JP3778069B2 - Construction method of foundation pile with seismic isolation effect - Google Patents

Construction method of foundation pile with seismic isolation effect

Info

Publication number
JP3778069B2
JP3778069B2 JP2001365117A JP2001365117A JP3778069B2 JP 3778069 B2 JP3778069 B2 JP 3778069B2 JP 2001365117 A JP2001365117 A JP 2001365117A JP 2001365117 A JP2001365117 A JP 2001365117A JP 3778069 B2 JP3778069 B2 JP 3778069B2
Authority
JP
Japan
Prior art keywords
pile
foundation pile
foundation
elastic body
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001365117A
Other languages
Japanese (ja)
Other versions
JP2003166253A (en
Inventor
政人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001365117A priority Critical patent/JP3778069B2/en
Publication of JP2003166253A publication Critical patent/JP2003166253A/en
Application granted granted Critical
Publication of JP3778069B2 publication Critical patent/JP3778069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、免震効果を備えた基礎杭の構築方法に関する。
【0002】
【従来の技術】
軟弱地盤など、直接基礎等では良好な支持が得られにくい地盤においては、上部構造物の重量を的確に下層地盤に伝達して良好な支持力を確保できる杭基礎が施工される場合が多い。また、このような杭基礎を施工するにあたり、基礎杭に対して、支持構造物の荷重を考慮して予め載荷を行う措置を行い、その後当該荷重の除荷を行えば、構造物の完成後荷重に由来して生じる沈下を適宜に抑制することが可能である。この場合、当該基礎杭の設計時に、基礎杭が備える鉛直支持力の極限値(極限支持力)に近い値を許容支持力として用いることが可能となり、使用する基礎杭の断面積、杭長、本数を従来より低減させた効率的な設計が実現される。
【0003】
【発明が解決しようとする課題】
しかし、上記のような事前の載荷により沈下量を抑制し効率的な設計が可能な基礎杭であったとしても、地震時に配慮した設計に際しては事情が変わってくる。なぜなら事前に載荷措置を行うか否かは主要な設計要因とせず、地震時における基礎杭の支持力や基礎杭自身の耐力に基づいて、使用する基礎杭本数や杭長等が決定されるからである。したがって、基礎杭に載荷を施す措置をとったり或いはそのような措置を実現する機器等を基礎杭に設置したとしても、基礎杭の仕様本数や杭長などを従来より抑制して効率的な設計施工を行うことは難しかったのである。
【0004】
本発明は、上記のような事情に鑑みなされたものであって、地震時を考慮した設計においても過大設計を抑制して経済的かつ効率的な設計施工を実現すると共に、良好な免震力を発現可能な免震効果を備えた基礎杭の構築方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の請求項1に係る免震効果を備えた基礎杭の構築方法は地盤に既製杭を貫入させることにより、又は場所打ち杭を打設することにより基礎杭を構築し、前記基礎杭の杭頭に、ドーナツ状の中空弾性体と棒状コネクタとを、棒状のコネクタが中空弾性体の中心部を挿通するように配置して、該棒状コネクタの一端を前記基礎杭の杭頭に固設し、他端を該杭頭から上方に突出させ前記杭頭から突出させた前記棒状コネクタの突出部位をサヤ管内にスライド可能に収め、前記基礎杭の上部に支持構造物を構築し、該支持構造物に前記サヤ管を接続し、前記基礎杭又は前記支持構造物に反力をとって前記中空弾性体の内空に流体を圧入することにより、前記基礎杭に対する載荷を行い、この後に前記中空弾性体の内空に流体を残置させることを特徴とする。
【0006】
また、本発明の請求項2に係る免震効果を備えた基礎杭の構築方法は、請求項1に記載の免震効果を備えた基礎杭の構築方法であって、前記支持構造物には、前記中空弾性体の膨張作用を鉛直方向に導く膨張制御枠が設けられていることを特徴とする
【0007】
【発明の実施の形態】
図1は、本発明の免震効果を備えた基礎杭の構築方法による基礎杭の施工状況を示す図であり、(a)は載荷前、(b)は載荷後の状況を示し、図2は、基礎杭が備える中空弾性体の構造例を示す図である。
以下、図面を参照しつつ、本発明の免震効果を備えた基礎杭の構築方法について詳細に説明する。
基礎杭10の施工手順としては、支持層や地下水位の位置等の地質状況や地盤強度など地盤20の状態を見極めた上で、既製杭を貫入させるのか場所打ち杭を打設するのか決定する。
図1(a)に示す基礎杭10が場所打ち杭であるとすれば、例えばアースドリル等の削孔重機を用いて地盤20に杭打設孔を穿孔し、この杭打設孔に鉄筋籠を建て込んでコンクリートを打設することにより、構築される。他方、打撃工法、圧入工法、中堀工法などを採用し、既製杭を地盤20に貫通させることにより、構築してもよい。
以下、場所打ち杭を打設した場合や既製杭を貫入させた場合を含めて、基礎杭10は地盤20に「構築される」ものとする。
【0008】
こうして地盤20中に構築された基礎杭10の杭頭にはドーナツ状ゴム体(中空弾性体)30とシアコネクター(棒状体コネクタ)40とが設置されている。この設置は基礎杭構築の前後や既製杭の製造前後を問わず、状況に合わせて行うとすればよい。いずれにしても、基礎杭10が地盤20に構築された時点から以降、例えば“支持する構造物の完成荷重以上”といった載荷を基礎杭10に加える以前に設置がなされていればよい。前記ドーナツ状ゴム体30は、図2で示すように例えば杭頭11の端面12に下部フランジ31が当接固定される一方、上部フランジ32は支持構造物70の下面71に当接固定されて反力の支点となし、基礎杭10の長さ方向、つまり鉛直下方に向けて適宜延伸する動作を行うのである。そのため、ゴム部33を補強リング34で蛇腹状に締付け補強するとともに、延伸動作の駆動力となる流体50の圧力フロー制御をする圧力調整弁35、導入管36等を備える。勿論、このような形態および機構を備えたものだけに中空弾性体が限定されるものではなく、施工条件に合わせて種々のものが採用できる。もちろん内空31に圧入させる流体50も油等の粘性流体だけでなく求める機能を備えさえすればいずれの流体でも採用できる。
【0009】
なお前記の延伸動作は、ドーナツ状ゴム体30の内空31に例えば油等の流体50を圧入することでドーナツ状ゴム体30を膨張させると共に、この膨張作用を膨張制御枠60でもって鉛直下方に導いて行われる。この延伸動作が杭頭11に荷重を加えることになり基礎杭10への載荷が実現される。この時、上下位置センサー37によりドーナツ状ゴム体30の膨張具合を知見して、これに応じて流体50の圧入量を制御することで載荷量のコントロールが可能である。
【0010】
また、シアコネクター(棒状体コネクタ)40は水平力を基礎杭10に伝える役割を担うものであって、基礎杭10の杭頭11に一端を固設され、他端が杭頭端面12より上方に突出すると共にこの杭頭端面12からの突出部位41をサヤ管42に収めた鋼棒等の棒状体である。
【0011】
以上のように基礎杭10の構築と、その杭頭11におけるドーナツ状ゴム体30等の設置が完了したならば、サヤ管42に収まった前記突出部位41を、支持構造物70の構築に伴い、これに接続する。あるいはこの接続処理を省略して、前記ドーナツ状ゴム体30による載荷処理を開始する。この載荷処理では、前記上部フランジ32を支持構造物70の下面71に当接若しくは固定し、地盤20または当該基礎杭10が支持する構造物(支持構造物70)に反力をとって、当該基礎杭10に対し例えば支持構造物70の完成後荷重以上の載荷を行う。図1に示すように、載荷前の状態より載荷後の状態では、杭頭端面12は、支持構造物70の下面71より離間され下方に押し下げられている。つまり、ドーナツ状ゴム体30の鉛直下方への延伸により基礎杭10が地盤20中へより貫入したと言える。この時、前記サヤ管42内の突出部位41は、基礎杭10の下降に伴いサヤ管42内をスライドしている。
【0012】
基礎杭10への載荷措置が完了したならば、前記ドーナツ状ゴム体30の内空31に圧入されている流体50を残置しておく。もしくは必要に応じて流体50を加減する。これにより、その内空31に油等の流体50を満たしたドーナツ状ゴム体30が地震時において基礎杭10に作用する地震エネルギーを適宜吸収し、また、支持構造物70全体の地震応答を低減させることが可能となる。したがって、基礎杭10の設計時にも地震時の影響を低減させて見積もることが可能となり、杭基礎工に使用する基礎杭10の杭長や本数を従来より削減出来る。効率的かつ低コストの設計施工が実現されるのである。
【0013】
【発明の効果】
以上詳細に説明したように、本発明の免震効果を備えた基礎杭の構築方法によれば、中空弾性体による優れた免震効果により基礎杭自身に作用する地震時荷重を適宜減じることができるため、予め載荷措置を行うことで実現される基礎杭の仕様本数や杭長などの低減効果を確立し、効率的な設計施工を実現することができる。
従って、地震時を考慮した設計においても、過大設計を抑制して経済的かつ効率的な設計施工を実現すると共に、良好な免震力を発現可能な基礎杭を提供することができる。
また、膨張制御枠によって中空弾性体の膨張作用を鉛直方向に導くことができるので、杭頭に対する載荷を確実に行うことができる
【0014】
しかして、地震時を考慮した設計においても過大設計を抑制して経済的かつ効率的な設計施工を実現すると共に、良好な免震力を発現可能な基礎杭を提供可能となる。
【図面の簡単な説明】
【図1】本発明の免震効果を備えた基礎杭の施工状況を示す図であり、(a)は載荷前、(b)は載荷後の状況を示す。
【図2】本発明の免震効果を備えた基礎杭が備える中空弾性体の構造例を示す図である。
【符号の説明】
10 基礎杭
20 地盤
30 中空弾性体
31 杭頭
50 流体
70 構造物(支持構造物)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for constructing a foundation pile provided with a seismic isolation effect.
[0002]
[Prior art]
In the case of ground where it is difficult to obtain good support with a direct foundation such as soft ground, pile foundations that can transmit the weight of the upper structure to the lower ground accurately to ensure good support are often constructed. In addition, when constructing such a pile foundation, the foundation pile should be preloaded in consideration of the load of the support structure, and if the load is unloaded afterwards, It is possible to appropriately suppress settlement caused by the load. In this case, when designing the foundation pile, it becomes possible to use a value close to the limit value of the vertical bearing capacity of the foundation pile (ultimate bearing capacity) as the allowable bearing capacity. An efficient design in which the number is reduced as compared with the prior art is realized.
[0003]
[Problems to be solved by the invention]
However, even if the foundation pile is capable of efficient design by reducing the amount of subsidence due to the prior loading as described above, the situation will change when designing for earthquakes. Because whether or not to perform loading measures in advance is not a major design factor, the number of foundation piles to be used, the pile length, etc. are determined based on the support capacity of the foundation pile and the strength of the foundation pile during an earthquake. It is. Therefore, even if measures are taken to load the foundation piles or equipment that implements such measures is installed on the foundation piles, the number of foundation piles and the length of the piles are controlled more effectively than before. It was difficult to do.
[0004]
The present invention has been made in view of the circumstances as described above, and realizes an economical and efficient design and construction by suppressing an excessive design even in a design that takes into account the time of an earthquake, and has a good seismic isolation force. It aims at providing the construction method of the foundation pile provided with the seismic isolation effect which can express .
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a method for constructing a foundation pile having a seismic isolation effect according to claim 1 of the present invention is to insert a ready-made pile into the ground or to cast a cast-in-place pile. The base pile is constructed, and the doughnut-shaped hollow elastic body and the rod-shaped connector are arranged on the pile head of the foundation pile so that the rod-shaped connector passes through the center of the hollow elastic body. One end of the rod-like connector is fixed to the pile head of the foundation pile, the other end protrudes upward from the pile head, and the protruding portion of the rod-shaped connector protruding from the pile head is slidably accommodated in a sheath pipe, Constructing a support structure on the top of the pile, connecting the sheath tube to the support structure, and applying a reaction force to the foundation pile or the support structure to press-fit fluid into the hollow elastic body To load the foundation pile, and then It characterized thereby leaving the fluid in the inner space of the elastic body.
[0006]
Moreover, the construction method of the foundation pile provided with the seismic isolation effect according to claim 2 of the present invention is the construction method of the foundation pile provided with the seismic isolation effect according to claim 1, wherein the support structure includes An expansion control frame for guiding the expansion action of the hollow elastic body in the vertical direction is provided .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing a construction state of a foundation pile by a construction method of a foundation pile having a seismic isolation effect of the present invention, where (a) shows a state before loading, (b) shows a state after loading, and FIG. These are figures which show the structural example of the hollow elastic body with which a foundation pile is provided.
Hereinafter, the construction method of the foundation pile provided with the seismic isolation effect of the present invention will be described in detail with reference to the drawings.
The construction procedure of the foundation pile 10 is to determine whether the ground pile such as the position of the support layer and the groundwater level and the ground 20 such as the strength of the ground is to be inserted, or whether to place the ready-made pile or to cast the cast-in-place pile. .
If the foundation pile 10 shown to Fig.1 (a) is a cast-in-place pile, a pile driving hole will be drilled in the ground 20 using, for example, a heavy hole drilling machine such as an earth drill, and a reinforcing bar It is constructed by installing concrete and placing concrete. On the other hand, a striking method, a press-fitting method, a Nakabori method, or the like may be adopted, and the ready-made piles may be penetrated through the ground 20 to construct.
Hereinafter, the foundation pile 10 shall be “built” on the ground 20 including the case where a cast-in-place pile is placed and the case where a ready-made pile is penetrated.
[0008]
A doughnut-shaped rubber body (hollow elastic body) 30 and a shear connector (rod-shaped body connector) 40 are installed on the pile head of the foundation pile 10 thus constructed in the ground 20. This installation may be performed according to the situation before and after foundation pile construction and before and after production of ready-made piles. In any case, after the foundation pile 10 is constructed on the ground 20, the installation may be performed before applying a load such as “more than the completed load of the supporting structure” to the foundation pile 10. As shown in FIG. 2, the doughnut-shaped rubber body 30 has, for example, a lower flange 31 in contact with and fixed to the end surface 12 of the pile head 11, and an upper flange 32 in contact with and fixed to the lower surface 71 of the support structure 70. It is a fulcrum of reaction force, and performs an operation of extending appropriately in the length direction of the foundation pile 10, that is, vertically downward. For this purpose, the rubber portion 33 is tightened and reinforced in a bellows shape with a reinforcing ring 34, and a pressure regulating valve 35, an introduction pipe 36, and the like that control the pressure flow of the fluid 50 serving as a driving force for the stretching operation are provided. Of course, the hollow elastic body is not limited only to those having such a form and mechanism, and various types can be adopted according to the construction conditions. Of course, the fluid 50 to be press-fitted into the inner space 31 is not limited to viscous fluid such as oil, and any fluid can be employed as long as it has a required function.
[0009]
The stretching operation is performed by inflating the donut-shaped rubber body 30 by press-fitting a fluid 50 such as oil into the inner space 31 of the donut-shaped rubber body 30, and this expansion action is vertically lowered by the expansion control frame 60. To be done. This extending operation applies a load to the pile head 11 and the loading to the foundation pile 10 is realized. At this time, the loading amount can be controlled by knowing the expansion state of the donut-shaped rubber body 30 by the vertical position sensor 37 and controlling the press-fitting amount of the fluid 50 accordingly.
[0010]
Further, the shear connector (rod-shaped body connector) 40 plays a role of transmitting a horizontal force to the foundation pile 10, and one end is fixed to the pile head 11 of the foundation pile 10, and the other end is above the pile head end face 12. It is a rod-shaped body such as a steel rod that protrudes from the pile head end surface 12 and accommodates the protruding portion 41 in the sheath pipe 42.
[0011]
As described above, when the construction of the foundation pile 10 and the installation of the donut-shaped rubber body 30 and the like at the pile head 11 are completed, the protruding portion 41 that is housed in the sheath pipe 42 is moved along with the construction of the support structure 70. Connect to this. Or this connection process is abbreviate | omitted and the loading process by the said donut-shaped rubber body 30 is started. In this loading process, the upper flange 32 is brought into contact with or fixed to the lower surface 71 of the support structure 70, and a reaction force is applied to the ground 20 or the structure (support structure 70) supported by the foundation pile 10, For example, the foundation pile 10 is loaded more than the load after completion of the support structure 70. As shown in FIG. 1, the pile head end surface 12 is separated from the lower surface 71 of the support structure 70 and pushed downward in a state after loading from a state before loading. That is, it can be said that the foundation pile 10 has penetrated more into the ground 20 by extending the donut-shaped rubber body 30 vertically downward. At this time, the protruding portion 41 in the sheath pipe 42 slides in the sheath pipe 42 as the foundation pile 10 descends.
[0012]
If the loading measure to the foundation pile 10 is completed, the fluid 50 press-fitted into the inner space 31 of the donut-shaped rubber body 30 is left behind. Alternatively, the fluid 50 is adjusted as necessary. Thereby, the doughnut-shaped rubber body 30 in which the inner space 31 is filled with the fluid 50 such as oil appropriately absorbs the seismic energy acting on the foundation pile 10 at the time of the earthquake, and reduces the earthquake response of the entire support structure 70. It becomes possible to make it. Therefore, it becomes possible to reduce and estimate the influence at the time of an earthquake also at the time of the design of the foundation pile 10, and the pile length and the number of the foundation pile 10 used for a pile foundation work can be reduced conventionally. Efficient and low-cost design and construction is realized.
[0013]
【The invention's effect】
As explained in detail above, according to the construction method of the foundation pile having the seismic isolation effect of the present invention, the load at the time of earthquake acting on the foundation pile itself can be appropriately reduced by the excellent seismic isolation effect by the hollow elastic body. Therefore, it is possible to establish a reduction effect such as the number of foundation piles and the pile length that are realized by carrying out loading measures in advance, thereby realizing efficient design and construction.
Therefore, it is possible to provide a foundation pile capable of realizing an economical and efficient design and construction while suppressing an excessive design and capable of expressing a good seismic isolation force even in a design considering an earthquake.
Further, since the expansion action of the hollow elastic body can be guided in the vertical direction by the expansion control frame, it is possible to reliably load the pile head .
[0014]
Thus, it is possible to provide an economical and efficient design and construction by suppressing an excessive design even in a design that takes into account the time of an earthquake, and to provide a foundation pile capable of expressing a good seismic isolation force.
[Brief description of the drawings]
FIG. 1 is a diagram showing the construction status of a foundation pile having a seismic isolation effect according to the present invention, where (a) shows the situation before loading, and (b) shows the situation after loading.
FIG. 2 is a diagram showing a structural example of a hollow elastic body provided in a foundation pile having a seismic isolation effect according to the present invention.
[Explanation of symbols]
10 foundation pile 20 ground 30 hollow elastic body 31 pile head 50 fluid 70 structure (support structure)

Claims (2)

地盤に既製杭を貫入させることにより、又は場所打ち杭を打設することにより基礎杭を構築し、
前記基礎杭の杭頭に、ドーナツ状の中空弾性体と棒状コネクタとを、棒状のコネクタが中空弾性体の中心部を挿通するように配置して、該棒状コネクタの一端を前記基礎杭の杭頭に固設し、他端を該杭頭から上方に突出させ
前記杭頭から突出させた前記棒状コネクタの突出部位をサヤ管内にスライド可能に収め、
前記基礎杭の上部に支持構造物を構築し、該支持構造物に前記サヤ管を接続し、
前記基礎杭又は前記支持構造物に反力をとって前記中空弾性体の内空に流体を圧入することにより、前記基礎杭に対する載荷を行い、この後に前記中空弾性体の内空に流体を残置させることを特徴とする免震効果を備えた基礎杭の構築方法
Build foundation piles by penetrating ready-made piles into the ground or by placing cast-in-place piles,
A donut-shaped hollow elastic body and a rod-shaped connector are arranged on the pile head of the foundation pile so that the rod-shaped connector passes through the center of the hollow elastic body, and one end of the rod-shaped connector is connected to the pile of the foundation pile. Fixed to the head, projecting the other end upward from the pile head ,
The protruding part of the rod-shaped connector protruded from the pile head is slidably stored in a sheath tube,
Build a support structure on top of the foundation pile, connect the sheath pipe to the support structure,
A reaction force is applied to the foundation pile or the support structure to press the fluid into the hollow elastic body, thereby loading the foundation pile, and then leaving the fluid in the hollow elastic body. A method for constructing a foundation pile having a seismic isolation effect, characterized by
前記支持構造物には、前記中空弾性体の膨張作用を鉛直方向に導く膨張制御枠が設けられていることを特徴とする請求項1に記載の免震効果を備えた基礎杭の構築方法 The method for constructing a foundation pile having a seismic isolation effect according to claim 1, wherein the support structure is provided with an expansion control frame that guides an expansion action of the hollow elastic body in a vertical direction .
JP2001365117A 2001-11-29 2001-11-29 Construction method of foundation pile with seismic isolation effect Expired - Fee Related JP3778069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001365117A JP3778069B2 (en) 2001-11-29 2001-11-29 Construction method of foundation pile with seismic isolation effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001365117A JP3778069B2 (en) 2001-11-29 2001-11-29 Construction method of foundation pile with seismic isolation effect

Publications (2)

Publication Number Publication Date
JP2003166253A JP2003166253A (en) 2003-06-13
JP3778069B2 true JP3778069B2 (en) 2006-05-24

Family

ID=19175189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001365117A Expired - Fee Related JP3778069B2 (en) 2001-11-29 2001-11-29 Construction method of foundation pile with seismic isolation effect

Country Status (1)

Country Link
JP (1) JP3778069B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810217B2 (en) * 2005-12-16 2011-11-09 徹道 恩田 Pile head vibration damping cap
CN108149563A (en) * 2018-01-08 2018-06-12 中交瑞通路桥养护科技有限公司 Bridge pad protective device

Also Published As

Publication number Publication date
JP2003166253A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
US5127270A (en) Ground characteristics analyzer
US6074133A (en) Adjustable foundation piering system
US6869255B1 (en) Post-stressed pile
KR100621669B1 (en) Structure lifting and foundation strengthening method using the steel pipe
KR100807810B1 (en) Structure lifting method by foundation strengthening
JPH06136745A (en) Construction method for hollow widened bottom cast-in-place concrete pile
CN107938666B (en) Pile end inner hammering pile sinking with pile shoe and synchronous end grouting structure and process
US6371698B1 (en) Post stressed pier
JP3778069B2 (en) Construction method of foundation pile with seismic isolation effect
JP4032711B2 (en) Foundation pile construction method and foundation pile constructed by this method
CN217974323U (en) Interior prefabricated tubular pile structure of back slip casting and pile foundation of hammering stake point into rock
US3881320A (en) Pile installation in submerged bearing strata
CN212656218U (en) Heavy pile machine load underpinning structure
CN114482021B (en) Method for solidifying preset reverse friction combined pile foundation soil and formed cast-in-place pile
JP3690495B2 (en) Building construction method and building
CN114658024A (en) Residential pile foundation stabilizing structure and construction method
CN113174947A (en) Drilling and hammering integrated machine and pile planting process
KR20100123576A (en) Method for carrying out improved pile
KR20100136900A (en) Reinforcing method for structure base
CN112647497A (en) In-hole prestressed supporting member, prestressed anchor rod and construction method
JPH09158235A (en) Method for lifiting building
CN111809615A (en) Heavy pile machine load underpinning structure and construction method thereof
JP3242293B2 (en) Corrugated pipe for shaft
JP2884273B2 (en) Construction method for high strength cast-in-place concrete piles
CN217811018U (en) Bored concrete pile pressing structure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees