JP4159299B2 - Secondary battery - Google Patents
Secondary battery Download PDFInfo
- Publication number
- JP4159299B2 JP4159299B2 JP2002068179A JP2002068179A JP4159299B2 JP 4159299 B2 JP4159299 B2 JP 4159299B2 JP 2002068179 A JP2002068179 A JP 2002068179A JP 2002068179 A JP2002068179 A JP 2002068179A JP 4159299 B2 JP4159299 B2 JP 4159299B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- current collector
- collector plate
- edge
- electrode terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、電池缶の内部に二次電池要素となる巻き取り電極体が収容され、電池缶に設けた一対の電極端子部から巻き取り電極体の発生電力を取り出すことが出来る二次電池に関するものである。
【0002】
【従来の技術】
近年、携帯型電子機器、電気自動車等の電源として、エネルギー密度の高いリチウムイオン二次電池が注目されている。例えば電気自動車に用いられる比較的大きな容量の円筒型リチウムイオン二次電池は、図9及び図10に示す様に、筒体(11)の両端部に蓋体(12)(12)を溶接固定してなる円筒状の電池缶(1)の内部に、巻き取り電極体(4)を収容して構成されている。両蓋体(12)(12)には、正負一対の電極端子機構(9)(9)が取り付けられており、巻き取り電極体(4)の両極と両電極端子機構(9)(9)とが互いに接続されて、巻き取り電極体(4)が発生する電力を一対の電極端子機構(9)(9)から外部に取り出すことが可能となっている。又、各蓋体(12)には圧力開閉式のガス排出弁(13)が取り付けられている。
【0003】
巻き取り電極体(4)は、図11に示す様に、それぞれ帯状の正極(41)と負極(43)の間に帯状のセパレータ(42)を介在させて、これらを渦巻き状に巻回して構成されている。正極(41)は、アルミニウム箔からなる帯状芯体(45)の両面にリチウム複合酸化物からなる正極活物質(44)を塗布して構成され、負極(43)は、銅箔からなる帯状芯体(47)の両面に炭素材料を含む負極活物質(46)を塗布して構成されている。セパレータ(42)には、非水電解液が含浸されている。
【0004】
ここで、正極(41)及び負極(43)はそれぞれセパレータ(42)上に幅方向へずらして重ね合わされ、渦巻き状に巻き取られている。これによって、巻き取り電極体(4)の巻き軸方向の両端部の内、一方の端部では、セパレータ(42)の端縁よりも外方へ正極(41)の芯体(45)の端縁(48)が突出すると共に、他方の端部では、セパレータ(42)の端縁よりも外方へ負極(43)の芯体(47)の端縁(48)が突出している。
そして、巻き取り電極体(4)の両端部にはそれぞれ円板状の集電板(5)が溶接され、該集電板(5)に突設した短冊状のリード部(55)が図10に示す電極端子機構(9)の基端部に接続される。
【0005】
電極端子機構(9)は、電池缶(1)の蓋体(12)を貫通して取り付けられた電極端子(91)を具え、該電極端子(91)の基端部にはフランジ(92)が形成されている。蓋体(12)の貫通孔には絶縁パッキング(93)が装着され、蓋体(12)と締結部材(91)の間の電気的絶縁性とシール性が保たれている。電極端子(91)には、蓋体(12)の外側からワッシャ(94)が嵌められると共に、第1ナット(95)及び第2ナット(96)が螺合している。そして、第1ナット(95)を締め付けて、電極端子(91)のフランジ(92)とワッシャ(94)によって絶縁パッキング(93)を挟圧することにより、シール性を高めている。
尚、前記集電板(5)のリード部(55)の先端部は、電極端子(91)のフランジ(92)に、スポット溶接或いは超音波溶接によって固定されている。
【0006】
ところで、特に電気自動車用の電源等として用いるリチウムイオン二次電池においては、高容量であると共に、高出力を得るために出来るだけ内部抵抗を低減させることが必要となる。
そこで、二次電池の内部抵抗の低減を図るべく、図11に示す集電構造においては、集電板(5)の平板状本体(51)に、中央孔(54)を中心として放射状に伸びる複数条の円弧状凸部(52)が一体成型され、巻き取り電極体(4)側に突出している。又、平板状本体(51)には、隣接する円弧状凸部(52)(52)の間にそれぞれ、複数条の切り起し片(53)が形成され、巻き取り電極体(4)側に突出している。
【0007】
上記集電構造を有する二次電池の製造工程においては、巻き取り電極体(4)の端部に形成されている芯体端縁(48)に集電板(5)を押し付ける。これによって、集電板(5)の円弧状凸部(52)は、巻き取り電極体(4)の芯体端縁(48)に食い込み、円弧状凸部(52)と芯体端縁(48)の間には、円筒面からなる接合面が形成される。又、集電板(5)の切り起し片(53)は、巻き取り電極体(4)の芯体端縁(48)に深く食い込み、芯体端縁(48)と圧着することになる。
【0008】
この状態で、集電板(5)の円弧状凸部(52)の内周面に向けてレーザビームを照射し、レーザ溶接を施す。この結果、集電板(5)の円弧状凸部(52)と巻き取り電極体(4)の芯体端縁(48)とが、大きな接触面積で互いに接合されると共に、切り起し片(53)と芯体端縁(48)の間の圧着状態が維持されることになる。
【0009】
従って、集電板(5)は、各円弧状凸部(52)と芯体端縁(48)の溶接部にて大きな接触面積で芯体端縁(48)に接合されると共に、該溶接部以外の領域では、各切り起し片(53)が芯体端縁(48)に食い込んで、良好な接触状態が得られるため、集電板(5)と巻き取り電極体(4)の間の接触抵抗が小さくなる。然も、集電板(5)に形成された複数条の切り起し片(53)によって、芯体端縁(48)の全域から集電が行なわれるので、高い集電性能が得られる。
【0010】
【発明が解決しようとする課題】
しかしながら、図10に示す如く集電板(5)に突設したリード部(55)を電極端子機構(9)に接続した集電構造では、巻き取り電極体(4)から集電板(5)のリード部(55)を経て電極端子機構(9)に至る電流経路において、集電板(5)の平板状本体(51)の端部から電極端子(91)まで伸びるリード部(55)は長く、然もその断面積が小さいため、リード部(55)が形成する電流経路の電気抵抗が大きなものとなって、十分に内部抵抗を小さくすることが出来ない問題があった。
【0011】
又、電池缶(1)内の集電板(5)と電極端子機構(9)の電極端子(91)との間に、リード部(55)が伸びる空間を設ける必要があるため、電池缶(1)の体積が大きくなって、二次電池の単位体積当りの出力が小さい問題があった。
【0012】
そこで本発明の目的は、集電板を用いた集電構造を有する二次電池において、従来よりも更に内部抵抗を低減させると共に、単位体積当りの出力を増大させることである。
【0013】
【課題を解決する為の手段】
本発明に係る二次電池においては、電池缶(1)の内部に、それぞれ帯状の正極(41)と負極(43)の間にセパレータ(42)を介在させて渦巻き状に巻き取った巻き取り電極体(4)が収容され、正極(41)及び負極(43)はそれぞれ、帯状芯体の表面に活物質を塗布して構成され、巻き取り電極体(4)が発生する電力を一対の電極端子部から外部へ取り出すことが出来る。
巻き取り電極体(4)の少なくとも何れか一方の端部には、正極(41)或いは負極(43)を構成する帯状芯体の端縁(48)が突出し、該端縁(48)を覆って集電板(50)が設置され、該集電板(50)が一方の電極端子部と連結されている。
又、前記集電板(50)には、巻き取り電極体(4)の中央孔(40)へ密に嵌入するボス(56)が突設され、該ボス(56)の内部へ前記一方の電極端子部の端部が突出してボス(56)に固定されると共に、該固定位置の近傍にて電極端子部の端部が集電板(50)の表面に圧接されている。
【0014】
上記本発明の二次電池においては、電極端子部の端部が直接に集電板(50)の表面に圧接されて、巻き取り電極体(4)から電極端子へ至る電流経路を形成しており、従来の如きリード部は介在しないので、電流経路の電気抵抗は小さなものとなる。
又、電極端子部の端部を集電板(50)の表面に圧接状態で固定するべく、巻き取り電極体(4)の中央孔(40)へ嵌入するボス(56)の内部にて、電極端子部の端部を集電板(50)に固定する構造が採用されているので、該固定構造は、巻き取り電極体(4)の中央孔(40)の内部に収容されることとなり、固定構造を配置するための余分なスペースは不要である。
【0015】
具体的構成において、前記一方の電極端子部は、電池缶(1)を貫通する電極端子(91)を具え、該電極端子(91)には、集電板(50)の表面に圧接されるべきフランジ(92)と、該フランジ(92)から巻き取り電極体(4)側へ突出するねじ軸片(97)とが形成され、前記集電板(50)のボス(56)の内周面に形成された内ねじ(57)に、前記電極端子(91)のねじ軸片(97)が螺合している。
【0016】
該具体的構成を有する二次電池の組立工程においては、巻き取り電極体(4)の中央孔(40)へ集電板(50)のボス(56)を嵌入せしめた状態で、該巻き取り電極体(4)の芯体端縁(48)に集電板(50)を溶接した後、該集電板(50)のボス(56)の内ねじ(57)に対して電極端子(91)のねじ軸片(97)をねじ込み、フランジ(92)を集電板(50)の表面に圧接せしめる。
これによって、集電板(50)の表面に対し、電極端子(91)のフランジ(92)が広い面積で直接に圧接され、巻き取り電極体(4)から集電板(50)を経て電極端子(91)に至る最短距離の電流経路が形成される。この結果、電流経路の電気抵抗が従来よりも小さくなる。
【0017】
【発明の効果】
本発明に係る二次電池によれば、従来よりも更に内部抵抗を低減させると共に、単位体積当りの出力を増大させることが出来る。
【0018】
【発明の実施の形態】
以下、本発明をリチウムイオン二次電池に実施した形態につき、図面に沿って具体的に説明する。
全体構成
本発明に係るリチウムイオン二次電池は、図1に示す如く、筒体(11)の両端部に蓋体(12)(12)を溶接固定してなる円筒状の電池缶(1)の内部に、巻き取り電極体(4)を収容して構成されている。両蓋体(12)(12)には、正負一対の電極端子機構(90)(90)が取り付けられている。各蓋体(12)には圧力開閉式のガス排出弁(13)が取り付けられている。
巻き取り電極体(4)の両端部にはそれぞれ集電板(50)が設置され、芯体端縁(48)にレーザ溶接されている。該集電板(50)の表面は、電極端子機構(90)を構成する電極端子(91)のフランジ(92)に圧接されている。
【0019】
巻き取り電極体 ( 4 )
巻き取り電極体(4)は、図11に示す様に、それぞれ帯状の正極(41)と負極(43)の間に帯状のセパレータ(42)を介在させて、これらを渦巻き状に巻回して構成されている。正極(41)は、アルミニウム箔からなる帯状芯体(45)の両面にリチウム複合酸化物からなる正極活物質(44)を塗布して構成され、負極(43)は、銅箔からなる帯状芯体(47)の両面に炭素材料を含む負極活物質(46)を塗布して構成されている。セパレータ(42)には、非水電解液が含浸されている。
【0020】
正極(41)には、正極活物質(44)の塗布されている塗工部と、正極活物質の塗布されていない非塗工部とが形成されている。又、負極(43)にも、負極活物質(46)の塗布されている塗工部と、負極活物質の塗布されていない非塗工部とが形成されている。
正極(41)及び負極(43)は、それぞれセパレータ(42)上に幅方向へずらして重ね合わせ、正極(41)及び負極(43)の前記非塗工部をセパレータ(42)の両端縁からそれぞれ外側へ突出させる。そして、これらを渦巻き状に巻き取ることによって巻き取り電極体(4)が構成される。該巻き取り電極体(4)においては、巻き軸方向の両端部の内、一方の端部では、正極(41)の非塗工部の芯体端縁(48)が、セパレータ(42)の一方の端縁よりも外方へ突出し、他方の端部では、負極(43)の非塗工部の芯体端縁(48)が、セパレータ(42)の他方の端縁よりも外方へ突出している。
【0021】
電極端子機構 (90)
電極端子機構(90)は、図1に示す如く、電池缶(1)の蓋体(12)を貫通して取り付けられたボルト部材からなる電極端子(91)を具えている。該電極端子(91)の基端部には、円板状のフランジ(92)が形成されると共に、該フランジ(92)の裏面には、巻き取り電極体(4)に向かってねじ軸片(97)が突設されている。
蓋体(12)の貫通孔には絶縁パッキング(93)が装着され、蓋体(12)と締結部材(91)の間の電気的絶縁性とシール性が保たれている。電極端子(91)には、蓋体(12)の外側からワッシャ(94)が嵌められると共に、第1ナット(95)及び第2ナット(96)が螺合している。そして、第1ナット(95)を締め付けて、電極端子(91)のフランジ(92)とワッシャ(94)によって絶縁パッキング(93)を挟圧することにより、シール性を高めている。
【0022】
集電構造
集電板(50)は、図2〜図4に示す如く円板状本体(51)を具え、該円板状本体(51)には、放射状に伸びる複数条(実施例では4条)の円弧状凸部(52)が一体成型され、巻き取り電極体(4)側に突出している。又、円板状本体(51)には、隣接する円弧状凸部(52)(52)の間にそれぞれ、複数条(実施例では2条)の切り起し片(53)が形成され、巻き取り電極体(4)側に突出している。ここで、切り起し片(53)の形成に伴って開設される貫通孔は、電解液の通路として機能する。
更に、平板状本体(51)の巻き取り電極体(4)との対向面には、巻き取り電極体(4)の中央孔(40)へ嵌入可能な円筒ボス(56)が突設され、該円筒ボス(56)の内周面には、前記電極端子(91)のねじ軸片(97)が螺合可能な内ねじ(57)が形成されている。
尚、正極側の集電板(50)はアルミニウム製であり、負極側の集電板(50)はニッケル製である。
【0023】
製造方法
図1に示す電池缶(1)、電極端子機構(90)、巻き取り電極体(4)及び集電板(50)をそれぞれ作製した後、巻き取り電極体(4)の中央孔(40)へ集電板(50)の円筒ボス(56)を嵌入せしめ、図5及び図7に示す如く、巻き取り電極体(4)の各端部に形成されている芯体端縁(48)に集電板(50)を押し付ける。ここで、巻き取り電極体(4)の中央孔(40)に集電板(50)の円筒ボス(56)が密に嵌入することによって、巻き取り電極体(4)に対する集電板(50)の位置決めが自動的に行なわれることになる。
【0024】
この様に巻き取り電極体(4)の芯体端縁(48)に集電板(50)を押し付けることによって、集電板(50)の円弧状凸部(52)は、図6に示す如く巻き取り電極体(4)の芯体端縁(48)に食い込み、円弧状凸部(52)と芯体端縁(48)の間には、円筒面からなる接合面が形成される。又、集電板(50)の切り起し片(53)は、図8に示す如く巻き取り電極体(4)の芯体端縁(48)に深く食い込み、芯体端縁(48)と圧着することになる。
【0025】
この状態で、図6中に矢印で示す様に、集電板(50)の円弧状凸部(52)の内周面に向けてレーザビームを照射し、レーザ溶接を施す。この結果、集電板(50)の円弧状凸部(52)と巻き取り電極体(4)の芯体端縁(48)とが、大きな接触面積で互いに接合されると共に、図8に示す切り起し片(53)と芯体端縁(48)の間の圧着状態が維持されることになる。
【0026】
その後、集電板(50)の円筒ボス(56)の内ねじ(57)へ電極端子(91)のねじ軸片(97)をねじ込んで、集電板(50)のフランジ(92)を集電板(5)の平板状本体(51)の表面に圧接せしめる。
この様にして巻き取り電極体(4)の両端部の集電板(50)(50)に電極端子(91)(91)を固定した後、該巻き取り電極体(4)を図1に示す筒体(11)の内部に収容する。そして、図1の如く筒体(11)の各開口部に蓋体(12)を設置すると共に電極端子機構(90)を組み立てた後、蓋体(12)を筒体(11)に溶接固定する。
最後に、電池缶(1)内に電解液を注入した後、各蓋体(12)に安全弁(13)をねじ込んで、本発明のリチウムイオン二次電池を完成する。
【0027】
上記リチウムオン二次電池においては、集電板(50)の平板状本体(51)の表面に対し、電極端子(91)のフランジ(92)が十分に広い面積で直接に圧接されて、巻き取り電極体(4)から集電板(50)を経て電極端子(91)に至る最短距離の電流経路が形成されるので、電流経路の電気抵抗は小さなものとなる。
又、集電板(50)は、各円弧状凸部(52)と芯体端縁(48)の溶接部にて大きな接触面積で芯体端縁(48)に接合されると共に、該溶接部以外の領域では、各切り起し片(53)が芯体端縁(48)に食い込んで、良好な接触状態が得られるため、集電板(50)と巻き取り電極体(4)の間の接触抵抗が小さくなる。然も、集電板(50)に形成された複数条の切り起し片(53)によって、芯体端縁(48)の全域から集電が行なわれるので、高い集電性能が得られる。
【0028】
然も、電極端子(91)のねじ軸片(97)と集電板(50)の円筒ボス(56)とは、巻き取り電極体(4)の中央孔(40)に収容され、集電板(50)を電極端子(91)に固定するための構造は、中央孔(40)のデッドスペースを利用して配備されているので、電池缶(1)内に余分なスペースをとる必要がなく、これによって、二次電池の単位体積当りの出力を従来よりも増大させることが出来る。
【0029】
尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、図1に示す本発明の集電構造と電極端子機構(90)は、巻き取り電極体(4)の両端部にそれぞれ配備する構成に限らず、巻き取り電極体(4)の一方の端部にのみ配備し、他方の端部には、図10に示す従来の集電構造と電極端子機構(9)を配備する構成も採用可能である。
【図面の簡単な説明】
【図1】本発明に係る二次電池の一部破断正面図である。
【図2】巻き取り電極体、集電板及び電極端子の分解斜視図である。
【図3】集電板の平面図である。
【図4】集電板の要部を示す拡大断面図である。
【図5】集電板の円弧状凸部を巻き取り電極体の芯体端縁に押し付ける工程の斜視図である。
【図6】集電板の円弧状凸部を巻き取り電極体の芯体端縁に押し付けた状態の拡大断面図である。
【図7】集電板の切り起し片を巻き取り電極体の芯体端縁に押し付ける工程の斜視図でである。
【図8】集電板の切り起し片を巻き取り電極体の芯体端縁に押し付けた状態の拡大断面図である。
【図9】二次電池の外観を示す斜視図である。
【図10】従来の二次電池の一部破断正面図である。
【図11】巻き取り電極体の一部展開斜視図である。
【符号の説明】
(1) 電池缶
(11) 筒体
(12) 蓋体
(4) 巻き取り電極体
(40) 中央孔
(50) 集電板
(51) 平板状本体
(52) 円弧状凸部
(53) 切り起し片
(56) 円筒ボス
(57) 内ねじ
(90) 電極端子機構
(91) 電極端子
(92) フランジ
(97) ねじ軸片[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary battery in which a wound electrode body serving as a secondary battery element is accommodated in a battery can and power generated by the wound electrode body can be taken out from a pair of electrode terminal portions provided in the battery can. Is.
[0002]
[Prior art]
In recent years, lithium ion secondary batteries with high energy density have attracted attention as power sources for portable electronic devices and electric vehicles. For example, in a relatively large capacity cylindrical lithium ion secondary battery used for an electric vehicle, as shown in FIGS. 9 and 10, lids (12) and (12) are fixed to both ends of a cylindrical body (11) by welding. A winding electrode body (4) is housed in a cylindrical battery can (1). A pair of positive and negative electrode terminal mechanisms (9), (9) is attached to both the lids (12), (12), and both poles of the winding electrode body (4) and both electrode terminal mechanisms (9), (9) Are connected to each other, and the electric power generated by the winding electrode body (4) can be taken out from the pair of electrode terminal mechanisms (9) and (9). Each lid (12) is provided with a pressure open / close gas discharge valve (13).
[0003]
As shown in FIG. 11, the wound electrode body (4) is formed by interposing a strip-shaped separator (42) between a strip-shaped positive electrode (41) and a negative electrode (43), and winding them in a spiral shape. It is configured. The positive electrode (41) is configured by applying a positive electrode active material (44) made of a lithium composite oxide on both surfaces of a belt-like core (45) made of an aluminum foil, and the negative electrode (43) is made of a belt-like core made of a copper foil. The negative electrode active material (46) containing a carbon material is applied to both surfaces of the body (47). The separator (42) is impregnated with a non-aqueous electrolyte.
[0004]
Here, the positive electrode (41) and the negative electrode (43) are superimposed on the separator (42) while being shifted in the width direction, and wound in a spiral shape. As a result, the end of the core body (45) of the positive electrode (41) is more outward than the edge of the separator (42) at one end of both ends in the winding axis direction of the winding electrode body (4). The edge (48) protrudes, and at the other end, the end edge (48) of the core (47) of the negative electrode (43) protrudes outward from the end edge of the separator (42).
Disc-shaped current collector plates (5) are welded to both ends of the winding electrode body (4), and strip-shaped lead portions (55) projecting from the current collector plate (5) are shown in FIG. 10 is connected to the proximal end portion of the electrode terminal mechanism (9) shown in FIG.
[0005]
The electrode terminal mechanism (9) includes an electrode terminal (91) attached through the lid (12) of the battery can (1). A flange (92) is provided at the base end of the electrode terminal (91). Is formed. An insulating packing (93) is attached to the through hole of the lid (12), and electrical insulation and sealing between the lid (12) and the fastening member (91) are maintained. A washer (94) is fitted to the electrode terminal (91) from the outside of the lid (12), and a first nut (95) and a second nut (96) are screwed together. The first nut (95) is tightened and the insulating packing (93) is clamped by the flange (92) and the washer (94) of the electrode terminal (91), thereby improving the sealing performance.
The tip of the lead part (55) of the current collector plate (5) is fixed to the flange (92) of the electrode terminal (91) by spot welding or ultrasonic welding.
[0006]
By the way, in particular, in a lithium ion secondary battery used as a power source for an electric vehicle, it is necessary to reduce the internal resistance as much as possible in order to obtain a high capacity and a high output.
Therefore, in order to reduce the internal resistance of the secondary battery, in the current collecting structure shown in FIG. 11, the flat plate body (51) of the current collecting plate (5) extends radially around the central hole (54). A plurality of arc-shaped convex portions (52) are integrally formed and protrude toward the winding electrode body (4). The flat plate body (51) is formed with a plurality of cut and raised pieces (53) between the adjacent arc-shaped convex portions (52) and (52), and the winding electrode body (4) side is formed. Protruding.
[0007]
In the manufacturing process of the secondary battery having the current collecting structure, the current collecting plate (5) is pressed against the core body edge (48) formed at the end of the winding electrode body (4). Thereby, the arc-shaped convex part (52) of the current collector plate (5) bites into the core body edge (48) of the winding electrode body (4), and the arc-shaped convex part (52) and the core body edge ( Between 48), a joining surface comprising a cylindrical surface is formed. Further, the cut-and-raised piece (53) of the current collector plate (5) bites deeply into the core body edge (48) of the winding electrode body (4) and is crimped to the core body edge (48). .
[0008]
In this state, a laser beam is irradiated toward the inner peripheral surface of the arc-shaped convex portion (52) of the current collector plate (5) to perform laser welding. As a result, the arc-shaped convex part (52) of the current collector plate (5) and the core body edge (48) of the winding electrode body (4) are joined to each other with a large contact area, and the cut and raised pieces The pressure-bonded state between (53) and the core body edge (48) is maintained.
[0009]
Therefore, the current collector plate (5) is joined to the core end edge (48) with a large contact area at each arc-shaped convex portion (52) and the welded portion of the core end edge (48). In a region other than the portion, each cut-and-raised piece (53) bites into the core edge (48) and a good contact state is obtained, so that the current collector plate (5) and the winding electrode body (4) The contact resistance between them becomes small. However, since current is collected from the entire area of the core end edge (48) by the plurality of cut and raised pieces (53) formed on the current collecting plate (5), high current collecting performance is obtained.
[0010]
[Problems to be solved by the invention]
However, in the current collecting structure in which the lead portion (55) protruding from the current collecting plate (5) is connected to the electrode terminal mechanism (9) as shown in FIG. 10, the winding plate (4) to the current collecting plate (5 ) Lead portion (55) extending from the end of the flat plate body (51) of the current collector plate (5) to the electrode terminal (91) in the current path from the lead portion (55) to the electrode terminal mechanism (9). However, since the cross-sectional area is small, the electric resistance of the current path formed by the lead portion (55) is large, and the internal resistance cannot be sufficiently reduced.
[0011]
Further, since it is necessary to provide a space in which the lead portion (55) extends between the current collector plate (5) in the battery can (1) and the electrode terminal (91) of the electrode terminal mechanism (9), the battery can There has been a problem that the output per unit volume of the secondary battery is small because the volume of (1) is large.
[0012]
Therefore, an object of the present invention is to further reduce the internal resistance and increase the output per unit volume in a secondary battery having a current collecting structure using a current collecting plate.
[0013]
[Means for solving the problems]
In the secondary battery according to the present invention, the battery can (1) is wound in a spiral shape with a separator (42) interposed between the strip-shaped positive electrode (41) and the negative electrode (43), respectively. The electrode body (4) is accommodated, and the positive electrode (41) and the negative electrode (43) are each formed by applying an active material to the surface of the belt-like core body, and the electric power generated by the winding electrode body (4) is supplied to a pair. It can be taken out from the electrode terminal.
The edge (48) of the strip-shaped core constituting the positive electrode (41) or the negative electrode (43) protrudes at the end of at least one of the winding electrode body (4) and covers the edge (48). The current collector plate (50) is installed, and the current collector plate (50) is connected to one of the electrode terminal portions.
Further, the current collector plate (50) is provided with a boss (56) that closely fits into the central hole (40) of the winding electrode body (4), and the one of the bosses (56) is inserted into the boss (56). The end of the electrode terminal protrudes and is fixed to the boss (56), and the end of the electrode terminal is pressed against the surface of the current collector plate (50) in the vicinity of the fixed position.
[0014]
In the secondary battery of the present invention, the end portion of the electrode terminal portion is directly pressed against the surface of the current collector plate (50) to form a current path from the winding electrode body (4) to the electrode terminal. In addition, since the conventional lead portion is not interposed, the electric resistance of the current path is small.
Further, in order to fix the end portion of the electrode terminal portion to the surface of the current collector plate (50) in a pressure contact state, inside the boss (56) fitted into the central hole (40) of the winding electrode body (4), Since the structure of fixing the end portion of the electrode terminal portion to the current collector plate (50) is adopted, the fixing structure is accommodated in the central hole (40) of the winding electrode body (4). No extra space is required to place the fixed structure.
[0015]
In a specific configuration, the one electrode terminal portion includes an electrode terminal (91) penetrating the battery can (1), and the electrode terminal (91) is in pressure contact with the surface of the current collector plate (50). A power flange (92) and a screw shaft piece (97) projecting from the flange (92) to the winding electrode body (4) side are formed, and the inner periphery of the boss (56) of the current collector plate (50) A screw shaft piece (97) of the electrode terminal (91) is screwed into an inner screw (57) formed on the surface.
[0016]
In the assembly process of the secondary battery having the specific configuration, the winding electrode body (4) is wound in a state where the boss (56) of the current collector plate (50) is fitted into the central hole (40) of the winding electrode body (4). After the current collector plate (50) is welded to the core body edge (48) of the electrode body (4), the electrode terminal (91) is connected to the internal thread (57) of the boss (56) of the current collector plate (50). ) And screw the flange (92) against the surface of the current collector plate (50).
As a result, the flange (92) of the electrode terminal (91) is directly pressed against the surface of the current collector plate (50) in a wide area, and the electrode is passed from the winding electrode body (4) through the current collector plate (50). A current path with the shortest distance to the terminal (91) is formed. As a result, the electric resistance of the current path becomes smaller than in the conventional case.
[0017]
【The invention's effect】
According to the secondary battery according to the present invention, the internal resistance can be further reduced and the output per unit volume can be increased as compared with the conventional battery.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the embodiment in which the present invention is applied to a lithium ion secondary battery will be specifically described with reference to the drawings.
Lithium ion secondary battery according to the overall configuration <br/> present invention, as shown in FIG. 1, the tubular body (11) at both ends in the lid (12) a cylindrical battery (12) formed by welding fixation The take-up electrode body (4) is accommodated inside the can (1). A pair of positive and negative electrode terminal mechanisms (90), (90) is attached to the lids (12), (12). Each lid (12) is provided with a pressure open / close type gas discharge valve (13).
Current collector plates (50) are respectively installed at both ends of the winding electrode body (4), and are laser welded to the core body edge (48). The surface of the current collector plate (50) is in pressure contact with the flange (92) of the electrode terminal (91) constituting the electrode terminal mechanism (90).
[0019]
Winding electrode body ( 4 )
As shown in FIG. 11, the wound electrode body (4) is formed by interposing a strip-shaped separator (42) between a strip-shaped positive electrode (41) and a negative electrode (43), and winding them in a spiral shape. It is configured. The positive electrode (41) is configured by applying a positive electrode active material (44) made of a lithium composite oxide on both surfaces of a belt-like core (45) made of an aluminum foil, and the negative electrode (43) is made of a belt-like core made of a copper foil. The negative electrode active material (46) containing a carbon material is applied to both surfaces of the body (47). The separator (42) is impregnated with a non-aqueous electrolyte.
[0020]
The positive electrode (41) is formed with a coated portion where the positive electrode active material (44) is applied and a non-coated portion where the positive electrode active material is not applied. The negative electrode (43) is also formed with a coated portion where the negative electrode active material (46) is applied and a non-coated portion where the negative electrode active material is not applied.
The positive electrode (41) and the negative electrode (43) are respectively superimposed on the separator (42) while being shifted in the width direction, and the uncoated portions of the positive electrode (41) and the negative electrode (43) are separated from both end edges of the separator (42). Each protrudes outward. And a winding electrode body (4) is comprised by winding up these in the shape of a spiral. In the wound electrode body (4), the core body edge (48) of the non-coated portion of the positive electrode (41) is at one end of the both ends in the winding axis direction of the separator (42). Projects outward from one edge, and at the other end, the core body edge (48) of the non-coated part of the negative electrode (43) is outward from the other edge of the separator (42). It protrudes.
[0021]
Electrode terminal mechanism (90)
As shown in FIG. 1, the electrode terminal mechanism (90) includes an electrode terminal (91) made of a bolt member attached through the lid (12) of the battery can (1). A disk-shaped flange (92) is formed at the base end of the electrode terminal (91), and a screw shaft piece is formed on the back surface of the flange (92) toward the winding electrode body (4). (97) is projected.
An insulating packing (93) is attached to the through hole of the lid (12), and electrical insulation and sealing between the lid (12) and the fastening member (91) are maintained. A washer (94) is fitted to the electrode terminal (91) from the outside of the lid (12), and a first nut (95) and a second nut (96) are screwed together. The first nut (95) is tightened and the insulating packing (93) is clamped by the flange (92) and the washer (94) of the electrode terminal (91), thereby improving the sealing performance.
[0022]
Current collecting structure The current collecting plate (50) includes a disc-shaped main body (51) as shown in FIGS. 2 to 4, and the disc-shaped main body (51) includes a plurality of radially extending strips ( In the embodiment, four (4) arc-shaped convex portions (52) are integrally formed and project to the winding electrode body (4) side. Further, the disc-shaped main body (51) is formed with a plurality of (two in the embodiment) cut and raised pieces (53) between the adjacent arc-shaped convex portions (52) and (52), It protrudes to the winding electrode body (4) side. Here, the through-hole opened with the formation of the cut-and-raised piece (53) functions as an electrolyte solution passage.
Furthermore, a cylindrical boss (56) that can be fitted into the central hole (40) of the winding electrode body (4) is projected on the surface of the flat plate body (51) facing the winding electrode body (4). On the inner peripheral surface of the cylindrical boss (56), an internal screw (57) is formed, into which the screw shaft piece (97) of the electrode terminal (91) can be screwed.
The positive current collector (50) is made of aluminum, and the negative current collector (50) is made of nickel.
[0023]
Manufacturing method After producing the battery can (1), electrode terminal mechanism (90), take-up electrode body (4) and current collector plate (50) shown in FIG. 1, the take-up electrode body (4) The cylindrical boss (56) of the current collector plate (50) is fitted into the central hole (40) of the core, and the core body formed at each end of the winding electrode body (4) as shown in FIGS. Press the current collector (50) against the edge (48). Here, when the cylindrical boss (56) of the current collector plate (50) is closely fitted in the central hole (40) of the winder electrode body (4), the current collector plate (50) for the winder electrode body (4) is obtained. ) Positioning is automatically performed.
[0024]
By pressing the current collector plate (50) against the core edge (48) of the winding electrode body (4) in this way, the arcuate convex portion (52) of the current collector plate (50) is shown in FIG. In this manner, the winding electrode body (4) bites into the core body edge (48), and a joining surface comprising a cylindrical surface is formed between the arc-shaped convex portion (52) and the core body edge (48). Further, as shown in FIG. 8, the cut-and-raised piece (53) of the current collector plate (50) bites deeply into the core body edge (48) of the winding electrode body (4), and the core body edge (48) and It will be crimped.
[0025]
In this state, as indicated by an arrow in FIG. 6, a laser beam is irradiated toward the inner peripheral surface of the arc-shaped convex portion (52) of the current collector plate (50) to perform laser welding. As a result, the arc-shaped convex part (52) of the current collector plate (50) and the core body edge (48) of the winding electrode body (4) are joined to each other with a large contact area, as shown in FIG. The pressure-bonded state between the cut and raised piece (53) and the core body edge (48) is maintained.
[0026]
Thereafter, the screw shaft piece (97) of the electrode terminal (91) is screwed into the inner screw (57) of the cylindrical boss (56) of the current collector plate (50), and the flange (92) of the current collector plate (50) is collected. Press contact is made with the surface of the flat body (51) of the electric plate (5).
After fixing the electrode terminals (91) and (91) to the current collector plates (50) and (50) at both ends of the winding electrode body (4) in this way, the winding electrode body (4) is shown in FIG. It accommodates in the inside of the cylinder (11) shown. Then, as shown in FIG. 1, after installing the lid (12) in each opening of the cylinder (11) and assembling the electrode terminal mechanism (90), the lid (12) is welded and fixed to the cylinder (11). To do.
Finally, after injecting the electrolyte into the battery can (1), the safety valve (13) is screwed into each lid (12) to complete the lithium ion secondary battery of the present invention.
[0027]
In the lithium-on secondary battery, the flange (92) of the electrode terminal (91) is in direct contact with the surface of the flat plate-like body (51) of the current collector plate (50) in a sufficiently large area and wound. Since the shortest distance current path from the collecting electrode body (4) through the current collector plate (50) to the electrode terminal (91) is formed, the electric resistance of the current path is small.
Further, the current collector plate (50) is joined to the core body edge (48) with a large contact area at each arc-shaped convex portion (52) and the welded portion of the core body edge (48), and the welding plate In the region other than the part, each cut-and-raised piece (53) bites into the core edge (48) and a good contact state is obtained, so that the current collector plate (50) and the winding electrode body (4) The contact resistance between them becomes small. However, since current is collected from the entire area of the core end edge (48) by the plurality of cut and raised pieces (53) formed on the current collecting plate (50), high current collecting performance can be obtained.
[0028]
However, the screw shaft piece (97) of the electrode terminal (91) and the cylindrical boss (56) of the current collector plate (50) are accommodated in the central hole (40) of the take-up electrode body (4) to collect the current. Since the structure for fixing the plate (50) to the electrode terminal (91) is provided using the dead space of the central hole (40), it is necessary to take extra space in the battery can (1). Accordingly, the output per unit volume of the secondary battery can be increased as compared with the conventional case.
[0029]
In addition, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim. For example, the current collecting structure and the electrode terminal mechanism (90) of the present invention shown in FIG. 1 are not limited to the configuration provided at both ends of the winding electrode body (4), but one of the winding electrode bodies (4). A configuration in which the conventional current collecting structure and the electrode terminal mechanism (9) shown in FIG. 10 are provided at the end portion and the other end portion may be employed.
[Brief description of the drawings]
FIG. 1 is a partially cutaway front view of a secondary battery according to the present invention.
FIG. 2 is an exploded perspective view of a wound electrode body, a current collector plate, and electrode terminals.
FIG. 3 is a plan view of a current collector plate.
FIG. 4 is an enlarged cross-sectional view showing a main part of a current collector plate.
FIG. 5 is a perspective view of a step of pressing an arc-shaped convex portion of a current collector plate against a core body edge of a winding electrode body.
FIG. 6 is an enlarged cross-sectional view showing a state where an arc-shaped convex portion of a current collector plate is pressed against a core body edge of a winding electrode body.
FIG. 7 is a perspective view of a step of pressing a cut and raised piece of a current collector plate against an edge of a core body of a winding electrode body.
FIG. 8 is an enlarged cross-sectional view showing a state in which the cut and raised pieces of the current collector plate are pressed against the edge of the core body of the take-up electrode body.
FIG. 9 is a perspective view showing an appearance of a secondary battery.
FIG. 10 is a partially broken front view of a conventional secondary battery.
FIG. 11 is a partially developed perspective view of a wound electrode body.
[Explanation of symbols]
(1) Battery can
(11) Tube
(12) Lid
(4) Winding electrode body
(40) Central hole
(50) Current collector
(51) Flat body
(52) Arc-shaped convex part
(53) Cut and raised pieces
(56) Cylindrical boss
(57) Internal thread
(90) Electrode terminal mechanism
(91) Electrode terminal
(92) Flange
(97) Screw shaft piece
Claims (3)
前記集電板(50)には、巻き取り電極体(4)の中央孔(40)へ嵌入するボス(56)が突設され、該ボス(56)の内部へ前記一方の電極端子部の端部が突出してボス(56)に固定されると共に、該固定位置の近傍にて電極端子部の端部が集電板(50)の表面に圧接されていることを特徴とする二次電池。Inside the battery can (1), a wound electrode body (4) wound in a spiral shape with a separator (42) interposed between a strip-like positive electrode (41) and a negative electrode (43) is accommodated. Each of (41) and negative electrode (43) is configured by applying an active material to the surface of the belt-like core body, and the electric power generated by the wound electrode body (4) can be taken out from a pair of electrode terminal portions. The edge (48) of the strip-shaped core constituting the positive electrode (41) or the negative electrode (43) protrudes from at least one end of the winding electrode body (4), and the edge (48 In the secondary battery in which the current collector plate (50) is installed and the current collector plate (50) is connected to one of the electrode terminal portions,
The current collector plate (50) is provided with a boss (56) that fits into the central hole (40) of the take-up electrode body (4). A secondary battery characterized in that the end protrudes and is fixed to the boss (56), and the end of the electrode terminal is pressed against the surface of the current collector plate (50) in the vicinity of the fixing position. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002068179A JP4159299B2 (en) | 2002-03-13 | 2002-03-13 | Secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002068179A JP4159299B2 (en) | 2002-03-13 | 2002-03-13 | Secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003272600A JP2003272600A (en) | 2003-09-26 |
JP4159299B2 true JP4159299B2 (en) | 2008-10-01 |
Family
ID=29199336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002068179A Expired - Fee Related JP4159299B2 (en) | 2002-03-13 | 2002-03-13 | Secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4159299B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102064339A (en) * | 2010-12-21 | 2011-05-18 | 王正伟 | Lithium battery and assembling method thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100658614B1 (en) * | 2004-01-16 | 2006-12-15 | 삼성에스디아이 주식회사 | secondary battery |
KR100578800B1 (en) | 2004-02-16 | 2006-05-11 | 삼성에스디아이 주식회사 | Secondary battery |
KR100599792B1 (en) * | 2004-05-19 | 2006-07-13 | 삼성에스디아이 주식회사 | Secondary battery, electrodes assembly and plate using the same |
KR100599710B1 (en) | 2004-07-28 | 2006-07-12 | 삼성에스디아이 주식회사 | Secondary battery and electrodes assembly using the same and method for manufacturing secondary battery |
JP5643126B2 (en) * | 2011-01-31 | 2014-12-17 | 株式会社リチウムエナジージャパン | Battery and battery manufacturing method |
KR20140031336A (en) * | 2011-05-25 | 2014-03-12 | 신코베덴키 가부시키가이샤 | Secondary-battery electrode plate group unit and method of manufacturing the same |
WO2022237807A1 (en) * | 2021-05-14 | 2022-11-17 | 陕西奥林波斯电力能源有限责任公司 | Conductive connection sheet, pole, current collection disk, and conductive connection structure of large-capacity battery |
KR20230033639A (en) * | 2021-08-23 | 2023-03-08 | 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 | Battery cell and its manufacturing method and manufacturing system, battery and electric device |
CN115241608B (en) * | 2022-08-20 | 2024-03-22 | 深圳市赛尔摩星科技有限公司 | Current collecting plate and cylindrical lithium battery |
-
2002
- 2002-03-13 JP JP2002068179A patent/JP4159299B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102064339A (en) * | 2010-12-21 | 2011-05-18 | 王正伟 | Lithium battery and assembling method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2003272600A (en) | 2003-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4401065B2 (en) | Secondary battery and manufacturing method thereof | |
JP3960877B2 (en) | Battery manufacturing method | |
JP3738177B2 (en) | Nonaqueous electrolyte secondary battery and manufacturing method thereof | |
EP1596450B1 (en) | Welded current collector plates in non-aqueous electrolyte secondary cells | |
JP4446205B2 (en) | Battery and manufacturing method thereof | |
JP3935749B2 (en) | Secondary battery | |
JP2004303500A (en) | Square battery | |
JP2004119329A (en) | Secondary battery | |
JP2005142026A (en) | Secondary battery | |
JP2007134233A (en) | Battery terminal structure | |
JP3831595B2 (en) | Cylindrical secondary battery | |
JP2005267945A (en) | Square battery | |
JP4159299B2 (en) | Secondary battery | |
JP3825706B2 (en) | Secondary battery | |
JPH11135100A (en) | Wound electrode battery and manufacture thereof | |
JP2004071266A (en) | Nonaqueous electrolyte secondary battery and its manufacturing process | |
JP3738166B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3707945B2 (en) | Cylindrical battery | |
JP3588264B2 (en) | Rechargeable battery | |
JP3920549B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3825659B2 (en) | Secondary battery | |
JP4159383B2 (en) | Cylindrical secondary battery | |
JP4293799B2 (en) | Secondary battery | |
JP2004022339A (en) | Battery | |
JP4338372B2 (en) | Secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080617 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080715 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |