can be expressed that the optical module 1 of the present embodiment has the following second configuration. That is, the optical module 1 includes an optical element 11, an optical fiber 12, a first resin layer 13, and a second resin layer 14. The optical element 11 has a recess 11b formed on the upper surface (front surface) 11a, and an optical waveguide 11c extending along the upper surface 11a from the inner surface of the recess 11b. The optical fiber 12 is disposed in the recess 11b so that the tip thereof faces the end surface of the optical waveguide 11c. The first resin layer 13 is provided in the recess 11b and covers and fixes the optical fiber 12 in a state in which a portion located above the side surface of the optical fiber 12 is exposed. The second resin layer 14 is provided on the first resin layer 13 and on a portion of the optical fiber 12 located on the first resin layer 13.
 第2の構成を備えている光モジュール1では、第1樹脂層13は、凹部11bに設けられ、光ファイバ12の側面の上側に位置する部分を露出させた状態にて光ファイバ12を覆い固定し、第2樹脂層14は、第1樹脂層13の上、および光ファイバ12における第1樹脂層13の上に位置する部分の上に設けられている。したがって、光モジュール1の製造において、光導波路11cに対する光ファイバ12の位置決めを高精度に行うことができるようになっている。 In the optical module 1 having the second configuration, the first resin layer 13 is provided in the recess 11b and covers and fixes the optical fiber 12 in a state where the portion located on the upper side of the side surface of the optical fiber 12 is exposed. The second resin layer 14 is provided on the first resin layer 13 and on the portion of the optical fiber 12 located on the first resin layer 13. Therefore, in manufacturing the optical module 1, the optical fiber 12 can be positioned with respect to the optical waveguide 11c with high accuracy.
 すなわち、光ファイバ12を例えば第1樹脂層13のみによって光学素子11すなわち凹部11bに固定する場合には、光ファイバ12を第1樹脂層13に埋め込む必要がある。この場合には、図7の(a)に示すように、光ファイバ12を第1樹脂層13により固定する工程において、光ファイバ12の周りに第1樹脂層13の樹脂13aが存在し、光ファイバ12の周囲全体において樹脂13aの硬化収縮が生じる。このため、図7の(b)に示すように、樹脂13aが硬化収縮した場合、樹脂13aの硬化収縮時における光ファイバ12の移動方向および移動量の予測が困難である。したがって、樹脂13aの硬化収縮時における光ファイバ12の移動方向および移動量を予測して、予め正規の位置決め位置からずらして光ファイバ12を配置しておくような対応が困難である。このため、光ファイバ12の位置決め精度は低下する。さらに、図4の(a)(b)および図5の(a)(b)により説明した問題も生じ易い。 That is, when the optical fiber 12 is fixed to the optical element 11, that is, the recess 11 b only by the first resin layer 13, for example, the optical fiber 12 needs to be embedded in the first resin layer 13. In this case, as shown in FIG. 7A, in the step of fixing the optical fiber 12 with the first resin layer 13, the resin 13a of the first resin layer 13 exists around the optical fiber 12, and the light Curing shrinkage of the resin 13a occurs around the entire periphery of the fiber 12. For this reason, as shown in FIG. 7B, when the resin 13a is cured and contracted, it is difficult to predict the moving direction and the moving amount of the optical fiber 12 when the resin 13a is cured and contracted. Accordingly, it is difficult to predict the moving direction and moving amount of the optical fiber 12 when the resin 13a is cured and contracted, and to dispose the optical fiber 12 in advance from the normal positioning position. For this reason, the positioning accuracy of the optical fiber 12 is lowered. Furthermore, the problems described with reference to FIGS. 4A and 4B and FIGS. 5A and 5B are likely to occur.
 これに対し、第2の構成の光モジュール1では、図6の(a)に示すように、まず、凹部11b内に第1樹脂層13の樹脂13aを注入し、その上に光ファイバ12を位置決めして配置し、第1樹脂層13により、光ファイバ12の側面の上側に位置する部分を露出させた状態にて光ファイバ12を覆い固定することができる。また、樹脂13aを注入する場合、樹脂13aを凹部11b内に幅方向に偏りなく濡れ広がった状態に注入することができる。 On the other hand, in the optical module 1 having the second configuration, as shown in FIG. 6A, first, the resin 13a of the first resin layer 13 is injected into the recess 11b, and the optical fiber 12 is placed thereon. The optical fiber 12 can be covered and fixed by the first resin layer 13 in a state where the first resin layer 13 is positioned and the portion located above the side surface of the optical fiber 12 is exposed. In addition, when the resin 13a is injected, the resin 13a can be injected into the recess 11b so as to be wet and spread in the width direction without being biased.
 したがって、光ファイバ12は、図6の(b)に示すように、第1樹脂層13の樹脂13aの硬化収縮時(第1樹脂層13の形成時)に、樹脂13aの凹部11b内の幅方向への偏りによる移動が生じ難く、正規の位置決め位置からの光ファイバ12の位置ずれを抑制することができる。この結果、光導波路11cに対する光ファイバの位置決めを高精度に行うことができる。 Therefore, as shown in FIG. 6B, the optical fiber 12 has a width within the recess 11b of the resin 13a when the resin 13a of the first resin layer 13 is cured and contracted (when the first resin layer 13 is formed). The movement due to the deviation in the direction hardly occurs, and the displacement of the optical fiber 12 from the normal positioning position can be suppressed. As a result, the optical fiber can be positioned with respect to the optical waveguide 11c with high accuracy.
 この場合、光ファイバ12は、凹部11bの幅方向の中心位置に配置すれば、樹脂13aの硬化収縮時(第1樹脂層13の形成時)に凹部11bの幅方向へは移動し難く、正規の位置決め位置からの光ファイバ12の位置ずれをさらに抑制することができる。 In this case, if the optical fiber 12 is arranged at the center position in the width direction of the recess 11b, it is difficult to move in the width direction of the recess 11b when the resin 13a is cured and contracted (when the first resin layer 13 is formed). The positional deviation of the optical fiber 12 from the positioning position can be further suppressed.
 また、樹脂13aの硬化収縮時における光ファイバ12の移動は、主に下方向への移動のみを考慮すればよい。したがって、光ファイバ12は、主に下方向のみの移動量を考慮して、予め正規の位置決め位置からずれた位置に配置しておき、樹脂13aの硬化収縮後に、正規の位置決め位置に配置されるようにすることも可能である。 Further, the movement of the optical fiber 12 at the time of curing and shrinking of the resin 13a is mainly considered only in the downward direction. Therefore, the optical fiber 12 is arranged in advance at a position deviated from the normal positioning position mainly considering the amount of movement only in the downward direction, and is arranged at the normal positioning position after the resin 13a is cured and contracted. It is also possible to do so.
 また、第2樹脂層14を、第1樹脂層13の上、および光ファイバ12における第1樹脂層13の上に位置する部分の上に設けることにより、光ファイバ12が第1樹脂層13から剥がれる事態を防止することができる。 Further, by providing the second resin layer 14 on the first resin layer 13 and on a portion of the optical fiber 12 located on the first resin layer 13, the optical fiber 12 is separated from the first resin layer 13. The situation where it peels off can be prevented.
 なお、第1樹脂層13および第2樹脂層14には、上記のように、UV硬化樹脂等の光硬化型樹脂を使うことが好ましい。第1樹脂層13および第2樹脂層14に加熱硬化型の樹脂を使用した場合には、加熱硬化時の温度変化による第1樹脂層13および第2樹脂層14の樹脂や光学素子11等の熱膨張により、第1樹脂層13および第2樹脂層14の樹脂の硬化前に光ファイバ12の位置ずれを引き起こす恐れがある。第1樹脂層13および第2樹脂層14に、UV硬化樹脂を使用した場合には、このような問題を回避することができる。 In addition, it is preferable to use photocurable resin, such as UV curable resin, for the 1st resin layer 13 and the 2nd resin layer 14 as mentioned above. When a thermosetting resin is used for the first resin layer 13 and the second resin layer 14, the resin of the first resin layer 13 and the second resin layer 14 due to a temperature change during the heat curing, the optical element 11, etc. Due to thermal expansion, the optical fiber 12 may be displaced before the first resin layer 13 and the second resin layer 14 are cured. Such a problem can be avoided when UV curable resin is used for the first resin layer 13 and the second resin layer 14.
 また、上記のように、第1樹脂層13の樹脂13aには、硬化収縮による光ファイバ12の位置ずれを抑制するため、第2樹脂層14の樹脂よりも硬化収縮率が小さいものを使うのが好ましい。このために、第1樹脂層13は、第2樹脂層14よりも多量のフィラーを含有し、第2樹脂層14よりも硬化収縮率が小さくなるようにしてもよい。 In addition, as described above, the resin 13a of the first resin layer 13 uses a resin having a smaller curing shrinkage than the resin of the second resin layer 14 in order to suppress the displacement of the optical fiber 12 due to the curing shrinkage. Is preferred. Therefore, the first resin layer 13 may contain a larger amount of filler than the second resin layer 14, and the curing shrinkage rate may be smaller than that of the second resin layer 14.
 また、光モジュール1の製造時において、光ファイバ12は、光導波路11cに対する位置決めの際に、第1樹脂層13の樹脂13aの硬化収縮によるずれ量およびずれの方向を考慮して、正規の位置決め位置からずれた位置に配置してもよい。この場合には、第1樹脂層13の樹脂13aの硬化収縮後に、光ファイバ12を正規の位置に配置し易くなる。光ファイバ12を正規の位置決め位置からずれた位置に配置する作業は、前述の製造工程の(5)工程にて行う。 Further, when the optical module 1 is manufactured, the optical fiber 12 is properly positioned in consideration of the shift amount and the shift direction due to the curing shrinkage of the resin 13a of the first resin layer 13 when positioning with respect to the optical waveguide 11c. You may arrange | position in the position shifted | deviated from the position. In this case, it becomes easy to place the optical fiber 12 at a regular position after the resin 13a of the first resin layer 13 is cured and contracted. The operation of disposing the optical fiber 12 at a position shifted from the normal positioning position is performed in the above-described manufacturing process (5).
 また、光学素子11の凹部11bは、上記のように、幅方向の中心に対して左右対称形であり、光ファイバ12は、凹部11bの幅方向の中心位置に配置されていることが好ましい。この場合には、第1樹脂層13の厚さを凹部11bの幅方向の左右において同じにでき、第1樹脂層13の樹脂13aの硬化収縮時における光ファイバ12の左右方向への移動を阻止することができる。また、凹部11bの深さは、樹脂13aの硬化収縮時における光ファイバ12の下方への移動を抑制するため、薄いほど好ましい。 Further, as described above, it is preferable that the concave portion 11b of the optical element 11 is bilaterally symmetric with respect to the center in the width direction, and the optical fiber 12 is disposed at the center position in the width direction of the concave portion 11b. In this case, the thickness of the first resin layer 13 can be made the same on the left and right in the width direction of the recess 11b, and the movement of the optical fiber 12 in the left and right direction when the resin 13a of the first resin layer 13 is cured and contracted is prevented. can do. Further, the depth of the recess 11b is preferably as thin as possible in order to suppress downward movement of the optical fiber 12 when the resin 13a is cured and contracted.
 また、光ファイバ12の先端部は、第1樹脂層13および第2樹脂層14によって覆われていないので、例えば温度変化に起因する第1樹脂層13および第2樹脂層14またはこれらのうちの一方の膨張または収縮に伴う光ファイバ12の先端部の位置ずれが生じ難くなっている。これにより、光導波路11cに対する光ファイバ12の良好な位置決め精度を維持することができる。また、第1樹脂層13および第2樹脂層14がフィラーを含んでいる場合であっても、光ファイバ12の先端部と光導波路11cの端部との間での光信号の伝送がフィラーによって阻害されることがない。 Moreover, since the front-end | tip part of the optical fiber 12 is not covered with the 1st resin layer 13 and the 2nd resin layer 14, for example, the 1st resin layer 13 and the 2nd resin layer 14 resulting from a temperature change, or these It is difficult for the tip portion of the optical fiber 12 to be displaced due to one expansion or contraction. Thereby, the favorable positioning accuracy of the optical fiber 12 with respect to the optical waveguide 11c can be maintained. Further, even when the first resin layer 13 and the second resin layer 14 contain a filler, the transmission of the optical signal between the tip portion of the optical fiber 12 and the end portion of the optical waveguide 11c is performed by the filler. There is no hindrance.
 凹部11bの形状は、長方形に限定されず、幅方向において左右対称な形状であり、かつ第1樹脂層13の樹脂13aを注入した状態において、樹脂13aの上に配置した光ファイバ12の位置調整ができる大きさであればよい。図8に凹部11bの長方形以外の形状の具体例を挙げておく。 The shape of the recess 11b is not limited to a rectangle, but is a shape that is symmetrical in the width direction, and in the state in which the resin 13a of the first resin layer 13 is injected, the position adjustment of the optical fiber 12 disposed on the resin 13a Any size that can be used. FIG. 8 shows a specific example of the shape of the recess 11b other than the rectangle.
 図8の(a)は、凹部11bがU字形状である場合、図8の(c)は、凹部11bが半円形状である場合、図8の(e)は、凹部11bがV字形状である場合、図8の(g)は、凹部11bが上広がりの台形状である場合、図8の(i)は、凹部11bが下広がり(図8の(g)とは上下逆)の台形状である場合、図8の(k)は、凹部が2段階に幅が変化した形状(下の方が幅狭な形状)である場合の光学素子11の縦断面図である。図8の(b)、図8の(d)、図8の(f)、図8の(h)、図8の(j)、図8の(l)は、それぞれ、図8の(a)、図8の(c)、図8の(e)、図8の(g)、図8の(i)、図8の(k)に示した凹部11bに第1樹脂層13および光ファイバ12を設けた状態の光学素子11の縦断面図である。 8A shows a case where the recess 11b is U-shaped, FIG. 8C shows a case where the recess 11b is semicircular, and FIG. 8E shows a case where the recess 11b is V-shaped. 8 (g) shows a trapezoidal shape in which the concave portion 11b is widened upward, and FIG. 8 (i) shows that the concave portion 11b is widened downward (upside down from FIG. 8 (g)). In the case of a trapezoidal shape, (k) in FIG. 8 is a vertical cross-sectional view of the optical element 11 when the concave portion has a shape whose width has changed in two steps (a shape in which the lower side is narrower). 8 (b), FIG. 8 (d), FIG. 8 (f), FIG. 8 (h), FIG. 8 (j), and FIG. 8 (l) are respectively shown in FIG. ), FIG. 8C, FIG. 8E, FIG. 8G, FIG. 8I, FIG. 8K, the first resin layer 13 and the optical fiber in the recess 11b shown in FIG. 12 is a longitudinal sectional view of the optical element 11 in a state where 12 is provided.
 なお、図8の(c)(d)に示した凹部11bは、第1樹脂層13(樹脂13a)の厚みを全方位においてほぼ均一にすることができる。したがって、他の凹部11bと比較して、樹脂13aの硬化収縮および熱に起因した膨張や収縮による影響を想定し易い。また、凹部11bに角部がないので、樹脂13aの注入(塗布)が容易である。 In addition, the recessed part 11b shown to (c) and (d) of FIG. 8 can make the thickness of the 1st resin layer 13 (resin 13a) substantially uniform in all directions. Therefore, compared with the other recessed part 11b, it is easy to assume the influence by expansion | swelling and shrinkage | contraction resulting from hardening shrinkage | contraction and heat of resin 13a. Moreover, since there is no corner | angular part in the recessed part 11b, injection | pouring (application | coating) of the resin 13a is easy.
 図8の(i)(j)に示した凹部11bは、底面と側面との成す角度が鈍角(90度よりも大きい角度)となる。したがって、図8の(a)(b)および図8の(g)(h)に示した凹部11bと比較して、樹脂13aの注入(塗布)が容易である。 In the recess 11b shown in (i) and (j) of FIG. 8, the angle formed between the bottom surface and the side surface is an obtuse angle (an angle greater than 90 degrees). Therefore, the resin 13a can be injected (applied) more easily than the recesses 11b shown in FIGS. 8 (a) and 8 (b) and FIGS. 8 (g) and 8 (h).
 〔実施形態2〕
 本発明の他の実施形態を図面に基づいて以下に説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
Another embodiment of the present invention will be described below with reference to the drawings. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図9は、本実施形態の光モジュールの構成を示す斜視図である。図10の(a)は、図9におけるA-A矢視断面図、図10の(b)は、図9におけるB-B矢視断面図である。 FIG. 9 is a perspective view showing the configuration of the optical module of the present embodiment. 10A is a cross-sectional view taken along the line AA in FIG. 9, and FIG. 10B is a cross-sectional view taken along the line BB in FIG.
 (光モジュールの構成)
 図9および図10の(a)(b)に示すように、本実施形態の光モジュール2は、光学素子11に形成された光導波路11cの光入射部の端面と光ファイバ12の先端部との間に接続樹脂層15が設けられている。接続樹脂層15は、光学素子11に形成された光導波路11cの光入射部の端面と光ファイバ12の先端部とを接続し、光ファイバ12の先端部を光導波路11cに対して位置決めされた位置に固定している。接続樹脂層15は、透光性の接着剤にて形成されている。光モジュール2の他の構成は、光モジュール1と同様である。
(Configuration of optical module)
As shown in FIGS. 9 and 10 (a) and 10 (b), the optical module 2 of this embodiment includes an end face of the light incident portion of the optical waveguide 11c formed in the optical element 11 and a tip portion of the optical fiber 12. A connecting resin layer 15 is provided between the two. The connection resin layer 15 connects the end face of the light incident portion of the optical waveguide 11c formed in the optical element 11 and the tip portion of the optical fiber 12, and the tip portion of the optical fiber 12 is positioned with respect to the optical waveguide 11c. It is fixed in position. The connection resin layer 15 is formed of a translucent adhesive. Other configurations of the optical module 2 are the same as those of the optical module 1.
 (光モジュールの第1の製造方法)
 上記の構成において、光モジュール2の第1の製造方法を以下に説明する。図11は、光モジュール2の第1の製造方法による製造工程を示す説明図である。
(First manufacturing method of optical module)
In the above configuration, a first manufacturing method of the optical module 2 will be described below. FIG. 11 is an explanatory diagram illustrating a manufacturing process of the optical module 2 according to the first manufacturing method.
 光モジュール2を製造する際には、光導波路11cおよび凹部11bが形成された状態の光学素子11、光ファイバ12、第1樹脂層13となる樹脂13a、第2樹脂層14となる樹脂14a、接続樹脂層15となる樹脂およびUV光源21を用意する。なお、ここでは樹脂13aおよび樹脂14aには、UV硬化樹脂を使用する。 When the optical module 2 is manufactured, the optical element 11 in the state in which the optical waveguide 11c and the recess 11b are formed, the optical fiber 12, the resin 13a that becomes the first resin layer 13, the resin 14a that becomes the second resin layer 14, A resin to be the connection resin layer 15 and a UV light source 21 are prepared. Here, a UV curable resin is used for the resin 13a and the resin 14a.
 次に、図11に示す(1)~(9)の工程により光モジュール2を製造する。なお、(1)~(8)の工程については、図3に示した(1)~(8)の工程と同様であるので、説明を省略する。 Next, the optical module 2 is manufactured by the steps (1) to (9) shown in FIG. The steps (1) to (8) are the same as the steps (1) to (8) shown in FIG.
 (9)光学素子11に形成された光導波路11cの光入射部の端面と光ファイバ12の先端部との間に、接続樹脂層15を形成する樹脂を塗布して硬化させ、接続樹脂層15を形成する。この場合、接続樹脂層15を形成する樹脂がUV硬化樹脂である場合には、UV光源21からUV光21aを照射して樹脂を硬化させる。また、接続樹脂層15を形成する樹脂が熱硬化型の樹脂である場合には、樹脂に熱を加えて硬化させる。 (9) A resin for forming the connection resin layer 15 is applied and cured between the end face of the light incident portion of the optical waveguide 11c formed in the optical element 11 and the end portion of the optical fiber 12, and the connection resin layer 15 is cured. Form. In this case, when the resin forming the connection resin layer 15 is a UV curable resin, the resin is cured by irradiating the UV light 21 a from the UV light source 21. When the resin forming the connection resin layer 15 is a thermosetting resin, the resin is cured by applying heat.
 (光モジュールの第2の製造方法)
 次に、光モジュール2の第2の製造方法を以下に説明する。図12は、光モジュール2の第2の製造方法による製造工程を示す説明図である。
(Second manufacturing method of optical module)
Next, a second manufacturing method of the optical module 2 will be described below. FIG. 12 is an explanatory diagram showing a manufacturing process of the optical module 2 according to the second manufacturing method.
 光モジュール2を製造する際には、光導波路11cおよび凹部11bが形成された状態の光学素子11、光ファイバ12、第1樹脂層13となる樹脂13a、第2樹脂層14となる樹脂14a、接続樹脂層15となる樹脂15aおよびUV光源21を用意する。なお、ここでは、樹脂13a、樹脂14aおよび樹脂15aには、UV硬化樹脂を使用する。 When the optical module 2 is manufactured, the optical element 11 in the state in which the optical waveguide 11c and the recess 11b are formed, the optical fiber 12, the resin 13a that becomes the first resin layer 13, the resin 14a that becomes the second resin layer 14, A resin 15a to be the connection resin layer 15 and a UV light source 21 are prepared. Here, UV curable resin is used for the resin 13a, the resin 14a, and the resin 15a.
 次に、図12に示す(1)~(9)の工程にて光モジュール2を製造する。 Next, the optical module 2 is manufactured by the steps (1) to (9) shown in FIG.
 (1)光モジュール1の凹部11bに第1樹脂層13の樹脂13aを注入(塗布)する。 (1) The resin 13a of the first resin layer 13 is injected (applied) into the recess 11b of the optical module 1.
 (2)樹脂13aが、凹部11bの幅方向において、十分に濡れ広がるのを待つ。これにより、樹脂13aは、凹部11bの幅方向において、偏りなく濡れ広がった状態に充填される。この場合の待ち時間は樹脂13aの粘度によって変わる。例えば粘度100,000cpsの樹脂13aであれば1分程度である。 (2) Wait for the resin 13a to be sufficiently wet and spread in the width direction of the recess 11b. Thereby, the resin 13a is filled in a state where the resin 13a is wet and spread in the width direction of the recess 11b. The waiting time in this case varies depending on the viscosity of the resin 13a. For example, the resin 13a having a viscosity of 100,000 cps takes about 1 minute.
 (3)光ファイバ12を凹部11bの真上に保持する。この場合、光ファイバ12の先端部に接続樹脂層15を形成する樹脂15aを予め塗布しておく。 (3) The optical fiber 12 is held right above the recess 11b. In this case, a resin 15 a that forms the connection resin layer 15 is applied to the tip of the optical fiber 12 in advance.
 (4)光ファイバ12を凹部11bに向って降下させ、第1樹脂層13の樹脂13a上に配置する。この場合、光導波路11cの光入射部の端面(凹部11bの内壁面)と光ファイバ12の先端部の樹脂15aとの間には、隙間を確保しておく。また、光ファイバ12を第1樹脂層13の樹脂13a上に配置することによって、光ファイバ12を樹脂13aに付着させ、側面の上側に位置する部分を除いて、樹脂13aに埋設された状態とする。 (4) The optical fiber 12 is lowered toward the concave portion 11b and disposed on the resin 13a of the first resin layer 13. In this case, a gap is secured between the end face of the light incident portion of the optical waveguide 11 c (the inner wall surface of the recess 11 b) and the resin 15 a at the tip of the optical fiber 12. In addition, by placing the optical fiber 12 on the resin 13a of the first resin layer 13, the optical fiber 12 is attached to the resin 13a, and a state where the optical fiber 12 is embedded in the resin 13a except for a portion located on the upper side surface; To do.
 (5)光ファイバ12を光導波路11cに対して位置決めする。この位置決めは、前述したアクティブ調心方式にて行う。また、光ファイバ12の位置決め位置は、第1樹脂層13の樹脂13aの硬化収縮による光ファイバ12の移動分を考慮して決定することが好ましい。その後、光ファイバ12を光導波路11c方向へ移動させて、樹脂15aを光導波路11cの光入射部の端面(凹部11bの内壁面)に突き当てる。 (5) The optical fiber 12 is positioned with respect to the optical waveguide 11c. This positioning is performed by the active alignment method described above. The positioning position of the optical fiber 12 is preferably determined in consideration of the amount of movement of the optical fiber 12 due to the curing shrinkage of the resin 13a of the first resin layer 13. Thereafter, the optical fiber 12 is moved in the direction of the optical waveguide 11c, and the resin 15a is abutted against the end face of the light incident portion of the optical waveguide 11c (the inner wall surface of the recess 11b).
 (6)第1樹脂層13の樹脂13aおよび接続樹脂層15の樹脂15aにUV光源21からUV光21aを照射して樹脂13aおよび樹脂15aを硬化させる。これにより、第1樹脂層13および接続樹脂層15を形成する。 (6) The resin 13a of the first resin layer 13 and the resin 15a of the connection resin layer 15 are irradiated with UV light 21a from the UV light source 21 to cure the resin 13a and the resin 15a. Thereby, the first resin layer 13 and the connection resin layer 15 are formed.
 (7)第1樹脂層13の上、および光ファイバ12における第1樹脂層13の上に位置する部分の上であって、光学素子11の第1端面11d付近に、第2樹脂層14の樹脂14aを注入(塗布)する。 (7) On the first resin layer 13 and on the portion of the optical fiber 12 located on the first resin layer 13, in the vicinity of the first end surface 11 d of the optical element 11, the second resin layer 14 Resin 14a is injected (coated).
 (8)第2樹脂層14の樹脂14aにUV光源21からUV光21aを照射して樹脂14aを硬化させる。これにより、第2樹脂層14を形成する。 (8) The resin 14a of the second resin layer 14 is irradiated with UV light 21a from the UV light source 21 to cure the resin 14a. Thereby, the second resin layer 14 is formed.
 なお、樹脂15aが熱硬化型の樹脂である場合には、(6)の工程においてUV光21aを樹脂15aに照射する必要がなく、下記の(9)の工程を行う。 When the resin 15a is a thermosetting resin, it is not necessary to irradiate the resin 15a with the UV light 21a in the step (6), and the following step (9) is performed.
 (9)樹脂15aに熱を加えて硬化させ、接続樹脂層15を形成する。 (9) Heat is applied to the resin 15a to cure it, and the connection resin layer 15 is formed.
 (光モジュールおよび光モジュールの製造方法の利点)
 本実施形態の光モジュール2は、光導波路11cの光入射部の端面と光ファイバ12の先端部とが接続樹脂層15によって接続され、光ファイバ12の先端部が光導波路11cに対して位置決めされた位置に固定されている。したがって、光ファイバ12が光導波路11cに対する位置決め位置からずれることがない。これにより、光モジュール2は、光ファイバ12が光導波路11cに対して高精度に位置決めされた状態を維持することができる。
(Advantages of optical module and optical module manufacturing method)
In the optical module 2 of the present embodiment, the end face of the light incident portion of the optical waveguide 11c and the tip of the optical fiber 12 are connected by the connecting resin layer 15, and the tip of the optical fiber 12 is positioned with respect to the optical waveguide 11c. It is fixed at the position. Therefore, the optical fiber 12 does not deviate from the positioning position with respect to the optical waveguide 11c. Thereby, the optical module 2 can maintain the state in which the optical fiber 12 is positioned with high accuracy with respect to the optical waveguide 11c.
 また、光モジュール2の第2の製造方法では、光ファイバ12の先端部に接続樹脂層15を形成する樹脂15aを塗布した後に光導波路11cに対する光ファイバ12の位置決めを行うので、樹脂15aを塗布することによって光ファイバ12が位置決め位置からずれる事態を回避することができる。また、接続樹脂層15の屈折率を光ファイバ12や光導波路11cの屈折率に近づけることにより、接続樹脂層15と光ファイバ12や光導波路11cの材料境界面における光の反射による光減衰を抑制することができる。 In the second manufacturing method of the optical module 2, the resin 15 a is applied to the optical waveguide 11 c after the resin 15 a for forming the connection resin layer 15 is applied to the tip of the optical fiber 12. By doing so, it is possible to avoid a situation in which the optical fiber 12 is displaced from the positioning position. Further, by making the refractive index of the connection resin layer 15 close to the refractive index of the optical fiber 12 or the optical waveguide 11c, light attenuation due to light reflection at the material interface between the connection resin layer 15 and the optical fiber 12 or the optical waveguide 11c is suppressed. can do.
 光モジュール2および光モジュール2の製造方法のその他の利点は、光モジュール1および光モジュール1の製造方法の利点と同様である。 Other advantages of the optical module 2 and the manufacturing method of the optical module 2 are the same as the advantages of the optical module 1 and the manufacturing method of the optical module 1.
 〔まとめ〕
 本発明の一態様に係る光モジュールは、凹部が表面に形成されるとともに、該凹部の内側面から前記表面に沿って伸びる光導波路が内部に形成された光学素子と、先端が前記光導波路の端面と対向するように、少なくとも一部が前記凹部に配置された光ファイバと、を備え、前記光ファイバは、前記凹部内の幅方向に偏りなく濡れ広がった第1樹脂層によって、前記光学素子に固定されている構成である。
[Summary]
An optical module according to an aspect of the present invention includes an optical element in which a recess is formed on a surface and an optical waveguide extending along the surface from an inner surface of the recess, and a tip of the optical waveguide. An optical fiber at least partially disposed in the recess so as to face the end face, and the optical fiber is formed by the first resin layer wetted and spread in the width direction in the recess without unevenness. It is the structure fixed to.
 上記の構成によれば、光ファイバは、光学素子の凹部内の幅方向に偏りなく濡れ広がった第1樹脂層によって光学素子に固定されているので、光モジュールの製造において、光導波路に対する光ファイバの位置決めを高精度に行うことができる。 According to the above configuration, since the optical fiber is fixed to the optical element by the first resin layer that is wet and spread in the width direction in the concave portion of the optical element, the optical fiber for the optical waveguide is manufactured in the manufacture of the optical module. Can be positioned with high accuracy.
 すなわち、第1樹脂層の形成時において、第1樹脂層を形成する樹脂は、光学素子の凹部内に幅方向に偏りなく濡れ広がった状態に注入される。したがって、光ファイバは、樹脂の硬化収縮時に、凹部の幅方向への偏りによる移動が生じ難く、正規の位置決め位置からの光ファイバの位置ずれを抑制することができる。この結果、光導波路に対する光ファイバの位置決めを高精度に行うことができる。 That is, at the time of forming the first resin layer, the resin forming the first resin layer is injected into the concave portion of the optical element so as to be wet and spread in the width direction without unevenness. Therefore, the optical fiber hardly moves due to the bias in the width direction of the concave portion when the resin is cured and contracted, and the positional deviation of the optical fiber from the normal positioning position can be suppressed. As a result, the optical fiber can be positioned with respect to the optical waveguide with high accuracy.
 また、第1樹脂層を形成する樹脂の硬化収縮時における光ファイバの移動は、主に下方向への移動のみを考慮すればよい。したがって、光ファイバは、主に下方向のみの移動量を考慮して、予め正規の位置決め位置からずれた位置に配置しておき、樹脂の硬化収縮後に、正規の位置決め位置に配置されるようにすることも可能である。 Further, the movement of the optical fiber at the time of curing shrinkage of the resin forming the first resin layer is mainly considered only in the downward direction. Therefore, the optical fiber is arranged in advance at a position deviated from the normal positioning position mainly in consideration of the amount of movement only in the downward direction, and is arranged at the normal positioning position after the resin is cured and contracted. It is also possible to do.
 上記の光モジュールにおいて、前記光ファイバは、その一部が前記第1樹脂層に埋設されることなく前記凹部外に突出している構成としてもよい。 In the above optical module, a part of the optical fiber may protrude outside the recess without being embedded in the first resin layer.
 上記の構成によれば、光導波路に対する光ファイバの位置決めをさらに高精度に行うことができる。 According to the above configuration, the optical fiber can be positioned with respect to the optical waveguide with higher accuracy.
 すなわち、光ファイバの周囲全体を第1樹脂層に埋設する場合には、光モジュールの製造の際の第1樹脂層により光ファイバを固定する工程において、光ファイバの周りに第1樹脂層を形成する樹脂が存在し、光ファイバの周囲全体において樹脂の硬化収縮が生じる。このため、樹脂が硬化収縮した場合、樹脂の硬化収縮時における光ファイバの移動方向および移動量を予測することが困難である。 That is, when the entire periphery of the optical fiber is embedded in the first resin layer, the first resin layer is formed around the optical fiber in the step of fixing the optical fiber with the first resin layer at the time of manufacturing the optical module. Resin that cures and shrinks in the entire circumference of the optical fiber. Therefore, when the resin is cured and contracted, it is difficult to predict the moving direction and the moving amount of the optical fiber when the resin is cured and contracted.
 これに対し、光ファイバの一部が第1樹脂層に埋設されることなく凹部外に突出している構成とした場合、第1樹脂層を形成する樹脂の硬化収縮時における光ファイバの移動は、光ファイバの凹部外に突出している方向への移動を考慮する必要がない。したがって、第1樹脂層を形成する樹脂の硬化収縮時における光ファイバの移動量および移動方向が予測し易く、光ファイバは、予め正規の位置決め位置からずれた位置に配置しておき、樹脂の硬化収縮後に、正規の位置決め位置に配置されるようにすることが可能である。これにより、光導波路に対する光ファイバの位置決めをさらに高精度に行うことができる。 On the other hand, when a part of the optical fiber is configured to protrude out of the recess without being embedded in the first resin layer, the movement of the optical fiber at the time of curing shrinkage of the resin forming the first resin layer is There is no need to consider movement in the direction protruding out of the recess of the optical fiber. Therefore, it is easy to predict the moving amount and moving direction of the optical fiber at the time of curing shrinkage of the resin forming the first resin layer, and the optical fiber is arranged in advance at a position deviated from the normal positioning position to cure the resin. After contraction, it can be arranged at a normal positioning position. Thereby, positioning of the optical fiber with respect to the optical waveguide can be performed with higher accuracy.
 上記の光モジュールにおいて、前記第1樹脂層は、前記光ファイバの光軸に直交する各断面において、前記表面に直交する軸に対して対称に濡れ広がっている構成としてもよい。 In the above optical module, the first resin layer may be configured so as to spread symmetrically with respect to an axis orthogonal to the surface in each cross section orthogonal to the optical axis of the optical fiber.
 上記の構成によれば、第1樹脂層は、光ファイバの光軸に直交する各断面において、凹部が形成されている表面に直交する軸に対して対称に濡れ広がっている。 According to the above configuration, the first resin layer wets and spreads symmetrically with respect to the axis orthogonal to the surface on which the recess is formed in each cross section orthogonal to the optical axis of the optical fiber.
 したがって、第1樹脂層を形成する樹脂の硬化収縮時における光ファイバの移動は、光学素子の凹部が形成されている表面に直交する軸に対して対称な方向についての移動を考慮する必要がない。これにより、第1樹脂層を形成する樹脂の硬化収縮時における光ファイバの移動量および移動方向が予測し易く、光ファイバは、予め正規の位置決め位置からずれた位置に配置しておき、樹脂の硬化収縮後に、正規の位置決め位置に配置されるようにすることが可能である。この結果、光導波路に対する光ファイバの位置決めをさらに高精度に行うことができる。 Accordingly, the movement of the optical fiber at the time of curing shrinkage of the resin forming the first resin layer does not need to consider movement in a direction symmetric with respect to an axis orthogonal to the surface on which the concave portion of the optical element is formed. . This makes it easy to predict the amount and direction of movement of the optical fiber when the resin forming the first resin layer is cured and contracted, and the optical fiber is placed in advance at a position deviated from the normal positioning position. After the curing shrinkage, it can be arranged at a normal positioning position. As a result, the optical fiber can be positioned with respect to the optical waveguide with higher accuracy.
 上記の光モジュールにおいて、前記第1樹脂層は、前記光ファイバの前記先端部を含む第1の区間に接触しないように濡れ広がっている構成としてもよい。 In the above optical module, the first resin layer may be spread so as not to contact the first section including the tip of the optical fiber.
 上記の構成によれば、第1樹脂層は、光ファイバの先端部を含む第1の区間に接触しないように濡れ広がっているので、第1樹脂層がフィラーを含んでいる場合であっても、光ファイバの先端部と光導波路の端部との間での光信号の伝送がフィラーによって阻害されることがない。 According to said structure, since the 1st resin layer has spread so that it may not contact the 1st area containing the front-end | tip part of an optical fiber, even if it is a case where the 1st resin layer contains the filler. The transmission of the optical signal between the tip portion of the optical fiber and the end portion of the optical waveguide is not hindered by the filler.
 上記の光モジュールにおいて、前記光ファイバは、前記第1樹脂層に加え、前記光ファイバの前記先端部を含む第2の区間に接触しないように前記光ファイバの一部に覆い被さった第2樹脂層によって、前記光学素子に固定されている構成としてもよい。 In the above optical module, in addition to the first resin layer, the optical fiber is covered with a part of the optical fiber so as not to contact the second section including the tip portion of the optical fiber. It is good also as a structure fixed to the said optical element with the layer.
 上記の構成によれば、光ファイバは、光ファイバの先端部を含む第2の区間に接触しないように光ファイバの一部に覆い被さった第2樹脂層によって光学素子に固定されている。したがって、例えば温度変化に起因する第1樹脂層および第2樹脂層の膨張または収縮に伴う光ファイバの先端部の位置ずれが生じ難く、かつ第1樹脂層から光ファイバが剥がれる事態、すなわち光学素子から光ファイバが剥がれる事態を防止することができる。 According to the above configuration, the optical fiber is fixed to the optical element by the second resin layer that covers a part of the optical fiber so as not to contact the second section including the tip of the optical fiber. Therefore, for example, the optical fiber is unlikely to be displaced due to expansion or contraction of the first resin layer and the second resin layer due to temperature change, and the optical fiber is peeled off from the first resin layer, that is, an optical element. It is possible to prevent the optical fiber from being peeled off.
 上記の光モジュールは、前記光導波路の前記光ファイバと対向する端面と前記光ファイバの先端部との間に、前記光ファイバの先端部を前記光導波路に対して固定する透光性の接続樹脂層が設けられている構成としてもよい。 The optical module includes a translucent connecting resin that fixes the tip of the optical fiber to the optical waveguide between an end face of the optical waveguide facing the optical fiber and the tip of the optical fiber. It is good also as a structure in which the layer is provided.
 上記の構成によれば、光ファイバの先端部は、接続樹脂層により光導波路に対して位置決めされた状態にて固定されているので、光ファイバが光導波路に対する位置決め位置からずれることがない。これにより、光ファイバが光導波路に対して高精度に位置決めされた状態を維持することができる。 According to the above configuration, the tip portion of the optical fiber is fixed in a state of being positioned with respect to the optical waveguide by the connecting resin layer, so that the optical fiber is not displaced from the positioning position with respect to the optical waveguide. Thereby, the state in which the optical fiber is positioned with high accuracy with respect to the optical waveguide can be maintained.
 上記の光モジュールにおいて、前記光ファイバの側面は、前記凹部の底面および内側面から離間している構成としてもよい。 In the above optical module, the side surface of the optical fiber may be separated from the bottom surface and the inner surface of the recess.
 上記の構成によれば、光モジュールの製造において、光ファイバのアクティブ調心が可能となるので、光導波路に対する光ファイバの位置決めを高精度に行うことができる。なお、アクティブ調心は、光ファイバに光信号を入射させ、光導波路の出射側端部(入射側とは反対側の端部)にて光信号の強度を測定し、光信号の強度が最大となる位置に光ファイバを位置決めする方式である。 According to the above configuration, since the optical fiber can be actively aligned in the manufacture of the optical module, the optical fiber can be positioned with respect to the optical waveguide with high accuracy. In the active alignment, the optical signal is incident on the optical fiber, and the intensity of the optical signal is measured at the output side end (the end opposite to the incident side) of the optical waveguide. The optical fiber is positioned at a position where
 上記の光モジュールにおいて、前記第1樹脂層は、前記第2樹脂層よりも、硬化する際の収縮率が小さい樹脂にて形成されている構成としてもよい。 In the above optical module, the first resin layer may be formed of a resin having a smaller shrinkage rate when cured than the second resin layer.
 上記の構成によれば、第1樹脂層は、第2樹脂層よりも硬化する際の収縮率が小さい樹脂にて形成されているので、光モジュールの製造において、第1樹脂層の硬化収縮に伴う光ファイバの移動量を小さくし、光ファイバの位置ずれを抑制することができる。これにより、光導波路に対する光ファイバの位置決めを高精度に行い易くなる。 According to the above configuration, the first resin layer is formed of a resin having a smaller shrinkage rate when cured than the second resin layer. The movement amount of the accompanying optical fiber can be reduced, and the displacement of the optical fiber can be suppressed. This facilitates positioning of the optical fiber with respect to the optical waveguide with high accuracy.
 上記の光モジュールにおいて、前記第1樹脂層は、前記第2樹脂層よりもフィラーを多く含んでいる構成としてもよい。 In the above optical module, the first resin layer may include more filler than the second resin layer.
 上記の構成によれば、第1樹脂層は、第2樹脂層よりもフィラーを多く含んでいるので、第2樹脂層よりも硬化の際の収縮率を小さくすることができる。これにより、例えば第1樹脂層および第2樹脂層にて同じ樹脂を使用している場合であっても第1樹脂層の硬化の際の収縮率を容易に小さくすることができる。また、第1樹脂層はフィラーを多く含んでいることにより、高い強度を有し、光ファイバを強固に保持することができる。 According to the above configuration, since the first resin layer contains more filler than the second resin layer, the shrinkage rate during curing can be made smaller than that of the second resin layer. Thereby, for example, even when the same resin is used in the first resin layer and the second resin layer, the shrinkage rate when the first resin layer is cured can be easily reduced. In addition, since the first resin layer contains a large amount of filler, the first resin layer has high strength and can hold the optical fiber firmly.
 本発明の他の一態様に係る光モジュールは、凹部が表面に形成されるとともに、該凹部の内側面から前記表面に沿って伸びる光導波路が内部に形成された光学素子と、先端部が前記光導波路の端面と対向するように前記凹部に配置された光ファイバと、前記凹部に設けられ、前記光ファイバの側面の上側に位置する部分を露出させた状態にて前記光ファイバを覆い固定する第1樹脂層と、前記第1樹脂層の上、および前記光ファイバにおける前記第1樹脂層の上に位置する部分の上に設けられた第2樹脂層とを備えている構成である。 An optical module according to another aspect of the present invention includes an optical element in which a recess is formed on a surface, an optical waveguide extending along the surface from the inner side surface of the recess, and a tip portion of the optical element. An optical fiber disposed in the recess so as to face the end face of the optical waveguide, and the optical fiber provided in the recess and covered with the portion located on the upper side of the side surface of the optical fiber are covered and fixed. It is the structure provided with the 1st resin layer and the 2nd resin layer provided on the part located on the 1st resin layer and the 1st resin layer in the optical fiber.
 上記の構成によれば、光ファイバを第1樹脂層および第2樹脂層にて光学素子に固定しているので、光モジュールの製造において、凹部内に第1樹脂層を形成する樹脂を注入し、その上に光ファイバを位置決めして配置し、第1樹脂層により、光ファイバの側面の上側に位置する部分を露出させた状態にて光ファイバを覆い固定することができる。また、第1樹脂層を形成する樹脂を注入する場合、樹脂を凹部内に幅方向に偏りなく濡れ広がった状態に注入することができる。 According to the above configuration, since the optical fiber is fixed to the optical element by the first resin layer and the second resin layer, the resin for forming the first resin layer is injected into the recess in the manufacture of the optical module. The optical fiber can be positioned and disposed thereon, and the first resin layer can cover and fix the optical fiber in a state where the portion located above the side surface of the optical fiber is exposed. Moreover, when inject | pouring resin which forms a 1st resin layer, resin can be inject | poured in the state which got wet and spread in the recessed part evenly in the width direction.
 したがって、光ファイバは、第1樹脂層の樹脂の硬化収縮時に、凹部の幅方向への樹脂の偏りによる移動が生じ難く、正規の位置決め位置からの光ファイバの位置ずれを抑制することができる。この結果、光導波路に対する光ファイバの位置決めを高精度に行うことができる。 Therefore, the optical fiber hardly moves due to the resin bias in the width direction of the recess when the resin of the first resin layer is cured and contracted, and the optical fiber can be prevented from being displaced from the normal positioning position. As a result, the optical fiber can be positioned with respect to the optical waveguide with high accuracy.
 また、第1樹脂層を形成する樹脂の硬化収縮時における光ファイバの移動は、主に下方向への移動のみを考慮すればよい。したがって、光ファイバは、主に下方向のみの移動量を考慮して、予め正規の位置決め位置からずれた位置に配置しておき、樹脂の硬化収縮後に、正規の位置決め位置に配置されるようにすることも可能である。 Further, the movement of the optical fiber at the time of curing shrinkage of the resin forming the first resin layer is mainly considered only in the downward direction. Therefore, the optical fiber is arranged in advance at a position deviated from the normal positioning position mainly in consideration of the amount of movement only in the downward direction, and is arranged at the normal positioning position after the resin is cured and contracted. It is also possible to do.
 また、第2樹脂層を、第1樹脂層の上、および光ファイバにおける第1樹脂層の上に位置する部分の上に設けることにより、光ファイバが第1樹脂層から剥がれる事態を防止することができる。 Moreover, the situation where an optical fiber peels from a 1st resin layer is prevented by providing a 2nd resin layer on the part located on the 1st resin layer and the 1st resin layer in an optical fiber. Can do.
 本発明の一態様に係る光モジュールの製造方法は、凹部が表面に形成されるとともに、該凹部の内側面から前記表面に沿って伸びる光導波路が内部に形成された光学素子と、先端部が前記光導波路の端面と対向するように、少なくとも一部が前記凹部に配置された光ファイバと、を備えた光モジュールを製造する製造方法において、前記凹部に未硬化樹脂を注入する注入工程と、前記注入工程の後、前記未硬化樹脂が前記凹部内に偏りなく濡れ広がるまで待機する待機工程と、前記待機工程の後、前記先端部が前記光導波路の端面と対向するように、前記光ファイバの少なくとも一部を前記凹部に配置する配置工程と、前記配置工程の後、前記未硬化樹脂を硬化することによって、前記光ファイバを前記光学素子に固定する硬化工程と、を含んでいる構成である。 An optical module manufacturing method according to an aspect of the present invention includes: an optical element in which a recess is formed on a surface; and an optical waveguide extending along the surface from an inner surface of the recess; In a manufacturing method for manufacturing an optical module comprising an optical fiber at least partially disposed in the recess so as to face the end face of the optical waveguide, an injection step of injecting uncured resin into the recess, After the injecting step, the optical fiber waits until the uncured resin wets and spreads in the recess without unevenness, and after the waiting step, the optical fiber is arranged so that the tip portion faces the end face of the optical waveguide. An arrangement step of arranging at least a part of the optical fiber in the recess, and a curing step of fixing the optical fiber to the optical element by curing the uncured resin after the arrangement step. Nde is a configuration you are.
 上記の構成によれば、注入工程では、光学素子の凹部に未硬化樹脂を注入する。待機工程では、注入工程の後、未硬化樹脂が凹部内に偏りなく濡れ広がるまで待機する。配置工程では、待機工程の後、先端部が光導波路の端面と対向するように、光ファイバの少なくとも一部を凹部に配置する。硬化工程では、配置工程の後、未硬化樹脂を硬化することによって、光ファイバを光学素子に固定する。 According to the above configuration, in the injection process, the uncured resin is injected into the concave portion of the optical element. In the standby process, after the injection process, the process waits until the uncured resin spreads evenly in the recess. In the placement step, after the standby step, at least a part of the optical fiber is placed in the recess so that the tip portion faces the end face of the optical waveguide. In the curing step, the optical fiber is fixed to the optical element by curing the uncured resin after the placing step.
 したがって、注入工程では、光ファイバを凹部に配置していない状態にて凹部に未硬化樹脂を注入するので、凹部に未硬化樹脂を注入する際に、位置決めされた光ファイバが移動する事態を生じない。 Therefore, in the injection process, since the uncured resin is injected into the recess without the optical fiber being disposed in the recess, a situation occurs in which the positioned optical fiber moves when the uncured resin is injected into the recess. Absent.
 また、待機工程では、未硬化樹脂が凹部内に偏りなく濡れ広がるまで待機し、配置工程では、先端部が光導波路の端面と対向するように光ファイバを凹部に配置するので、硬化工程において、未硬化樹脂を硬化する際に、凹部内での未硬化樹脂の偏りによって光ファイバが位置決め位置から移動する事態が生じ難い。これにより、光導波路に対する光ファイバの位置決めを高精度に行うことができる。 Further, in the standby process, it waits until the uncured resin spreads evenly in the recess, and in the placement process, the optical fiber is placed in the recess so that the tip portion faces the end face of the optical waveguide. When the uncured resin is cured, it is difficult for the optical fiber to move from the positioning position due to the unevenness of the uncured resin in the recess. Thereby, positioning of the optical fiber with respect to the optical waveguide can be performed with high accuracy.
 また、未硬化樹脂の硬化収縮時における光ファイバの移動は、主に下方向への移動のみを考慮すればよい。したがって、光ファイバは、主に下方向のみの移動量を考慮して、予め正規の位置決め位置からずれた位置に配置しておき、未硬化樹脂の硬化収縮後に、正規の位置決め位置に配置されるようにすることも可能である。 Also, the movement of the optical fiber at the time of curing shrinkage of the uncured resin only needs to consider only the downward movement. Therefore, the optical fiber is arranged in advance at a position deviated from the normal positioning position mainly in consideration of the amount of movement only in the downward direction, and is arranged at the normal positioning position after the uncured resin is cured and contracted. It is also possible to do so.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 1,2 光モジュール
 11  光学素子
 11a 上面
 11b 凹部
 11c 光導波路
 11d 第1端面
 11e 第2端面
 12  光ファイバ
 13  第1樹脂層
 13a 樹脂
 14  第2樹脂層
 14a 樹脂
 15  接続樹脂層
 15  樹脂
 21  UV光源
 21a UV光
DESCRIPTION OF SYMBOLS 1, 2 Optical module 11 Optical element 11a Upper surface 11b Recessed part 11c Optical waveguide 11d 1st end surface 11e 2nd end surface 12 Optical fiber 13 1st resin layer 13a Resin 14 2nd resin layer 14a Resin 15 Connection resin layer 15 Resin 21 UV light source 21a UV light

Claims (11)

  1.  凹部が表面に形成されるとともに、該凹部の内側面から前記表面に沿って伸びる光導波路が内部に形成された光学素子と、
     先端部が前記光導波路の端面と対向するように、少なくとも一部が前記凹部に配置された光ファイバと、を備え、
     前記光ファイバは、前記凹部内の幅方向に偏りなく濡れ広がった第1樹脂層によって、前記光学素子に固定されていることを特徴とする光モジュール。
    An optical element in which a recess is formed on the surface and an optical waveguide extending along the surface from the inner surface of the recess is formed inside,
    An optical fiber at least partially disposed in the recess so that the tip portion faces the end face of the optical waveguide,
    The optical module, wherein the optical fiber is fixed to the optical element by a first resin layer wetted and spread in the width direction in the recess without unevenness.
  2.  前記光ファイバは、その一部が前記第1樹脂層に埋設されることなく前記凹部外に突出していることを特徴とする請求項1に記載の光モジュール。 2. The optical module according to claim 1, wherein a part of the optical fiber protrudes outside the recess without being embedded in the first resin layer.
  3.  前記第1樹脂層は、前記光ファイバの光軸に直交する各断面において、前記表面に直交する軸に対して対称に濡れ広がっていることを特徴とする請求項1または2に記載の光モジュール。 3. The optical module according to claim 1, wherein the first resin layer wets and spreads symmetrically with respect to an axis orthogonal to the surface in each cross section orthogonal to the optical axis of the optical fiber. .
  4.  前記第1樹脂層は、前記光ファイバの前記先端部を含む第1の区間に接触しないように濡れ広がっていることを特徴とする請求項1から3の何れか1項に記載の光モジュール。 The optical module according to any one of claims 1 to 3, wherein the first resin layer spreads wet so as not to contact the first section including the tip of the optical fiber.
  5.  前記光ファイバは、前記第1樹脂層に加え、前記光ファイバの前記先端部を含む第2の区間に接触しないように前記光ファイバの一部に覆い被さった第2樹脂層によって、前記光学素子に固定されていることを特徴とする請求項1から4の何れか1項に記載の光モジュール。 In addition to the first resin layer, the optical fiber includes a second resin layer that covers a part of the optical fiber so as not to contact the second section including the tip of the optical fiber. The optical module according to claim 1, wherein the optical module is fixed to the optical module.
  6.  前記光導波路の前記光ファイバと対向する端面と前記光ファイバの先端部との間に、前記光ファイバの先端部を前記光導波路に対して固定する透光性の接続樹脂層が設けられていることを特徴とする請求項1から5のいずれか1項に記載の光モジュール。 Between the end face of the optical waveguide facing the optical fiber and the tip of the optical fiber, a translucent connecting resin layer for fixing the tip of the optical fiber to the optical waveguide is provided. The optical module according to claim 1, wherein the optical module is an optical module.
  7.  前記光ファイバの側面は、前記凹部の底面および内側面から離間している、
    ことを特徴とする請求項1から6の何れか1項に記載の光モジュール。
    The side surface of the optical fiber is separated from the bottom surface and the inner surface of the recess,
    The optical module according to claim 1, wherein:
  8.  前記第1樹脂層は、前記第2樹脂層よりも硬化する際の収縮率が小さい樹脂にて形成されていることを特徴とする請求項5に記載の光モジュール。 6. The optical module according to claim 5, wherein the first resin layer is formed of a resin having a smaller shrinkage rate when cured than the second resin layer.
  9.  前記第1樹脂層は、前記第2樹脂層よりもフィラーを多く含んでいることを特徴とする請求項8に記載の光モジュール。 The optical module according to claim 8, wherein the first resin layer contains more filler than the second resin layer.
  10.  凹部が表面に形成されるとともに、該凹部の内側面から前記表面に沿って伸びる光導波路が内部に形成された光学素子と、
     先端部が前記光導波路の端面と対向するように前記凹部に配置された光ファイバと、
     前記凹部に設けられ、前記光ファイバの側面の上側に位置する部分を露出させた状態にて前記光ファイバを覆い固定する第1樹脂層と、
     前記第1樹脂層の上、および前記光ファイバにおける前記第1樹脂層の上に位置する部分の上に設けられた第2樹脂層と、を備えていることを特徴とする光モジュール。
    An optical element in which a recess is formed on the surface and an optical waveguide extending along the surface from the inner surface of the recess is formed inside,
    An optical fiber disposed in the recess so that the tip portion faces the end face of the optical waveguide;
    A first resin layer provided in the recess and covering and fixing the optical fiber in a state in which a portion located on the upper side of the side surface of the optical fiber is exposed;
    An optical module comprising: a second resin layer provided on the first resin layer and on a portion of the optical fiber positioned on the first resin layer.
  11.  凹部が表面に形成されるとともに、該凹部の内側面から前記表面に沿って伸びる光導波路が内部に形成された光学素子と、先端部が前記光導波路の端面と対向するように、少なくとも一部が前記凹部に配置された光ファイバと、を備えた光モジュールを製造する製造方法において、
     前記凹部に未硬化樹脂を注入する注入工程と、
     前記注入工程の後、前記未硬化樹脂が前記凹部内に偏りなく濡れ広がるまで待機する待機工程と、
     前記待機工程の後、前記先端部が前記光導波路の端面と対向するように、前記光ファイバの少なくとも一部を前記凹部に配置する配置工程と、
     前記配置工程の後、前記未硬化樹脂を硬化することによって、前記光ファイバを前記光学素子に固定する硬化工程と、を含んでいることを特徴とする製造方法。
    An optical element in which an optical waveguide extending along the surface from the inner side surface of the concave portion is formed inside the concave portion, and at least a part so that the tip portion faces the end surface of the optical waveguide. In a manufacturing method for manufacturing an optical module including an optical fiber disposed in the recess,
    An injection step of injecting an uncured resin into the recess,
    After the injection step, a standby step for waiting until the uncured resin spreads wet in the recess without unevenness, and
    After the standby step, an arrangement step of disposing at least a part of the optical fiber in the recess so that the tip portion faces the end face of the optical waveguide;
    And a curing step of fixing the optical fiber to the optical element by curing the uncured resin after the arranging step.
PCT/JP2017/015795 2016-07-15 2017-04-19 Optical module and method for manufacturing optical module WO2018012075A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016140244A JP2018010225A (en) 2016-07-15 2016-07-15 Optical module and manufacturing method therefor
JP2016-140244 2016-07-15

Publications (1)

Publication Number Publication Date
WO2018012075A1 true WO2018012075A1 (en) 2018-01-18

Family

ID=60952891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015795 WO2018012075A1 (en) 2016-07-15 2017-04-19 Optical module and method for manufacturing optical module

Country Status (2)

Country Link
JP (1) JP2018010225A (en)
WO (1) WO2018012075A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321611A (en) * 1986-07-14 1988-01-29 Fujitsu Ltd Connection part structure between waveguide substrate and optical fiber
JPH03196002A (en) * 1989-12-18 1991-08-27 Litton Syst Inc Integrated optical chip
JPH09269434A (en) * 1996-04-01 1997-10-14 Hitachi Ltd Optical fiber module
JP2000105324A (en) * 1998-09-29 2000-04-11 Kyocera Corp Structure and method for connecting optical waveguide with optical fiber
JP2003215381A (en) * 2002-01-18 2003-07-30 Sumitomo Metal Mining Co Ltd Method for manufacturing optical fiber array and optical fiber array
JP2004347873A (en) * 2003-05-22 2004-12-09 Matsushita Electric Ind Co Ltd Optical waveguide component and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321611A (en) * 1986-07-14 1988-01-29 Fujitsu Ltd Connection part structure between waveguide substrate and optical fiber
JPH03196002A (en) * 1989-12-18 1991-08-27 Litton Syst Inc Integrated optical chip
JPH09269434A (en) * 1996-04-01 1997-10-14 Hitachi Ltd Optical fiber module
JP2000105324A (en) * 1998-09-29 2000-04-11 Kyocera Corp Structure and method for connecting optical waveguide with optical fiber
JP2003215381A (en) * 2002-01-18 2003-07-30 Sumitomo Metal Mining Co Ltd Method for manufacturing optical fiber array and optical fiber array
JP2004347873A (en) * 2003-05-22 2004-12-09 Matsushita Electric Ind Co Ltd Optical waveguide component and its manufacturing method

Also Published As

Publication number Publication date
JP2018010225A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
US9372305B2 (en) Alignment of single-mode polymer waveguide (PWG) array and silicon waveguide (SIWG) array of providing adiabatic coupling
KR950004777A (en) Combination structure of optical fiber and optical waveguide
US8150225B2 (en) Optical fiber mounting waveguide device and method for fabricating same
JP2007072007A (en) Optical waveguide module
JP3631622B2 (en) Connection structure and connection method between optical waveguide and optical fiber
US7760981B2 (en) Manufacturing method of optical waveguide device, optical waveguide device obtained thereby, and optical waveguide connecting structure used for the same
US9791642B2 (en) Passive alignment of polymer waveguides
US7912332B2 (en) Manufacturing method of optical waveguide device and optical waveguide device obtained thereby
WO2018012075A1 (en) Optical module and method for manufacturing optical module
JP2019053261A (en) Optical processing device, and optical connector
JP2007183467A (en) Optical waveguide with mirror and its manufacturing method
JP6513583B2 (en) Optical fiber side input / output device and method of manufacturing the same
JP2004037776A (en) Optical waveguide and optical waveguide device
JP5737108B2 (en) Optical fiber unit and manufacturing method thereof
TWI487962B (en) Waveguide with lens and method of making the same
JP2005106882A (en) Optical device, optical waveguide member, core forming method, optical interconnection system and fiber distribution module
JP2002071993A (en) Optical waveguide substrate, method of manufacturing the same, optical waveguide parts and method of manufcturing the same
JP2006293172A (en) Method for manufacturing optical waveguide module
US20030012518A1 (en) Optical fiber coupler receptacle member
US20220413223A1 (en) Optical Fiber Array
JP2011095294A (en) Optical module
JP2011253043A (en) Method for manufacturing optical waveguide
JP3778080B2 (en) Optical fiber array manufacturing method and resin material layer forming jig used in the manufacturing method
US20040120649A1 (en) Optical coupling interface for optical waveguide and optical fiber
US20120003385A1 (en) Method of manufacturing optical waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827209

Country of ref document: EP

Kind code of ref document: A1