JP3775024B2 - Temperature detection device - Google Patents

Temperature detection device Download PDF

Info

Publication number
JP3775024B2
JP3775024B2 JP32409797A JP32409797A JP3775024B2 JP 3775024 B2 JP3775024 B2 JP 3775024B2 JP 32409797 A JP32409797 A JP 32409797A JP 32409797 A JP32409797 A JP 32409797A JP 3775024 B2 JP3775024 B2 JP 3775024B2
Authority
JP
Japan
Prior art keywords
light shielding
power supply
light
shielding plate
stopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32409797A
Other languages
Japanese (ja)
Other versions
JPH11160153A (en
Inventor
博久 今井
実紀 森口
弘文 乾
加寿子 粟屋
直史 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP32409797A priority Critical patent/JP3775024B2/en
Publication of JPH11160153A publication Critical patent/JPH11160153A/en
Application granted granted Critical
Publication of JP3775024B2 publication Critical patent/JP3775024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は非接触で対象物の温度を検出する温度検出装置に関し、特に赤外線の入光と遮光を制御する遮光板に関するものである。
【0002】
【従来の技術】
従来より非接触で対象物の温度を検出する温度検出装置として焦電型赤外線検出器を用いたものにおいては、赤外線検出器に入射する赤外光の入光と遮光を切り替える遮光板が設けられている。この遮光板は例えば金属板のように赤外線を透過しない材料で構成し、その端部を直流モータや交流モータの回転軸に取り付け回転駆動させ、赤外線検出器に至る赤外光の入光と遮光を繰り返し断続させるという方法がある。即ち図5に示すように半円弧状の遮光板1を直流または交流モータ2の回転軸に取り付けて矢印の方向に回転駆動することで赤外線検出器3に入射する赤外光を断続する。
【0003】
またパルスモータを回転駆動源として所定周期でパルス印加し、所定角度を例えば正転と反転を繰り返すことで赤外光を断続させる方法もある。例えば特開平7−280652号公報に示す温度測定装置の例を図6を参照しながら説明する。チョッパ(遮光板)1はパルスモータと同様の原理による駆動源である水晶時計ムーブメント4により往復運動するように駆動され、赤外線検出器3に至る赤外光を断続する。水晶時計ムーブメント4は永久磁石5と、コア6とコイル7を含み、永久磁石5にはチョッパ1の端部を取り付けている。コイル7は第1および第2の入力端子8、9にパルス入力を受け取り、このパルス入力に応答して永久磁石5が回動し、チョッパ1が矢印に示すように往復運動する。
【0004】
【発明が解決しようとする課題】
しかしながら、直流モータを駆動源として遮光板を回転させる上記従来例の場合には入光時間、遮光時間のばらつきにより、温度測定精度が低いという課題がある。直流モータは一般に電源電圧の変動等の原因で回転数が変動する。回転数が変動すれば入光、遮光の周期が変わり、この周期の変動により赤外線検出器の出力も変動して正確な温度検出ができない。回転数を安定させるためには、フォトインタラプタ等の回転数を検出する手段と電源電圧を調整する手段を設け、フィードバック制御を行うような複雑な制御回路が必要となる。
【0005】
また交流モータを駆動源とした場合には、商用電源のように比較的安定した周波数のもとでは直流モータより回転数を安定させ易いが、商用電源のような交流電源を必要とするという課題がある。これは携帯型の放射温度計や放射体温計のように電池電源で構成する場合には直流電源しかなく、安定した周波数の交流電源を作るための複雑な回路が必要となり実現が困難である。
【0006】
また水晶時計ムーブメントやパルスモータを駆動源とした場合にはマイクロプロセッサ等のデジタル信号を基に駆動するので、入光、遮光の周期は高い精度で断続できるが、遮光板が揺動しながら停止するために入光、遮光を精度よく切り替えることが困難であるという課題がある。即ちこれら駆動源は磁力による吸引力と反発力のバランスで停止し、磁力の極性を変えることで駆動するものであるから、停止の瞬間に遮光板は揺動しながら吸引力と反発力をバランスさせて停止するという特性がある。
【0007】
図7にパルスモータの挙動の特性を示す。横軸は経過時間であり、(a)は駆動パルスで一定周期t、デューティ50%でCW(時計方向)とCCW(反時計方向)のパルスを交互に出力している。(b)がパルスモータの回転軸の回転角度で図のように停止位置に到達する時点でオーバーシュートを起こし、その後アンダーシュートを起こし、その振幅は小さくなりながら停止位置で安定する。
パルスモータや水晶時計ムーブメントは一般に図7に示すような挙動の特性を持つものであるために、これらを遮光板の駆動源として赤外光を断続すると、入光から遮光、または遮光から入光に切り替わる瞬間に非常に短い間隔で入光と遮光が切り替わる状況が発生し、そのために赤外線検出器の出力は不安定になり、温度検出の正確さを欠くという課題がある。この課題を回避するためには、揺動の最大位置であるΔθに対して十分大きい遮光板の形状にする方法があるが、この場合には温度検出装置自体も大型化してしまうという課題がある。
【0008】
【課題を解決するための手段】
本発明は上記課題を解決するために、被測定物が放射する赤外線を検出する赤外線検出器と、前記赤外線検出器に入射する赤外線を遮光する遮光板と、前記遮光板を駆動する直流モータと、前記遮光板の停止位置に設けたストッパと、前記直流モータを制御する制御手段と、前記赤外線検出器の出力を基に被測定物の温度を換算する温度換算手段を有し、前記ストッパは衝撃緩衝材料により構成し、前記制御手段は前記直流モータを入光方向に回転させる正電力供給手段と、遮光方向に回転させる負電力供給手段を有し、前記正電力供給手段と前記負電力供給手段は各々予め定めた初期電力供給期間に電力を供給する初期電力供給手段と、前記初期電力供給期間の後電力を減少させて供給する減少電力供給手段を有し、前記初期電力供給期間は遮光板がストッパ到達に要する時間と遮光板がストッパから跳ね返り自然停止する時間との合計より長く設定し、前記直流モータの回転方向を交互に反転させて前記赤外線検出器に至る赤外線光路の入光と遮光を切り替える構成とした。
【0009】
上記発明によれば、赤外線検出器が被測定物の放射する赤外線を検出し、直流モータで駆動する遮光板が衝撃緩衝剤により構成したストッパに衝突して赤外線検出器に至る赤外線光路の入光、遮光それぞれの状態で停止し、制御手段は直流モータを交互に反転させるよう駆動して入光と遮光を切り替え、赤外線検出器の出力を基に温度換算手段が被測定物の温度を換算するので、遮光板の駆動による入光時間、遮光時間は安定し、また遮光板の停止位置での揺動も起こさないので、遮光板は十分小型にしても入光と遮光の状態を安定して切り替えることができ、小型で精度の高い温度検出を行うことができ、更に正電力供給手段が直流モータを入光方向に回転させ、負電力供給手段が遮光方向に回転させ、初期電力供給手段は遮光板がストッパに到達する時間とストッパから跳ね返り自然停止する 時間との合計より長い初期電力供給期間、初期電力を直流モータに供給し、その後減少電力供給手段が電力を減少させて供給するので、遮光板は確実にストッパ位置で停止し、安定した入光、遮光の切り替えができて温度検出精度が向上するとともに、消費電力を節約できる。
【0010】
【発明の実施の形態】
本発明は、被測定物が放射する赤外線を検出する赤外線検出器と、前記赤外線検出器に入射する赤外線を遮光する遮光板と、前記遮光板を駆動する直流モータと、前記遮光板の停止位置に設けたストッパと、前記直流モータを制御する制御手段と、前記赤外線検出器の出力を基に被測定物の温度を換算する温度換算手段を有し、前記ストッパは衝撃緩衝材料により構成し、記制御手段は直流モータを入光方向に回転させる正電力供給手段と、遮光方向に回転させる負電力供給手段を有し、前記正電力供給手段と前記負電力供給手段は各々予め定めた初期電力供給期間に電力を供給する初期電力供給手段と、前記初期電力供給期間の後電力を減少させて供給する減少電力供給手段を有し、前記初期電力供給期間は遮光板がストッパ到達に要する時間と遮光板がストッパから跳ね返り自然停止する時間との合計より長く設定し、前記直流モータの回転方向を交互に反転させて前記赤外線検出器に至る赤外線光路の入光と遮光を切り替える構成としたものである。
【0011】
そして赤外線検出器が被測定物の放射する赤外線を検出し、直流モータで駆動する遮光板が衝撃緩衝剤により構成したストッパに衝突して赤外線検出器に至る赤外線光路の入光、遮光それぞれの状態で停止し、制御手段は直流モータを交互に反転させるよう駆動して入光と遮光を切り替え、赤外線検出器の出力を基に温度換算手段が被測定物の温度を換算するので、遮光板の駆動による入光時間、遮光時間は安定し、また遮光板の停止位置での揺動も起こさないので、遮光板は十分小型にしても入光と遮光の状態を安定して切り替えることができ、小型で精度の高い温度検出を行うことができ、更に正電力供給手段が直流モータを入光方向に回転させ、負電力供給手段が遮光方向に回転させ、初期電力供給手段は遮光板がストッパに到達する時間とストッパから跳ね返り自然停止する時間との合計より長い初期電力供給期間、初期電力を直流モータに供給し、その後減少電力供給手段が電力を減少させて供給するので、遮光板は確実にストッパ位置で停止し、安定した入光、遮光の切り替えができて温度検出精度が向上するとともに、消費電力を節約できる。
【0012】
またストッパは軟性ゴム材料により構成したものである。
【0013】
そして遮光板は軟性ゴム材料により構成したストッパに衝突して停止するので、衝突による遮光板のストッパへの食い込み、跳ね返りを少なくし、また衝突音を低減できる。
【0014】
またストッパ表面に粉体を塗布した構成としたものである。
【0015】
そしてストッパには粉体を塗布しているので粘着性を低減でき、遮光板が衝突して停止した際にストッパに接着することなく安定して入光、遮光を切り替えることができる。
【0016】
またストッパは遮光板の入光停止位置と遮光停止位置を一体にして構成したものである。
【0017】
そして入光停止位置のストッパと遮光停止位置のストッパを一体にして構成しているので、ストッパの間隔を精度よく構成でき、駆動信号発生から入光、遮光の状態切替までの時間差の精度を高めることができて、精度の高い温度検出を行うことができる。
【0018】
【実施例】
(実施例1)
以下、本発明の一実施例を図1〜図4を参照しながら説明する。図1は本発明の実施例として温度検出装置を体温計に搭載した応用例の構成ブロック図である。また図2は遮光板部の要部拡大図である。また図3は発生する音の特性図である。また図4は動作を説明するタイミングチャート図である。
【0019】
一般に表面温度を計測する体温計としては、鼓膜や口腔、肛門など外気に接触しにくい部分の温度を計測することでほぼ体温を計測できる。特に鼓膜は体温を制御する視床下部が近いこともあり、体温計測として適切な場所として知られている。図1において10は温度を測定すべき被測定物で例えば鼓膜である。11は耳孔に挿入するプローブで先端にいくに従って径を細くして耳孔に挿入しやすい形状としている。12は鼓膜10から発せられる赤外線を集光する集光手段で凹面鏡により構成していて、集光した赤外線は遮光板1を介して赤外線検出器3に入射する。
【0020】
遮光板1はモータ2によりストッパ13に衝突しながら往復回転駆動し、赤外線検出器3に至る赤外光の入光、遮光の状態切り替えを繰り返し断続する。赤外線検出器3は焦電型で、感知する赤外線量の微分値に相関を持って出力が変化する。ここで遮光板1は金属により構成していて、遮光しているときは赤外線検出器3自身が放射する赤外線が金属面で反射して赤外線検出器3に入光する。即ち、赤外線検出器3の出力は遮光板1の断続動作により鼓膜10と赤外線検出器3の温度差と相関がある。また赤外線検出器3の近傍には赤外線検出器3の温度を検知するための温度センサ14を配設している。温度センサ14は一般周知のサーミスタによるものである。
【0021】
赤外線検出器3の出力は増幅器15で増幅し、増幅器15で増幅した出力電圧と温度センサ14の出力電圧はAD変換器16でデジタル化する。17は温度換算手段でAD変換器16の出力を基に鼓膜10の温度換算を行う。赤外線検出器3の出力は遮光板1の断続動作により交流波形となり、その振幅は鼓膜10の温度と赤外線検出器3の温度の4乗の差に比例する。温度換算手段17はこの関係に基づき鼓膜10の温度換算を行い表示手段18で表示する。
【0022】
19は制御手段で直流モータ2の駆動制御を行うもので、遮光状態から入光状態に切り替える正電力供給手段20と、入光状態から遮光状態に切り替える負電力供給手段21より成る。更に正電力供給手段20は遮光板1を駆動する電力を供給する初期電力供給手段20aと、遮光板1がストッパ13の位置を保持する電力を供給する減少電力供給手段20bより成り、負電力供給手段21も遮光板1を駆動する電力を供給する初期電力供給手段21aと、遮光板1がストッパ13の位置を保持する電力を供給する減少電力供給手段21bより成る。
【0023】
図2において1は遮光板で入光状態で停止している状態である。2が直流モータで直流モータ2のシャフト22に遮光板固定治具23を介して遮光板1を固定している。赤外線検出器3は筐体24の内部に封入し、赤外線を透過する例えばシリコン材料より成る窓部25を介して赤外線を受光する。
【0024】
ストッパ13は遮光板1が入光状態で停止するときに接する入光停止部13aと、遮光状態で停止するときに接する遮光停止部13bが継部13cでつながり一体で構成している。一体にすることにより組立が容易になるほか、入光停止部13aと遮光停止部13bの間隔を精度よく管理することができ、遮光板1が駆動し始めてから入光/遮光の状態が切り替わるまでの時間の精度を保つことができ、測定温度精度の向上ができる。
【0025】
またストッパ13は、遮光板1の衝突による衝撃を吸収する衝撃緩衝材料で構成しているので、遮光板1の変形等がなく、信頼性、耐久性を高める効果がある。特に軟性ゴム材料で構成した場合には、遮光板1がストッパ13に衝突するときに発生する音を低減でき、耳に入れて温度検出を行うような体温計においては効果が大きい。
【0026】
図3にストッパ13のゴム材料の硬度と発生する音のレベルの特性を示す。図3は上記構成でプローブ11の先端から10mmの位置で音のレベルを計測した実験結果であり、ゴム材料の硬度はJISK6301の硬度計で測定したものである。図示したようにストッパ材料としては軟らかいほど静音効果があるが、ある程度以上衝突音を低減しても直流モータ2自身の回転により発生する音が勝り音レベルは下がらない。図3はHS40程度の軟性ゴム材料で構成することが望ましいことを意味している。
【0027】
図2において26はストッパ13の表面に塗布した粉体で例えば天花粉である。粉体26をストッパ13の表面に塗布することで、ゴム材料の粘着性を除去でき遮光板1はより安定に駆動できる。27はストッパ固定部でストッパ13を挿入することで固定し、28は赤外線検出器固定部で赤外線検出器3をストッパ固定部27と挟んで固定し、29はモータ固定部で直流モータ2をストッパ固定部27と挟んで固定する。以上の構成で直流モータ2が正転、反転を繰り返すと遮光板1はストッパ13の入光停止部13aと遮光停止部13bに衝突して停止し、安定した入光と遮光の状態切替ができる。
【0028】
図4に制御手段19の具体的動作を示す。直流モータ2に印加する電圧と直流モータ2の回転角度を示す。図4のt1の期間は遮光板1を入光状態に駆動し入光状態で静止させる正電力供給期間で、正電力供給手段20により電力供給する。t2の期間は遮光板1を遮光状態に駆動し遮光状態で静止させる負電力供給期間で、負電力供給手段21で電力供給する。本実施例ではt1とt2は同じ時間としているが、別々の時間に設定してもよい。
【0029】
正電力供給期間の中でt1aは初期電力供給期間で、遮光板1を入光状態に駆動するために初期電力供給手段20aにより電力供給を行い、t1bは減少電力供給期間で、遮光板1をストッパ13の入光停止部13aの位置に保持しておくために減少電力供給手段20bにより間欠的に電力供給を行う。同様に負電力供給期間の中でt2aは初期電力供給期間で、遮光板1を遮光状態に駆動するために初期電力供給手段21aにより電力供給を行い、t2bは減少電力供給期間で、遮光板1を遮光停止部13bの位置に保持しておくために減少電力供給手段21bにより間欠的に電力供給を行う。
【0030】
ここで減少電力供給手段20b、21bは間欠的に電力供給を行うものとしたがこれは電力供給回路構成を簡単にできる効果があるが、本発明を拘束するものではない。例えば、一定電力で初期電力供給期間より少ない電力供給を行ってもよいし、t1、t2が十分短ければ電力供給を休止してもよい。それは遮光板1がストッパ13の入光停止部13a、または遮光停止部13bからずれる要因として人の手の振動が考えられるが、t1、t2が十分短く例えば0.1秒未満のような時間であれば、人の手の振動周期の方が十分長いので遮光板1はほとんどずれないからである。
【0031】
図4においてΔθは遮光板1がストッパ13に食い込み、その反動で跳ね返るために起こる揺動であるが、従来例で示した図7のΔθと比較すると十分に小さい。ここでt3は遮光板1が駆動を始めてからストッパ13に衝突し食い込み跳ね返るのに要する時間であり、初期電力供給期間t1a、t2aはこのt3により長くしておくことで、ストッパ13から跳ね返りずれた位置で遮光板1が停止することはなく、安定して入光と遮光を切り替えることができる。
【0032】
以上、本発明の温度検出装置を鼓膜の温度を非接触で計測する携帯型の体温計に搭載した応用例として実施例の説明を行ってきたが、これは本発明を限定するものでなく、例えば機器に組み込み非接触で温度を検出し制御する電子レンジやエアコンなどに応用してもよく同様の効果を得ることができる。
【0033】
【発明の効果】
以上説明したように本発明の温度検出器は以下の効果を有する。
(1)赤外線検出器が被測定物の放射する赤外線を検出し、直流モータで駆動する遮光板が衝撃緩衝剤により構成したストッパに衝突して赤外線検出器に至る赤外線光路の入光、遮光それぞれの状態で停止し、制御手段は直流モータを交互に反転させるよう駆動して入光と遮光を切り替え、赤外線検出器の出力を基に温度換算手段が被測定物の温度を換算するので、遮光板の駆動による入光時間、遮光時間は安定し、また遮光板の停止位置での揺動も起こさないので、遮光板は十分小型にしても入光と遮光の状態を安定して切り替えることができ、小型で精度の高い温度検出を行うことができ、更に正電力供給手段が直流モータを入光方向に回転させ、負電力供給手段が遮光方向に回転させ、初期電力供給手段は遮光板がストッパに到達する時間とストッパから跳ね返り自然停止する時間との合計より長い初期電力供給期間、初期電力を直流モータに供給し、その後減少電力供給手段が電力を減少させて供給するので、遮光板は確実にストッパ位置で停止し、安定した入光、遮光の切り替えができて温度検出精度が向上するとともに、消費電力を節約できる。
【0034】
(2)遮光板は軟性ゴム材料により構成したストッパに衝突して停止するので、衝突による遮光板のストッパへの食い込み、跳ね返りが少なく、入光と遮光の状態を安定して切り替えることができ、精度の高い温度検出を行うことができ、また衝突音を低減できる。
【0035】
(3)ストッパには粉体を塗布しているので粘着性を低減でき、遮光板が衝突して停止した際にストッパに接着することなく安定して入光、遮光を切り替えることができ、精度の高い温度検出を行うことができる。
【0036】
(4)入光停止位置のストッパと遮光停止位置のストッパを一体にして構成しているので、ストッパの間隔を精度よく構成でき、駆動信号発生から入光、遮光の状態切替までの時間差の精度を高めることができて、精度の高い温度検出を行うことができる。
【図面の簡単な説明】
【図1】 本発明の一実施例における温度検出装置の構成ブロック図
【図2】 同温度検出装置の遮光板部の要部拡大図
【図3】 同温度検出装置の発生する音の特性図
【図4】 同温度検出装置の動作を説明するタイミングチャート
【図5】 従来の温度検出装置の構成図
【図6】 従来の温度検出装置の構成図
【図7】 従来の温度検出装置の動作を説明するタイミングチャート
【符号の説明】
1 遮光板
2 直流モータ
3 赤外線検出器
10 被測定物
13 ストッパ
17 温度換算手段
19 制御手段
20 正電力供給手段
21 負電力供給手段
20a、21a 初期電力供給手段
20b、21b 減少電力供給手段
26 粉体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature detection device that detects the temperature of an object in a non-contact manner, and more particularly to a light shielding plate that controls infrared light incident and light shielding.
[0002]
[Prior art]
Conventionally, in the case of using a pyroelectric infrared detector as a temperature detection device that detects the temperature of an object in a non-contact manner, a light shielding plate that switches between incident light and light shielding of infrared light incident on the infrared detector is provided. ing. This light-shielding plate is made of a material that does not transmit infrared light, such as a metal plate, and its end is attached to a rotating shaft of a DC motor or AC motor and rotated to drive infrared light incident on the infrared detector. There is a method of repeatedly interrupting. That is, as shown in FIG. 5, the semicircular arc-shaped light shielding plate 1 is attached to the rotating shaft of the direct current or alternating current motor 2 and is driven to rotate in the direction of the arrow to interrupt the infrared light incident on the infrared detector 3.
[0003]
There is also a method of intermittently irradiating infrared light by applying pulses at a predetermined cycle using a pulse motor as a rotation drive source and repeating forward rotation and reverse rotation at a predetermined angle, for example. For example, an example of a temperature measuring device disclosed in Japanese Patent Application Laid-Open No. 7-280652 will be described with reference to FIG. A chopper (light-shielding plate) 1 is driven to reciprocate by a quartz watch movement 4 which is a drive source based on the same principle as a pulse motor, and interrupts infrared light reaching the infrared detector 3. The quartz watch movement 4 includes a permanent magnet 5, a core 6 and a coil 7, and the end of the chopper 1 is attached to the permanent magnet 5. The coil 7 receives a pulse input at the first and second input terminals 8 and 9, the permanent magnet 5 rotates in response to the pulse input, and the chopper 1 reciprocates as indicated by arrows.
[0004]
[Problems to be solved by the invention]
However, in the case of the above conventional example in which the light shielding plate is rotated using a DC motor as a drive source, there is a problem that the temperature measurement accuracy is low due to variations in the light incident time and the light shielding time. In general, the rotational speed of a DC motor fluctuates due to fluctuations in power supply voltage. If the rotation speed fluctuates, the period of incident light and light shielding changes, and the fluctuation of this period also fluctuates the output of the infrared detector, making accurate temperature detection impossible. In order to stabilize the number of revolutions, a complicated control circuit is required which provides a means for detecting the number of revolutions such as a photo interrupter and a means for adjusting the power supply voltage and performs feedback control.
[0005]
When an AC motor is used as a drive source, the rotational speed is easier to stabilize than a DC motor under a relatively stable frequency like a commercial power source, but an AC power source such as a commercial power source is required. There is. This is difficult to achieve because it requires only a DC power source in the case of a battery power source such as a portable radiation thermometer or a radiation thermometer, and requires a complicated circuit for producing an AC power source with a stable frequency.
[0006]
When a quartz watch movement or pulse motor is used as the drive source, it is driven based on a digital signal from a microprocessor, etc., so the light incident and light shielding cycles can be interrupted with high accuracy, but the light shielding plate stops while swinging. Therefore, there is a problem that it is difficult to switch between incident light and light shielding with high accuracy. In other words, these driving sources are stopped by the balance between the attractive force and the repulsive force due to the magnetic force, and are driven by changing the polarity of the magnetic force. Therefore, at the moment of stopping, the shading plate swings to balance the attractive force and the repulsive force. It has the characteristic of letting it stop.
[0007]
FIG. 7 shows the characteristics of the behavior of the pulse motor. The abscissa is the elapsed time, and (a) is a drive pulse with CW (clockwise) and CCW (counterclockwise) pulses alternately output at a constant period t and a duty of 50%. When (b) reaches the stop position as shown in the figure at the rotation angle of the rotation shaft of the pulse motor, an overshoot occurs, and then an undershoot occurs, and the amplitude becomes stable while the amplitude decreases.
Since pulse motors and quartz watch movements generally have behavioral characteristics as shown in FIG. 7, if these are used as a light source for the light shielding plate and infrared light is interrupted, light is shielded from light incident or light incident from light shielding. At the moment of switching, there is a situation in which the incident light and the light shielding are switched at a very short interval. For this reason, there is a problem that the output of the infrared detector becomes unstable and the accuracy of temperature detection is lacking. In order to avoid this problem, there is a method of making the shape of the light shielding plate sufficiently large with respect to Δθ which is the maximum position of oscillation, but in this case, there is a problem that the temperature detection device itself is also increased in size. .
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides an infrared detector that detects infrared rays emitted from a measurement object, a light shielding plate that blocks infrared rays incident on the infrared detector, and a direct current motor that drives the light shielding plate. A stopper provided at a stop position of the light shielding plate, a control means for controlling the DC motor, and a temperature conversion means for converting the temperature of the object to be measured based on the output of the infrared detector, The control means includes a positive power supply means for rotating the DC motor in the light incident direction, and a negative power supply means for rotating in the light shielding direction, and the positive power supply means and the negative power supply. Each means includes initial power supply means for supplying power during a predetermined initial power supply period, and reduced power supply means for reducing and supplying power after the initial power supply period, and the initial power supply period Light shielding plate is set longer than the sum of the time period and the light shielding plate required for the stopper reaches to bounce natural stop from the stop, the light incident infrared light path to the said infrared detector by reversing the direction of rotation of the DC motor alternately And switching between light shielding.
[0009]
According to the above invention, the infrared detector detects the infrared ray radiated from the object to be measured, and the light shielding plate driven by the DC motor collides with the stopper constituted by the shock buffer and enters the infrared light path reaching the infrared detector. , Stop in each state of light shielding, the control means drives the DC motor to alternately reverse to switch between incident light and light shielding, and the temperature conversion means converts the temperature of the object to be measured based on the output of the infrared detector Therefore, the light incident time and the light shielding time due to the driving of the light shielding plate are stable, and the light shielding plate does not swing at the stop position. Therefore, even if the light shielding plate is sufficiently small, the light incident and light shielding conditions are stable. Small, highly accurate temperature detection can be performed , and the positive power supply means rotates the DC motor in the incident light direction, the negative power supply means rotates in the light shielding direction, and the initial power supply means The shading plate is Since long initial power supply period from the sum of the time to bounce naturally stopped from the time the stopper to reach, to supply the initial power to the DC motor, is then reduced power supply means for supplying reducing power to, the light shielding plate is reliably In addition, it can stop at the stopper position and switch between stable incident light and light shielding, improving the temperature detection accuracy and saving power consumption.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to an infrared detector that detects infrared rays emitted from an object to be measured, a light shielding plate that shields infrared rays incident on the infrared detector, a DC motor that drives the light shielding plate, and a stop position of the light shielding plate. A control unit that controls the DC motor, and a temperature conversion unit that converts the temperature of the object to be measured based on the output of the infrared detector, the stopper is made of an impact buffer material, The control means includes a positive power supply means for rotating the DC motor in the light incident direction and a negative power supply means for rotating in the light shielding direction, and each of the positive power supply means and the negative power supply means is a predetermined initial power. An initial power supply unit that supplies power during the supply period; and a reduced power supply unit that supplies power after decreasing the initial power supply period, and the light shielding plate is required for the stopper to reach the stopper during the initial power supply period. Between the light shielding plate is set longer than the sum of the time to bounce natural stop from the stopper, and configured to switch the light shielding and light incident infrared light path leading to the infrared detector the direction of rotation of the DC motor is reversed alternately Is.
[0011]
The infrared detector detects the infrared rays emitted from the object to be measured, and the light shielding plate driven by the direct current motor collides with a stopper made of an impact buffering agent to enter the infrared light path to the infrared detector and shield the light. The control means drives the DC motor to alternately invert and switches between incident light and light shielding, and the temperature conversion means converts the temperature of the object to be measured based on the output of the infrared detector. The light incident time and the light shielding time by driving are stable, and the light shielding plate does not swing at the stop position, so even if the light shielding plate is sufficiently small, the light incident and light shielding states can be switched stably. Small, highly accurate temperature detection is possible , and the positive power supply means rotates the DC motor in the incident light direction, the negative power supply means rotates in the light shielding direction, and the initial power supply means uses the light shielding plate as a stopper. Reach The initial power is supplied to the DC motor for an initial power supply period that is longer than the sum of the time required to bounce off the stopper and the natural stop, and then the reduced power supply means reduces the power and supplies it. The temperature detection accuracy can be improved and power consumption can be saved.
[0012]
The stopper is made of a soft rubber material.
[0013]
Since the light shielding plate collides with a stopper made of a soft rubber material and stops, the biting and rebounding of the light shielding plate due to the collision can be reduced, and the collision sound can be reduced.
[0014]
In addition, the stopper surface is coated with powder.
[0015]
Since the powder is applied to the stopper, the adhesiveness can be reduced, and when the light-shielding plate collides and stops, it is possible to stably switch between light incident and light-shielding without adhering to the stopper.
[0016]
The stopper is configured by integrating the light incident stop position and the light shielding stop position of the light shielding plate.
[0017]
Since the stop at the light incident stop position and the stopper at the light shielding stop position are integrated, the distance between the stoppers can be configured with high accuracy, and the accuracy of the time difference from the generation of the drive signal to the light incident / light shielding state switching is improved. Therefore, temperature detection with high accuracy can be performed.
[0018]
【Example】
Example 1
An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a configuration block diagram of an application example in which a temperature detection device is mounted on a thermometer as an embodiment of the present invention. FIG. 2 is an enlarged view of a main part of the light shielding plate. FIG. 3 is a characteristic diagram of the generated sound. FIG. 4 is a timing chart for explaining the operation.
[0019]
In general, as a thermometer for measuring the surface temperature, it is possible to measure the body temperature almost by measuring the temperature of a part of the eardrum, oral cavity, anus and the like that is difficult to contact with outside air. In particular, the eardrum is close to the hypothalamus, which controls body temperature, and is known as an appropriate place for body temperature measurement. In FIG. 1, reference numeral 10 denotes an object to be measured for temperature, for example, an eardrum. Reference numeral 11 denotes a probe inserted into the ear canal, which has a diameter that decreases toward the tip and is easily inserted into the ear canal. A condensing means 12 condenses the infrared rays emitted from the eardrum 10 and is constituted by a concave mirror. The condensed infrared rays enter the infrared detector 3 through the light shielding plate 1.
[0020]
The light-shielding plate 1 is driven to reciprocate while colliding with the stopper 13 by the motor 2, and the infrared light reaching the infrared detector 3 is repeatedly switched between light incident and light-shielding states. The infrared detector 3 is a pyroelectric type, and its output changes in correlation with the differential value of the amount of infrared rays to be detected. Here, the light shielding plate 1 is made of metal, and when the light is shielded, the infrared light emitted from the infrared detector 3 itself is reflected by the metal surface and enters the infrared detector 3. That is, the output of the infrared detector 3 is correlated with the temperature difference between the eardrum 10 and the infrared detector 3 due to the intermittent operation of the light shielding plate 1. A temperature sensor 14 for detecting the temperature of the infrared detector 3 is disposed in the vicinity of the infrared detector 3. The temperature sensor 14 is a generally known thermistor.
[0021]
The output of the infrared detector 3 is amplified by the amplifier 15, and the output voltage amplified by the amplifier 15 and the output voltage of the temperature sensor 14 are digitized by the AD converter 16. Reference numeral 17 denotes temperature conversion means for converting the temperature of the eardrum 10 based on the output of the AD converter 16. The output of the infrared detector 3 becomes an AC waveform due to the intermittent operation of the light shielding plate 1, and its amplitude is proportional to the difference between the temperature of the eardrum 10 and the temperature of the infrared detector 3 to the fourth power. Based on this relationship, the temperature conversion means 17 converts the temperature of the eardrum 10 and displays it on the display means 18.
[0022]
Reference numeral 19 denotes a control means for controlling the driving of the DC motor 2, and comprises a positive power supply means 20 for switching from the light shielding state to the light incident state, and a negative power supply means 21 for switching from the light incident state to the light shielding state. Further, the positive power supply means 20 includes an initial power supply means 20a for supplying power for driving the light shielding plate 1 and a reduced power supply means 20b for supplying power for holding the position of the stopper 13 by the light shielding plate 1. The means 21 also includes an initial power supply means 21 a for supplying power for driving the light shielding plate 1 and a reduced power supply means 21 b for supplying power for the light shielding plate 1 to hold the position of the stopper 13.
[0023]
In FIG. 2, reference numeral 1 denotes a light shielding plate that is stopped in a light incident state. Reference numeral 2 denotes a DC motor, and the light shielding plate 1 is fixed to the shaft 22 of the DC motor 2 via a light shielding plate fixing jig 23. The infrared detector 3 is enclosed in a housing 24 and receives infrared rays through a window 25 made of, for example, a silicon material that transmits infrared rays.
[0024]
The stopper 13 includes a light incident stop portion 13a that contacts when the light shielding plate 1 stops in the light incident state and a light shielding stop portion 13b that contacts when the light shielding plate 1 stops when the light shielding plate 1 stops in the light shielding state. In addition to facilitating assembly, the interval between the light incident stop portion 13a and the light shielding stop portion 13b can be managed with high accuracy until the light incident / light shielding state is switched after the light shielding plate 1 starts to be driven. The time accuracy can be maintained, and the measurement temperature accuracy can be improved.
[0025]
Further, since the stopper 13 is made of an impact buffer material that absorbs an impact caused by the collision of the light shielding plate 1, there is no deformation of the light shielding plate 1, and there is an effect of improving reliability and durability. In particular, when it is made of a soft rubber material, the sound generated when the light shielding plate 1 collides with the stopper 13 can be reduced, and the effect is great in a thermometer that detects temperature by putting it in the ear.
[0026]
FIG. 3 shows the characteristics of the hardness of the rubber material of the stopper 13 and the level of the generated sound. FIG. 3 is a result of an experiment in which the sound level was measured at a position 10 mm from the tip of the probe 11 with the above configuration, and the hardness of the rubber material was measured with a hardness meter of JISK6301. As shown in the figure, the softer the stopper material, the more effective the noise is. However, even if the collision noise is reduced to some extent, the sound generated by the rotation of the DC motor 2 itself is won and the sound level is not lowered. FIG. 3 means that it is desirable to use a soft rubber material of about HS40.
[0027]
In FIG. 2, reference numeral 26 denotes powder applied to the surface of the stopper 13, for example, natural pollen. By applying the powder 26 to the surface of the stopper 13, the adhesiveness of the rubber material can be removed, and the light shielding plate 1 can be driven more stably. 27 is a stopper fixing portion that is fixed by inserting the stopper 13, 28 is an infrared detector fixing portion that fixes the infrared detector 3 with the stopper fixing portion 27, and 29 is a motor fixing portion that holds the DC motor 2 as a stopper. It is fixed by being sandwiched between the fixing part 27. When the DC motor 2 repeats normal rotation and reverse rotation with the above configuration, the light shielding plate 1 collides with the light incident stop portion 13a and the light shielding stop portion 13b of the stopper 13 and stops, so that stable light incident and light shielding can be switched. .
[0028]
FIG. 4 shows a specific operation of the control means 19. The voltage applied to the DC motor 2 and the rotation angle of the DC motor 2 are shown. The period t1 in FIG. 4 is a positive power supply period in which the light-shielding plate 1 is driven into the light incident state and is stopped in the light incident state, and power is supplied by the positive power supply means 20. The period t2 is a negative power supply period in which the light shielding plate 1 is driven in the light shielding state and is kept stationary in the light shielding state, and power is supplied by the negative power supply means 21. In this embodiment, t1 and t2 are the same time, but may be set to different times.
[0029]
In the positive power supply period, t1a is an initial power supply period, and power is supplied by the initial power supply means 20a in order to drive the light-shielding plate 1 to the light incident state, and t1b is a reduced power supply period, and the light-shielding plate 1 is turned on. In order to keep the light incident stop portion 13a of the stopper 13 at the position, power is intermittently supplied by the reduced power supply means 20b. Similarly, in the negative power supply period, t2a is an initial power supply period, and power is supplied by the initial power supply means 21a to drive the light shielding plate 1 in a light shielding state, and t2b is a reduced power supply period, and the light shielding plate 1 Is held intermittently by the reduced power supply means 21b in order to hold the light at the position of the light shielding stop portion 13b.
[0030]
Here, the reduced power supply means 20b and 21b intermittently supply power, but this has the effect of simplifying the power supply circuit configuration, but does not restrict the present invention. For example, power may be supplied at a constant power and less than the initial power supply period, or power supply may be suspended if t1 and t2 are sufficiently short. This is because the vibration of the human hand is considered as a factor causing the light shielding plate 1 to deviate from the light incident stop portion 13a or the light shielding stop portion 13b of the stopper 13, but t1 and t2 are sufficiently short, for example, less than 0.1 second. If there is, the shading plate 1 is hardly displaced because the vibration period of the human hand is sufficiently long.
[0031]
In FIG. 4, Δθ is a swing that occurs because the light shielding plate 1 bites into the stopper 13 and rebounds, but is sufficiently smaller than Δθ of FIG. 7 shown in the conventional example. Here, t3 is the time required for the light shielding plate 1 to collide with the stopper 13 and start to bounce after starting to drive, and the initial power supply periods t1a and t2a have been rebounded from the stopper 13 by making this t3 longer. The light shielding plate 1 does not stop at the position, and light input and light shielding can be switched stably.
[0032]
The embodiment has been described as an application example in which the temperature detection device of the present invention is mounted on a portable thermometer that measures the temperature of the eardrum in a non-contact manner, but this does not limit the present invention. It can be applied to a microwave oven or an air conditioner that detects and controls the temperature in a non-contact manner by incorporating it in a device, and the same effect can be obtained.
[0033]
【The invention's effect】
As described above, the temperature detector of the present invention has the following effects.
(1) An infrared detector detects infrared rays emitted from the object to be measured, and a light shielding plate driven by a DC motor collides with a stopper constituted by an impact buffering agent, and enters and blocks the infrared light path reaching the infrared detector. The control means is driven to alternately reverse the DC motor to switch between incident light and light shielding, and the temperature converting means converts the temperature of the object to be measured based on the output of the infrared detector. The light incident time and the light shielding time due to the driving of the plate are stable, and the light shielding plate does not swing at the stop position. Therefore, even if the light shielding plate is sufficiently small, the light incident and light shielding states can be switched stably. It is possible to detect the temperature with a small size and high accuracy . Further, the positive power supply means rotates the DC motor in the light incident direction, the negative power supply means rotates in the light shielding direction, and the initial power supply means has a light shielding plate. Reach the stopper The initial power is supplied to the DC motor for an initial power supply period that is longer than the sum of the time required to bounce off the stopper and the natural stop, and then the reduced power supply means reduces the power and supplies it. The temperature detection accuracy can be improved and power consumption can be saved.
[0034]
(2) Since the light shielding plate collides with a stopper made of a soft rubber material and stops, there is little biting and rebounding of the light shielding plate due to the collision, and the light incident and light shielding states can be switched stably. Accurate temperature detection can be performed, and collision noise can be reduced.
[0035]
(3) Since the powder is applied to the stopper, the adhesiveness can be reduced, and when the light-shielding plate collides and stops, it is possible to switch between incident light and light-blocking stably without adhering to the stopper. High temperature detection can be performed.
[0036]
(4) Since the stopper at the light incident stop position and the stopper at the light shielding stop position are integrated, the distance between the stoppers can be configured with high accuracy, and the time difference from the generation of the drive signal to the light incident / light shielding state switching is accurate. And temperature detection with high accuracy can be performed.
[Brief description of the drawings]
FIG. 1 is a configuration block diagram of a temperature detection device according to an embodiment of the present invention. FIG. 2 is an enlarged view of a main part of a light shielding plate portion of the temperature detection device. FIG. 3 is a characteristic diagram of sound generated by the temperature detection device. FIG. 4 is a timing chart for explaining the operation of the temperature detection device. FIG. 5 is a configuration diagram of a conventional temperature detection device. FIG. 6 is a configuration diagram of a conventional temperature detection device. Timing chart to explain
DESCRIPTION OF SYMBOLS 1 Light-shielding plate 2 DC motor 3 Infrared detector 10 Measured object 13 Stopper 17 Temperature conversion means 19 Control means 20 Positive power supply means 21 Negative power supply means 20a, 21a Initial power supply means 20b, 21b Decrease power supply means 26 Powder

Claims (4)

被測定物が放射する赤外線を検出する赤外線検出器と、前記赤外線検出器に入射する赤外線を遮光する遮光板と、前記遮光板を駆動する直流モータと、前記遮光板の停止位置に設けたストッパと、前記直流モータを制御する制御手段と、前記赤外線検出器の出力を基に被測定物の温度を換算する温度換算手段を有し、前記ストッパは衝撃緩衝材料により構成し、前記制御手段は前記直流モータを入光方向に回転させる正電力供給手段と、遮光方向に回転させる負電力供給手段を有し、前記正電力供給手段と前記負電力供給手段は各々予め定めた初期電力供給期間に電力を供給する初期電力供給手段と、前記初期電力供給期間の後電力を減少させて供給する減少電力供給手段を有し、前記初期電力供給期間は遮光板がストッパ到達に要する時間と遮光板がストッパから跳ね返り自然停止する時間との合計より長く設定し、前記直流モータの回転方向を交互に反転させて前記赤外線検出器に至る赤外線光路の入光と遮光を切り替える温度検出装置。Infrared detector for detecting infrared rays emitted from the object to be measured, a light shielding plate for shielding infrared rays incident on the infrared detector, a DC motor for driving the light shielding plate, and a stopper provided at a stop position of the light shielding plate And a control means for controlling the DC motor, and a temperature conversion means for converting the temperature of the object to be measured based on the output of the infrared detector, the stopper is made of an impact buffer material, and the control means A positive power supply means for rotating the direct current motor in the light incident direction; and a negative power supply means for rotating in the light shielding direction. The positive power supply means and the negative power supply means are each in a predetermined initial power supply period. Initial power supply means for supplying power, and reduced power supply means for supplying power after decreasing the initial power supply period, and the initial power supply period is a time required for the light shielding plate to reach the stopper Light shielding plate is set longer than the sum of the time to bounce natural stop from the stopper, temperature sensing device for switching the light-shielding and light incident infrared light path to the said infrared detector by reversing the direction of rotation of the DC motor alternately. ストッパは軟性ゴム材料により構成した請求項1記載の温度検出装置。The temperature detection device according to claim 1, wherein the stopper is made of a soft rubber material. ストッパ表面に粉体を塗布した請求項1または2記載の温度検出装置。The temperature detection device according to claim 1, wherein powder is applied to the stopper surface. ストッパは遮光板の入光停止位置と遮光停止位置を一体にして構成した請求項1記載の温度検出装置。The temperature detection device according to claim 1, wherein the stopper is formed by integrating a light incident stop position and a light shielding stop position of the light shielding plate.
JP32409797A 1997-11-26 1997-11-26 Temperature detection device Expired - Fee Related JP3775024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32409797A JP3775024B2 (en) 1997-11-26 1997-11-26 Temperature detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32409797A JP3775024B2 (en) 1997-11-26 1997-11-26 Temperature detection device

Publications (2)

Publication Number Publication Date
JPH11160153A JPH11160153A (en) 1999-06-18
JP3775024B2 true JP3775024B2 (en) 2006-05-17

Family

ID=18162136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32409797A Expired - Fee Related JP3775024B2 (en) 1997-11-26 1997-11-26 Temperature detection device

Country Status (1)

Country Link
JP (1) JP3775024B2 (en)

Also Published As

Publication number Publication date
JPH11160153A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
US6371925B1 (en) Radiation clinical thermometer
US6140863A (en) Power-generation detection circuit for use in an electronic device and power-generation detection method and power consumption control method for use in connection therewith
JPS58192536A (en) Plexor
JPS6366534B2 (en)
JP3775024B2 (en) Temperature detection device
JPH11160434A (en) Range finder instrument
JP3456130B2 (en) Distance measuring device
JP3817867B2 (en) Temperature detection device
JP2000213988A (en) Temperature detecting device
JP2000213989A (en) Temperature detection device
JP3772503B2 (en) Temperature detection device
JP2000213990A (en) Temperature detection device
JP3777802B2 (en) Temperature detection device
CA3139628C (en) Acoustic wave type electric cleaning care applicance and pressure alarm device for same
JP2000346709A (en) Radiation thermometer
JPH1119049A (en) Radiation clinical thermometer
JP2003240641A (en) Radiation clinical thermometer
JP5140408B2 (en) Game machine
CN211067129U (en) Sound wave type electric cleaning and nursing appliance and pressure alarm device for same
JPH11150988A (en) Control device of stepping motor, its control method and time measuring device
JPH1144780A (en) Mechanism for detecting position of indicator
KR970000052B1 (en) Volume perception circuit of a washing machine
JP3436014B2 (en) Radiation thermometer
JP2831116B2 (en) Ultrasonic motor drive
JPH11142263A (en) Microtorque detecting means and its system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees