JP3777802B2 - Temperature detection device - Google Patents

Temperature detection device Download PDF

Info

Publication number
JP3777802B2
JP3777802B2 JP18184298A JP18184298A JP3777802B2 JP 3777802 B2 JP3777802 B2 JP 3777802B2 JP 18184298 A JP18184298 A JP 18184298A JP 18184298 A JP18184298 A JP 18184298A JP 3777802 B2 JP3777802 B2 JP 3777802B2
Authority
JP
Japan
Prior art keywords
temperature detection
light shielding
shielding plate
temperature
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18184298A
Other languages
Japanese (ja)
Other versions
JP2000009538A (en
Inventor
実紀 森口
博久 今井
直史 中谷
弘文 乾
加寿子 粟屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18184298A priority Critical patent/JP3777802B2/en
Publication of JP2000009538A publication Critical patent/JP2000009538A/en
Application granted granted Critical
Publication of JP3777802B2 publication Critical patent/JP3777802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は非接触で対象物の温度を検出する温度検出装置に関し、特に赤外線の入光と遮光を制御する遮光板に関するものである。
【0002】
【従来の技術】
従来より非接触で対象物の温度を検出する温度検出装置として焦電型赤外線検出器を用いたものにおいては、赤外線検出器に入射する赤外光の入光と遮光を切り替える遮光板が設けられている。この遮光板は例えば金属板のように赤外線を透過しない材料で構成し、その端部を直流モータや交流モータの回転軸に取り付け回転駆動させ、赤外線検出器に至る赤外光の入光と遮光を繰り返し断続させるという方法がある。即ち図11に示すように半円弧状の遮光板1を直流または交流モータ2の回転軸に取り付けて矢印の方向に回転駆動することで赤外線検出器3に入射する赤外光を断続する。
【0003】
またパルスモータを回転駆動源として所定周期でパルス印加し、所定角度を例えば正転と反転を繰り返すことで赤外光を断続させる方法もある。例えば特開平7−280652号公報に示す温度測定装置の例を図12を参照しながら説明する。チョッパ(遮光板)1はパルスモータと同様の原理による駆動源である水晶時計ムーブメント4により往復運動するように駆動され、赤外線検出器3に至る赤外光を断続する。水晶時計ムーブメント4は永久磁石5と、コア6とコイル7を含み、永久磁石5にはチョッパ1の端部を取り付けている。コイル7は第1および第2の入力端子8、9にパルス入力を受け取り、このパルス入力に応答して永久磁石5が回動し、チョッパ1が矢印に示すように往復運動する。
【0004】
【発明が解決しようとする課題】
しかしながら、直流モータを駆動源として遮光板を回転させる上記従来例の場合には入光時間、遮光時間のばらつきにより、温度測定精度が低いという課題がある。直流モータは一般に電源電圧の変動等の原因で回転数が変動する。回転数が変動すれば入光、遮光の周期が変わり、この周期の変動により赤外線検出器の出力も変動して正確な温度検出ができない。回転数を安定させるためには、フォトインタラプタ等の回転数を検出する手段と電源電圧を調整する手段を設け、フィードバック制御を行うような複雑な制御回路が必要となる。
【0005】
また交流モータを駆動源とした場合には、商用電源のように比較的安定した周波数のもとでは直流モータより回転数を安定させ易いが、商用電源のような交流電源を必要とするという課題がある。これは携帯型の放射温度計や放射体温計のように電池電源で構成する場合には直流電源しかなく、安定した周波数の交流電源を作るための複雑な回路が必要となり実現が困難である。
【0006】
また水晶時計ムーブメントやパルスモータを駆動源とした場合にはマイクロプロセッサ等のデジタル信号を基に駆動するので、入光、遮光の周期は高い精度で断続できるが、遮光板が揺動しながら停止するために入光、遮光を精度よく切り替えることが困難であるという課題がある。即ちこれら駆動源は磁力による吸引力と反発力のバランスで停止し、磁力の極性を変えることで駆動するものであるから、停止の瞬間に遮光板は揺動しながら吸引力と反発力をバランスさせて停止するという特性がある。
【0007】
図13にパルスモータの挙動の特性を示す。横軸は経過時間であり、(a)は駆動パルスで一定周期t、デューティ50%でCW(時計方向)とCCW(反時計方向)のパルスを交互に出力している。(b)がパルスモータの回転軸の回転角度で図のように停止位置に到達する時点でオーバーシュートを起こし、その後アンダーシュートを起こし、その振幅は小さくなりながら停止位置で安定する。
【0008】
パルスモータや水晶時計ムーブメントは一般に図13に示すような挙動の特性を持つものであるために、これらを遮光板の駆動源として赤外光を断続すると、入光から遮光、または遮光から入光に切り替わる瞬間に非常に短い間隔で入光と遮光が切り替わる状況が発生し、そのために赤外線検出器の出力は不安定になり、温度検出の正確さを欠くという課題がある。この課題を回避するためには、揺動の最大位置であるΔθに対して十分大きい遮光板の形状にする方法があるが、この場合には温度検出装置自体も大型化してしまうという課題がある。
【0009】
【課題を解決するための手段】
本発明は上記課題を解決するために、被測定物が放射する赤外線を検出する赤外線検出器と、前記赤外線検出器に入射する赤外線を遮光する遮光板と、前記遮光板を駆動する直流モータと、前記遮光板の停止位置を決めるストッパと、前記直流モータを制御するモータ制御手段と、前記赤外線検出器の出力を基に被測定物の温度を換算する温度換算手段と、温度検出開始信号を発信する発信手段とを有し、前記モータ制御手段は、前記直流モータを駆動して前記遮光板の位置合わせを行う位置合わせ駆動手段と、前記直流モータの回転方向を交互に反転させて前記赤外線検出器に至る赤外線光路の入光と遮光を切り替えて温度検出を行う温度検出駆動手段と、前記位置合わせ駆動手段と前記温度検出駆動手段を切り替える切替手段と、前記発信手段からの温度検出開始信号が非受信状態である連続時 間を計時する計時手段を有し、前記計時手段が所定の時間を計時する前に発信手段からの温度検出開始信号を受信すると切替手段が温度検出駆動手段を動作させ、前記計時手段が所定の時間を計時した後に発信手段からの温度検出開始信号を受信すると切替手段が位置合わせ駆動手段を動作させた後に温度検出駆動手段を動作させるものである。
【0010】
上記発明によれば、計時手段が発信手段からの温度検出開始信号が非受信状態である連続時間を計時し、計時手段が所定の時間を計時する前に温度検出開始信号を受信すると、切替手段が温度検出駆動手段を動作させ、温度検出駆動手段は直流モータの回転方向を交互に反転させて遮光板をストッパに衝突させて停止させ、赤外線検出器に至る赤外線光路の入光と遮光を切り替え、赤外線検出器が被測定物の放射する赤外線を検出し、温度換算手段が赤外線検出器の出力を基に被測定物の温度を換算する。そして、計時手段が所定の時間を計時した後に発信手段からの信号を受信すると、切替手段が位置合わせ駆動手段を動作させ、位置合わせ駆動手段が直流モータを駆動して遮光板をストッパに衝突させて遮光板の位置合わせを行った後、切替手段が温度検出駆動手段を動作させて温度検出を行う。従って、遮光板の位置合わせにより温度検出開始時に遮光板を常に同じ位置にすることができ、温度検出時に遮光板の駆動による入光時間、遮光時間を安定させることができる。そして遮光板は停止位置での揺動も起こさないので、遮光板は十分小型にしても入光と遮光の状態を安定して切り替えることができ、小型で精度の高い温度検出を行うことができる。また、温度検出時の遮光板の最終の停止位置から位置ずれを起こさないことが想定されるような短時間で繰り返して温度検出を行う場合は遮光板の位置合わせを行わずに続けて温度検出を行うことができるので、短時間で、精度の高い温度検出を行うことができ、また、長時間にわたり温度検出を行わず放置されている間に遮光板の位置がずれてしまった場合でも、再度温度検出を行う場合は遮光板の位置合わせを行った後温度検出を行うので、常に精度の高い温度検出を行うことができる。
【0011】
【発明の実施の形態】
本発明の請求項1にかかる温度検出装置は、被測定物が放射する赤外線を検出する赤外線検出器と、前記赤外線検出器に入射する赤外線を遮光する遮光板と、前記遮光板を駆動する直流モータと、前記遮光板の停止位置を決めるストッパと、前記直流モータを制御するモータ制御手段と、前記赤外線検出器の出力を基に被測定物の温度を換算する温度換算手段と、温度検出開始信号を発信する発信手段とを有し、前記モータ制御手段は、前記直
流モータを駆動して前記遮光板の位置合わせを行う位置合わせ駆動手段と、前記直流モータの回転方向を交互に反転させて前記赤外線検出器に至る赤外線光路の入光と遮光を切り替えて温度検出を行う温度検出駆動手段と、前記位置合わせ駆動手段と前記温度検出駆動手段を切り替える切替手段と、前記発信手段からの温度検出開始信号が非受信状態である連続時間を計時する計時手段を有し、前記計時手段が所定の時間を計時する前に発信手段からの温度検出開始信号を受信すると切替手段が温度検出駆動手段を動作させ、前記計時手段が所定の時間を計時した後に発信手段からの温度検出開始信号を受信すると切替手段が位置合わせ駆動手段を動作させた後に温度検出駆動手段を動作させるものである。
【0012】
そして、計時手段が発信手段からの温度検出開始信号が非受信状態である連続時間を計時し、計時手段が所定の時間を計時する前に温度検出開始信号を受信すると、切替手段が温度検出駆動手段を動作させ、温度検出駆動手段は直流モータの回転方向を交互に反転させて遮光板をストッパに衝突させて停止させ、赤外線検出器に至る赤外線光路の入光と遮光を切り替え、赤外線検出器が被測定物の放射する赤外線を検出し、温度換算手段が赤外線検出器の出力を基に被測定物の温度を換算する。そして、計時手段が所定の時間を計時した後に発信手段からの信号を受信すると、切替手段が位置合わせ駆動手段を動作させ、位置合わせ駆動手段が直流モータを駆動して遮光板をストッパに衝突させて遮光板の位置合わせを行った後、切替手段が温度検出駆動手段を動作させて温度検出を行う。従って、遮光板の位置合わせにより温度検出開始時に遮光板を常に同じ位置にすることができ、温 度検出時に遮光板の駆動による入光時間、遮光時間を安定させることができる。そして遮光板は停止位置での揺動も起こさないので、遮光板は十分小型にしても入光と遮光の状態を安定して切り替えることができ、小型で精度の高い温度検出を行うことができる。また、温度検出時の遮光板の最終の停止位置から位置ずれを起こさないことが想定されるような短時間で繰り返して温度検出を行う場合は遮光板の位置合わせを行わずに続けて温度検出を行うことができるので、短時間で、精度の高い温度検出を行うことができ、また、長時間にわたり温度検出を行わず放置されている間に遮光板の位置がずれてしまった場合でも、再度温度検出を行う場合は遮光板の位置合わせを行った後温度検出を行うので、常に精度の高い温度検出を行うことができる。
【0013】
また、本発明の請求項にかかる温度検出装置は、被測定物が放射する赤外線を検出する赤外線検出器と、前記赤外線検出器に入射する赤外線を遮光する遮光板と、前記遮光板を駆動する直流モータと、前記遮光板の停止位置を決めるストッパと、前記直流モータを制御するモータ制御手段と、前記赤外線検出器の出力を基に被測定物の温度を換算する温度換算手段と、温度検出開始信号を発信する発信手段とを有し、前記モータ制御手段は、前記直流モータを駆動して前記遮光板の位置合わせを行う位置合わせ駆動手段と、前記直流モータの回転方向を交互に反転させて前記赤外線検出器に至る赤外線光路の入光と遮光を切り替えて温度検出を行う温度検出駆動手段と、前記位置合わせ駆動手段と前記温度検出駆動手段を切り替える切替手段と、前記発信手段からの温度検出開始信号が非受信状態である連続時間を計時する計時手段を有し、前記切替手段はモータ制御手段に電源が投入された時および、前記計時手段が所定の時間を計時する毎に位置合わせ駆動手段を動作させ、前記発信手段からの温度検出開始信号を受信した時に温度検出駆動手段を動作させることにより、温度検出開始時に前記遮光板は常に同じ位置にあることを特徴とする温度検出装置とする。
【0014】
そして、切替手段はモータ制御手段に電源が投入された時に位置合わせ駆動手段を動作させて遮光板の位置合わせを行い、そして、計時手段が発信手段からの温度検出開始信号が非受信状態である連続時間を計時し、所定の時間を計時する毎に定期的に切替手段が位置合わせ駆動手段を動作させて遮光板の位置合わせを行い、温度検出開始信号を受信した時に温度検出駆動手段を動作させて温度検出を行うので、 短時間で繰り返して温度検出を行う場合は遮光板の位置合わせを行わずに続けて温度検出を行うことができるので、短
時間で精度の高い温度検出を行うことができ、また、長時間にわたり温度検出を行わず放置されている間に遮光板の位置がずれてしまった場合でも、計時手段が所定の時間を計時する毎に定期的に遮光板の位置合わせを行うので、常に精度の高い温度検出を行うことができる。
【0015】
【実施例】
(実施例1)
以下、本発明の実施例を図1〜図3を参照しながら説明する。図1は本発明の実施例として温度検出装置を体温計に搭載した応用例の構成ブロック図である。また、図2は遮光板部の要部拡大図であり、図3は直流モータの制御方法を示すタイミングチャートである。
【0016】
一般に表面温度を計測する体温計としては、鼓膜や口腔、肛門など外気に接触しにくい部分の温度を計測することでほぼ体温を計測できる。特に鼓膜は体温を制御する視床下部が近いこともあり、体温計測として適切な場所として知られている。図1において、10は温度を測定すべき被測定物で例えば鼓膜である。11は耳孔に挿入するプロ
ーブで先端にいくに従って径を細くして耳孔に挿入しやすい形状としている。12は鼓膜10から放射される赤外線を集光するレンズで、3はレンズ12で集光された赤外線を検出する焦電型の赤外線検出器で、感知する赤外線量の微分値に相関を持って出力が変化する。また、1は赤外線検出器3に入射する赤外線を遮光する遮光板、2は遮光板1を駆動する直流モータ、13は遮光板1の停止位置に設け遮光板1を停止させるストッパ、14は直流モータ2を制御するモータ制御手段、15はモータ制御手段14に温度検出開始信号15aを発信する発信手段で測定スイッチである。モータ制御手段14は、直流モータ2を駆動して遮光板1の位置合わせを行う位置合わせ駆動手段16、温度検出時に直流モータ2の回転方向を交互に反転させる温度検出駆動手段17、位置合わせ駆動手段16と温度検出駆動手段17を切り替える切替手段18とを有している。また、19は赤外線検出器3自身の温度を検出する温度センサで、サーミスタによるものである。20は赤外線検出器3で出力される電圧を増幅する増幅器、21は増幅器20の出力と温度センサ19の出力をアナログ値からデジタル値に変換するAD変換器、22はAD変換器21の出力に基づき、温度に換算する温度換算手段、23は温度換算手段22で算出された温度を表示する表示手段である。
【0017】
上記構成において、体温を測定する場合、プローブ11を耳孔部に挿入して、温度検出開始信号15aを発信する測定スイッチ15を押す。モータ制御手段14が温度検出開始信号15aを受信すると、切替手段18はまず位置合わせ駆動手段16を動作させ、位置合わせ駆動手段16が直流モータ2を駆動して遮光板1の位置合わせを行う。その後、切替手段18が温度検出駆動手段17に切り替え、温度検出駆動手段17は直流モータ2の回転方向を交互に反転させる。この直流モータ2の回転により遮光板1は停止位置に設けられたストッパ13の間で往復回動を繰り返し、鼓膜10から赤外線検出器3に至る赤外線光路を断続し、入光と遮光を切り替える。ここで、遮光板1は金属により構成していて、遮光しているときは赤外線検出器3自身が放射する赤外線が金属面で反射して赤外線検出器3に入光するので、遮光板1の断続動作により、鼓膜10から放射される赤外線と赤外線検出器3自身が放射する赤外線とが交互に赤外線検出器3で検出される。赤外線検出器3は焦電型で、感知する赤外線量の微分値に相関を持って出力が変化するので、赤外線検出器3の出力は鼓膜10と赤外線検出器3の温度差と相関を持っている。従って、温度換算手段22はこの関係を用いて鼓膜10の温度を換算する。即ち、赤外線検出器3の出力を増幅器20で増幅し、増幅器20で増幅した出力電圧と温度センサ19の出力電圧をAD変換器21でデジタル化し、AD変換器21の出力を基に温度換算手段22が鼓膜10の温度を換算する。そして、表示手段23に温度を表示する。
【0018】
次に図2、図3を用いて遮光板1の位置合わせ駆動及び温度検出駆動について詳しく説明する。図2の遮光板部の拡大図において、ストッパ13は、遮光板1が赤外線検出器3を遮光する遮光状態で停止するときに接する遮光停止部13aと、入光状態で停止するときに接する入光停止部13bとからなっており、直流モータ2の回転により、シャフト24に取り付けられた遮光板1が、遮光停止部13aと入光停止部13bの間を移動する。図中、遮光板1が遮光状態で停止している状態を実線で示し、入光状態で停止している状態を破線で示している。
【0019】
上記構成において、測定スイッチ15が押され、モーター制御手段14が温度検出開始信号15aを受信すると、切替手段18はまず、位置合わせ駆動手段16を動作させて遮光板1の位置合わせを行う。即ち図3に示すように、位置合わせ駆動手段16は温度検出開始信号15aの受信からt1時間直流モータ2に電力を供給し、遮光板1を図2に示す遮光方向に回転させる。ここでt1は遮光板が赤外線の入光状態で停止している状態(破線)から遮光状態で停止する状態(実線)に移動するのに要する時間より長い時間とする。これにより、モータ制御手段14が温度検出開始信号15aを受信する以前に、遮光板1が遮光停止部13aと入光停止部13bの間のどの位置に停止していたとしても、遮光板1を遮光停止部13aに衝突させて、常に遮光状態で停止させることができ、遮光板1の位置合わせを行うことができる。
【0020】
そして、遮光板1の位置合わせを行った後、切替手段18は温度検出駆動手段17に切り替え、温度検出駆動手段17は温度検出を行うために図3示すように直流モータ2に電力を供給し、遮光板1を駆動する。即ち、初めにt1時間電力を供給して遮光板1を入光方向に回転させ、入光停止部13bに衝突停止させ、その後のt2時間は断続的に電力を供給して停止位置すなわち入光状態で遮光板1を保持する。そしてさらに、次のt1時間は逆方向に電力を供給して遮光板1を遮光方向に回転させ、遮光停止部13aに衝突停止させ、そしてt2時間は断続的に電力を供給し、停止位置すなわち遮光状態で遮光板1を保持する。このようにして、温度検出駆動手段17は直流モータ2を交互に反転させることにより、遮光板1による赤外線検出器3に至る赤外線の入光と遮光を繰り返し、最後は、遮光状態で終了させるものとする。
【0021】
ここで、温度検出駆動手段17が作動中の赤外線検出器3の出力は、遮光板1による赤外線の断続動作により図3に示すように交流波形となり、この交流波形の振幅Vが鼓膜10の温度と赤外線検出器3の温度の4乗の差に比例している。従って、温度換算手段22はこの関係に基づき、振幅Vと温度センサ19が検出する赤外線検出器3の温度から鼓膜10の温度を逆算し、そしてさらに、入光と遮光とを繰り返すことにより得られる複数の温度を平均化して鼓膜10の温度としている。このように入光と遮光を繰り返して複数のデータを平均化することにより、ノイズ等の影響を低減することが可能となり、温度測定精度を向上させることができる。なお、遮光板1を駆動して入光と遮光を複数回繰り返したが、1回だけの入光と遮光で温度を換算しても良く、その場合、温度検出時間を短縮することができる。
【0022】
以上、本実施例によると、切替手段18が位置合わせ駆動手段16と温度検出駆動手段17を切り替え、位置合わせ駆動手段16が遮光板1の位置合わせを行った後、温度検出駆動手段17が直流モータ2の回転方向を交互に反転させて遮光板1により赤外線の入光と遮光を切り替えて温度検出を行うので、温度検出開始時に遮光板1を常に同じ位置にすることができ、温度検出時の遮光板1の駆動による入光時間、遮光時間を安定させることができ、精度の高い温度検出を行うことができる。
【0023】
そして、直流モータ2によって駆動する遮光板1を停止位置に設けたストッパ13に衝突させることによって、遮光板1を赤外線の入光と遮光のそれぞれの状態で停止させるこ
とができ、遮光板の停止位置での揺動も起こさないので、遮光板1は十分小型にしても入光と遮光の状態を安定して切り替えることができ、小型で精度の高い温度検出を行うことができる。
【0024】
また、赤外線を遮光する停止位置で温度検出のための遮光板1の駆動を終了させることにより、非温度検出時に埃やゴミで赤外線検出器3が汚れるのを防ぐことができ、温度検出精度を保つことができる。
【0025】
さらに、本実施例では、位置合わせ駆動手段18が、赤外線検出器3に至る赤外線を遮光する位置まで遮光板1を駆動して位置合わせを行っているが、これは、温度検出駆動手段19による遮光板1の駆動の回数を最も効率良くする効果がある。すなわち、温度検出時の赤外線検出器3の出力振幅Vが大きいほど、ノイズの影響を受け難く、温度精度を良くすることができるので、入光と遮光、または、遮光と入光の組合わせで出力振幅Vを得るのが良いと考えられ、入光と遮光、または、遮光と入光の組合わせで温度検出をするものとする。ここで、仮に位置合わせ駆動手段18が、入光状態に遮光板1を駆動して位置合わせを行ったとすると、温度検出駆動手段19は遮光板1を遮光状態に駆動するところから温度検出を開始し、入光状態で終了してしまうことになり、赤外線検出器3が非温度検出時に埃等で汚れないようにするためには、遮光板1を遮光状態にさらに駆動する必要があり、位置合わせ駆動手段18が、遮光状態に遮光板1を駆動して位置合わせを行う場合に比べて、遮光板1の駆動回数が1回多くなってしまう。従って、位置合わせ駆動手段18が、遮光板1を遮光状態に駆動して位置合わせを行うことにより、遮光板1を最も効率良く駆動できる。
(実施例2)
以下、本発明の第2の実施例を図4、図5を参照しながら説明する。図4は本発明の第2の実施例の温度検出装置を搭載した体温計の構成ブロック図で、図5は同実施例のモータ制御手段の動作を説明するフローチャート図である。
【0026】
図4において、25は測定スイッチ15からの温度検出開始信号15aが非受信状態である連続時間を計時する計時手段、26は計時手段25が所定の時間を計時した時に時間経過フラグを記憶する記憶手段、27は記憶手段26に記憶される時間経過フラグの有無を判定して、切替手段18のその後の動作を指示する判定手段である。なお、第1の実施例と同様の構成要素には同様の符号を付し、説明を省略する。
【0027】
次に、モータ制御手段14の動作を図5を用いて具体的に説明する。まず、モータ制御手段14の電源が投入された時に記憶手段26に初期状態として時間経過フラグが記憶され(S100)、以下の動作を繰り返し行う。すなわち、S101にて計時手段25が計時する時間が所定の時間t3を経過していなければ記憶手段26はそのままの状態にして温度検出開始信号15aの受信を待って待機し、計時手段25が計時する時間が所定の時間t3経過するとS102で記憶手段26に時間経過フラグを記憶して、温度検出開始信号15aの受信を待って待機する。やがて、測定スイッチ15が押され、モータ制御手段14が温度検出開始信号15aを受信すると(S103)、判定手段27が記憶手段26に時間経過フラグが記憶されているかどうかをみに行く(S104)。ここで、時間経過フラグが記憶されていない場合、切替手段18はすぐに温度検出駆動手段17を作動させる(S106)。また、時間経過フラグが記憶されている場合は切替手段18が位置合わせ駆動手段16を作動させた後(S105)、続けて温度検出駆動手段17に切り替えて作動させる(S106)。その後、計時手段25をリセット駆動させて(S107)、さらに記憶手段26に記憶されている時間経過フラグを消去して(S108)、最初に戻り、同じことを繰り返す。
【0028】
上記構成によって、モータ制御手段14の電源が投入された後、初めて温度検出を行う
場合は記憶手段26に時間経過フラグが記憶されているので、遮光板1の位置合わせを行った後、温度検出を行うので、電源を切った状態で放置されている間に遮光板の位置がずれてしまった場合でも、精度の高い温度検出を行うことができる。そして、電源投入後回目以降の温度検出においては、連続して温度検出を行う場合や、所定の時間t3を経過していない短時間で繰り返して温度検出を行う場合は、遮光板1の位置合わせを行わずに続けて温度検出を行うことができるので、短時間で、精度の高い温度検出を行うことができ、所定の時間t3を経過して長時間温度検出を行わず放置されている間に遮光板1の位置がずれてしまった場合でも、再度温度検出を行う場合は遮光板1の位置合わせを行った後、温度検出を行うので、常に精度の高い温度検出を行うことができる。
【0029】
(実施例3)
以下、本発明の第3の実施例を図6、図7、図8を参照しながら説明する。図6は本発明の第3の実施例の温度検出装置を搭載した体温計の構成ブロック図、図7は同実施例のモータ制御手段の動作を説明するフローチャート図で、図8は同実施例の電源制御手段の動作を説明する回路図である。図6において、28は直流モータ2を制御するモータ制御手段14の電源の投入と遮断を制御する電源制御手段で、測定スイッチ15からの温度検出開始信号15aが非受信状態である連続時間を計時する計時手段25を有している。なお、上述の実施例と同様の構成要素には同様の符号を付し、説明を省略する。
【0030】
次に、モータ制御手段14の動作を図7を用いて具体的に説明する。まず、電源制御手段28により、モータ制御手段14の電源が投入された時に、切替手段18は位置合わせ駆動手段16を作動させ遮光板1の位置合わせを行い(S200)、同時に計時手段25による計時を開始させる(S201)。モータ制御手段14は計時手段25が所定の時間t3を計時するまで(S202)は温度検出開始信号15aの受信を待って待機しており、待機中測定スイッチ15が押されて温度検出開始信号15aを受信すると(S203)、切替手段18が温度検出駆動手段17を作動させ、温度検出を開始する(S204)。その後、計時手段25をセットして再び計時を開始し、同様のことを繰り返す。また、モータ制御手段14が温度検出開始信号15aの受信を待って待機中に計時手段25が所定の時間t3を計時すると、電源制御手段28がモータ制御手段14の電源を遮断する(S205)。そして、モータ制御手段14の電源が遮断された後に温度検出を行いたい時はモーター制御手段14の電源の投入から再度やりなおすものである。
【0031】
次に図8を用いて電源制御手段28について説明する。電源制御手段28はマイクロコンピュータ(以後マイコンと記す)29と、直流電源である電池30と、PNP型のトランジスタ31と、抵抗器32、33、34と、ダイオード35、36と、電源スイッチ37により構成している。図8において、電源スイッチ37を押すと抵抗器32、33、ダイオード35、電源スイッチ37に電流が流れトランジスタ31がオン状態となり、マイコン29、モータ制御手段14に電源が供給される。ここで、マイコン29は出力端子29aをロウにすることにより電源スイッチ37が離されてもトランジスタ31をオン状態で保持できて、マイコン29、モータ制御手段14に電源を供給し続けることができる。一方、電源スイッチ37が押されている時はトランジスタ31から抵抗器34、ダイオード36に電流が流れマイコン29の入力端子29bはロウを入力でき、離されればハイを入力できる。
【0032】
一般的な使い方においては、電源スイッチ37が押されるとマイコン29は出力端子29aをロウにして、マイコン29、モータ制御手段14に電源を供給し続ける。ここで、温度検出開始信号15aを発信する測定スイッチ15が押されると抵抗器38から測定スイッチ15を電流が流れ、マイコン29は入力端子29cがロウになることで測定スイッチ15が押されたことを検知して温度測定を行う。再度電源スイッチ37が押されるとマイコン29は出力端子29aをハイにすることで、電源スイッチ37が離された瞬間にマ
イコン29、モータ制御手段14の電源供給を停止できる。
【0033】
また、使用者が再度電源スイッチ37を押すことを忘れてマイコン29、モータ制御手段14に電源が供給され続けている場合には無駄な電池消耗を避けるためにマイコン29は出力端子29aをハイにして電源供給を停止することができる。それは、マイコン29が計時手段25を内蔵していて測定スイッチ15が押されない連続時間を計時し、それが所定時間を超えたところで出力端子29aをハイにすれば良い。
【0034】
従って、本実施例によると、遮光板1の位置合わせをモータ制御手段14の電源投入時に行うので、温度検出を短時間で行うことができる。そして、繰り返して温度検出を行う場合に、計時手段25が所定の時間を計時するまでは、遮光板1の位置合わせを行わずに続けて温度検出を行うことができるので、短時間で精度の高い温度検出を行うことができ、長時間にわたり温度検出を行わず放置されて遮光板1の位置がずれてしまった場合でも、計時手段25が所定の時間を計時し、モータ制御手段14の電源は遮断されるので、再度温度検出を行う時にはモータ制御手段14の電源を投入することで、切替手段18が位置合わせ駆動手段16を動作させて遮光板1の位置合わせを行い、その後の温度検出開始信号15aで温度検出を行うので、常に精度の高い温度検出を行うことができる。また、モータ制御手段14の電源を切り忘れた場合でも、所定時間経過すると自動的に電源が遮断されるので、消費電力を低減させることができ、そして使い勝手が良くなる。
【0035】
(実施例4)
以下、本発明の第4の実施例を図9、図10を参照しながら説明する。図9は本発明の第4の実施例の温度検出装置を搭載した体温計の構成ブロック図で、図10は同実施例のモータ制御手段の動作を説明するフローチャート図である。モータ制御手段14の動作を図9、図10を用いて具体的に説明する。まず、モータ制御手段14の電源が投入されると、切替手段18が位置合わせ駆動手段16を作動させ遮光板1の位置合わせを行い(S300)、そして計時手段25による計時が開始される(S301)。モータ制御手段14は計時手段25が所定の時間t3を計時するまで(S302)は温度検出開始信号15aの受信を待って待機しており、測定スイッチ15が押されて温度検出開始信号15aを受信すると(S303)、切替手段18が温度検出駆動手段17を作動させ、温度検出を開始する(S304)。そして温度検出を開始後、計時手段25はリセットされて(S305)、モータ制御手段14は再び温度検出開始信号15aの受信を待つ待機状態となり、同様のことを繰り返す。そして待機中に、計時手段25が所定の時間t3を計時する毎に、切替手段18が位置合わせ駆動手段16を作動させ遮光板1の位置合わせを行う。
【0036】
従って、本実施例によると、計時手段25が測定スイッチ15からの温度検出開始信号15aが非受信状態である連続時間を計時し、所定の時間を計時する毎に定期的に切替手段18が位置合わせ駆動手段16を動作させて遮光板1の位置合わせを行い、温度検出開始信号15aを受信した時に温度検出駆動手段17を動作させて温度検出を行うので、 連続して温度検出を行う場合は遮光板1の位置合わせを行わずに続けて温度検出を行うことができるので、短時間で精度の高い温度検出を行うことができ、また、長時間にわたり温度検出を行わず放置されている間に遮光板1の位置がずれてしまった場合でも、計時手段25が所定の時間を計時する毎に定期的に遮光板1の位置合わせを行うので、常に精度の高い温度検出を行うことができる。
【0037】
【発明の効果】
以上説明したように本発明の温度検出器は以下の効果を有する。
【0038】
(1)遮光板の位置合わせにより温度検出開始時に遮光板を常に同じ位置にすることができ、温度検出時に遮光板の駆動による入光時間、遮光時間を安定させることができる
。そして遮光板は停止位置での揺動も起こさないので、遮光板は十分小型にしても入光と遮光の状態を安定して切り替えることができ、小型で精度の高い温度検出を行うことができる。また、連続して温度検出を行う場合や、短時間で繰り返して温度検出を行う場合は遮光板の位置合わせを行わずに続けて温度検出を行うことができるので、短時間で、精度の高い温度検出を行うことができ、また、長時間にわたり温度検出を行わず放置されている間に遮光板の位置がずれてしまった場合でも、再度温度検出を行う場合は遮光板の位置合わせを行った後温度検出を行うので、常に精度の高い温度検出を行うことができる。
【0039】
(2)切替手段はモータ制御手段に電源が投入された時に位置合わせ駆動手段を動作させて遮光板の位置合わせを行い、そして、計時手段が発信手段からの温度検出開始信号が非受信状態である連続時間を計時し、所定の時間を計時する毎に定期的に切替手段が位置合わせ駆動手段を動作させて遮光板の位置合わせを行い、温度検出開始信号を受信した時に温度検出駆動手段を動作させて温度検出を行うので、 短時間で繰り返して温度検出を行う場合は遮光板の位置合わせを行わずに続けて温度検出を行うことができるので、短時間で精度の高い温度検出を行うことができ、また、長時間にわたり温度検出を行わず放置されている間に遮光板の位置がずれてしまった場合でも、計時手段が所定の時間を計時する毎に定期的に遮光板の位置合わせを行うので、常に精度の高い温度検出を行うことができる。
【図面の簡単な説明】
【図1】 本発明の実施例における温度検出装置の構成ブロック図
【図2】 同実施例の遮光板部の要部拡大図
【図3】 同実施例の動作を説明するタイミングチャート
【図4】 本発明の第2の実施例の温度検出装置の構成ブロック図
【図5】 同実施例のモータ制御手段の動作を説明するフローチャート
【図6】 本発明の第3の実施例の温度検出装置の構成ブロック図
【図7】 同実施例のモータ制御手段の動作を説明するフローチャート
【図8】 同実施例の電源制御手段の動作を説明する回路図
【図9】 本発明の第4の実施例の温度検出装置の構成ブロック図
【図10】 同実施例のモータ制御手段の動作を説明するフローチャート
【図11】 従来の温度測定装置の構成図
【図12】 第2の従来例の温度検出装置の構成図
【図13】 第2の従来例の動作を説明するタイミングチャート
【符号の説明】
1 遮光板
2 直流モータ
3 赤外線検出器
10 被測定物
13 ストッパ
14 モータ制御手段
15 測定スイッチ(発信手段)
15a 温度検出開始信号
16 位置合わせ駆動手段
17 温度検出駆動手段
18 切替手段
25 計時手段
28 電源制御手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a temperature detection device that detects the temperature of an object in a non-contact manner, and more particularly to a light shielding plate that controls infrared light incident and light shielding.
[0002]
[Prior art]
  Conventionally, in the case of using a pyroelectric infrared detector as a temperature detection device that detects the temperature of an object in a non-contact manner, a light shielding plate that switches between incident light and light shielding of infrared light incident on the infrared detector is provided. ing. This light-shielding plate is made of a material that does not transmit infrared light, such as a metal plate, and its end is attached to a rotating shaft of a DC motor or AC motor and rotated to drive infrared light incident on the infrared detector. There is a method of repeatedly interrupting. That is, as shown in FIG. 11, the semicircular arc-shaped light-shielding plate 1 is attached to the rotating shaft of the direct current or alternating current motor 2 and is driven to rotate in the direction of the arrow, thereby interrupting the infrared light incident on the infrared detector 3.
[0003]
  There is also a method of intermittently irradiating infrared light by applying pulses at a predetermined cycle using a pulse motor as a rotation drive source and repeating forward rotation and reverse rotation at a predetermined angle, for example. For example, an example of a temperature measuring device disclosed in Japanese Patent Application Laid-Open No. 7-280652 will be described with reference to FIG. A chopper (light-shielding plate) 1 is driven to reciprocate by a quartz watch movement 4 which is a drive source based on the same principle as a pulse motor, and interrupts infrared light reaching the infrared detector 3. The quartz watch movement 4 includes a permanent magnet 5, a core 6 and a coil 7, and the end of the chopper 1 is attached to the permanent magnet 5. The coil 7 receives a pulse input at the first and second input terminals 8 and 9, the permanent magnet 5 rotates in response to the pulse input, and the chopper 1 reciprocates as indicated by arrows.
[0004]
[Problems to be solved by the invention]
  However, in the case of the above conventional example in which the light shielding plate is rotated using a DC motor as a drive source, there is a problem that the temperature measurement accuracy is low due to variations in the light incident time and the light shielding time. In general, the rotational speed of a DC motor fluctuates due to fluctuations in power supply voltage. If the rotation speed fluctuates, the period of incident light and light shielding changes, and the fluctuation of this period also fluctuates the output of the infrared detector, making accurate temperature detection impossible. In order to stabilize the number of revolutions, a complicated control circuit is required which provides a means for detecting the number of revolutions such as a photo interrupter and a means for adjusting the power supply voltage and performs feedback control.
[0005]
  When an AC motor is used as a drive source, the rotational speed is easier to stabilize than a DC motor under a relatively stable frequency like a commercial power source, but an AC power source such as a commercial power source is required. There is. This is difficult to achieve because it requires only a DC power source in the case of a battery power source such as a portable radiation thermometer or a radiation thermometer, and requires a complicated circuit for producing an AC power source with a stable frequency.
[0006]
  When a quartz watch movement or pulse motor is used as the drive source, it is driven based on a digital signal from a microprocessor, etc., so the light incident and light shielding cycles can be interrupted with high accuracy, but the light shielding plate stops while swinging. Therefore, there is a problem that it is difficult to switch between incident light and light shielding with high accuracy. In other words, these driving sources are stopped by the balance between the attractive force and the repulsive force due to the magnetic force, and are driven by changing the polarity of the magnetic force. Therefore, at the moment of stopping, the shading plate swings to balance the attractive force and the repulsive force. It has the characteristic of letting it stop.
[0007]
  FIG. 13 shows the characteristics of the behavior of the pulse motor. The abscissa is the elapsed time, and (a) is a drive pulse with CW (clockwise) and CCW (counterclockwise) pulses alternately output at a constant period t and a duty of 50%. When (b) reaches the stop position as shown in the figure at the rotation angle of the rotation shaft of the pulse motor, an overshoot occurs, and then an undershoot occurs, and the amplitude becomes stable while the amplitude decreases.
[0008]
  Since pulse motors and quartz watch movements generally have behavioral characteristics as shown in FIG. 13, if infrared light is intermittently used as a driving source of the light shielding plate, light is shielded from incident light, or light is incident from light shielding. At the moment of switching, there is a situation where the incident light and the light shielding are switched at a very short interval, which causes the problem that the output of the infrared detector becomes unstable and the accuracy of temperature detection is lacking. In order to avoid this problem, there is a method of making the shape of the light shielding plate sufficiently large with respect to Δθ which is the maximum position of oscillation, but in this case, there is a problem that the temperature detection device itself is also increased in size. .
[0009]
[Means for Solving the Problems]
  In order to solve the above-described problems, the present invention provides an infrared detector that detects infrared rays emitted from a measurement object, a light shielding plate that blocks infrared rays incident on the infrared detector, and a direct current motor that drives the light shielding plate. A stopper for determining the stop position of the light shielding plate, motor control means for controlling the DC motor, temperature conversion means for converting the temperature of the object to be measured based on the output of the infrared detector,A transmission means for transmitting a temperature detection start signal;The motor control means includes an alignment driving means for driving the direct current motor to align the light shielding plate, and an infrared ray that alternately reverses the rotation direction of the direct current motor and reaches the infrared detector. A temperature detection driving means for detecting temperature by switching light entering and blocking the light path; a switching means for switching between the alignment driving means and the temperature detection driving means;When the temperature detection start signal from the transmission means is in a non-receiving state Time measuring means for measuring the time, and when the time measuring means receives a temperature detection start signal from the transmitting means before measuring a predetermined time, the switching means operates the temperature detection driving means, and the time measuring means When the temperature detection start signal is received from the transmission means after measuring the time, the switching means operates the alignment drive means and then operates the temperature detection drive means.Is.
[0010]
  According to the above invention,When the time measuring means measures the continuous time in which the temperature detection start signal from the transmitting means is not received, and the time measuring means receives the temperature detection start signal before measuring the predetermined time, the switching means switches the temperature detection drive means. The temperature detection driving means reverses the rotation direction of the DC motor alternately, stops the light shielding plate by colliding with the stopper, switches between incoming light and light shielding of the infrared light path leading to the infrared detector, and the infrared detector is covered. The infrared rays emitted from the measurement object are detected, and the temperature conversion means converts the temperature of the measurement object based on the output of the infrared detector. When the time measuring means receives a signal from the transmitting means after measuring the predetermined time, the switching means operates the alignment driving means, and the alignment driving means drives the DC motor to cause the light shielding plate to collide with the stopper. After the alignment of the light shielding plate, the switching means operates the temperature detection driving means to detect the temperature. Therefore, by aligning the light shielding plate, the light shielding plate can always be at the same position when temperature detection is started, and the light incident time and light shielding time by driving the light shielding plate can be stabilized at the time of temperature detection. And since the light shielding plate does not swing at the stop position, even if the light shielding plate is sufficiently small, the light incident and light shielding states can be stably switched, and the temperature detection can be performed with a small size and high accuracy. . In addition, when temperature detection is repeatedly performed in a short time so as not to cause a positional deviation from the final stop position of the light shielding plate at the time of temperature detection, the temperature detection is continued without performing alignment of the light shielding plate. Therefore, it is possible to detect the temperature with high accuracy in a short time, and even if the position of the light shielding plate is shifted while being left without performing temperature detection for a long time, When performing temperature detection again, temperature detection is performed after the position of the light-shielding plate is adjusted, so that highly accurate temperature detection can always be performed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
  According to a first aspect of the present invention, there is provided a temperature detection apparatus comprising: an infrared detector that detects infrared rays emitted from an object to be measured; a light shielding plate that blocks infrared rays incident on the infrared detector; and a direct current that drives the light shielding plate. A motor, a stopper for determining the stop position of the light shielding plate, motor control means for controlling the DC motor, temperature conversion means for converting the temperature of the object to be measured based on the output of the infrared detector,A transmission means for transmitting a temperature detection start signal;The motor control means includes
Position detection drive means for driving the flow motor to align the light shielding plate, and temperature detection by switching light incident and light shielding on the infrared light path to the infrared detector by alternately reversing the rotation direction of the DC motor Temperature detection drive means for performing, switching means for switching the alignment drive means and the temperature detection drive means,Switching when the temperature detection start signal from the transmission means is received before the time measurement means counts a predetermined time, having a time measurement means for measuring a continuous time in which the temperature detection start signal from the transmission means is not received. The means operates the temperature detection driving means, and when the timing means receives a temperature detection start signal from the transmitting means after measuring a predetermined time, the switching means operates the alignment driving means and then operates the temperature detection driving means. LetIs.
[0012]
  Then, when the time measuring means measures the continuous time in which the temperature detection start signal from the transmitting means is not received, and the time measuring means receives the temperature detection start signal before measuring the predetermined time, the switching means drives the temperature detection. The temperature detection drive means alternately reverses the direction of rotation of the DC motor, causes the light-shielding plate to collide with the stopper and stops, and switches between entering and shielding the infrared light path leading to the infrared detector. Detects the infrared rays emitted from the object to be measured, and the temperature conversion means converts the temperature of the object to be measured based on the output of the infrared detector. When the time measuring means receives a signal from the transmitting means after measuring the predetermined time, the switching means operates the alignment driving means, and the alignment driving means drives the DC motor to cause the light shielding plate to collide with the stopper. After the alignment of the light shielding plate, the switching means operates the temperature detection driving means to detect the temperature. Therefore, the light shielding plate can always be in the same position at the start of temperature detection by positioning the light shielding plate. It is possible to stabilize the light incident time and the light shielding time by driving the light shielding plate during the degree detection. And since the light shielding plate does not swing at the stop position, even if the light shielding plate is sufficiently small, the light incident and light shielding states can be stably switched, and the temperature detection can be performed with a small size and high accuracy. . In addition, when temperature detection is repeatedly performed in a short time so as not to cause a positional deviation from the final stop position of the light shielding plate at the time of temperature detection, the temperature detection is continued without performing alignment of the light shielding plate. Therefore, it is possible to detect the temperature with high accuracy in a short time, and even if the position of the light shielding plate is shifted while being left without performing temperature detection for a long time, When performing temperature detection again, temperature detection is performed after the position of the light-shielding plate is adjusted, so that highly accurate temperature detection can always be performed.
[0013]
  Further, the claims of the present invention2The temperature detection device related toAn infrared detector for detecting infrared rays emitted from the object to be measured; a light shielding plate for shielding infrared rays incident on the infrared detector; a DC motor for driving the light shielding plate; and a stopper for determining a stop position of the light shielding plate. Motor control means for controlling the DC motor; temperature conversion means for converting the temperature of the object to be measured based on the output of the infrared detector; and transmission means for transmitting a temperature detection start signal. The control means drives the direct current motor to align the light shielding plate, and the light incident on the light path of the infrared light that reaches the infrared detector by alternately reversing the rotation direction of the direct current motor. A temperature detection driving means for detecting temperature by switching, a switching means for switching between the alignment driving means and the temperature detection driving means, andHaving time measuring means for measuring the continuous time in which the temperature detection start signal from the transmitting means is in a non-reception state;SaidThe switching means detects the temperature when the motor control means is turned on, and whenever the time measuring means counts a predetermined time, the alignment driving means is operated and a temperature detection start signal is received from the transmitting means. Operate drive meansBy doing so, the temperature detecting device is characterized in that the light shielding plate is always in the same position at the start of temperature detection.
[0014]
  The switching means operates the alignment driving means when the power is turned on to the motor control means to align the light shielding plate, and the timing means is in a state of not receiving the temperature detection start signal from the transmitting means. Whenever the continuous time is counted, the switching means operates the alignment driving means periodically to align the light shielding plate every time the predetermined time is measured, and the temperature detection driving means is operated when the temperature detection start signal is received. Therefore, if temperature detection is performed repeatedly in a short time, the temperature detection can be continued without positioning the light shielding plate.
The temperature can be detected with high accuracy over time, and even if the position of the light-shielding plate shifts while it is left undetected for a long time, the time measuring means measures the predetermined time. Since the position of the light shielding plate is periodically adjusted every time, highly accurate temperature detection can always be performed.
[0015]
【Example】
  (Example 1)
  Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a configuration block diagram of an application example in which a temperature detection device is mounted on a thermometer as an embodiment of the present invention. 2 is an enlarged view of a main part of the light shielding plate, and FIG. 3 is a timing chart showing a control method of the DC motor.
[0016]
  In general, as a thermometer for measuring the surface temperature, it is possible to measure the body temperature almost by measuring the temperature of a part of the eardrum, oral cavity, anus and the like that is difficult to contact with outside air. In particular, the eardrum is close to the hypothalamus, which controls body temperature, and is known as an appropriate place for body temperature measurement. In FIG. 1, reference numeral 10 denotes an object to be measured for temperature, for example, an eardrum. 11 is a professional to insert into the ear canal
The diameter of the probe decreases toward the tip, making it easy to insert into the ear canal. Reference numeral 12 denotes a lens that collects infrared rays emitted from the eardrum 10, and 3 denotes a pyroelectric infrared detector that detects infrared rays collected by the lens 12, and has a correlation with a differential value of the amount of infrared rays to be detected. The output changes. Further, 1 is a light shielding plate for shielding infrared rays incident on the infrared detector 3, 2 is a direct current motor for driving the light shielding plate 1, 13 is a stopper provided at a stop position of the light shielding plate 1 and stopping the light shielding plate 1, and 14 is a direct current A motor control means 15 for controlling the motor 2 and a transmission switch 15 for transmitting a temperature detection start signal 15a to the motor control means 14 are measurement switches. The motor control means 14 is an alignment driving means 16 for driving the DC motor 2 to align the light shielding plate 1, a temperature detection driving means 17 for alternately reversing the rotation direction of the DC motor 2 at the time of temperature detection, and an alignment driving. A switching means 18 for switching the means 16 and the temperature detection driving means 17 is provided. Reference numeral 19 denotes a temperature sensor for detecting the temperature of the infrared detector 3 itself, which is a thermistor. 20 is an amplifier that amplifies the voltage output from the infrared detector 3, 21 is an AD converter that converts the output of the amplifier 20 and the output of the temperature sensor 19 from an analog value to a digital value, and 22 is an output of the AD converter 21. Based on the temperature conversion means 23 for converting to temperature, 23 is a display means for displaying the temperature calculated by the temperature conversion means 22.
[0017]
  In the above configuration, when the body temperature is measured, the probe 11 is inserted into the ear hole and the measurement switch 15 that transmits the temperature detection start signal 15a is pressed. When the motor control means 14 receives the temperature detection start signal 15a, the switching means 18 first operates the alignment driving means 16, and the alignment driving means 16 drives the DC motor 2 to align the light shielding plate 1. Thereafter, the switching unit 18 switches to the temperature detection driving unit 17, and the temperature detection driving unit 17 alternately reverses the rotation direction of the DC motor 2. By the rotation of the direct current motor 2, the light shielding plate 1 repeats reciprocating rotation between the stoppers 13 provided at the stop position, interrupts the infrared light path from the eardrum 10 to the infrared detector 3, and switches between incident light and light shielding. Here, the light shielding plate 1 is made of metal, and when the light is shielded, the infrared light emitted from the infrared detector 3 itself is reflected by the metal surface and enters the infrared detector 3. By the intermittent operation, the infrared ray emitted from the eardrum 10 and the infrared ray emitted from the infrared detector 3 itself are alternately detected by the infrared detector 3. The infrared detector 3 is a pyroelectric type, and its output changes with a correlation with the differential value of the sensed infrared amount. Therefore, the output of the infrared detector 3 has a correlation with the temperature difference between the eardrum 10 and the infrared detector 3. Yes. Therefore, the temperature conversion means 22 converts the temperature of the eardrum 10 using this relationship. That is, the output of the infrared detector 3 is amplified by the amplifier 20, the output voltage amplified by the amplifier 20 and the output voltage of the temperature sensor 19 are digitized by the AD converter 21, and the temperature conversion means is based on the output of the AD converter 21. 22 converts the temperature of the eardrum 10. Then, the temperature is displayed on the display means 23.
[0018]
  Next, the alignment driving and temperature detection driving of the light shielding plate 1 will be described in detail with reference to FIGS. In the enlarged view of the light shielding plate portion of FIG. 2, the stopper 13 is in contact with the light shielding stop portion 13 a that contacts when the light shielding plate 1 stops in the light shielding state where the infrared detector 3 shields the light. The light blocking unit 13b includes the light stopping unit 13b, and the light shielding plate 1 attached to the shaft 24 is moved between the light blocking stopping unit 13a and the light incident stopping unit 13b by the rotation of the DC motor 2. In the figure, the state where the light shielding plate 1 is stopped in the light shielding state is indicated by a solid line, and the state where the light shielding plate 1 is stopped in the light incident state is indicated by a broken line.
[0019]
  In the above configuration, when the measurement switch 15 is pressed and the motor control unit 14 receives the temperature detection start signal 15a, the switching unit 18 first operates the alignment driving unit 16 to align the light shielding plate 1. That is, as shown in FIG. 3, the alignment driving means 16 supplies power to the DC motor 2 for t1 time from the reception of the temperature detection start signal 15a, and rotates the light shielding plate 1 in the light shielding direction shown in FIG. Here, t1 is a time longer than the time required for the light shielding plate to move from the state where it is stopped in the infrared light incident state (broken line) to the state where it is stopped in the light shielding state (solid line). Thereby, before the motor control means 14 receives the temperature detection start signal 15a, no matter what position the light shielding plate 1 stops between the light shielding stop portion 13a and the light incident stop portion 13b, the light shielding plate 1 is moved. It can collide with the light shielding stop part 13a and can always be stopped in a light shielding state, and the light shielding plate 1 can be aligned.
[0020]
  After the alignment of the light shielding plate 1, the switching means 18 switches to the temperature detection driving means 17, and the temperature detection driving means 17 supplies power to the DC motor 2 as shown in FIG. 3 for temperature detection. Then, the light shielding plate 1 is driven. That is, first, power is supplied for the time t1 to rotate the light-shielding plate 1 in the light incident direction to stop the collision to the light incident stop portion 13b, and then the power is intermittently supplied for the subsequent time t2 to stop the position, that is, the light incident. The light shielding plate 1 is held in a state. Further, power is supplied in the opposite direction for the next t1 time to rotate the light-shielding plate 1 in the light-shielding direction to stop the collision with the light-shielding stop portion 13a, and power is intermittently supplied for the time t2, and the stop position, The light shielding plate 1 is held in a light shielding state. In this way, the temperature detection drive means 17 repeats the incident and shielding of infrared rays reaching the infrared detector 3 by the light shielding plate 1 by alternately inverting the DC motor 2, and finally ends in the light shielding state. And
[0021]
  Here, the output of the infrared detector 3 in which the temperature detection driving means 17 is operating becomes an AC waveform as shown in FIG. 3 by the intermittent operation of infrared rays by the light shielding plate 1, and the amplitude V of this AC waveform is the temperature of the eardrum 10. Is proportional to the difference of the fourth power of the temperature of the infrared detector 3. Therefore, based on this relationship, the temperature conversion means 22 is obtained by calculating back the temperature of the eardrum 10 from the amplitude V and the temperature of the infrared detector 3 detected by the temperature sensor 19, and further repeating the light incident and light shielding. A plurality of temperatures are averaged to obtain the temperature of the eardrum 10. Thus, by repeating the incident light and the light shielding and averaging a plurality of data, the influence of noise and the like can be reduced, and the temperature measurement accuracy can be improved. In addition, although the light-shielding plate 1 was driven and light-incidence and light-shielding were repeated several times, temperature may be converted only by light-incidence and light-shielding once, and in that case, temperature detection time can be shortened.
[0022]
  As described above, according to the present embodiment, the switching means 18 switches between the alignment driving means 16 and the temperature detection driving means 17, and after the alignment driving means 16 aligns the light shielding plate 1, the temperature detection driving means 17 is DC. Since the temperature detection is performed by alternately reversing the direction of rotation of the motor 2 and switching between infrared light incoming and light shielding by the light shielding plate 1, the light shielding plate 1 can always be at the same position when temperature detection is started. The light incident time and the light shielding time by driving the light shielding plate 1 can be stabilized, and highly accurate temperature detection can be performed.
[0023]
  Then, the light shielding plate 1 driven by the DC motor 2 is caused to collide with a stopper 13 provided at the stop position, so that the light shielding plate 1 can be stopped in each of the infrared light incident state and the light shielding state.
Since the light shielding plate does not swing at the stop position, even if the light shielding plate 1 is sufficiently small, it is possible to stably switch between the light incident state and the light shielding state, and the small and highly accurate temperature detection is possible. It can be carried out.
[0024]
  Further, by terminating the driving of the light shielding plate 1 for temperature detection at the stop position where the infrared light is shielded, it is possible to prevent the infrared detector 3 from being contaminated with dust or dirt at the time of non-temperature detection. Can keep.
[0025]
  Further, in the present embodiment, the alignment driving means 18 drives the light shielding plate 1 to a position where the infrared rays reaching the infrared detector 3 are shielded, and this is performed by the temperature detection driving means 19. There is an effect of making the number of times of driving the light shielding plate 1 most efficient. That is, the greater the output amplitude V of the infrared detector 3 at the time of temperature detection, the less affected by the noise and the better the temperature accuracy, so light incident and light shielding or a combination of light shielding and light incident can be achieved. It is considered that it is preferable to obtain the output amplitude V, and temperature detection is performed by light incident and light shielding, or a combination of light shielding and light incident. Here, if the alignment driving means 18 drives the light shielding plate 1 in the light incident state and performs alignment, the temperature detection driving means 19 starts temperature detection from the point where the light shielding plate 1 is driven to the light shielding state. In order to prevent the infrared detector 3 from being contaminated with dust or the like during non-temperature detection, it is necessary to further drive the light shielding plate 1 to the light shielding state. Compared with the case where the alignment driving means 18 drives the light shielding plate 1 in the light shielding state to perform alignment, the number of times of driving the light shielding plate 1 is increased by one. Therefore, the alignment driving means 18 can drive the light shielding plate 1 most efficiently by performing alignment by driving the light shielding plate 1 in a light shielding state.
(Example 2)
  Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a block diagram showing the configuration of a thermometer equipped with a temperature detecting device according to the second embodiment of the present invention, and FIG. 5 is a flowchart for explaining the operation of the motor control means of the same embodiment.
[0026]
  In FIG. 4, 25 is a time measuring means for measuring a continuous time in which the temperature detection start signal 15a from the measurement switch 15 is not received, and 26 is a memory for storing a time lapse flag when the time measuring means 25 measures a predetermined time. Means 27 is a determination means for determining the presence or absence of a time lapse flag stored in the storage means 26 and instructing the subsequent operation of the switching means 18. Components similar to those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0027]
  Next, the operation of the motor control means 14 will be specifically described with reference to FIG. First, when the motor control unit 14 is powered on, a time lapse flag is stored in the storage unit 26 as an initial state (S100), and the following operations are repeated. That is, if the time measured by the time measuring means 25 in S101 has not passed the predetermined time t3, the storage means 26 is left as it is and waits for the reception of the temperature detection start signal 15a. When the predetermined time t3 elapses, a time elapse flag is stored in the storage means 26 in S102, and the system waits for reception of the temperature detection start signal 15a. Eventually, when the measurement switch 15 is pressed and the motor control unit 14 receives the temperature detection start signal 15a (S103), the determination unit 27 checks whether or not the time lapse flag is stored in the storage unit 26 (S104). . Here, when the time lapse flag is not stored, the switching unit 18 immediately activates the temperature detection driving unit 17 (S106). If the time lapse flag is stored, the switching unit 18 operates the alignment driving unit 16 (S105), and then switches to the temperature detection driving unit 17 to operate (S106). Thereafter, the time measuring means 25 is driven to reset (S107), the time lapse flag stored in the storage means 26 is erased (S108), the process returns to the beginning, and the same is repeated.
[0028]
  With the above configuration, temperature detection is performed for the first time after the motor control unit 14 is powered on.
In this case, since the time elapse flag is stored in the storage means 26, the temperature is detected after the alignment of the light shielding plate 1, so that the position of the light shielding plate is determined while the power is turned off. Even in the case of deviation, temperature detection with high accuracy can be performed. In the temperature detection after the first time after the power is turned on, when the temperature detection is continuously performed or when the temperature detection is repeatedly performed in a short time without the predetermined time t3, the alignment of the light shielding plate 1 is performed. Temperature detection can be performed continuously without performing the above, so that accurate temperature detection can be performed in a short time, and the temperature detection is not performed for a long time after a predetermined time t3. Even if the position of the light-shielding plate 1 is shifted, the temperature detection is performed after the alignment of the light-shielding plate 1 when the temperature detection is performed again, so that highly accurate temperature detection can always be performed.
[0029]
  (Example 3)
  Hereinafter, a third embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a block diagram showing the configuration of a thermometer equipped with a temperature detector according to a third embodiment of the present invention, FIG. 7 is a flowchart for explaining the operation of the motor control means of the embodiment, and FIG. It is a circuit diagram explaining operation | movement of a power supply control means. In FIG. 6, 28 is a power supply control means for controlling the turning on and off of the motor control means 14 for controlling the DC motor 2, and measures the continuous time when the temperature detection start signal 15a from the measurement switch 15 is not received. It has time measuring means 25 for In addition, the same code | symbol is attached | subjected to the component similar to the above-mentioned Example, and description is abbreviate | omitted.
[0030]
  Next, the operation of the motor control means 14 will be specifically described with reference to FIG. First, when the power of the motor control means 14 is turned on by the power control means 28, the switching means 18 operates the alignment driving means 16 to align the light shielding plate 1 (S200), and at the same time, the time measurement means 25 measures the time. Is started (S201). The motor control means 14 waits for the reception of the temperature detection start signal 15a until the time measurement means 25 counts the predetermined time t3 (S202), and the temperature measurement start signal 15a is pressed by pressing the measurement switch 15 during standby. Is received (S203), the switching means 18 operates the temperature detection driving means 17 to start temperature detection (S204). Thereafter, the time measuring means 25 is set to start the time measurement again, and the same is repeated. When the time measuring means 25 measures the predetermined time t3 while the motor control means 14 waits for the temperature detection start signal 15a to be received, the power supply control means 28 shuts off the power supply of the motor control means 14 (S205). When it is desired to detect the temperature after the power source of the motor control unit 14 is cut off, the power is turned on again after the motor control unit 14 is turned on.
[0031]
  Next, the power supply control means 28 will be described with reference to FIG. The power control means 28 includes a microcomputer 29 (hereinafter referred to as a microcomputer), a battery 30 which is a DC power supply, a PNP transistor 31, resistors 32, 33 and 34, diodes 35 and 36, and a power switch 37. It is composed. In FIG. 8, when the power switch 37 is pressed, current flows through the resistors 32 and 33, the diode 35, and the power switch 37, the transistor 31 is turned on, and power is supplied to the microcomputer 29 and the motor control means 14. Here, the microcomputer 29 can keep the transistor 31 in the on state even when the power switch 37 is released by setting the output terminal 29 a to low, and can continue to supply power to the microcomputer 29 and the motor control means 14. On the other hand, when the power switch 37 is pressed, current flows from the transistor 31 to the resistor 34 and the diode 36, and the input terminal 29b of the microcomputer 29 can input low, and when it is released, high can be input.
[0032]
  In general usage, when the power switch 37 is pressed, the microcomputer 29 keeps the output terminal 29a low and continues to supply power to the microcomputer 29 and the motor control means 14. Here, when the measurement switch 15 that transmits the temperature detection start signal 15a is pressed, current flows from the resistor 38 to the measurement switch 15, and the microcomputer 29 has pressed the measurement switch 15 because the input terminal 29c goes low. Is detected and temperature is measured. When the power switch 37 is pressed again, the microcomputer 29 sets the output terminal 29a to high, so that the microcomputer 29 instantly releases the power switch 37.
The power supply of the icon 29 and the motor control means 14 can be stopped.
[0033]
  If the user forgets to press the power switch 37 again and power is continuously supplied to the microcomputer 29 and the motor control means 14, the microcomputer 29 sets the output terminal 29a to high in order to avoid unnecessary battery consumption. Power supply can be stopped. It is only necessary to count the continuous time in which the microcomputer 29 has the time measuring means 25 and the measurement switch 15 is not pressed, and when the time exceeds the predetermined time, the output terminal 29a is made high.
[0034]
  Therefore, according to the present embodiment, since the alignment of the light shielding plate 1 is performed when the motor control unit 14 is turned on, temperature detection can be performed in a short time. When the temperature detection is repeatedly performed, the temperature detection can be continuously performed without performing the alignment of the light shielding plate 1 until the time measuring means 25 measures the predetermined time. Even when the temperature can be detected and the temperature is not detected for a long time and the light-shielding plate 1 is misaligned, the time measuring means 25 keeps a predetermined time, and the motor control means 14 is powered on. Therefore, when the temperature is detected again, the motor control means 14 is turned on so that the switching means 18 operates the alignment driving means 16 to align the light shielding plate 1, and the temperature detection thereafter. Since temperature detection is performed with the start signal 15a, highly accurate temperature detection can always be performed. Further, even if the power of the motor control unit 14 is forgotten to be turned off, the power is automatically shut off when a predetermined time elapses, so that the power consumption can be reduced and the usability is improved.
[0035]
  (Example 4)
  The fourth embodiment of the present invention will be described below with reference to FIGS. FIG. 9 is a block diagram showing the configuration of a thermometer equipped with a temperature detecting device according to a fourth embodiment of the present invention, and FIG. 10 is a flowchart for explaining the operation of the motor control means of the same embodiment. The operation of the motor control means 14 will be specifically described with reference to FIGS. First, when the power of the motor control unit 14 is turned on, the switching unit 18 operates the alignment driving unit 16 to perform alignment of the light shielding plate 1 (S300), and timing by the timing unit 25 is started (S301). ). The motor control means 14 waits for reception of the temperature detection start signal 15a until the time measurement means 25 measures the predetermined time t3 (S302), and the measurement switch 15 is pressed to receive the temperature detection start signal 15a. Then (S303), the switching means 18 activates the temperature detection driving means 17 and starts temperature detection (S304). After the temperature detection is started, the time measuring means 25 is reset (S305), and the motor control means 14 again enters a standby state waiting for the reception of the temperature detection start signal 15a, and the same is repeated. During the standby, every time the time measuring means 25 measures the predetermined time t3, the switching means 18 operates the alignment driving means 16 to align the light shielding plate 1.
[0036]
  Therefore, according to the present embodiment, the time measuring means 25 measures the continuous time in which the temperature detection start signal 15a from the measurement switch 15 is not received, and the switching means 18 is periodically positioned every time a predetermined time is measured. The alignment driving means 16 is operated to align the light shielding plate 1, and when the temperature detection start signal 15a is received, the temperature detection driving means 17 is operated to detect the temperature. Since temperature detection can be continuously performed without aligning the light-shielding plate 1, highly accurate temperature detection can be performed in a short time, and while the temperature detection is not performed for a long time, Even if the position of the light shielding plate 1 is shifted, the position of the light shielding plate 1 is periodically adjusted every time the time measuring means 25 measures a predetermined time, so that highly accurate temperature detection can always be performed. The
[0037]
【The invention's effect】
  As described above, the temperature detector of the present invention has the following effects.
[0038]
    (1) By aligning the light shielding plate, the light shielding plate can always be at the same position when temperature detection is started, and the light incident time and light shielding time by driving the light shielding plate can be stabilized at the time of temperature detection.
. And since the light shielding plate does not swing at the stop position, even if the light shielding plate is sufficiently small, the light incident and light shielding states can be stably switched, and the temperature detection can be performed with a small size and high accuracy. . In addition, when performing temperature detection continuously, or when performing temperature detection repeatedly in a short time, temperature detection can be performed continuously without performing alignment of the light shielding plate. Temperature detection can be performed, and even if the position of the light shielding plate is shifted while left undetected for a long time, if the temperature is detected again, the light shielding plate must be aligned. After that, since temperature detection is performed, highly accurate temperature detection can always be performed.
[0039]
  (2) The switching means operates the alignment driving means when the motor control means is turned on to align the light shielding plate, andThe time measuring means measures the continuous time when the temperature detection start signal from the transmitting means is not received, and the switching means operates the alignment driving means periodically every time a predetermined time is measured to align the light shielding plate. When the temperature detection start signal is received, the temperature detection drive unit is operated to detect the temperature.If the temperature detection is repeated in a short time, the temperature detection is continued without performing the alignment of the light shielding plate. Therefore, it is possible to detect temperature with high accuracy in a short time, and even if the position of the light-shielding plate shifts while left undetected for a long time, Since the position of the light shielding plate is periodically adjusted every time a predetermined time is counted, temperature detection with high accuracy can always be performed.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a temperature detection device according to an embodiment of the present invention.
FIG. 2 is an enlarged view of the main part of the light shielding plate part of the embodiment.
FIG. 3 is a timing chart for explaining the operation of the embodiment.
FIG. 4 is a block diagram showing the configuration of a temperature detection apparatus according to a second embodiment of the present invention.
FIG. 5 is a flowchart for explaining the operation of the motor control means of the embodiment.
FIG. 6 is a block diagram showing the configuration of a temperature detection apparatus according to a third embodiment of the present invention.
FIG. 7 is a flowchart for explaining the operation of the motor control means of the embodiment.
FIG. 8 is a circuit diagram for explaining the operation of the power supply control means of the embodiment.
FIG. 9 is a block diagram showing the configuration of a temperature detection apparatus according to a fourth embodiment of the present invention.
FIG. 10 is a flowchart for explaining the operation of the motor control means of the embodiment.
FIG. 11 is a configuration diagram of a conventional temperature measuring device.
FIG. 12 is a configuration diagram of a temperature detection device of a second conventional example.
FIG. 13 is a timing chart for explaining the operation of the second conventional example.
[Explanation of symbols]
1 Shading plate
2 DC motor
3 Infrared detector
10 DUT
13 Stopper
14 Motor control means
15 Measurement switch (transmission means)
15a Temperature detection start signal
16 Positioning drive means
17 Temperature detection drive means
18 Switching means
25 Timekeeping means
28 Power control means

Claims (2)

被測定物が放射する赤外線を検出する赤外線検出器と、前記赤外線検出器に入射する赤外線を遮光する遮光板と、前記遮光板を駆動する直流モータと、前記遮光板の停止位置を決めるストッパと、前記直流モータを制御するモータ制御手段と、前記赤外線検出器の出力を基に被測定物の温度を換算する温度換算手段と、温度検出開始信号を発信する発信手段とを有し、前記モータ制御手段は、前記直流モータを駆動して前記遮光板の位置合わせを行う位置合わせ駆動手段と、前記直流モータの回転方向を交互に反転させて前記赤外線検出器に至る赤外線光路の入光と遮光を切り替えて温度検出を行う温度検出駆動手段と、前記位置合わせ駆動手段と前記温度検出駆動手段を切り替える切替手段と、前記発信手段からの温度検出開始信号が非受信状態である連続時間を計時する計時手段を有し、前記計時手段が所定の時間を計時する前に発信手段からの温度検出開始信号を受信すると切替手段が温度検出駆動手段を動作させ、前記計時手段が所定の時間を計時した後に発信手段からの温度検出開始信号を受信すると切替手段が位置合わせ駆動手段を動作させた後に温度検出駆動手段を動作させることにより、温度検出開始時に前記遮光板は常に同じ位置にあることを特徴とする温度検出装置。An infrared detector for detecting infrared rays emitted from the object to be measured; a light shielding plate for shielding infrared rays incident on the infrared detector; a DC motor for driving the light shielding plate; and a stopper for determining a stop position of the light shielding plate. Motor control means for controlling the DC motor; temperature conversion means for converting the temperature of the object to be measured based on the output of the infrared detector; and transmission means for transmitting a temperature detection start signal. The control means drives the direct current motor to align the light shielding plate, and the light incident on the light path of the infrared light that reaches the infrared detector by alternately reversing the rotation direction of the direct current motor. a temperature detecting driver means for performing temperature detection by switching, and switching means for switching the temperature detecting driver means and said alignment drive means, the temperature detection starting signal from said transmitting means is a non-receiving A time measuring means for measuring a continuous time in a state, and when the time measuring means receives a temperature detection start signal from the transmitting means before measuring a predetermined time, the switching means operates the temperature detection driving means, and the time measuring When the means receives the temperature detection start signal from the transmitting means after measuring a predetermined time, the light shielding plate is operated at the start of temperature detection by operating the temperature detection drive means after the switching means operates the alignment drive means. A temperature detector characterized by being always in the same position. 被測定物が放射する赤外線を検出する赤外線検出器と、前記赤外線検出器に入射する赤外線を遮光する遮光板と、前記遮光板を駆動する直流モータと、前記遮光板の停止位置を決めるストッパと、前記直流モータを制御するモータ制御手段と、前記赤外線検出器の出力を基に被測定物の温度を換算する温度換算手段と、温度検出開始信号を発信する発信手段とを有し、前記モータ制御手段は、前記直流モータを駆動して前記遮光板の位置合わせを行う位置合わせ駆動手段と、前記直流モータの回転方向を交互に反転させて前記赤外線検出器に至る赤外線光路の入光と遮光を切り替えて温度検出を行う温度検出駆動手段と、前記位置合わせ駆動手段と前記温度検出駆動手段を切り替える切替手段と、前記発信手段からの温度検出開始信号が非受信状態である連続時間を計時する計時手段を有し、前記切替手段はモータ制御手段に電源が投入された時および、前記計時手段が所定の時間を計時する毎に位置合わせ駆動手段を動作させ、前記発信手段からの温度検出開始信号を受信した時に温度検出駆動手段を動作させることにより、温度検出開始時に前記遮光板は常に同じ位置にあることを特徴とする温度検出装置。 An infrared detector for detecting infrared rays emitted from the object to be measured; a light shielding plate for shielding infrared rays incident on the infrared detector; a DC motor for driving the light shielding plate; and a stopper for determining a stop position of the light shielding plate. Motor control means for controlling the DC motor; temperature conversion means for converting the temperature of the object to be measured based on the output of the infrared detector; and transmission means for transmitting a temperature detection start signal. The control means drives the direct current motor to align the light shielding plate, and the light incident on the light path of the infrared light that reaches the infrared detector by alternately reversing the rotation direction of the direct current motor. a temperature detecting driver means for performing temperature detection by switching, and switching means for switching the temperature detecting driver means and said alignment drive means, the temperature detection starting signal from said transmitting means is a non-receiving Has a counting means for counting the a is continuous-time state, said switching means and when the power is turned on the motor control means, said time measuring means operates the positioning drive means for each counting a predetermined time, The temperature detecting device according to claim 1, wherein when the temperature detection start signal is received from the transmitting means, the temperature detection driving means is operated so that the light shielding plate is always in the same position when the temperature detection is started .
JP18184298A 1998-06-29 1998-06-29 Temperature detection device Expired - Fee Related JP3777802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18184298A JP3777802B2 (en) 1998-06-29 1998-06-29 Temperature detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18184298A JP3777802B2 (en) 1998-06-29 1998-06-29 Temperature detection device

Publications (2)

Publication Number Publication Date
JP2000009538A JP2000009538A (en) 2000-01-14
JP3777802B2 true JP3777802B2 (en) 2006-05-24

Family

ID=16107778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18184298A Expired - Fee Related JP3777802B2 (en) 1998-06-29 1998-06-29 Temperature detection device

Country Status (1)

Country Link
JP (1) JP3777802B2 (en)

Also Published As

Publication number Publication date
JP2000009538A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
US6371925B1 (en) Radiation clinical thermometer
JPH01218477A (en) Electronic golf swing training machine
JP3777802B2 (en) Temperature detection device
CN111345728A (en) Control method of self-adjusting handheld dust collector and self-adjusting handheld dust collector
JP2517473Y2 (en) Camera shutter
JP3775024B2 (en) Temperature detection device
JP6411906B2 (en) Tachometer
JP3772503B2 (en) Temperature detection device
JP2000213990A (en) Temperature detection device
JP3237253B2 (en) Lens barrel and lens driving device
JP2000213988A (en) Temperature detecting device
JP2561714Y2 (en) Obstacle detection device
EP1126338B1 (en) Electronic timepiece
JP3590755B2 (en) Stepping motor type indicating instrument
JP2828615B2 (en) Ultrasonic flow meter
JPH11142251A (en) Temperature sensor
JP2000009540A (en) Radiation thermometer
JP2926964B2 (en) Rotation detection device
JP2000346709A (en) Radiation thermometer
JPH0353282Y2 (en)
JP2601778Y2 (en) Tape end detection device
KR970000052B1 (en) Volume perception circuit of a washing machine
JPS5873033A (en) Tape end detector for tape recorder
JP2000213989A (en) Temperature detection device
JPH08271644A (en) Infrared detection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041014

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees