JP3778063B2 - Manufacturing method of optical fiber array - Google Patents

Manufacturing method of optical fiber array Download PDF

Info

Publication number
JP3778063B2
JP3778063B2 JP2001355263A JP2001355263A JP3778063B2 JP 3778063 B2 JP3778063 B2 JP 3778063B2 JP 2001355263 A JP2001355263 A JP 2001355263A JP 2001355263 A JP2001355263 A JP 2001355263A JP 3778063 B2 JP3778063 B2 JP 3778063B2
Authority
JP
Japan
Prior art keywords
optical fiber
plate
alignment jig
guide groove
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001355263A
Other languages
Japanese (ja)
Other versions
JP2003156651A (en
Inventor
厚 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001355263A priority Critical patent/JP3778063B2/en
Publication of JP2003156651A publication Critical patent/JP2003156651A/en
Application granted granted Critical
Publication of JP3778063B2 publication Critical patent/JP3778063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一対の板状部材間に整列保持された複数の光ファイバ素線を備え、対向して配置される接続対象(例えば、光回路基板上の光ファイバ列、光導波路列若しくは光学素子等)と上記光ファイバ素線との光学的および機械的結合作業を容易にさせる光ファイバアレイの製造方法に係り、特に、光ファイバ素線における整列間隔の精度を低下させずに光ファイバアレイを安価に製造できる製造方法の改良に関するものである。
【0002】
【従来の技術】
この種の光ファイバアレイにおいて複数の光ファイバ素線は、±1ミクロン以下の平面精度に設定された平坦面を有するガラス等板状部材の上記平坦面に整列して配置されている。上記板状部材は光ファイバアレイの機械強度を担うと共に、その平坦面上において光ファイバ素線(外被が剥されて露出した光ファイバ自体すなわちコアとクラッドで構成されたものを光ファイバ素線と称するが、狭義には光ファイバ心線の先端側外被が剥されて露出した部位を称する)の並びを一定の水平面から±1ミクロン以内に規定している。また、各光ファイバ素線の整列間隔も誤差±1ミクロン以下の精度に設定されており、同一の整列間隔で例えば光回路基板上に形成された光導波路列等との位置整合および光学的結合が可能となるように調整されている。
【0003】
ところで、上記光ファイバアレイにおいて各光ファイバ素線の整列間隔を高い精度に設定するため、従来技術においては複数の案内溝が長さ方向に亘り上記整列間隔と同一の間隔を介し高い精度で形成されている光ファイバ素線整列治具を用いて行なう方法が採られている。
【0004】
すなわち、図3(b)に示すように複数の案内溝10が長さ方向に亘り形成された光ファイバ素線整列治具11の上記案内溝10内に光ファイバ素線1をそれぞれ収容して所定の整列間隔を整えた後、図3(a)に示すように仮固着層用樹脂材料20が平坦面21に塗布された板状部材2をその仮固着層用樹脂材料20を内側にして光ファイバ素線1が整列された光ファイバ素線整列治具11上に重ね合わせる(図3c参照)。尚、上記仮固着層用樹脂材料としては加熱あるいは紫外線等の照射により硬化する流動性樹脂材料等が適用される。
【0005】
そして、加熱あるいは紫外線等の照射にて上記仮固着層用樹脂材料20を硬化させて仮固着層3とし、板状部材2の平坦面21に上記光ファイバ素線1を仮固着させる(図3d参照)。更に、補強のため、図3(e)に示すように同じく平坦面を有する板状部材4を光ファイバ素線1が仮固着された板状部材2に重ね合せて光ファイバ素線1を一対の板状部材2、4により挟持し、かつ、補強用の樹脂材料5を隙間部に充填しこれを硬化させて一体構造としている。
【0006】
尚、上記板状部材2、4としては、一般に、石英、パイレックス(登録商標)コーニング社製耐熱ガラス等のガラス板が利用され、その表面を平坦に研磨加工することにより平坦度±1ミクロン以下の高精度平坦面が形成されている。また、上記光ファイバ素線整列治具11は、アルミナ、ジルコニア等のセラミックス材料にて構成され、砥石研削等の手段により断面略V字形状の案内溝10が複数形成されていると共に、上記案内溝10の間隔は±1ミクロン以下の誤差で規定の値に設定されている。
【0007】
この様な光ファイバ素線整列治具を用いて光ファイバアレイを製造する従来の方法として、例えば、特開2000−193844号公報や特開平6−11625号公報に記載された方法が知られている。
【0008】
例えば、特開2000−193844号公報には、図4(a)〜(b)に示すように案内溝10により複数の光ファイバ素線1が整列された光ファイバ素線整列治具11に対し仮固着層用樹脂材料20が塗布された板状部材2を重ね合せ、かつ、光ファイバ素線1を光ファイバ素線整列治具11と板状部材2で挟持させた状態で仮固着層用樹脂材料20を硬化させ(すなわち仮固着層を形成)、板状部材2の平坦面に光ファイバ素線1を仮固着させる方法が記載されている。
【0009】
また、特開平6−11625号公報には、図5(a)〜(b)に示すように案内溝10により複数の光ファイバ素線1が整列された光ファイバ素線整列治具11に対し樹脂材料等が塗布されていない押え板30を重ね合せて光ファイバ素線1先端側を挟持し、かつ、光ファイバ素線整列治具11と押え板30とで挟持されている領域以外の光ファイバ素線1基端側に対し一対の仮固着層用樹脂材料20、40が塗布された板状部材2、4を挟むようにして配置すると共に、板状部材2、4の隙間部に樹脂材料を充填して硬化させる方法が記載されている。
【0010】
【発明が解決しようとする課題】
ところで、図4の特開2000−193844号公報に記載された方法は、光ファイバ素線整列治具11により高精度に整列された光ファイバ素線1が板状部材2の平坦面に仮固着されるため、光ファイバ素線1における整列間隔の精度に優れている利点を有している。
【0011】
しかし、仮固着層用樹脂材料20が形成されている板状部材2と光ファイバ素線整列治具11との隙間寸法rは、図3(c)に示すように光ファイバ素線整列治具11の案内溝10内に略半分程度収容されている光ファイバ素線1の半径分程度の突出部分を隔てて離れているに過ぎないため、板状部材2に形成された仮固着層用樹脂材料20が光ファイバ素線1を介し光ファイバ素線整列治具11側へ流出して案内溝10内に付着する可能性を有しており、仮固着層用樹脂材料20が案内溝10内に付着した場合、付着した樹脂材料の厚み分だけ光ファイバ素線1の整列精度が劣化する問題を有していた。更に、上記仮固着層用樹脂材料20の膜厚が大きい場合、板状部材2と光ファイバ素線整列治具11とが接着してしまう問題をも有していた。
【0012】
一方、図5の特開平6−11625号公報に記載された方法は、光ファイバ素線1が整列された光ファイバ素線整列治具11に対し樹脂材料等が塗布されていない押え板30を重ね合せて光ファイバ素線1先端側を挟持する方法であるため、光ファイバ素線整列治具11に仮固着層用樹脂材料等の材料が付着する恐れが無く上述した樹脂材料に起因する問題は有していない。
【0013】
しかし、特開平6−11625号公報に記載された方法では、光ファイバ素線整列治具11と押え板30とで挟持されている領域以外の光ファイバ素線1基端側に対し一対の板状部材2、4を挟むようにして配置する方法のため、板状部材2、4に固定される光ファイバ素線1の整列精度が光ファイバ素線整列治具11による整列精度とは必ずしも一致しない問題があった。また、光ファイバ素線1の先端側を挟持する光ファイバ素線整列治具11と押え板30に対し、上述した一対の板状部材2、4を接近させて配置した場合、これ等間に存在する光ファイバ素線1を介して板状部材2、4側の樹脂材料が光ファイバ素線整列治具11側へ流出することがあり、光ファイバ素線整列治具11の案内溝10内に樹脂材料が付着する可能性を有していた。一方、上記光ファイバ素線整列治具11と押え板30に対し上述の板状部材2、4を離して配置した場合、これ等間に存在する光ファイバ素線1の僅かなたわみが板状部材2、4に固定される光ファイバ素線1の整列精度を劣化させる問題があった。更に、光ファイバ素線整列治具11と押え板30とで挟持する光ファイバ素線1の位置と、上述の板状部材2、4で挟持する光ファイバ素線1の位置とが僅かにずれた場合、光ファイバ素線1に負荷がかかって光ファイバ素線1が破損する問題も有していた。
【0014】
本発明はこの様な問題点に着目してなされたもので、その課題とするところは、光ファイバ素線整列治具に樹脂材料等が付着することが無く、しかも、光ファイバ素線の整列精度を高く設定できる光ファイバアレイの製造方法を提供することにある。
【0015】
【課題を解決するための手段】
すなわち、請求項1に係る発明は、
平坦面を有する一対の板状部材間に複数の光ファイバ素線が整列して配置されかつ各光ファイバ素線間および板状部材間に充填された樹脂材料により光ファイバ素線および板状部材が固定されていると共に各光ファイバ素線の先端が対向して配置される接続対象の光路と同一の間隔で配列されて露出する光ファイバアレイを、複数の案内溝が長さ方向に亘り上記間隔を介し形成されている光ファイバ素線整列治具を用いて製造する光ファイバアレイの製造方法を前提とし、
複数の光ファイバ素線を中央にしてその一方側には光ファイバ素線の先端側から順に上記光ファイバ素線整列治具と片方の板状部材を配置し、かつ、光ファイバ素線の他方側には上記光ファイバ素線整列治具の案内溝と同一間隔で長さ方向に亘り形成された複数の第二案内溝を有する押え板を対向して配置すると共に、押え板の先端側においてはこの押え板と上記光ファイバ素線整列治具により光ファイバ素線を挟持して光ファイバ素線整列治具の案内溝と押え板の第二案内溝により光ファイバ素線の先端側を整列させる一方、押え板の後端側においてはこの押え板と上記板状部材により光ファイバ素線を挟持して押え板の第二案内溝により光ファイバ素線の上記先端側以外の挟持部位を整列させ、この状態で上記板状部材の平坦面に予め形成した仮固着層用樹脂材料を硬化させて各光ファイバ素線を板状部材に仮固着させることを特徴とするものである。
【0016】
また、請求項2に係る発明は、
請求項1記載の発明に係る光ファイバアレイの製造方法を前提とし、
上記押え板における第二案内溝の深さ寸法が、光ファイバ素線整列治具における案内溝の深さ寸法より浅く設定されていることを特徴とし、
請求項3に係る発明は、
請求項1または2記載の発明に係る光ファイバアレイの製造方法を前提とし、上記板状部材の平坦面に予め形成される仮固着層用樹脂材料の膜厚が、光ファイバ素線の半径よりも大きく設定されていることを特徴とするものである。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0018】
この実施の形態に係る光ファイバアレイの製造方法は、従来技術と同様、所定の間隔を介し複数の案内溝10が長さ方向に亘り形成されている光ファイバ素線整列治具11を用いることを前提としている(図1a参照)。
【0019】
まず、図1(a)に示すように複数の光ファイバ素線1を中央にしてその一方側に光ファイバ素線1の先端側から順に上記光ファイバ素線整列治具11と平坦面に仮固着層用樹脂材料40が設けられた板状部材4を配置し、かつ、光ファイバ素線1の他方側には上記光ファイバ素線整列治具11の案内溝10と同一間隔で長さ方向に亘り形成された複数の第二案内溝100を有する押え板30を対向して配置する。
【0020】
そして、図1(b)〜(c)に示すように上記押え板30の先端側においてはこの押え板30と上記光ファイバ素線整列治具11により光ファイバ素線1を挟持して光ファイバ素線整列治具11の案内溝10と押え板30の第二案内溝100により光ファイバ素線1の先端側を整列させる。
【0021】
一方、押え板30の後端側においてはこの押え板30と上記板状部材4により光ファイバ素線1を挟持して押え板30の第二案内溝100により光ファイバ素線1の上記先端側以外の挟持部位を整列させ、この状態で上記板状部材4の平坦面に形成した上記仮固着層用樹脂材料40を硬化させて各光ファイバ素線1を板状部材4に仮固着させる(図1d参照)ことを特徴とする。
【0022】
この実施の形態に係る光ファイバアレイの製造方法においては、上述したように押え板30の先端側において押え板30と光ファイバ素線整列治具11により光ファイバ素線1を挟持して光ファイバ素線整列治具11の案内溝10と押え板30の第二案内溝100により光ファイバ素線1の先端側を整列させ、かつ、押え板30の後端側においては押え板30と板状部材4により光ファイバ素線1を挟持して押え板30の第二案内溝100により光ファイバ素線1の先端側以外の挟持部位を整列させているため、間に存在する光ファイバ素線1を介し板状部材4の仮固着層用樹脂材料40が光ファイバ素線整列治具11側へ流出しないよう上記板状部材4と光ファイバ素線整列治具11の配置位置を離しても(例えば、0.5mm程度)、板状部材4上に仮固着される光ファイバ素線1の整列精度が低下することがない。
【0023】
また、上記押え板30に形成される第二案内溝100は、光ファイバ素線整列治具11の案内溝10により整列された光ファイバ素線1がその整列位置から脱しない程度の補助的な案内作用で十分なため、第二案内溝100の深さ寸法は、上記光ファイバ素線整列治具11の案内溝10の深さ寸法より浅く設定することができ(請求項2)、これにより図2(b)に示すように光ファイバ素線1における直径の例えば2/3程度を押え板30平面から板状部材4側へ突出させることが可能となる。
【0024】
従って、板状部材4と押え板30との隙間寸法r(図2b参照)が、従来技術における板状部材と光ファイバ素線整列治具との隙間寸法(図3c参照)より広く設定されるため、板状部材4に形成された仮固着層用樹脂材料40が光ファイバ素線1を介して押え板30側へ流出することが無く、更に、板状部材4に形成する仮固着層用樹脂材料40の膜厚を光ファイバ素線1の半径より大きく設定しても(請求項3)、板状部材4と押え板30との隙間寸法rが広いことから押え板30に板状部材4が接着してしまうことも無い。
【0025】
尚、仮固着層用樹脂材料40の膜厚が光ファイバ素線1の半径より大きく設定された場合、板状部材4の平坦面上に仮固着される光ファイバ素線1の固着強度を向上できる利点を有する。
【0026】
また、この実施の形態に係る光ファイバアレイの製造方法においては、上記押え板30を共通にして押え板30と光ファイバ素線整列治具11および押え板30と板状部材4とにより光ファイバ素線1が挟持され、光ファイバ素線1の別々の部位がそれぞれ別々の部材で挟持されているにも拘わらず光ファイバ素線1に負荷がかかることがないため光ファイバ素線1が破損されることもない。
【0027】
【実施例】
以下、本発明の実施例について具体的に説明する。
【0028】
まず、ガラス製板状部材4の平坦面上に高粘度に調整された紫外線硬化エポキシ樹脂を塗布し厚さ約65ミクロンの仮固着層用樹脂材料40を形成した。尚、この仮固着層用樹脂材料40の厚さを均一にするため、一旦、板状部材4の平坦面上に上記紫外線硬化エポキシ樹脂を過剰に付着させた後、金属製のブレードを板状部材4の表面上から65ミクロンの距離を維持して水平移動させることにより塗り広げて均一に調整した。
【0029】
次に、案内溝10を上側にして予め配置されている光ファイバ素線整列治具11の近傍に上記仮固着層用樹脂材料40を上側にして板状部材4を配置した。尚、光ファイバ素線整列治具11と板状部材4の間隔を0.3mmに設定した。
【0030】
次に、上記光ファイバ素線整列治具11の上側から光ファイバ素線1を載置してその先端側を光ファイバ素線整列治具11の案内溝10内に収容する(図1a参照)。このとき、仮固着層用樹脂材料40面に光ファイバ素線1が接触しない程度に上記板状部材4を光ファイバ素線整列治具11に対して若干下方側に配置している(図1a参照)。
【0031】
ここで、上記光ファイバ素線整列治具11における案内溝10の断面形状は、深さ約157ミクロン、開口約181ミクロン、底角60度の略正三角形とし、案内溝10の配置間隔は250ミクロンとした。また、光ファイバ素線1の直径は125ミクロンであり、その直径の内の約95ミクロンが案内溝10内に収容され、残りの約30ミクロンが光ファイバ素線整列治具11の平面側から外方へ露出している(図2a参照)。
【0032】
次に、光ファイバ素線整列治具11の案内溝10内にその先端側が収容されている光ファイバ素線1上に、押え板30をその第二案内溝100が光ファイバ素線整列治具11の上記案内溝10と位置整合されるようにして重ね合せ(図1b参照)ると共に、荷重を加えることにより光ファイバ素線1は上記案内溝10内で整列されかつ押え板30の第二案内溝100に密着される。
【0033】
ここで、上記押え板30の材質は透明石英ガラスとした。また、押え板30における第二案内溝100の断面形状は、深さ約85ミクロン、開口約100ミクロン、底角60度の略正三角形とした。これにより、直径125ミクロンの光ファイバ素線1の内、約25ミクロンが第二案内溝100内に収容された(図2a参照)。また、図2(a)に示される押え板30表面と光ファイバ素線整列治具11表面との隙間寸法Rは、約5ミクロンであった。
【0034】
次に、図1(c)に示すように上記板状部材4を上方側へ移動させてその平坦面上に形成している仮固着層用樹脂材料40を光ファイバ素線1に密着させる。このとき、板状部材4が光ファイバ素線1を介して上記押え板30を押圧する荷重は、この押え板30が光ファイバ素線1を介して上記光ファイバ素線整列治具11を押圧する荷重より小さく設定し、これにより押え板30と光ファイバ素線整列治具11による光ファイバ素線1先端側の安定した保持が阻害されないように調整した。また、図2(b)に示される押え板30表面と板状部材4に形成された仮固着層用樹脂材料40表面との隙間寸法r2は約32ミクロンとなり、十分な距離が確保されている。
【0035】
この状態で上記押え板30を介し紫外線を照射して仮固着層用樹脂材料40を硬化させると、仮固着層が形成されて光ファイバ素線1が板状部材4に仮固定され、図3(d)に示す構造と同一の構造体が得られる。
【0036】
次に、図1(d)に示すように上記押え板30を光ファイバ素線1から取り除き、かつ、板状部材4に仮固定された光ファイバ素線1上へ熱硬化エポキシ樹脂で構成される補強用の樹脂材料を滴下して光ファイバ素線1の隙間部等に充填する。更に、補強用のもう一方の板状部材を配置する手順は、図3(e)に示した従来法と同一である。
【0037】
そして、補強用の樹脂材料を加熱により硬化させ、更に一対の板状部材の端面を研磨により平坦化し光ファイバ素線1の先端側を露出させて光ファイバアレイが得られる。
【0038】
尚、この実施例においては、複数の光ファイバ素線を中央にしてその上側に押え板30を配置し、かつ、下側に光ファイバ素線整列治具11と板状部材4を配置する構成となっているが、この上下を反転配置して製造しても当然のことながらよい。すなわち、複数の光ファイバ素線を中央にしてその上側に光ファイバ素線整列治具と板状部材を配置し、かつ、光ファイバ素線の下側に押え板を配置する構成にしてもよい。
【0039】
【発明の効果】
請求項1記載の発明に係る光ファイバアレイの製造方法によれば、
複数の光ファイバ素線を中央にしてその一方側には光ファイバ素線の先端側から順に上記光ファイバ素線整列治具と片方の板状部材を配置し、かつ、光ファイバ素線の他方側には上記光ファイバ素線整列治具の案内溝と同一間隔で長さ方向に亘り形成された複数の第二案内溝を有する押え板を対向して配置すると共に、押え板の先端側においてはこの押え板と上記光ファイバ素線整列治具により光ファイバ素線を挟持して光ファイバ素線整列治具の案内溝と押え板の第二案内溝により光ファイバ素線の先端側を整列させる一方、押え板の後端側においてはこの押え板と上記板状部材により光ファイバ素線を挟持して押え板の第二案内溝により光ファイバ素線の上記先端側以外の挟持部位を整列させ、この状態で上記板状部材の平坦面に予め形成した仮固着層用樹脂材料を硬化させているため、光ファイバ素線を介し板状部材の仮固着層用樹脂材料が光ファイバ素線整列治具側へ流出しないよう上記板状部材と光ファイバ素線整列治具の配置位置を離しても板状部材上に仮固着される光ファイバ素線の整列精度が低下することがない。
【0040】
従って、光ファイバ素線整列治具に樹脂材料等が付着することが無く、しかも、光ファイバ素線の整列精度を高く設定できる光ファイバアレイの製造方法を提供できる効果を有する。
【0041】
特に、請求項2記載の発明に係る光ファイバアレイの製造方法によれば、
押え板における第二案内溝の深さ寸法が光ファイバ素線整列治具における案内溝の深さ寸法より浅く設定されているため、押え板と板状部材間においてこの間に存在する光ファイバ素線がその半径分より大きい部分を押え板から板状部材側へ突出させることが可能となる。
【0042】
従って、押え板と板状部材との隙間が従来法より広くなるため、板状部材に形成された仮固着層用樹脂材料が光ファイバ素線を介して押え板側へ流出することが無く、更に、上記仮固着層用樹脂材料を介して押え板に板状部材が接着してしまうことも起こらない効果を有する。
【0043】
また、請求項3記載の発明に係る光ファイバアレイの製造方法によれば、
板状部材の平坦面に予め形成される仮固着層用樹脂材料の膜厚が、光ファイバ素線の半径よりも大きく設定されているため、
板状部材の平坦面上に仮固着される光ファイバ素線の固着強度を更に向上できる効果を有する。
【図面の簡単な説明】
【図1】図1(a)〜(d)は、本発明の実施の形態に係る光ファイバアレイの製造方法についてその工程を示す概略斜視図。
【図2】図2(a)は図1(c)のIIa−IIa面断面図、図2(b)は図1(c)のIIb−IIb面断面図。
【図3】図3(a)〜(e)は、光ファイバ素線整列治具を用いた光ファイバアレイの製造方法についてその工程を示す工程説明図。
【図4】図4(a)〜(b)は、光ファイバ素線整列治具を用いた従来法に係る光ファイバアレイの製造方法についてその工程を示す概略斜視図。
【図5】図5(a)〜(b)は、光ファイバ素線整列治具を用いた他の従来法に係る光ファイバアレイの製造方法についてその工程を示す概略斜視図。
【符号の説明】
1 光ファイバ素線
4 板状部材
10 案内溝
11 光ファイバ素線整列治具
30 押え板
40 仮固着層用樹脂材料
100 第二案内溝
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a plurality of optical fiber strands aligned and held between a pair of plate-like members, and a connection object (for example, an optical fiber array, an optical waveguide array or an optical element on an optical circuit board) Etc.) and an optical fiber array that facilitates the optical and mechanical coupling work between the optical fiber strands, and in particular, the optical fiber array without reducing the alignment interval accuracy in the optical fiber strands. The present invention relates to an improved manufacturing method that can be manufactured at low cost.
[0002]
[Prior art]
In this type of optical fiber array, a plurality of optical fiber strands are arranged in alignment with the flat surface of a plate member such as a glass having a flat surface set to a plane accuracy of ± 1 micron or less. The plate-shaped member bears the mechanical strength of the optical fiber array, and on the flat surface thereof, the optical fiber strand (the optical fiber itself, that is, the one constituted by the optical fiber itself, that is, the core and the clad, which is exposed by peeling off the outer sheath) However, in a narrow sense, the arrangement is defined to be within ± 1 micron from a certain horizontal plane). Also, the alignment interval of each optical fiber is set to an accuracy of ± 1 micron or less, and the alignment and optical coupling with, for example, an optical waveguide array formed on the optical circuit board at the same alignment interval. Has been adjusted to be possible.
[0003]
By the way, in order to set the alignment interval of each optical fiber in the optical fiber array with high accuracy, in the prior art, a plurality of guide grooves are formed with high accuracy over the length direction through the same interval as the alignment interval. A method of using an optical fiber strand aligning jig is adopted.
[0004]
That is, as shown in FIG. 3B, the optical fiber strands 1 are respectively accommodated in the guide grooves 10 of the optical fiber strand alignment jig 11 in which a plurality of guide grooves 10 are formed in the length direction. After adjusting the predetermined alignment interval, the plate-like member 2 on which the temporary fixing layer resin material 20 is applied to the flat surface 21 is placed with the temporary fixing layer resin material 20 inside as shown in FIG. The optical fiber 1 is superposed on the aligned optical fiber alignment jig 11 (see FIG. 3c). In addition, as the resin material for the temporary fixing layer, a fluid resin material that is cured by heating or irradiation with ultraviolet rays or the like is applied.
[0005]
Then, the temporary fixing layer resin material 20 is cured by heating or irradiation with ultraviolet rays or the like to form the temporary fixing layer 3, and the optical fiber 1 is temporarily fixed to the flat surface 21 of the plate-like member 2 (FIG. 3d). reference). Further, as shown in FIG. 3 (e), a pair of optical fiber strands 1 having a flat surface are overlapped with a plate-like member 2 to which the optical fiber strands 1 are temporarily fixed as shown in FIG. Are sandwiched between the plate-like members 2 and 4, and the reinforcing resin material 5 is filled in the gap portion and cured to form an integral structure.
[0006]
The plate-like members 2 and 4 are generally made of glass, such as quartz or heat-resistant glass made by Pyrex (registered trademark) Corning, and the flatness is ± 1 micron or less by polishing the surface flatly. The high-precision flat surface is formed. The optical fiber alignment jig 11 is made of a ceramic material such as alumina or zirconia, and a plurality of guide grooves 10 having a substantially V-shaped cross section are formed by means such as grinding of a grindstone. The interval between the grooves 10 is set to a specified value with an error of ± 1 micron or less.
[0007]
As a conventional method for manufacturing an optical fiber array using such an optical fiber strand alignment jig, for example, methods described in Japanese Patent Laid-Open Nos. 2000-193844 and 6-11625 are known. Yes.
[0008]
For example, Japanese Patent Laid-Open No. 2000-193844 discloses an optical fiber strand aligning jig 11 in which a plurality of optical fiber strands 1 are aligned by a guide groove 10 as shown in FIGS. The plate-like member 2 coated with the temporary fixing layer resin material 20 is overlaid, and the optical fiber 1 is sandwiched between the optical fiber arrangement jig 11 and the plate-like member 2 for the temporary fixing layer. A method is described in which the resin material 20 is cured (that is, a temporary fixing layer is formed) and the optical fiber 1 is temporarily fixed to the flat surface of the plate-like member 2.
[0009]
Japanese Patent Laid-Open No. 6-11625 discloses an optical fiber strand alignment jig 11 in which a plurality of optical fiber strands 1 are aligned by a guide groove 10 as shown in FIGS. Light other than the region sandwiched by the optical fiber strand alignment jig 11 and the presser plate 30 is sandwiched by overlapping the presser plates 30 to which the resin material or the like is not applied. A pair of temporary fixing layer resin materials 20, 40 are disposed so as to sandwich the pair of temporary fixing layer resin materials 20, 40 with respect to the base end side of the fiber strand 1, and a resin material is placed in the gap between the plate members 2, 4. A method of filling and curing is described.
[0010]
[Problems to be solved by the invention]
Incidentally, in the method described in Japanese Patent Laid-Open No. 2000-193844 in FIG. 4, the optical fiber 1 aligned with high accuracy by the optical fiber alignment jig 11 is temporarily fixed to the flat surface of the plate-like member 2. Therefore, there is an advantage that the accuracy of the alignment interval in the optical fiber 1 is excellent.
[0011]
However, the gap dimension r between the plate-like member 2 on which the temporary fixing layer resin material 20 is formed and the optical fiber strand aligning jig 11 is equal to the optical fiber strand aligning jig as shown in FIG. The resin for the temporary fixing layer formed on the plate-like member 2 because it is only separated by a protruding portion corresponding to the radius of the optical fiber 1 accommodated in about 11 in the guide groove 10. There is a possibility that the material 20 flows out to the optical fiber alignment jig 11 side through the optical fiber 1 and adheres to the guide groove 10, and the resin material 20 for temporary fixing layer is in the guide groove 10. In the case of adhering to the optical fiber, there is a problem that the alignment accuracy of the optical fiber 1 is deteriorated by the thickness of the adhering resin material. Further, when the film thickness of the temporary fixing layer resin material 20 is large, there is also a problem that the plate-like member 2 and the optical fiber alignment jig 11 are bonded.
[0012]
On the other hand, in the method described in Japanese Patent Laid-Open No. 6-11625 in FIG. 5, the press plate 30 on which the resin material or the like is not applied to the optical fiber strand aligning jig 11 on which the optical fiber strands 1 are aligned is provided. Since this is a method of sandwiching the front end side of the optical fiber strand 1 by overlapping, there is no possibility that a material such as a resin material for the temporary fixing layer adheres to the optical fiber strand alignment jig 11, and the problem caused by the above-described resin material Does not have.
[0013]
However, in the method described in Japanese Patent Laid-Open No. 6-11625, a pair of plates with respect to the base end side of the optical fiber strand 1 other than the region sandwiched between the optical fiber strand alignment jig 11 and the presser plate 30 is used. The alignment accuracy of the optical fiber strands 1 fixed to the plate-like members 2 and 4 does not necessarily match the alignment accuracy of the optical fiber strand alignment jig 11 due to the method of arranging the sandwich members 2 and 4 between them. was there. Further, when the pair of plate-like members 2 and 4 described above are arranged close to the optical fiber strand alignment jig 11 and the presser plate 30 that sandwich the tip end side of the optical fiber strand 1, The resin material on the plate-like members 2, 4 side may flow out to the optical fiber strand aligning jig 11 side through the existing optical fiber strand 1, and the inside of the guide groove 10 of the optical fiber strand aligning jig 11 There was a possibility that the resin material would adhere to. On the other hand, when the above-mentioned plate-like members 2 and 4 are arranged apart from the above-mentioned optical fiber strand aligning jig 11 and the holding plate 30, a slight deflection of the optical fiber strand 1 existing between them is plate-like. There has been a problem of degrading the alignment accuracy of the optical fiber strands 1 fixed to the members 2 and 4. Further, the position of the optical fiber 1 held between the optical fiber alignment jig 11 and the holding plate 30 is slightly shifted from the position of the optical fiber 1 held between the plate-like members 2 and 4 described above. In such a case, there is a problem that the optical fiber 1 is damaged due to a load applied to the optical fiber 1.
[0014]
The present invention has been made paying attention to such problems, and the problem is that the resin material does not adhere to the optical fiber strand aligning jig, and the optical fiber strands are aligned. An object of the present invention is to provide a method of manufacturing an optical fiber array capable of setting a high accuracy.
[0015]
[Means for Solving the Problems]
That is, the invention according to claim 1
A plurality of optical fiber strands are arranged in a line between a pair of plate-like members having a flat surface, and the optical fiber strands and the plate-like members are made of a resin material filled between the optical fiber strands and between the plate-like members. And an optical fiber array that is arranged and exposed at the same interval as the optical path of the connection object arranged so that the tip ends of the optical fiber strands are opposed to each other. Assuming a manufacturing method of an optical fiber array manufactured using an optical fiber strand alignment jig formed through an interval,
A plurality of optical fiber strands are arranged in the center, and the optical fiber strand alignment jig and one plate-like member are arranged in order from the front end side of the optical fiber strands on one side thereof, and the other side of the optical fiber strands. On the side, a press plate having a plurality of second guide grooves formed in the length direction at the same interval as the guide grooves of the above-mentioned optical fiber alignment jig is arranged oppositely, and on the tip side of the press plate The optical fiber strand is clamped by the holding plate and the optical fiber alignment jig, and the leading end of the optical fiber is aligned by the guide groove of the optical fiber alignment jig and the second guide groove of the press plate. On the other hand, on the rear end side of the presser plate, the optical fiber strand is clamped by the presser plate and the plate-like member, and the holding part other than the tip end side of the optical fiber strand is aligned by the second guide groove of the presser plate. In this state, the flat surface of the plate-shaped member is preliminarily formed. It is characterized in that for curing the temporary fixing layer resin materials tentatively adhered to each optical fiber in the plate-like member.
[0016]
The invention according to claim 2
Based on the manufacturing method of the optical fiber array according to the invention of claim 1,
The depth dimension of the second guide groove in the holding plate is set to be shallower than the depth dimension of the guide groove in the optical fiber strand alignment jig,
The invention according to claim 3
On the premise of the manufacturing method of the optical fiber array according to claim 1 or 2, the film thickness of the resin material for the temporary fixing layer formed in advance on the flat surface of the plate-like member is larger than the radius of the optical fiber strand. Is also set to be large.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0018]
The optical fiber array manufacturing method according to this embodiment uses an optical fiber strand alignment jig 11 in which a plurality of guide grooves 10 are formed in a length direction with a predetermined interval, as in the prior art. (See FIG. 1a).
[0019]
First, as shown in FIG. 1 (a), a plurality of optical fiber strands 1 are set at the center, and the optical fiber strand alignment jig 11 and a flat surface are temporarily placed on one side of the optical fiber strands 1 in this order from the front end side. The plate-like member 4 provided with the resin material 40 for the fixing layer is disposed, and the other side of the optical fiber strand 1 is arranged in the length direction at the same interval as the guide groove 10 of the optical fiber strand alignment jig 11. A presser plate 30 having a plurality of second guide grooves 100 formed over the two is disposed so as to face each other.
[0020]
As shown in FIGS. 1B to 1C, the optical fiber 1 is sandwiched between the holding plate 30 and the optical fiber alignment jig 11 on the tip side of the holding plate 30, and the optical fiber. The leading end side of the optical fiber 1 is aligned by the guide groove 10 of the strand aligning jig 11 and the second guide groove 100 of the holding plate 30.
[0021]
On the other hand, on the rear end side of the holding plate 30, the optical fiber 1 is sandwiched between the holding plate 30 and the plate member 4, and the distal end side of the optical fiber 1 is held by the second guide groove 100 of the holding plate 30. In this state, the temporary fixing layer resin material 40 formed on the flat surface of the plate member 4 is cured to temporarily fix each optical fiber 1 to the plate member 4 ( (See FIG. 1d).
[0022]
In the method of manufacturing an optical fiber array according to this embodiment, as described above, the optical fiber 1 is sandwiched between the holding plate 30 and the optical fiber alignment jig 11 on the distal end side of the holding plate 30. The leading end side of the optical fiber 1 is aligned by the guide groove 10 of the strand aligning jig 11 and the second guide groove 100 of the retainer plate 30, and the retainer plate 30 and the plate shape are arranged on the rear end side of the retainer plate 30. Since the optical fiber element 1 is clamped by the member 4 and the holding part other than the tip side of the optical fiber element 1 is aligned by the second guide groove 100 of the holding plate 30, the optical fiber element 1 existing between them is arranged. Even if the arrangement positions of the plate member 4 and the optical fiber alignment jig 11 are separated so that the resin material 40 for the temporary fixing layer of the plate member 4 does not flow out to the optical fiber alignment jig 11 side via ( For example, about 0.5mm), board Alignment accuracy of the optical fiber 1 is not reduced to be provisionally fixed on the member 4.
[0023]
Further, the second guide groove 100 formed in the holding plate 30 is auxiliary so that the optical fiber 1 aligned by the guide groove 10 of the optical fiber alignment jig 11 does not come out of the alignment position. Since the guide action is sufficient, the depth dimension of the second guide groove 100 can be set shallower than the depth dimension of the guide groove 10 of the optical fiber alignment jig 11 (Claim 2). As shown in FIG. 2B, for example, about 2/3 of the diameter of the optical fiber 1 can be projected from the plane of the presser plate 30 toward the plate-like member 4.
[0024]
Therefore, the gap dimension r (see FIG. 2b) between the plate-like member 4 and the presser plate 30 is set wider than the gap dimension (see FIG. 3c) between the plate-like member and the optical fiber alignment jig in the prior art. Therefore, the resin material 40 for temporary fixing layer formed on the plate-like member 4 does not flow out to the presser plate 30 side through the optical fiber 1, and further for the temporary fixing layer formed on the plate-like member 4. Even if the film thickness of the resin material 40 is set larger than the radius of the optical fiber 1 (Claim 3), the gap r between the plate member 4 and the press plate 30 is wide, so that the plate member 4 does not adhere.
[0025]
When the film thickness of the resin material 40 for temporary fixing layer is set larger than the radius of the optical fiber 1, the fixing strength of the optical fiber 1 temporarily fixed on the flat surface of the plate-like member 4 is improved. Has the advantage of being able to.
[0026]
In the method of manufacturing the optical fiber array according to this embodiment, the holding plate 30 is used in common, and the holding plate 30, the optical fiber strand aligning jig 11, the holding plate 30 and the plate-like member 4 are used to share the optical fiber. The optical fiber 1 is broken because the optical fiber 1 is not loaded even though the optical fiber 1 is clamped and different parts of the optical fiber 1 are clamped by different members. It is never done.
[0027]
【Example】
Examples of the present invention will be specifically described below.
[0028]
First, an ultraviolet curable epoxy resin adjusted to a high viscosity was applied on the flat surface of the glass plate-like member 4 to form a resin material 40 for a temporary fixing layer having a thickness of about 65 microns. In addition, in order to make the thickness of the resin material 40 for the temporary fixing layer uniform, the ultraviolet curable epoxy resin is once excessively adhered onto the flat surface of the plate-like member 4, and then the metal blade is plate-like. By applying a horizontal movement while maintaining a distance of 65 microns from the surface of the member 4, it was spread and adjusted uniformly.
[0029]
Next, the plate-like member 4 was arranged in the vicinity of the optical fiber strand aligning jig 11 that was previously arranged with the guide groove 10 on the upper side, with the temporary fixing layer resin material 40 on the upper side. The distance between the optical fiber alignment jig 11 and the plate member 4 was set to 0.3 mm.
[0030]
Next, the optical fiber element 1 is placed from the upper side of the optical fiber element alignment jig 11, and the tip end side is accommodated in the guide groove 10 of the optical fiber element alignment jig 11 (see FIG. 1a). . At this time, the plate-like member 4 is disposed slightly below the optical fiber strand aligning jig 11 so that the optical fiber strand 1 does not contact the surface of the temporarily fixed layer resin material 40 (FIG. 1a). reference).
[0031]
Here, the cross-sectional shape of the guide groove 10 in the optical fiber alignment jig 11 is a substantially regular triangle having a depth of about 157 microns, an opening of about 181 microns, and a base angle of 60 degrees, and the arrangement interval of the guide grooves 10 is 250. Micron. The diameter of the optical fiber 1 is 125 microns, about 95 microns of the diameter is accommodated in the guide groove 10, and the remaining about 30 microns is from the plane side of the optical fiber alignment jig 11. Exposed outward (see FIG. 2a).
[0032]
Next, the holding plate 30 and the second guide groove 100 of the optical fiber strand aligning jig are placed on the optical fiber strand 1 housed in the guide groove 10 of the optical fiber strand aligning jig 11. 11 are aligned so as to be aligned with the guide groove 10 (see FIG. 1 b), and by applying a load, the optical fiber 1 is aligned in the guide groove 10 and the second of the press plate 30. The guide groove 100 is closely attached.
[0033]
Here, the material of the pressing plate 30 is transparent quartz glass. The cross-sectional shape of the second guide groove 100 in the presser plate 30 is a substantially regular triangle having a depth of about 85 microns, an opening of about 100 microns, and a base angle of 60 degrees. As a result, about 25 microns of the optical fiber 1 having a diameter of 125 microns was accommodated in the second guide groove 100 (see FIG. 2a). Further, the gap dimension R between the surface of the pressing plate 30 and the surface of the optical fiber alignment jig 11 shown in FIG. 2A was about 5 microns.
[0034]
Next, as shown in FIG. 1 (c), the plate-like member 4 is moved upward to bring the temporary fixing layer resin material 40 formed on the flat surface into close contact with the optical fiber 1. At this time, the load that the plate-like member 4 presses the holding plate 30 via the optical fiber 1 is such that the holding plate 30 presses the optical fiber alignment jig 11 via the optical fiber 1. The load was set to be smaller than the load to be adjusted, so that the stable holding of the front end side of the optical fiber 1 by the holding plate 30 and the optical fiber alignment jig 11 was adjusted. Moreover, the clearance dimension r2 between the surface of the presser plate 30 shown in FIG. 2B and the surface of the temporary fixing layer resin material 40 formed on the plate-like member 4 is about 32 microns, and a sufficient distance is secured. .
[0035]
In this state, when the resin material 40 for temporary fixing layer is cured by irradiating ultraviolet rays through the presser plate 30, a temporary fixing layer is formed, and the optical fiber 1 is temporarily fixed to the plate-like member 4. FIG. A structure identical to the structure shown in (d) is obtained.
[0036]
Next, as shown in FIG. 1 (d), the presser plate 30 is removed from the optical fiber 1, and the optical fiber 1 temporarily fixed to the plate-like member 4 is made of a thermosetting epoxy resin. The reinforcing resin material is dropped to fill the gaps of the optical fiber 1 and the like. Furthermore, the procedure for arranging the other plate member for reinforcement is the same as the conventional method shown in FIG.
[0037]
Then, the reinforcing resin material is cured by heating, the end surfaces of the pair of plate members are flattened by polishing, and the tip end side of the optical fiber 1 is exposed to obtain an optical fiber array.
[0038]
In this embodiment, a structure is provided in which a plurality of optical fiber strands are arranged at the center, the presser plate 30 is disposed on the upper side, and the optical fiber strand alignment jig 11 and the plate-like member 4 are disposed on the lower side. However, it is natural that the upper and lower sides are reversed and manufactured. That is, a configuration may be adopted in which a plurality of optical fiber strands are arranged in the center, an optical fiber strand alignment jig and a plate-like member are disposed on the upper side, and a presser plate is disposed on the lower side of the optical fiber strands. .
[0039]
【The invention's effect】
According to the manufacturing method of the optical fiber array according to the invention of claim 1,
A plurality of optical fiber strands are arranged in the center, and the optical fiber strand alignment jig and one plate-like member are arranged in order from the front end side of the optical fiber strands on one side thereof, and the other side of the optical fiber strands. On the side, a press plate having a plurality of second guide grooves formed in the length direction at the same interval as the guide grooves of the above-mentioned optical fiber alignment jig is arranged oppositely, and on the tip side of the press plate The optical fiber strand is clamped by the holding plate and the optical fiber alignment jig, and the leading end of the optical fiber is aligned by the guide groove of the optical fiber alignment jig and the second guide groove of the press plate. On the other hand, on the rear end side of the presser plate, the optical fiber strand is clamped by the presser plate and the plate-like member, and the holding part other than the tip end side of the optical fiber strand is aligned by the second guide groove of the presser plate. In this state, the flat surface of the plate-shaped member is preliminarily formed. Since the temporarily fixed layer resin material is cured, the plate member and the optical fiber are prevented from flowing out to the optical fiber alignment jig side through the optical fiber. Even if the arrangement position of the strand aligning jig is separated, the alignment accuracy of the optical fiber strand temporarily fixed on the plate-like member is not lowered.
[0040]
Therefore, there is an effect that it is possible to provide a method of manufacturing an optical fiber array in which the resin material or the like does not adhere to the optical fiber strand alignment jig and the alignment accuracy of the optical fiber strands can be set high.
[0041]
In particular, according to the method for manufacturing an optical fiber array according to the invention of claim 2,
Since the depth dimension of the second guide groove in the presser plate is set to be shallower than the depth dimension of the guide groove in the optical fiber element alignment jig, the optical fiber element existing between the presser plate and the plate member It is possible to project a portion larger than the radius of the plate from the presser plate to the plate member side.
[0042]
Therefore, since the gap between the holding plate and the plate-like member is wider than the conventional method, the resin material for the temporary fixing layer formed on the plate-like member does not flow out to the holding plate side through the optical fiber strand, Furthermore, it has an effect that the plate-like member does not adhere to the presser plate via the temporary fixing layer resin material.
[0043]
Moreover, according to the manufacturing method of the optical fiber array which concerns on invention of Claim 3,
Since the film thickness of the resin material for the temporary fixing layer formed in advance on the flat surface of the plate-like member is set larger than the radius of the optical fiber,
This has the effect of further improving the fixing strength of the optical fiber strand temporarily fixed on the flat surface of the plate-like member.
[Brief description of the drawings]
FIGS. 1A to 1D are schematic perspective views showing the steps of a method for manufacturing an optical fiber array according to an embodiment of the present invention.
2A is a cross-sectional view taken along the line IIa-IIa in FIG. 1C, and FIG. 2B is a cross-sectional view taken along the line IIb-IIb in FIG. 1C.
FIGS. 3A to 3E are process explanatory views showing the steps of a method for manufacturing an optical fiber array using an optical fiber alignment jig. FIGS.
FIGS. 4A and 4B are schematic perspective views showing the steps of a method for manufacturing an optical fiber array according to a conventional method using an optical fiber strand alignment jig. FIGS.
FIGS. 5A to 5B are schematic perspective views showing the steps of a method of manufacturing an optical fiber array according to another conventional method using an optical fiber strand alignment jig. FIGS.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical fiber strand 4 Plate-shaped member 10 Guide groove 11 Optical fiber strand alignment jig 30 Holding plate 40 Resin material 100 for temporary adhering layers Second guide groove

Claims (3)

平坦面を有する一対の板状部材間に複数の光ファイバ素線が整列して配置されかつ各光ファイバ素線間および板状部材間に充填された樹脂材料により光ファイバ素線および板状部材が固定されていると共に各光ファイバ素線の先端が対向して配置される接続対象の光路と同一の間隔で配列されて露出する光ファイバアレイを、複数の案内溝が長さ方向に亘り上記間隔を介し形成されている光ファイバ素線整列治具を用いて製造する光ファイバアレイの製造方法において、
複数の光ファイバ素線を中央にしてその一方側には光ファイバ素線の先端側から順に上記光ファイバ素線整列治具と片方の板状部材を配置し、かつ、光ファイバ素線の他方側には上記光ファイバ素線整列治具の案内溝と同一間隔で長さ方向に亘り形成された複数の第二案内溝を有する押え板を対向して配置すると共に、押え板の先端側においてはこの押え板と上記光ファイバ素線整列治具により光ファイバ素線を挟持して光ファイバ素線整列治具の案内溝と押え板の第二案内溝により光ファイバ素線の先端側を整列させる一方、押え板の後端側においてはこの押え板と上記板状部材により光ファイバ素線を挟持して押え板の第二案内溝により光ファイバ素線の上記先端側以外の挟持部位を整列させ、この状態で上記板状部材の平坦面に予め形成した仮固着層用樹脂材料を硬化させて各光ファイバ素線を板状部材に仮固着させることを特徴とする光ファイバアレイの製造方法。
A plurality of optical fiber strands are arranged in a line between a pair of plate-like members having a flat surface, and the optical fiber strands and the plate-like members are made of a resin material filled between the optical fiber strands and between the plate-like members. And an optical fiber array that is arranged and exposed at the same interval as the optical path of the connection object arranged so that the tip ends of the optical fiber strands are opposed to each other. In the manufacturing method of the optical fiber array manufactured using the optical fiber strand alignment jig formed through the interval,
A plurality of optical fiber strands are arranged in the center, and the optical fiber strand alignment jig and one plate-like member are arranged in order from the front end side of the optical fiber strands on one side thereof, and the other side of the optical fiber strands. On the side, a press plate having a plurality of second guide grooves formed in the length direction at the same interval as the guide grooves of the above-mentioned optical fiber alignment jig is arranged oppositely, and on the tip side of the press plate The optical fiber strand is clamped by the holding plate and the optical fiber alignment jig, and the leading end of the optical fiber is aligned by the guide groove of the optical fiber alignment jig and the second guide groove of the press plate. On the other hand, on the rear end side of the presser plate, the optical fiber strand is clamped by the presser plate and the plate-like member, and the holding part other than the tip end side of the optical fiber strand is aligned by the second guide groove of the presser plate. In this state, the flat surface of the plate-shaped member is preliminarily formed. Method of manufacturing an optical fiber array for causing curing the temporary fixing layer resin materials tentatively adhered to each optical fiber in the plate-like member.
上記押え板における第二案内溝の深さ寸法が、光ファイバ素線整列治具における案内溝の深さ寸法より浅く設定されていることを特徴とする請求項1記載の光ファイバアレイの製造方法。2. The method of manufacturing an optical fiber array according to claim 1, wherein a depth dimension of the second guide groove in the holding plate is set to be shallower than a depth dimension of the guide groove in the optical fiber strand alignment jig. . 上記板状部材の平坦面に予め形成される仮固着層用樹脂材料の膜厚が、光ファイバ素線の半径よりも大きく設定されていることを特徴とする請求項1または2記載の光ファイバアレイの製造方法。3. The optical fiber according to claim 1, wherein a film thickness of the resin material for the temporary fixing layer formed in advance on the flat surface of the plate-like member is set larger than a radius of the optical fiber. Array manufacturing method.
JP2001355263A 2001-11-20 2001-11-20 Manufacturing method of optical fiber array Expired - Fee Related JP3778063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355263A JP3778063B2 (en) 2001-11-20 2001-11-20 Manufacturing method of optical fiber array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355263A JP3778063B2 (en) 2001-11-20 2001-11-20 Manufacturing method of optical fiber array

Publications (2)

Publication Number Publication Date
JP2003156651A JP2003156651A (en) 2003-05-30
JP3778063B2 true JP3778063B2 (en) 2006-05-24

Family

ID=19166991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355263A Expired - Fee Related JP3778063B2 (en) 2001-11-20 2001-11-20 Manufacturing method of optical fiber array

Country Status (1)

Country Link
JP (1) JP3778063B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116165750B (en) * 2023-01-28 2023-06-27 中山市美速光电技术有限公司 Manufacturing system for producing optical fiber arrays with different pitches

Also Published As

Publication number Publication date
JP2003156651A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
US6368441B1 (en) Method for manufacturing optical fiber array
US20020003933A1 (en) Fiber array with wick-stop trench for improved fiber positioning
US20040081403A1 (en) Optical coupling device and method for fabricating the same, and master used in fabricating optical coupling device and method for fabricating the same
CN115280207B (en) Optical fiber connection member and method for manufacturing optical fiber connection member
JP3778064B2 (en) Manufacturing method of optical fiber array
JP3778063B2 (en) Manufacturing method of optical fiber array
JP4462097B2 (en) Manufacturing method of optical waveguide module
JP3931940B2 (en) Optical fiber array element and manufacturing method thereof
JPH11305151A (en) Optical switch connection part and its manufacture
JP3778080B2 (en) Optical fiber array manufacturing method and resin material layer forming jig used in the manufacturing method
JP2589765Y2 (en) Coupling structure between optical waveguide and optical fiber
JP3326271B2 (en) Optical fiber terminal and connection structure between terminal and optical device
JP3402007B2 (en) Method for manufacturing optical waveguide device
JP4554067B2 (en) Optical component and manufacturing method thereof
US6907180B2 (en) Optical fiber array and method for its manufacture
US20030021573A1 (en) Optical fiber array
JP4380166B2 (en) Optical device manufacturing method
JPH10197755A (en) Optical waveguide module and production thereof
JP2003185872A (en) Method for manufacturing optical fiber array
JP2005025051A (en) Optical fiber array and manufacturing method therefor
JP4161723B2 (en) Optical device and manufacturing method thereof
JP2975504B2 (en) Optical fiber fixing members
WO2005010585A1 (en) Method of manufacturing light guide module and light guide module
WO2000022467A1 (en) Coupler for coupling optical waveguide substrate with optical fiber fixing member
JPH0862433A (en) Optical fiber alignment body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Ref document number: 3778063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees