JP3777487B2 - Cylindrical lithium secondary battery - Google Patents

Cylindrical lithium secondary battery Download PDF

Info

Publication number
JP3777487B2
JP3777487B2 JP32855097A JP32855097A JP3777487B2 JP 3777487 B2 JP3777487 B2 JP 3777487B2 JP 32855097 A JP32855097 A JP 32855097A JP 32855097 A JP32855097 A JP 32855097A JP 3777487 B2 JP3777487 B2 JP 3777487B2
Authority
JP
Japan
Prior art keywords
lid
pinching
secondary battery
plate
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32855097A
Other languages
Japanese (ja)
Other versions
JPH11162521A (en
Inventor
一成 大北
直哉 中西
義人 近野
俊之 能間
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32855097A priority Critical patent/JP3777487B2/en
Publication of JPH11162521A publication Critical patent/JPH11162521A/en
Application granted granted Critical
Publication of JP3777487B2 publication Critical patent/JP3777487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円筒状の電池缶の内部に巻き取り電極体が収容されて、電池缶に取り付けられた電極端子機構から巻き取り電極体の発生電力を取り出すことが可能な円筒型リチウム二次電池に関するものである。
【0002】
【従来の技術】
近年、携帯型電子機器、電気自動車、ロードレベリング等の電源として、エネルギー密度が高く、然もカドミウムや鉛の如き有害物質を含まないリチウム二次電池が注目されている。
例えば電気自動車に用いられる比較的大きな容量の円筒型リチウム二次電池は、図7及び図8に示す様に、筒体(11)の両端部に蓋体(12)(12)を溶接固定してなる円筒状の電池缶(1)の内部に、巻き取り電極体(2)を収容して構成されている。両蓋体(12)(12)には、正負一対の電極端子機構(9)(9)が取り付けられており、巻き取り電極体(2)と両電極端子機構(9)(9)とが、複数本の集電タブ(3)により互いに連結されて、巻き取り電極体(2)が発生する電力を一対の電極端子機構(9)(9)から外部に取り出すことが可能となっている。又、蓋体(12)には安全弁(13)が取り付けられている。
【0003】
巻き取り電極体(2)は、図9に示す様に、リチウム複合酸化物を含む正極(21)と、非水電解液が含浸されたセパレータ(22)と、炭素材料を含む負極(23)とを重ね合わせ、これらを渦巻き状に巻回して構成されている。正極(21)及び負極(23)からは夫々複数本の集電タブ(3)が引き出され、極性が同じ複数本の集電タブ(3)の先端部(31)が1つの電極端子機構(9)に接続されている。尚、図9においては、便宜上、一部の集電タブの先端部が電極端子機構(9)に接続されている状態のみを示し、他の集電タブについては、先端部が電極端子機構(9)に接続されている状態の図示を省略している。
電極端子機構(9)は、電池缶(1)の蓋体(12)を貫通して取り付けられたネジ部材(91)を具え、該ネジ部材(91)の基端部には鍔部(92)が形成されている。蓋体(12)の貫通孔には絶縁パッキング(93)が装着され、蓋体(12)と締結部材(91)の間の電気的絶縁性とシール性が保たれている。ネジ部材(91)には、筒体(11)の外側からワッシャ(94)が嵌められると共に、第1ナット(95)及び第2ナット(96)が螺合している。これらのナット(95)(96)を締め付けて、ネジ部材(91)の鍔部(92)とワッシャ(94)によって絶縁パッキング(93)を挟圧することにより、シール性を高めている。
前記複数本の集電タブ(3)の先端部(31)は、ネジ部材(91)の鍔部(92)に、スポット溶接或いは超音波溶接によって固定されている。
【0004】
上記円筒型リチウム二次電池の製造工程においては、電池缶(1)を構成すべき蓋体(12)に電極端子機構(9)を取り付ける一方、筒体(11)の内部に巻き取り電極体(2)を装入した状態で、巻き取り電極体(2)から伸びる複数本の集電タブ(3)の先端部(31)を電極端子機構(9)の鍔部(92)に溶接し、最後に、蓋体(12)を筒体(11)の開口部に被せて、両者を溶接固定していた。
【0005】
【発明が解決しようとする課題】
ところで、円筒型リチウム二次電池において、大容量化を図る場合、集電タブ(3)の本数が少ないと、電気抵抗が増大して電池性能が低下するため、例えば10本以上の多数本の集電タブ(3)によって、巻き取り電極体(2)と電極端子機構(9)を接続する必要がある。
【0006】
しかしながら、複数本の集電タブ(3)を鍔部(92)に溶接する作業は困難であり、少なくとも数十分の作業時間を要する。
又、集電タブ(3)は、厚さ0.1mm程度のアルミニウム製或いはニッケル製の箔体から形成されているため、溶接箇所が溶融して孔があくことがあり、この結果、集電タブ(3)の接続強度が著しく低下する問題があった。孔があくことなく正常な溶接が行なわれた場合でも、集電タブ(3)と鍔部(92)の溶接部分の面積は極めて小さいため、大きな接続強度は得られない。
然も、集電タブ(3)と鍔部(92)の溶接部分で電気抵抗が著しく増大するため、抵抗発熱を生じる問題があった。
【0007】
本発明の目的は、集電タブを容易に、然も高い強度と信頼性で電極端子機構に接続することが出来、接続部分における電気抵抗も小さい円筒型リチウム二次電池を提供することである。
【0008】
【課題を解決する為の手段】
本発明に係る円筒型リチウム二次電池は、筒体(11)の開口部に蓋体(12)を固定してなる電池缶(1)を具え、電池缶(1)の内部には、巻き取り電極体(2)が収容されている。巻き取り電極体(2)は、リチウム複合酸化物を含む正極(21)と、非水電解液が含浸されたセパレータ(22)と、炭素材料を含む負極(23)とを重ね合わせて渦巻き状に巻回して構成されている。
又、電池缶(1)の蓋体(12)には電極端子機構(4)が取り付けられ、巻き取り電極体(2)と電極端子機構(4)とが、複数本の集電タブ(3)により互いに連結されて、巻き取り電極体(2)が発生する電力を電極端子機構(4)から外部に取り出すことが可能である。
【0009】
本発明に係る円筒型リチウム二次電池において、電極端子機構(4)は、蓋体(12)に開設した貫通孔(14)に挿通されて、蓋体(12)に対して電気的絶縁性及び液密性を保った状態で蓋体(12)に固定され、蓋体(12)の外側に突出した先端部には、挟圧ナット(54)を具える一方、蓋体(12)の内側に突出した基端部には、前記挟圧ナット(54)のねじ込みによって挟圧力を発揮する挟圧板(51)及び挟圧受け板(6)を具えている。そして、前記複数本の集電タブ(3)の先端部が挟圧板(51)と挟圧受け板(6)の間に挟持されて、電極端子機構(4)に連結されている。
尚、各集電タブ(3)は、導電性を有する帯状の箔体から形成されている。又、挟圧板(51)及び挟圧受け板(6)は、前記複数本の集電タブ(3)の先端部を確実に挟持するために必要な十分な挟圧面積を有している。
【0010】
上記本発明の円筒型リチウム二次電池においては、複数本の集電タブ(3)の先端部が挟圧板(51)と挟圧受け板(6)の間に挟持されて、電極端子機構(4)に連結されているので、その組立工程において、集電タブ(3)の先端部を電極端子機構(4)に溶接する作業は不要であり、単に、複数本の集電タブ(3)の先端部を挟圧板(51)と挟圧受け板(6)の間に挿入して、挟圧ナット(54)をねじ込めば、これら複数本の集電タブ(3)の先端部は挟圧板(51)と挟圧受け板(6)によって同時に挟圧され、接続作業が完了する。
複数本の集電タブ(3)の先端部が挟圧板(51)と挟圧受け板(6)の間に挟持された状態で、各集電タブ(3)の先端部は十分な面積で挟圧板(51)及び挟圧受け板(6)と接触し、この十分な接触面積によって、接続部分における電気抵抗は小さなものとなり、同時に高い接続強度が得られる。
この挟圧による接続構造には、従来の溶接構造は採用されていないので、集電タブ(3)に孔があくことはなく、高い信頼性が得られる。
【0011】
具体的構成において、電極端子機構(4)は、
蓋体(12)に開設した貫通孔(14)に挿通され、蓋体(12)の外側に突出した先端部にネジ部(71)を具えると共に、蓋体(12)の内側に突出した基端部にフランジ部(72)を具えた締結部材(7)と、
締結部材(7)のネジ部(71)に螺合して、締結部材(7)を蓋体(12)に固定するための締結ナット(73)と、
蓋体(12)の貫通孔(14)に装着されて、蓋体(12)と締結部材(7)の間に介在し、締結部材(7)のフランジ部(72)と締結ナット(73)によって挟圧され、締結部材(7)と蓋体(12)の間の電気的絶縁性及び液密性を保つ絶縁パッキング(8)(81)と、
締結部材(7)に開設した中央孔(75)に挿通された軸部(50)を具え、蓋体(12)の外側に突出した軸部(50)の先端部には、ネジ部(53)が形成されると共に、蓋体(12)の内側に突出した軸部(50)の基端部には、前記挟圧板(51)が固定されている挟圧部材(5)とを具え、前記挟圧ナット(54)は挟圧部材(5)のネジ部(53)に螺合し、挟圧受け板(6)は挟圧部材(5)の軸部(50)に遊嵌されて、挟圧板(51)と締結部材(7)のフランジ部(72)の間に介在している。
【0012】
上記具体的構成においては、筒体(11)に蓋体(12)を固定する前に、蓋体(12)の貫通孔(14)に絶縁パッキング(8)(81)を装着すると共に締結部材(7)を挿通する。これによって、蓋体(12)の外側に、締結部材(7)の先端部に形成されたネジ部(71)が突出する。そこで、該ネジ部(71)に締結ナット(73)を螺合せしめ、締め付ける。これによって、絶縁パッキング(8)(81)が締結部材(7)のフランジ部(72)と締結ナット(73)の間に挟まれて、挟圧されると共に、締結部材(7)が蓋体(12)に確実に固定されることになる。この状態で、蓋体(12)と締結部材(7)の間には十分な電気的絶縁性と液密性が保たれている。
その後、挟圧部材(5)の軸部(50)に挟圧受け板(6)を嵌めて、該挟圧部材(5)の軸部(50)を締結部材(7)の中央孔(75)に挿通すると共に、挟圧受け板(6)と挟圧板(51)の間に、巻き取り電極体(2)から伸びる複数本の集電タブ(3)の先端部を挟み込む。この状態で、締結部材(7)から外側に突出した挟圧部材(5)のネジ部(53)に挟圧ナット(54)を螺合せしめ、締め付ける。これによって、前記複数本の集電タブ(3)の先端部が挟圧部材(5)の挟圧板(51)と挟圧受け板(6)によって確実に挟持されることになる。
最後に、蓋体(12)を筒体(11)に固定することによって、円筒型リチウム二次電池を完成する。
【0013】
上述の如く、先ず蓋体(12)に締結部材(7)を固定して、蓋体(12)と締結部材(7)の間に十分な電気的絶縁性と液密性を与える作業の後、該締結部材(7)に挟圧部材(5)を取り付けて、挟圧板(51)と挟圧受け板(6)の間に複数本の集電タブ(3)の先端部を挟持する作業を行なうので、両作業が分離されており、先の作業で実現した電気的絶縁性と液密性が、後の作業によって変化する虞れはなく、又逆に、後の作業によって実現した集電タブ(3)の接続強度が、その後の締結部材(7)の締め付け力の再調整によって変化する虞れはない。
【0014】
更に具体的構成において、挟圧部材(5)の挟圧板(51)には、巻き取り電極体(2)との対向面に、前記挟圧ナット(54)を締め付ける際の挟圧部材(5)の回り止めに利用すべき角柱片(52)が突設されている。
該具体的構成によれば、工具によって挟圧ナット(54)を締め付ける際、角柱片(52)にも適当な工具を係合させて、挟圧部材(5)の共回りを阻止することが出来るので、挟圧ナット(54)の締め付け作業が容易であり、確実な締め付けを行なうことが出来る。
【0015】
更に具体的構成において、電池缶(1)の内部には、蓋体(12)と絶縁パッキング(8)の対向面間、絶縁パッキング(8)と締結部材(7)のフランジ部(72)の対向面間、及び締結部材(7)のフランジ部(72)と挟圧受け板(6)の対向面間に夫々、Oリング(82)(83)(84)が介在している。
該具体的構成によれば、蓋体(12)と絶縁パッキング(8)の間、絶縁パッキング(8)と締結部材(7)のフランジ部(72)の間、及び締結部材(7)のフランジ部(72)と挟圧受け板(6)の間に、更に高い液密性が得られる。
【0016】
【発明の効果】
本発明に係る円筒型リチウム二次電池においては、複数本の集電タブ(3)を電極端子機構(4)に接続する構造として、挟圧板(51)と挟圧受け板(6)の間に各集電タブ(3)の先端部を単に挟持する構造を採用しているので、従来の溶接作業が不要であり、接続作業は容易である。又、接続作業によって集電タブ(3)に孔があくことはなく、然も十分な接触面積で集電タブ(3)を挟圧板(51)と挟圧受け板(6)の間に挟持して接続することが出来るので、高い接続強度と高い信頼性が得られる。又、接続部分の電気抵抗は小さく、抵抗発熱の問題は生じない。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態につき、図面に沿って具体的に説明する。
本発明に係る円筒型リチウム二次電池は、図2に示す如く、筒体(11)の両端部に蓋体(12)(12)を溶接固定してなる円筒状の電池缶(1)を具え、両蓋体(12)(12)には、正負一対の電極端子機構(4)(4)が取り付けられている。又、各蓋体(12)には安全弁(13)が取り付けられている。
【0018】
電池缶(1)の内部には、図4に示す巻き取り電極体(2)が収容されている。巻き取り電極体(2)は、リチウム複合酸化物を含む正極(21)と、非水電解液が含浸されたセパレータ(22)と、炭素材料を含む負極(23)とを重ね合わせ、これらを渦巻き状に巻回して構成されている。正極(21)及び負極(23)には夫々、複数本の集電タブ(3)の基端部がスポット溶接等によって接合され、先端部は巻き取り電極体(2)から突出している。
尚、正極(21)に接合された集電タブ(3)はアルミニウム箔から形成され、負極(23)に接合された集電タブ(3)はニッケル箔から形成されている。
【0019】
図2に示す正負一対の電極端子機構(4)(4)の内、正極端子となる一方の電極端子機構(4)に対しては、前記正極(21)から引き出された複数本の集電タブ(3)が接続され、負極端子となる他方の電極端子機構(4)に対しては、前記負極(23)から引き出された複数本の集電タブ(3)が接続される。
これによって、巻き取り電極体(2)が発生する電力を、正負一対の電極端子機構(4)(4)から取り出すことが出来るのである。
【0020】
図3に示す如く、蓋体(12)には、その中央部に貫通孔(14)、外周部にネジ孔(15)が開設されており、貫通孔(14)には電極端子機構(4)が取り付けられ、ネジ孔(15)には安全弁(13)が取り付けられる。
電極端子機構(4)は、図1乃至図3に示す構造を有している。蓋体(12)の貫通孔(14)には、図1に示す如く、一対の絶縁パッキング(81)(8)が互いに係合した状態で装着される。図3に示す如く下側の絶縁パッキング(8)は円板部(85)及び円筒部(86)から形成される一方、上側の絶縁パッキング(81)はリング状に形成され、互いに係合した状態で、蓋体(12)の貫通孔(14)の内周面及び内周縁に密着可能である。
【0021】
蓋体(12)の貫通孔(14)には、締結部材(7)が蓋体(12)の内側から挿通される。締結部材(7)は、蓋体(12)の外側に突出すべきネジ部(71)を一体に具えると共に、蓋体(12)の内側に突出すべきフランジ部(72)を一体に具えている。
蓋体(12)と絶縁パッキング(8)の円板部(85)の対向面間には大径のOリング(82)が介在し、絶縁パッキング(8)の円板部(85)と締結部材(7)のフランジ部(72)の対向面間には小径のOリング(83)が介在する。
蓋体(12)の外側へ突出した締結部材(7)のネジ部(71)には、ワッシャ(61)を介して、第1締結ナット(73)及び第2締結ナット(74)が螺合する。
【0022】
又、締結部材(7)の中央孔(75)には、挟圧部材(5)が蓋体(12)の内側から挿通される。挟圧部材(5)は、締結部材(7)を貫通する軸部(50)を具え、該軸部(50)の先端部には、締結部材(7)から蓋体(12)の外側へ突出するネジ部(53)が形成されている。一方、軸部(50)の基端部には、円形の挟圧板(51)が固定され、更に該挟圧板(51)の背面には、角柱片(52)が一体に突設されている。
挟圧部材(5)の軸部(50)には、円形の挟圧受け板(6)が遊嵌されている。締結部材(7)のフランジ部(72)と挟圧受け板(6)の対向面間には、小径のOリング(84)が介在する。
挟圧部材(5)の軸部(50)は挟圧受け板(6)及び締結部材(7)の中央孔(75)を貫通し、締結部材(7)から外側へ突出したネジ部(53)に、挟圧ナット(54)が螺合する。
【0023】
図1に示す様に、巻き取り電極体(2)から伸びる複数本の集電タブ(3)は、その先端部が挟圧部材(5)の挟圧板(51)と挟圧受け板(6)の間に挟持されて、電極端子機構(4)に連結されている。尚、図1においては、便宜上、一部の集電タブ(3)のみが電極端子機構(4)に連結されている状態を示し、他の集電タブ(3)については、その先端部の図示を省略しているが、全ての集電タブ(3)の先端部が挟圧板(51)と挟圧受け板(6)の間に挟持されて、電極端子機構(4)に連結されている。
ここで、挟圧板(51)及び挟圧受け板(6)は、複数本の集電タブ(3)の先端部(31)を確実に挟持するために必要な大きさに形成され、十分な挟圧面積を有している。
【0024】
上記電極端子機構(4)の取り付け及び集電タブ(3)の接続は、図5及び図6に示す順序で行なわれる。
先ず図5(a)に示す様に、第1締結ナット(73)及び第2締結ナット(74)を用いて、一方の蓋体(12)に締結部材(7)を固定する。この際、図1に示す様に、絶縁パッキング(8)(81)が締結部材(7)のフランジ部(72)と第1締結ナット(73)によって挟圧され、十分な液密性が得られるまで、第1締結ナット(73)をねじ込む。
一方、筒体(11)には、図5(b)の如く巻き取り電極体(2)を収容する。
【0025】
その後、同図(c)に示す如く巻き取り電極体(2)から引き出された複数本の集電タブ(3)の先端部(31)を、挟圧部材(5)の挟圧板(51)と挟圧受け板(6)の間に挟み込む。この際、各集電タブ(3)の先端部(31)が互いに重なることなく、且つ、出来るだけ大きな接触面積で挟圧板(51)と挟圧受け板(6)の間に挟まれる様、各集電タブ(3)の先端部(31)を配置することが望ましい。
【0026】
この状態で、図1に示す様に、挟圧部材(5)の軸部(50)を、蓋体(12)に固定されている締結部材(7)の中央孔(75)に挿通し、ネジ部(53)に挟圧ナット(54)を螺合せしめて、締め付ける。この際、各集電タブ(3)の先端部(31)が挟圧部材(5)の挟圧板(51)と挟圧受け板(6)によって挟圧され、十分な接続強度が得られるまで、挟圧ナット(54)をねじ込む。
この結果、図6(a)に示す様に、筒体(11)と蓋体(12)とが集電タブ(3)を介して互いに連結されることになる。
他方の蓋体(12)についても同様の方法で電極端子機構(4)を固定する。
【0027】
その後、図6(b)の如く、レーザ溶接又はビーム溶接を用いて筒体(11)に両蓋体(12)(12)を接合固定する。
最後に、電池缶(1)の内部に電解液を注入した後、各蓋体(12)に安全弁(13)を取り付けて、電池缶(1)を封口する。
この結果、図1乃至図3に示す円筒型リチウム二次電池が完成する。
【0028】
上述の如く、本発明に係る円筒型リチウム二次電池においては、電極端子機構(4)に集電タブ(3)を接続する工程において、従来の如き溶接作業は不要であり、単に、複数本の集電タブ(3)の先端部(31)を挟圧板(51)と挟圧受け板(6)の間に挿入して、挟圧ナット(54)をねじ込めばよいので、作業が簡易であり、然も集電タブ(3)に孔があくことはなく、高い信頼性が得られる。
又、各集電タブ(3)の先端部(31)は十分な接触面積で挟圧板(51)と挟圧受け板(6)の間に挟持されるので、接触部における電気抵抗は小さく、然も高い接続強度が得られる。
【0029】
更に、上記電極端子機構(4)においては、締結部材(7)による締結構造と、挟圧部材(5)による挟圧構造が分離されており、先ず蓋体(12)に締結部材(7)を固定して、蓋体(12)と締結部材(7)の間に十分な電気的絶縁性と液密性を与える作業の後、該締結部材(7)に挟圧部材(5)を取り付けて、挟圧板(51)と挟圧受け板(6)の間に複数本の集電タブ(3)の先端部(31)を挟持する作業を行なうことが出来るので、先の作業で実現した電気的絶縁性と液密性が、後の作業によって変化する虞れはなく、又逆に、後の作業によって実現した集電タブ(3)の接続強度が、その後の締結部材(7)の締め付け力の再調整によって変化する虞れはない。
【0030】
更に、挟圧部材(5)の挟圧板(51)には、巻き取り電極体(2)との対向面に、角柱片(52)が一体に突設されているので、工具によって挟圧ナット(54)を締め付ける際、角柱片(52)にも適当な工具を係合させて、挟圧部材(5)の共回りを阻止することが出来、簡易且つ確実な締め付け作業が可能である。
【0031】
更に又、図9に示す従来の円筒型リチウム二次電池では、集電タブ(3)の溶接作業のために、集電タブ(3)は、巻き取り電極体(2)から鍔部(92)までの直線距離よりも大幅に長く形成する必要があり、これによって集電タブ(3)の電気抵抗が大きくなる問題があったが、図1乃至図3に示す本発明の円筒型リチウム二次電池においては、溶接作業が不要であるため、集電タブ(3)を従来よりも短く形成することが出来、これによって電気抵抗の低減を図ることが可能である。
【0032】
【実施例】
次に、本発明の円筒型リチウム二次電池(図1乃至図3)と従来の円筒型リチウム二次電池(図7乃至図9)を試作して性能比較実験を行なった結果について説明する。
正極の作製
正極活物質としてのLiCoO2(リチウム複合酸化物)と導電剤としての炭素を重量比90:5で混合し、正極合剤を作製した。次に、結着剤であるポリフッ化ビニリデンをN−メチル−2−ピロリドン(NMP)に溶解させて、NMP溶液を調製した。そして、正極合剤とポリフッ化ビニリデンの重量比が95:5となる様に正極合剤とNMP溶液を混合して、スラリーを調製し、このスラリーを正極集電体としてのアルミニウム箔の両面にドクターブレード法により塗布し、150℃で2時間乾燥して正極を作製した。
【0033】
負極の作製
結着剤であるポリフッ化ビニリデンをNMPに溶解させてNMP溶液を調製し、粒子径10μmの黒鉛の炭素粉末(炭素材料)とポリフッ化ビニリデンの重量比が85:15となる様に混練してスラリーと調製した。このスラリーを負極集電体としてのニッケル箔の両面にドクターブレード法によって塗布し、150℃で2時間真空乾燥して負極を作製した。
【0034】
電解液の調製
エチレンカーボネートとジエルチルカーボネートを体積比1:1で混合した溶媒に、LiPF6を1mol/lの割合で溶解し、電解液を調製した。
【0035】
本発明電池の組立
正極を構成しているアルミニウム箔の表面に、厚さ0.1mmのアルミニウム製集電タブを10本、一定間隔をおいて溶接すると共に、負極を構成しているニッケル箔の表面に、厚さ0.1mmのニッケル製集電タブを10本、一定間隔をおいて溶接する。そして、正極と負極の間にセパレータを挟んで渦巻き状に巻回し、巻き取り電極体を構成する。尚、セパレータとしては、イオン透過性のポリエチレン製の微多孔性膜を用いた。
この巻き取り電極体を電池缶となる筒体の内部に装填し、該巻き取り電極体から伸びる正側及び負側の集電タブを夫々、蓋体に取り付けられた本発明の電極端子機構の挟圧板と挟圧受け板の間に挟持して接続した後、該蓋体を筒体に溶接固定して、本発明に係る円筒型リチウム二次電池(本発明電池)を完成した。
尚、電池缶は、直径60mm、高さ180mmのものを採用した。電池電圧は3.6V、電池容量は30Ah(1/8C放電)であった。
【0036】
比較例電池の組立
本発明電池と同様に作製した巻き取り電極体を筒体の内部に装填し、該巻き取り電極体から伸びる正側及び負側の集電タブを夫々、蓋体に取り付けられた従来の電極端子機構にスポット溶接によって接続した後、該蓋体を筒体に溶接固定して、従来の円筒型リチウム二次電池(比較例電池)を完成した。
尚、スポット溶接条件は、電圧2V、最大出力電流150A、通電時間2msecであった。
【0037】
電池の評価
上記本発明電池及び比較例電池において、集電タブを電極端子機構に接続した後、蓋体を筒体に溶接固定する前の状態(図6(a)参照)で、筒体と蓋体の間に約500gの引っ張り荷重を10分間加えて、集電タブの電極端子機構との接続部における切断の有無を調べたところ、試作品50個の内、集電タブが切断した試作品の数は、本発明電池では零であったのに対し、比較例電池では、43個の試作品において集電タブが溶接部で切断されていた。
この結果から、本発明の円筒型リチウム二次電池によれば、集電タブと電極端子機構の間に十分な接続強度が得られることが明らかである。
【0038】
又、上記本発明電池及び比較例電池において、電池の組立に要する時間を計測したところ、本発明電池では、図5(a)に示す如く一方の蓋体(12)について、蓋体(12)に締結部材(7)等を取り付けるのに約1分、同図(b)の如く筒体(11)内に巻き取り電極体(2)を収納するのに約1分、同図(c)の如く挟圧板(51)と挟圧受け板(6)の間に集電タブ(3)を挟み込むのに約5分、挟圧部材(5)を締結部材(7)に挿通して図6(a)の如くネジ部(53)に挟圧ナット(54)をねじ込むのに約1分、そして、他方の蓋体(12)については、図5(a)の如く蓋体(12)に締結部材(7)を取り付けるのに約1分、同図(c)の如く挟圧板(51)と挟圧受け板(6)の間に集電タブ(3)を挟み込むのに約5分、挟圧部材(5)を締結部材(7)に挿通して図6(a)の如くネジ部(53)に挟圧ナット(54)をねじ込むのに約1分が必要であり、同図(b)に示す溶接工程に至るまでの所用時間が合計約15分であった。
【0039】
これに対し、比較例電池では、図9に示す一方の蓋体(12)について、蓋体(12)に電極端子機構(9)を取り付けるのに約1分、筒体(11)内に巻き取り電極体(2)を収納するのに約1分、電極端子機構(9)の鍔部(92)に複数の集電タブ(3)を溶接するのに約40分、そして、他方の蓋体(12)については、蓋体(12)に電極端子機構(9)を取り付けるのに約1分、電極端子機構(9)の鍔部(92)に複数の集電タブ(3)を溶接するのに約40分が必要であり、蓋体(12)の溶接工程に至るまでの合計所用時間が約83分となった。
この結果から、従来の円筒型リチウム二次電池では、集電タブの溶接作業に長い時間を要しており、電池組立時間の増大を招いていたが、本発明に係る円筒型リチウム二次電池によれば、集電タブの接続に要する時間が大幅に短縮される結果、電池組立時間も大幅に短縮されることが明らかである。
【図面の簡単な説明】
【図1】本発明に係る円筒型リチウム二次電池の要部を拡大して示す断面図である。
【図2】該円筒型リチウム二次電池の外観を示す斜視図である。
【図3】該円筒型リチウム二次電池に採用されている電極端子機構の分解斜視図である。
【図4】巻き取り電極体の一部を展開して示す斜視図である。
【図5】本発明に係る円筒型リチウム二次電池の組立工程の前半を示す図である。
【図6】同上工程の後半を示す図である。
【図7】従来の円筒型リチウム二次電池の外観を示す斜視図である。
【図8】該円筒型リチウム二次電池の分解斜視図である。
【図9】該円筒型リチウム二次電池の図1に対応する断面図である。
【符号の説明】
(1) 電池缶
(11) 筒体
(12) 蓋体
(2) 巻き取り電極体
(3) 集電タブ
(4) 電極端子機構
(5) 挟圧部材
(50) 軸部
(51) 挟圧板
(53) ネジ部
(54) 挟圧ナット
(6) 挟圧受け板
(7) 締結部材
(71) ネジ部
(72) フランジ部
(73) 締結ナット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical lithium secondary battery in which a winding electrode body is accommodated in a cylindrical battery can and power generated by the winding electrode body can be taken out from an electrode terminal mechanism attached to the battery can. It is about.
[0002]
[Prior art]
In recent years, lithium secondary batteries having high energy density and containing no harmful substances such as cadmium and lead have attracted attention as power sources for portable electronic devices, electric vehicles, road leveling and the like.
For example, in a relatively large capacity cylindrical lithium secondary battery used in an electric vehicle, as shown in FIGS. 7 and 8, lids (12) and (12) are welded and fixed to both ends of the cylinder (11). The cylindrical battery can (1) is configured to accommodate the winding electrode body (2). A pair of positive and negative electrode terminal mechanisms (9), (9) is attached to the lid bodies (12), (12), and the winding electrode body (2) and the both electrode terminal mechanisms (9), (9) are provided. The electric power generated by the winding electrode body (2) is connected to each other by a plurality of current collecting tabs (3) and can be taken out from the pair of electrode terminal mechanisms (9) and (9). . A safety valve (13) is attached to the lid (12).
[0003]
As shown in FIG. 9, the wound electrode body (2) includes a positive electrode (21) containing a lithium composite oxide, a separator (22) impregnated with a nonaqueous electrolyte, and a negative electrode (23) containing a carbon material. Are overlapped and wound into a spiral shape. A plurality of current collecting tabs (3) are drawn out from the positive electrode (21) and the negative electrode (23), respectively, and the tip portions (31) of the plurality of current collecting tabs (3) having the same polarity are connected to one electrode terminal mechanism ( 9). In FIG. 9, for the sake of convenience, only the state in which the tip portions of some of the current collecting tabs are connected to the electrode terminal mechanism (9) is shown. Illustration of the state connected to 9) is omitted.
The electrode terminal mechanism (9) includes a screw member (91) attached through the lid (12) of the battery can (1), and a hook (92) is provided at the base end of the screw member (91). ) Is formed. An insulating packing (93) is attached to the through hole of the lid (12), and electrical insulation and sealing between the lid (12) and the fastening member (91) are maintained. A washer (94) is fitted to the screw member (91) from the outside of the cylindrical body (11), and a first nut (95) and a second nut (96) are screwed together. These nuts (95) and (96) are tightened, and the insulating packing (93) is clamped by the flange (92) and the washer (94) of the screw member (91), thereby improving the sealing performance.
The tip portions (31) of the plurality of current collecting tabs (3) are fixed to the flange portion (92) of the screw member (91) by spot welding or ultrasonic welding.
[0004]
In the manufacturing process of the cylindrical lithium secondary battery, the electrode terminal mechanism (9) is attached to the lid (12) that constitutes the battery can (1), and the wound electrode body is placed inside the cylindrical body (11). With the (2) inserted, the tips (31) of a plurality of current collecting tabs (3) extending from the winding electrode body (2) are welded to the flange (92) of the electrode terminal mechanism (9). Finally, the lid (12) was placed over the opening of the cylindrical body (11) and both were fixed by welding.
[0005]
[Problems to be solved by the invention]
By the way, in the case of increasing the capacity of the cylindrical lithium secondary battery, if the number of current collecting tabs (3) is small, the electrical resistance increases and the battery performance is deteriorated. It is necessary to connect the winding electrode body (2) and the electrode terminal mechanism (9) by means of the current collecting tab (3).
[0006]
However, it is difficult to weld a plurality of current collecting tabs (3) to the collar portion (92), and at least several ten minutes of work time is required.
Moreover, since the current collecting tab (3) is formed from an aluminum or nickel foil having a thickness of about 0.1 mm, the welded portion may melt and become a hole. There was a problem that the connection strength of the tab (3) was significantly reduced. Even when normal welding is performed without a hole, since the area of the welded portion of the current collecting tab (3) and the flange portion (92) is extremely small, high connection strength cannot be obtained.
However, since the electrical resistance is remarkably increased at the welded portion of the current collecting tab (3) and the flange portion (92), there is a problem that resistance heat is generated.
[0007]
An object of the present invention is to provide a cylindrical lithium secondary battery in which a current collecting tab can be easily connected to an electrode terminal mechanism with high strength and reliability, and electrical resistance at a connecting portion is small. .
[0008]
[Means for solving the problems]
The cylindrical lithium secondary battery according to the present invention includes a battery can (1) in which a lid (12) is fixed to an opening of a cylinder (11), and the battery can (1) is wound around the inside. A take-up electrode body (2) is accommodated. The wound electrode body (2) has a spiral shape in which a positive electrode (21) containing a lithium composite oxide, a separator (22) impregnated with a non-aqueous electrolyte, and a negative electrode (23) containing a carbon material are overlapped. It is configured to be wound around.
Further, the electrode terminal mechanism (4) is attached to the lid (12) of the battery can (1), and the winding electrode body (2) and the electrode terminal mechanism (4) are provided with a plurality of current collecting tabs (3). ), And the electric power generated by the winding electrode body (2) can be taken out from the electrode terminal mechanism (4).
[0009]
In the cylindrical lithium secondary battery according to the present invention, the electrode terminal mechanism (4) is inserted into the through hole (14) opened in the lid (12) and electrically insulated from the lid (12). In addition, the tip of the lid (12) is fixed to the lid (12) in a liquid-tight state, and the outer end of the lid (12) is provided with a clamping nut (54), while the lid (12) The proximal end projecting inward is provided with a clamping plate (51) and a clamping receiving plate (6) that exert clamping pressure by screwing the clamping nut (54). And the front-end | tip part of the said several current collection tab (3) is clamped between the pinching plate (51) and the pinching receiving plate (6), and is connected with the electrode terminal mechanism (4).
In addition, each current collection tab (3) is formed from the strip | belt-shaped foil body which has electroconductivity. The clamping plate (51) and the clamping plate (6) have a sufficient clamping area necessary to securely clamp the tip portions of the plurality of current collecting tabs (3).
[0010]
In the cylindrical lithium secondary battery of the present invention, the tip portions of the plurality of current collecting tabs (3) are sandwiched between the pressure plate (51) and the pressure plate (6) to form an electrode terminal mechanism ( 4), it is not necessary to weld the tip of the current collecting tab (3) to the electrode terminal mechanism (4) in the assembling process, and simply a plurality of current collecting tabs (3). If the tip of each of the current collecting tabs (3) is inserted between the clamping plate (51) and the clamping plate (6) and the clamping nut (54) is screwed, The pressure plate (51) and the pressure receiving plate (6) are simultaneously pressed to complete the connection operation.
With the tip portions of the current collecting tabs (3) sandwiched between the pinching plate (51) and the pinching plate (6), the tip portions of the current collecting tabs (3) have a sufficient area. With the sufficient contact area, the electric resistance at the connecting portion becomes small and high connection strength can be obtained at the same time by contacting with the pinching plate (51) and the pinching plate (6).
Since the conventional welding structure is not adopted for the connection structure by this clamping pressure, there is no hole in the current collecting tab (3), and high reliability is obtained.
[0011]
In a specific configuration, the electrode terminal mechanism (4)
It is inserted through the through hole (14) established in the lid (12), and has a threaded portion (71) at the tip that projects outside the lid (12) and also projects inside the lid (12). A fastening member (7) having a flange (72) at the proximal end;
A fastening nut (73) for screwing the threaded portion (71) of the fastening member (7) to fix the fastening member (7) to the lid (12);
Mounted in the through hole (14) of the lid (12) and interposed between the lid (12) and the fastening member (7), the flange portion (72) of the fastening member (7) and the fastening nut (73) Insulating packings (8) and (81) which are sandwiched between the fastening member (7) and the lid (12) to maintain electrical insulation and liquid tightness;
A shaft portion (50) inserted through a central hole (75) opened in the fastening member (7) is provided, and a screw portion (53) is provided at a distal end portion of the shaft portion (50) protruding outside the lid (12). ) And a pinching member (5) to which the pinching plate (51) is fixed at the base end portion of the shaft portion (50) protruding inward of the lid (12), The pinching nut (54) is screwed into the screw portion (53) of the pinching member (5), and the pinching receiving plate (6) is loosely fitted to the shaft portion (50) of the pinching member (5). The clamping plate (51) is interposed between the flange portion (72) of the fastening member (7).
[0012]
In the specific configuration described above, the insulating packing (8) (81) is attached to the through hole (14) of the lid (12) and the fastening member before the lid (12) is fixed to the cylinder (11). Insert (7). Thereby, the screw part (71) formed in the front-end | tip part of a fastening member (7) protrudes on the outer side of a cover body (12). Therefore, the fastening nut (73) is screwed into the screw portion (71) and tightened. As a result, the insulating packings (8) and (81) are sandwiched between the flange portion (72) and the fastening nut (73) of the fastening member (7) and are clamped, and the fastening member (7) is covered with the lid. (12) will be securely fixed. In this state, sufficient electrical insulation and liquid tightness are maintained between the lid (12) and the fastening member (7).
Thereafter, the pinching plate (6) is fitted into the shaft portion (50) of the pinching member (5), and the shaft portion (50) of the pinching member (5) is connected to the central hole (75) of the fastening member (7). ) And the tips of a plurality of current collecting tabs (3) extending from the take-up electrode body (2) are sandwiched between the pressure receiving plate (6) and the pressure plate (51). In this state, the clamping nut (54) is screwed into the threaded portion (53) of the clamping member (5) protruding outward from the fastening member (7) and tightened. As a result, the leading ends of the plurality of current collecting tabs (3) are securely clamped by the clamping plate (51) and the clamping receiving plate (6) of the clamping member (5).
Finally, the lid (12) is fixed to the cylinder (11) to complete the cylindrical lithium secondary battery.
[0013]
As described above, after the fastening member (7) is first fixed to the lid (12), sufficient electrical insulation and liquid tightness are provided between the lid (12) and the fastening member (7). The operation of attaching the clamping member (5) to the fastening member (7) and clamping the tip portions of the plurality of current collecting tabs (3) between the clamping plate (51) and the clamping pressure receiving plate (6) Therefore, there is no possibility that the electrical insulation and liquid tightness achieved in the previous work will be changed by the subsequent work, and conversely, the collection realized by the later work. There is no possibility that the connection strength of the electric tab (3) will change due to the subsequent readjustment of the tightening force of the fastening member (7).
[0014]
In a more specific configuration, the pinching plate (51) of the pinching member (5) has a pinching member (5) for tightening the pinching nut (54) on the surface facing the winding electrode body (2). A prismatic piece (52) that should be used to prevent rotation is provided.
According to this specific configuration, when the clamping nut (54) is tightened with a tool, an appropriate tool is also engaged with the prismatic piece (52) to prevent co-rotation of the clamping member (5). As a result, the clamping nut (54) can be tightened easily and securely.
[0015]
In a more specific configuration, the battery can (1) has a flange (72) between the facing surfaces of the lid (12) and the insulating packing (8) and between the insulating packing (8) and the fastening member (7). O-rings (82), (83) and (84) are interposed between the opposing surfaces and between the flange portion (72) of the fastening member (7) and the opposing surfaces of the clamping pressure receiving plate (6), respectively.
According to the specific configuration, between the lid (12) and the insulating packing (8), between the insulating packing (8) and the flange portion (72) of the fastening member (7), and the flange of the fastening member (7). Further higher liquid tightness can be obtained between the portion (72) and the pinching plate (6).
[0016]
【The invention's effect】
In the cylindrical lithium secondary battery according to the present invention, a structure in which a plurality of current collecting tabs (3) are connected to the electrode terminal mechanism (4) is provided between the clamping plate (51) and the clamping plate (6). In addition, since a structure in which the front end portion of each current collecting tab (3) is simply clamped is employed, the conventional welding work is unnecessary and the connecting work is easy. Further, the current collecting tab (3) is not perforated by the connection work, but the current collecting tab (3) is sandwiched between the pressure plate (51) and the pressure receiving plate (6) with a sufficient contact area. Therefore, high connection strength and high reliability can be obtained. In addition, the electrical resistance of the connecting portion is small and the problem of resistance heat generation does not occur.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
As shown in FIG. 2, the cylindrical lithium secondary battery according to the present invention has a cylindrical battery can (1) formed by welding and fixing lids (12) and (12) to both ends of a cylinder (11). In addition, a pair of positive and negative electrode terminal mechanisms (4) and (4) are attached to the lids (12) and (12). In addition, a safety valve (13) is attached to each lid (12).
[0018]
The winding electrode body (2) shown in FIG. 4 is accommodated inside the battery can (1). The take-up electrode body (2) is composed of a positive electrode (21) containing a lithium composite oxide, a separator (22) impregnated with a non-aqueous electrolyte, and a negative electrode (23) containing a carbon material. It is made up of a spiral. Each of the positive electrode (21) and the negative electrode (23) has a base end portion of a plurality of current collecting tabs (3) joined thereto by spot welding or the like, and a distal end portion protruding from the take-up electrode body (2).
The current collecting tab (3) joined to the positive electrode (21) is made of aluminum foil, and the current collecting tab (3) joined to the negative electrode (23) is made of nickel foil.
[0019]
Of the pair of positive and negative electrode terminal mechanisms (4) and (4) shown in FIG. 2, a plurality of current collectors drawn from the positive electrode (21) are provided to one electrode terminal mechanism (4) serving as a positive electrode terminal. A plurality of current collecting tabs (3) drawn from the negative electrode (23) are connected to the other electrode terminal mechanism (4) which is connected to the tab (3) and serves as a negative electrode terminal.
Thereby, the electric power generated by the winding electrode body (2) can be taken out from the pair of positive and negative electrode terminal mechanisms (4) and (4).
[0020]
As shown in FIG. 3, the lid (12) has a through hole (14) in the center and a screw hole (15) in the outer periphery, and the through hole (14) has an electrode terminal mechanism (4). ) And a safety valve (13) is attached to the screw hole (15).
The electrode terminal mechanism (4) has the structure shown in FIGS. As shown in FIG. 1, a pair of insulating packings (81) and (8) are attached to the through hole (14) of the lid (12) in a state of being engaged with each other. As shown in FIG. 3, the lower insulating packing (8) is formed of a disc portion (85) and a cylindrical portion (86), while the upper insulating packing (81) is formed in a ring shape and is engaged with each other. In this state, it can be in close contact with the inner peripheral surface and inner peripheral edge of the through hole (14) of the lid (12).
[0021]
The fastening member (7) is inserted from the inside of the lid (12) into the through hole (14) of the lid (12). The fastening member (7) is integrally provided with a screw portion (71) that should protrude to the outside of the lid (12) and a flange portion (72) that should be protruded to the inside of the lid (12). It is.
A large-diameter O-ring (82) is interposed between the opposing surfaces of the lid (12) and the disk part (85) of the insulating packing (8), and is fastened to the disk part (85) of the insulating packing (8). A small-diameter O-ring (83) is interposed between the opposing surfaces of the flange portion (72) of the member (7).
A first fastening nut (73) and a second fastening nut (74) are screwed into the threaded portion (71) of the fastening member (7) protruding outward from the lid (12) via a washer (61). To do.
[0022]
The pinching member (5) is inserted into the central hole (75) of the fastening member (7) from the inside of the lid (12). The pinching member (5) includes a shaft portion (50) penetrating the fastening member (7), and a distal end portion of the shaft portion (50) extends from the fastening member (7) to the outside of the lid (12). A protruding screw part (53) is formed. On the other hand, a circular pinching plate (51) is fixed to the base end portion of the shaft portion (50), and a prismatic piece (52) is integrally projected on the back surface of the pinching plate (51). .
A circular pinching pressure receiving plate (6) is loosely fitted on the shaft portion (50) of the pinching member (5). A small-diameter O-ring (84) is interposed between the opposing surfaces of the flange portion (72) of the fastening member (7) and the clamping pressure receiving plate (6).
The shaft portion (50) of the pinching member (5) penetrates the pinching receiving plate (6) and the central hole (75) of the fastening member (7) and protrudes outward from the fastening member (7) (53 ) And the clamping nut (54) are screwed together.
[0023]
As shown in FIG. 1, a plurality of current collecting tabs (3) extending from the take-up electrode body (2) have tips at the tip portions of the pinching plate (51) and pinching plate (6) of the pinching member (5). ) And is connected to the electrode terminal mechanism (4). In FIG. 1, for the sake of convenience, only a part of the current collecting tabs (3) is shown connected to the electrode terminal mechanism (4). Although not shown, the tip ends of all the current collecting tabs (3) are sandwiched between the clamping plate (51) and the clamping receiving plate (6) and connected to the electrode terminal mechanism (4). Yes.
Here, the clamping plate (51) and the clamping plate (6) are formed in a size necessary to securely clamp the tip portions (31) of the plurality of current collecting tabs (3), and are sufficiently large. It has a clamping area.
[0024]
The attachment of the electrode terminal mechanism (4) and the connection of the current collecting tab (3) are performed in the order shown in FIGS.
First, as shown in FIG. 5 (a), the fastening member (7) is fixed to one lid (12) using the first fastening nut (73) and the second fastening nut (74). At this time, as shown in FIG. 1, the insulating packings (8) and (81) are clamped by the flange portion (72) of the fastening member (7) and the first fastening nut (73) to obtain sufficient liquid tightness. Screw in the first fastening nut (73) until
On the other hand, the take-up electrode body (2) is accommodated in the cylindrical body (11) as shown in FIG.
[0025]
Thereafter, as shown in FIG. 5C, the tip portions (31) of the plurality of current collecting tabs (3) drawn out from the winding electrode body (2) are attached to the pinching plate (51) of the pinching member (5). And sandwiched between the pressure receiving plates (6). At this time, the tip portions (31) of the current collecting tabs (3) do not overlap with each other and are sandwiched between the pinching plate (51) and the pinching plate (6) with a contact area as large as possible. It is desirable to arrange the tip (31) of each current collecting tab (3).
[0026]
In this state, as shown in FIG. 1, the shaft portion (50) of the clamping member (5) is inserted through the central hole (75) of the fastening member (7) fixed to the lid (12). Screw the clamping nut (54) into the threaded portion (53) and tighten. At this time, the tip (31) of each current collecting tab (3) is pinched by the pinching plate (51) and the pinching receiving plate (6) of the pinching member (5) until sufficient connection strength is obtained. Screw the clamping nut (54).
As a result, as shown in FIG. 6A, the cylinder (11) and the lid (12) are connected to each other via the current collecting tab (3).
For the other lid (12), the electrode terminal mechanism (4) is fixed in the same manner.
[0027]
Thereafter, as shown in FIG. 6B, the lids 12 and 12 are joined and fixed to the cylindrical body 11 by using laser welding or beam welding.
Finally, after injecting the electrolyte into the battery can (1), a safety valve (13) is attached to each lid (12) to seal the battery can (1).
As a result, the cylindrical lithium secondary battery shown in FIGS. 1 to 3 is completed.
[0028]
As described above, in the cylindrical lithium secondary battery according to the present invention, the conventional welding operation is not necessary in the step of connecting the current collecting tab (3) to the electrode terminal mechanism (4). The tip (31) of the current collector tab (3) can be inserted between the pinching plate (51) and the pinching plate (6) and the pinching nut (54) can be screwed in, so the work is simple. However, there is no hole in the current collecting tab (3), and high reliability can be obtained.
Moreover, since the front end portion (31) of each current collecting tab (3) is sandwiched between the pressure plate (51) and the pressure plate (6) with a sufficient contact area, the electrical resistance at the contact portion is small. High connection strength can be obtained.
[0029]
Further, in the electrode terminal mechanism (4), the fastening structure by the fastening member (7) and the clamping structure by the clamping member (5) are separated. First, the fastening member (7) is attached to the lid (12). After fixing the cover and providing sufficient electrical insulation and liquid tightness between the lid (12) and the fastening member (7), the clamping member (5) is attached to the fastening member (7). Thus, the work of holding the tip portions (31) of the plurality of current collecting tabs (3) between the pressure plate (51) and the pressure receiving plate (6) can be performed. There is no possibility that the electrical insulation and liquid tightness will be changed by the subsequent work, and conversely, the connection strength of the current collecting tab (3) realized by the subsequent work is that of the subsequent fastening member (7). There is no possibility of changing due to readjustment of the tightening force.
[0030]
Furthermore, the clamping plate (51) of the clamping member (5) is integrally provided with a prismatic piece (52) on the surface facing the take-up electrode body (2). When fastening (54), an appropriate tool can be engaged with the prismatic piece (52) to prevent the pinching member (5) from rotating together, and a simple and reliable fastening operation is possible.
[0031]
Furthermore, in the conventional cylindrical lithium secondary battery shown in FIG. 9, the current collecting tab (3) is moved from the winding electrode body (2) to the flange portion (92) for the welding operation of the current collecting tab (3). 3), the electrical resistance of the current collecting tab (3) increases. However, the cylindrical lithium secondary battery of the present invention shown in FIGS. In the secondary battery, since the welding work is not required, the current collecting tab (3) can be formed shorter than the conventional one, thereby reducing the electric resistance.
[0032]
【Example】
Next, a description will be given of the results of a performance comparison experiment using a cylindrical lithium secondary battery of the present invention (FIGS. 1 to 3) and a conventional cylindrical lithium secondary battery (FIGS. 7 to 9).
Preparation <br/> LiCoO 2 (lithium composite oxides) as the positive electrode active material and the weight ratio of carbon as a conductive agent of the positive electrode 90 were mixed with 5 to prepare a positive electrode mixture. Next, polyvinylidene fluoride as a binder was dissolved in N-methyl-2-pyrrolidone (NMP) to prepare an NMP solution. Then, the positive electrode mixture and the NMP solution are mixed so that the weight ratio of the positive electrode mixture and polyvinylidene fluoride is 95: 5 to prepare a slurry, and this slurry is formed on both surfaces of the aluminum foil as the positive electrode current collector. It apply | coated by the doctor blade method and dried at 150 degreeC for 2 hours, and produced the positive electrode.
[0033]
Production of negative electrode Polyvinylidene fluoride as a binder was dissolved in NMP to prepare an NMP solution, and the weight ratio of graphite carbon powder (carbon material) having a particle diameter of 10 μm to polyvinylidene fluoride was 85:15. The resulting mixture was kneaded to prepare a slurry. This slurry was applied to both surfaces of a nickel foil as a negative electrode current collector by a doctor blade method, and vacuum dried at 150 ° C. for 2 hours to produce a negative electrode.
[0034]
Volume ratio Preparation <br/> ethylene carbonate and diethyl rutile carbonate electrolyte 1: mixed solvent at 1, the LiPF 6 was dissolved at a ratio of 1 mol / l, to prepare an electrolytic solution.
[0035]
Assembling the battery of the present invention Ten aluminum current collecting tabs having a thickness of 0.1 mm are welded to the surface of the aluminum foil constituting the positive electrode at regular intervals, and the negative electrode is configured. Ten nickel current collecting tabs with a thickness of 0.1 mm are welded to the surface of the nickel foil at regular intervals. Then, the separator is sandwiched between the positive electrode and the negative electrode and wound in a spiral shape to form a wound electrode body. As the separator, an ion-permeable polyethylene microporous membrane was used.
The electrode terminal mechanism of the present invention in which the take-up electrode body is loaded into a cylindrical body serving as a battery can, and positive and negative current collecting tabs extending from the take-up electrode body are respectively attached to the lid. After being sandwiched and connected between the sandwiching plate and the sandwiching plate, the lid was welded and fixed to the cylinder to complete the cylindrical lithium secondary battery (the present battery) according to the present invention.
A battery can having a diameter of 60 mm and a height of 180 mm was used. The battery voltage was 3.6 V, and the battery capacity was 30 Ah (1 / 8C discharge).
[0036]
Assembly of comparative battery A wound electrode body produced in the same manner as the battery of the present invention was loaded into a cylindrical body, and positive and negative current collecting tabs extending from the wound electrode body were respectively covered with lids. After being connected to a conventional electrode terminal mechanism attached to the body by spot welding, the lid was welded and fixed to the cylinder to complete a conventional cylindrical lithium secondary battery (comparative battery).
The spot welding conditions were a voltage of 2 V, a maximum output current of 150 A, and an energization time of 2 msec.
[0037]
Evaluation of battery In the battery of the present invention and the comparative example battery, after the current collector tab is connected to the electrode terminal mechanism, it is in a state (see FIG. 6A) before the lid is welded and fixed to the cylindrical body. Then, a tensile load of about 500 g was applied between the cylinder and the lid for 10 minutes, and the presence or absence of disconnection at the connection portion of the current collector tab with the electrode terminal mechanism was examined. The number of prototypes that were cut was zero in the battery of the present invention, whereas in the comparative battery, the current collecting tabs were cut at the welds in 43 prototypes.
From this result, according to the cylindrical lithium secondary battery of the present invention, it is clear that sufficient connection strength can be obtained between the current collecting tab and the electrode terminal mechanism.
[0038]
Further, in the battery of the present invention and the comparative battery, the time required for the assembly of the battery was measured. In the battery of the present invention, as shown in FIG. It takes about 1 minute to attach the fastening member (7), etc., and about 1 minute to store the winding electrode body (2) in the cylindrical body (11) as shown in FIG. As shown in FIG. 6, the clamping member (5) is inserted into the fastening member (7) for about 5 minutes to sandwich the current collecting tab (3) between the clamping plate (51) and the clamping receiving plate (6). About 1 minute to screw the clamping nut (54) into the threaded portion (53) as shown in (a), and the other lid (12) is attached to the lid (12) as shown in FIG. About 1 minute to attach the fastening member (7), about 5 minutes to sandwich the current collecting tab (3) between the clamping plate (51) and the clamping plate (6) as shown in FIG. The clamping member (5) is inserted into the fastening member (7) and the clamping nut (54) is screwed into the screw portion (53) as shown in FIG. 6 (a). About 1 minute is required, time required up to the welding process shown in (b) was a total of about 15 minutes.
[0039]
On the other hand, in the comparative battery, one lid body (12) shown in FIG. 9 is wound in the cylinder body (11) for about 1 minute to attach the electrode terminal mechanism (9) to the lid body (12). About 1 minute to house the collecting electrode body (2), about 40 minutes to weld the current collecting tabs (3) to the collar part (92) of the electrode terminal mechanism (9), and the other lid For the body (12), it takes about 1 minute to attach the electrode terminal mechanism (9) to the lid (12), and a plurality of current collecting tabs (3) are welded to the flange (92) of the electrode terminal mechanism (9). It took about 40 minutes to do this, and the total time required to reach the lid (12) welding process was about 83 minutes.
From this result, in the conventional cylindrical lithium secondary battery, it took a long time to weld the current collecting tab, which led to an increase in battery assembly time, but the cylindrical lithium secondary battery according to the present invention According to the above, it is apparent that the time required for connecting the current collecting tab is greatly reduced, and as a result, the battery assembly time is also greatly reduced.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view showing a main part of a cylindrical lithium secondary battery according to the present invention.
FIG. 2 is a perspective view showing an appearance of the cylindrical lithium secondary battery.
FIG. 3 is an exploded perspective view of an electrode terminal mechanism employed in the cylindrical lithium secondary battery.
FIG. 4 is a perspective view showing a part of a take-up electrode body in a developed state.
FIG. 5 is a diagram showing the first half of an assembling process of a cylindrical lithium secondary battery according to the present invention.
FIG. 6 is a diagram showing the latter half of the process.
FIG. 7 is a perspective view showing an appearance of a conventional cylindrical lithium secondary battery.
FIG. 8 is an exploded perspective view of the cylindrical lithium secondary battery.
9 is a cross-sectional view corresponding to FIG. 1 of the cylindrical lithium secondary battery.
[Explanation of symbols]
(1) Battery can
(11) Tube
(12) Lid
(2) Winding electrode body
(3) Current collection tab
(4) Electrode terminal mechanism
(5) Clamping member
(50) Shaft
(51) Cinch plate
(53) Screw part
(54) Clamping nut
(6) Holding pressure plate
(7) Fastening member
(71) Screw
(72) Flange
(73) Fastening nut

Claims (7)

筒体(11)の開口部に蓋体(12)を固定してなる電池缶(1)の内部に、巻き取り電極体(2)が収容され、巻き取り電極体(2)は、リチウム複合酸化物を含む正極(21)と、非水電解液が含浸されたセパレータ(22)と、炭素材料を含む負極(23)とを重ね合わせて渦巻き状に巻回して構成され、電池缶(1)の蓋体(12)には電極端子機構(4)が取り付けられ、巻き取り電極体(2)と電極端子機構(4)とが、複数本の集電タブ(3)により互いに連結されて、巻き取り電極体(2)が発生する電力を電極端子機構(4)から外部に取り出すことが可能な円筒型リチウム二次電池において、電極端子機構(4)は、蓋体(12)に開設した貫通孔(14)に挿通されて、蓋体(12)に対して電気的絶縁性及び液密性を保った状態で蓋体(12)に固定され、蓋体(12)の外側に突出した先端部には、挟圧ナット(54)を具える一方、蓋体(12)の内側に突出した基端部には、前記挟圧ナット(54)のねじ込みによって挟圧力を発揮する挟圧板(51)及び挟圧受け板(6)を具え、前記複数本の集電タブ(3)の先端部が挟圧板(51)と挟圧受け板(6)の間に挟持されて、電極端子機構(4)に連結されていることを特徴とする円筒型リチウム二次電池。The winding electrode body (2) is accommodated in the battery can (1) formed by fixing the lid body (12) to the opening of the cylindrical body (11). A positive electrode (21) containing an oxide, a separator (22) impregnated with a non-aqueous electrolyte, and a negative electrode (23) containing a carbon material are overlapped and wound in a spiral shape to form a battery can (1 The electrode terminal mechanism (4) is attached to the lid body (12) of the), and the take-up electrode body (2) and the electrode terminal mechanism (4) are connected to each other by a plurality of current collecting tabs (3). In the cylindrical lithium secondary battery capable of taking out the electric power generated by the winding electrode body (2) from the electrode terminal mechanism (4), the electrode terminal mechanism (4) is opened in the lid body (12). Inserted into the through-hole (14), fixed to the lid (12) while maintaining electrical insulation and liquid tightness with respect to the lid (12), and protrudes outside the lid (12). At the tip, the clamping nut ( On the other hand, a base end projecting inward of the lid (12) is provided with a pinching plate (51) and a pinching receiving plate (6) that exert a pinching force by screwing the pinching nut (54). ), And the tip portions of the plurality of current collecting tabs (3) are sandwiched between the clamping plate (51) and the clamping plate (6) and connected to the electrode terminal mechanism (4). A cylindrical lithium secondary battery. 電極端子機構(4)は、
蓋体(12)に開設した貫通孔(14)に挿通され、蓋体(12)の外側に突出した先端部にネジ部(71)を具えると共に、蓋体(12)の内側に突出した基端部にフランジ部(72)を具えた締結部材(7)と、
締結部材(7)のネジ部(71)に螺合して、締結部材(7)を蓋体(12)に固定するための締結ナット(73)と、
蓋体(12)の貫通孔(14)に装着されて、蓋体(12)と締結部材(7)の間に介在し、締結部材(7)のフランジ部(72)と締結ナット(73)によって挟圧され、締結部材(7)と蓋体(12)の間の電気的絶縁性及び液密性を保つ絶縁パッキング(8)(81)と、
締結部材(7)に開設した中央孔(75)に挿通された軸部(50)を具え、蓋体(12)の外側に突出した軸部(50)の先端部には、ネジ部(53)が形成されると共に、蓋体(12)の内側に突出した軸部(50)の基端部には、前記挟圧板(51)が固定されている挟圧部材(5)とを具え、前記挟圧ナット(54)は挟圧部材(5)のネジ部(53)に螺合し、挟圧受け板(6)は挟圧部材(5)の軸部(50)に遊嵌されて、挟圧板(51)と締結部材(7)のフランジ部(72)の間に介在している請求項1に記載の円筒型リチウム二次電池。
The electrode terminal mechanism (4)
It is inserted into the through hole (14) established in the lid (12), and has a threaded portion (71) at the tip that projects to the outside of the lid (12) and also projects to the inside of the lid (12). A fastening member (7) having a flange (72) at the proximal end;
A fastening nut (73) for screwing the threaded portion (71) of the fastening member (7) to fix the fastening member (7) to the lid (12);
Mounted in the through hole (14) of the lid (12) and interposed between the lid (12) and the fastening member (7), the flange portion (72) of the fastening member (7) and the fastening nut (73) Insulating packings (8) and (81) which are sandwiched between the fastening member (7) and the lid (12) to maintain electrical insulation and liquid tightness;
A shaft portion (50) inserted through a central hole (75) opened in the fastening member (7) is provided, and a screw portion (53) is provided at a distal end portion of the shaft portion (50) protruding outside the lid (12). ) And a pinching member (5) to which the pinching plate (51) is fixed at the base end portion of the shaft portion (50) protruding inward of the lid (12), The pinching nut (54) is screwed into the screw portion (53) of the pinching member (5), and the pinching receiving plate (6) is loosely fitted to the shaft portion (50) of the pinching member (5). The cylindrical lithium secondary battery according to claim 1, wherein the cylindrical lithium secondary battery is interposed between the clamping plate (51) and the flange portion (72) of the fastening member (7).
挟圧部材(5)の挟圧板(51)には、巻き取り電極体(2)との対向面に、前記挟圧ナット(54)を締め付ける際の挟圧部材(5)の回り止めに利用すべき角柱片(52)が突設されている請求項2に記載の円筒型リチウム二次電池。The pinching plate (51) of the pinching member (5) is used to prevent the pinching member (5) from rotating when the clamping nut (54) is fastened to the surface facing the winding electrode body (2). The cylindrical lithium secondary battery according to claim 2, wherein a prismatic piece (52) to be projected is provided. 電池缶(1)の内部には、蓋体(12)と絶縁パッキング(8)の対向面間、絶縁パッキング(8)と締結部材(7)のフランジ部(72)の対向面間、及び締結部材(7)のフランジ部(72)と挟圧受け板(6)の対向面間に夫々、Oリング(82)(83)(84)が介在している請求項3に記載の円筒型リチウム二次電池。Inside the battery can (1), between the facing surfaces of the lid (12) and the insulating packing (8), between the facing surfaces of the insulating packing (8) and the flange portion (72) of the fastening member (7), and fastening The cylindrical lithium according to claim 3, wherein O-rings (82), (83), and (84) are interposed between the opposing surfaces of the flange portion (72) of the member (7) and the clamping pressure receiving plate (6), respectively. Secondary battery. 挟圧板(51)及び挟圧受け板(6)は、前記複数本の集電タブ(3)の先端部を挟持することが可能な挟圧面積を有している請求項1乃至請求項4の何れかに記載の円筒型リチウム二次電池。The pinching plate (51) and the pinching receiving plate (6) have a pinching area capable of holding the tip portions of the plurality of current collecting tabs (3). A cylindrical lithium secondary battery according to any one of the above. 挟圧板(51)と挟圧受け板(6)は、互いに略同じ外径を有する円板状に形成されている請求項1乃至請求項5の何れかに記載の円筒型リチウム二次電池。The cylindrical lithium secondary battery according to any one of claims 1 to 5, wherein the pinching plate (51) and the pinching plate (6) are formed in a disc shape having substantially the same outer diameter. 各集電タブ(3)は、導電性を有する帯状の箔体から形成されている請求項1乃至請求項6の何れかに記載の円筒型リチウム二次電池。Each cylindrical current collection tab (3) is a cylindrical lithium secondary battery in any one of Claim 1 thru | or 6 currently formed from the strip | belt-shaped foil body which has electroconductivity.
JP32855097A 1997-11-28 1997-11-28 Cylindrical lithium secondary battery Expired - Lifetime JP3777487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32855097A JP3777487B2 (en) 1997-11-28 1997-11-28 Cylindrical lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32855097A JP3777487B2 (en) 1997-11-28 1997-11-28 Cylindrical lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH11162521A JPH11162521A (en) 1999-06-18
JP3777487B2 true JP3777487B2 (en) 2006-05-24

Family

ID=18211539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32855097A Expired - Lifetime JP3777487B2 (en) 1997-11-28 1997-11-28 Cylindrical lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3777487B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246142B2 (en) 2009-12-16 2016-01-26 Samsung Sdi Co., Ltd. Secondary battery having interconnected positive and negative electrode tabs

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610444B2 (en) * 2000-09-29 2003-08-26 Sanyo Electric Co., Ltd. Secondary cell with non-rotatable terminal member
GB2440363B (en) * 2006-07-26 2009-01-07 Donald Pi Hsiang Wu Conductive structure for an electrode assembly of a lithium seondary battery
DE102006054309A1 (en) * 2006-11-17 2008-05-21 Dieter Teckhaus Battery cell with contact element arrangement
KR101552904B1 (en) 2008-12-08 2015-09-14 삼성에스디아이 주식회사 Rechargeable battery and battery module using thereof
JP5566641B2 (en) * 2009-08-26 2014-08-06 株式会社東芝 battery
JP2011238375A (en) * 2010-05-06 2011-11-24 Hitachi Vehicle Energy Ltd Secondary battery and method for manufacturing the same
TWI450432B (en) 2011-03-29 2014-08-21 Ind Tech Res Inst End cover assembly of battery
WO2018097285A1 (en) * 2016-11-25 2018-05-31 日立化成株式会社 Terminal structure and washer
CN113972405B (en) * 2021-10-19 2023-11-28 三一技术装备有限公司 Battery cell winding device
CN115064842B (en) * 2022-05-28 2023-03-24 楚能新能源股份有限公司 Lithium ion battery current collection structure
CN115133228B (en) * 2022-05-28 2023-03-10 楚能新能源股份有限公司 Lithium ion battery current collection structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246142B2 (en) 2009-12-16 2016-01-26 Samsung Sdi Co., Ltd. Secondary battery having interconnected positive and negative electrode tabs

Also Published As

Publication number Publication date
JPH11162521A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
KR100745955B1 (en) Nonagueous Electrolyte Secondary Battery
US6610444B2 (en) Secondary cell with non-rotatable terminal member
JP3777487B2 (en) Cylindrical lithium secondary battery
JP3939116B2 (en) Secondary battery
JP3831595B2 (en) Cylindrical secondary battery
JP4020544B2 (en) Non-aqueous electrolyte secondary battery
JP3777496B2 (en) Non-aqueous electrolyte secondary battery
WO2021124995A1 (en) Cylindrical battery
JP3631132B2 (en) Cylindrical non-aqueous electrolyte secondary battery
JP3519953B2 (en) Rechargeable battery
JP2003086165A (en) Cylindrical battery
JP2003346774A (en) Battery
JP3588264B2 (en) Rechargeable battery
JP4159299B2 (en) Secondary battery
JP3738166B2 (en) Non-aqueous electrolyte secondary battery
JP3909996B2 (en) Non-aqueous electrolyte secondary battery
JP4465754B2 (en) Sealed battery
JP2004134204A (en) Sealed type battery
JP3842925B2 (en) Cylindrical battery
JP3661984B2 (en) Cylindrical secondary battery
JP4288556B2 (en) battery
JP4280349B2 (en) Organic electrolyte secondary battery
JP3927364B2 (en) Cylindrical lithium secondary battery
JP4289820B2 (en) Secondary battery
JP3588265B2 (en) Cylindrical secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7