JP4465754B2 - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP4465754B2
JP4465754B2 JP30769299A JP30769299A JP4465754B2 JP 4465754 B2 JP4465754 B2 JP 4465754B2 JP 30769299 A JP30769299 A JP 30769299A JP 30769299 A JP30769299 A JP 30769299A JP 4465754 B2 JP4465754 B2 JP 4465754B2
Authority
JP
Japan
Prior art keywords
battery
valve member
safety valve
outer peripheral
peripheral flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30769299A
Other languages
Japanese (ja)
Other versions
JP2001126695A (en
Inventor
俊光 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP30769299A priority Critical patent/JP4465754B2/en
Publication of JP2001126695A publication Critical patent/JP2001126695A/en
Application granted granted Critical
Publication of JP4465754B2 publication Critical patent/JP4465754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、車載用バッテリや各種の電子機器の電源として用いられる密閉型電池に関し、さらに詳しくは内部圧力の異常上昇等のために備えられる安全弁部材と電池蓋との結合構造に関する。
【0002】
【従来の技術】
各種の電子機器等には、繰り返し充電が可能なリチウム二次電池やカーボンリチウム二次電池等の二次電池が用いられている。かかる二次電池においては、内部に収納された発電要素が化学変化を起こして内圧が異常に高くなる事態が生じることがある。例えば、リチウム二次電池のような非水電解質電池においては、何らかの原因によって所定の電流値以上の電流が流れて過充電状態となると、電解液が分解されて内部にガスが発生する。非水電解質電池は、この状態が継続されると、電解液や電極活物質の急激な分解が促進されて内部温度が上昇しガス噴出といった事態にまで発展する。
【0003】
したがって、非水電解質電池においては、安全機構が付設されてかかる事態の発生を防止するように構成されている。安全機構は、発電要素と電池蓋との間に配設された安全弁部材やPTC素子等の部材によって構成され、内部圧力が異常に上昇等した場合に動作して発電要素と電池蓋との電気的接続状態を解除する。非水電解質電池は、かかる安全機構によって発電要素に対する過大な電流をカットすることで、ガス発生を停止して内部圧力の上昇を抑制するようにする。
【0004】
なお、リチウムイオン二次電池においては、高出力化或いは直列接続等を行う場合には、PTC素子を組み込まずに正極部を電池蓋と安全弁部材とによって構成する。また、リチウムイオン二次電池は、PTC素子の代わりに同形状の低抵抗部品が組み付けられる。
【0005】
【発明が解決しようとする課題】
リチウムイオン二次電池においては、発電要素の正極集電体に集電リードを介して正極リードが接続され、この正極リードと電池蓋とが安全機構を構成する安全弁部材及びPTC素子等の部材を介して接続されている。安全弁部材は、その中心部に正極リードが弾接するとともに、外周部に形成した外周フランジ部を電池蓋に形成した外周フランジ部と重ね合わされる。安全弁部材は、電池蓋がその外周フランジ部をガスケットを介して電池缶の開口部にかしめ止めされることによって、その外周フランジ部と電池蓋の外周フランジ部との接触状態が弾持されて電気的導通が図られている。
【0006】
ところで、リチウムイオン二次電池においては、一般にポリプロピレンやテフロン等の合成樹脂材料によって成形されたガスケットが用いられている。このため、リチウムイオン二次電池においては、合成樹脂製のガスケットの経時変化に伴って電池蓋と安全弁部材との接触状態を弾持する弾性力が低下するために、これら電池蓋と安全弁部材との間における接触抵抗が増加してしまうといった問題があった。リチウムイオン二次電池は、かかる接触抵抗の増加によって全体の内部抵抗値が増加するために、効率が劣化するといった問題が生じる。
【0007】
また、リチウムイオン二次電池においては、内部圧力の上昇により、電池蓋や安全弁部材等の各部材に変形が生じることがある。リチウムイオン二次電池は、これによっも電池蓋と安全弁部材との間における接触抵抗が増加し、全体の内部抵抗値が増加するといった問題があった。
【0008】
したがって、本発明は、経時変化や温度変化等に対しても内部抵抗の増加や変動を抑制して安定した出力を得る密閉型電池を提供することを目的に提案されたものである。
【0009】
【課題を解決するための手段】
上述した目的を達成する本発明にかかる密閉型電池は、発電要素と電池蓋との間に配設され、内部圧力の異常上昇等が生じた場合に変形してこれら発電要素と電池蓋との電気的接続状態を解除する安全弁部材を備える。電蓋は、外周フランジ部が全周に形成され、この外周フランジ部がガスケットを介して電池缶の開口部に封止されることによって電池缶に組み付けられる。安全弁部材には、電蓋の外周フランジ部に対応して外周フランジ部が全周に形成されている。密閉型電池は、電池蓋及び安全弁部材のそれぞれの外周フランジ部を平坦とし、電極蓋と安全弁部材には、少なくともいずれか一方の部材の外周フランジ部の結合面に複数個の溶接凸部が形成され、これら溶接凸部に対応して抵抗溶接が施されることによって結合される。
【0010】
以上のように構成された本発明にかかる密閉型電池によれば、電極蓋と安全弁部材とが強固に接続されて低接触抵抗値の状態に保持されるようになるとともに、経時変化や内部圧力の増加に伴う構成部材の変形等によってもこれら電極蓋と安全弁部材との間における抵抗値の増加が抑制されるようになる。密閉型電池においては、これによって全体の内部抵抗値が安定した状態に保持され、大電流出力を効率的に出力する。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。実施の形態として図1に示した密閉型電池1は、例えばハイブリットシステムカーに搭載されるバッテリー装置に用いられる比較的大型のリチウムイオン二次電池であり、負極を構成する電池缶2の内部に発電要素3を収納するとともに、この電池缶2を正極を構成する電池蓋構体4によって密閉してなる。電池缶2は、有底円筒形を呈する金属缶からなり、上端の開口縁から所定の高さ位置にビード加工を施して小径に絞ることにより電池蓋構体4の受け部2aが形成されている。電池缶2は、受け部2aから上方部位が、後述するように電池蓋構体4をかしめ止めするかしめ部位2b部として構成されてなる。
【0012】
発電要素3は、シート状の負極材5と、正極材6と、セパレータ7と、負極集電板8と、正極集電板9等の部材と電解液とによって構成されている。発電要素3は、負極材5と負極集電板8とを多数個の負極集電リード10によって電気的に接続するとともに、正極材6と正極集電板9とを多数個の正極集電リード11によって電気的に接続してなる。
【0013】
負極材5は、詳細を省略するが、例えば厚みが15μmの銅箔からなる負極集電体の両面に負極活物質合剤を塗布して全体の厚みが60μmとされたシート体からなる。負極活物質合剤は、リチウムイオンをドープ・脱ドープ可能な、例えばグラファイトや難黒鉛化炭素或いは易黒鉛化炭素等の炭素材料を負極活物質として、バインダにポリフッ化ビニリデン(PVdF)、溶剤としてn−メチルピロリドン(NMP)を加えてスラリー状化したものが用いられる。負極活物質合剤は、具体的には平均粒径が20μmの炭素粒子90重量部に対して10重量部のPVdFを加えてNMPに分散させてなる。
【0014】
負極活物質合剤は、負極集電体の両面に例えばドクターブレード法等によって均一に塗布され、乾燥炉内において乾燥処理が施されてNMPが飛ばされた後にロールプレス等の加圧処理が施されて高密度化が図られることによって、負極集電体の両面に負極活物質層を構成する。負極材5は、負極集電体の負極活物質合剤の未塗布部位に負極集電リード10が接続されてなる。
【0015】
正極材6は、詳細を省略するが、例えば厚みが20μmのアルミニウム箔からなる正極集電体の両面に正極活物質合剤を塗布して全体の厚みが80μmとされたシート体からなる。正極活物質合剤は、正極活物質に導電剤とバインダとを加え、これを溶剤に分散させてスラリー状としたものが用いられる。正極活物質には、例えばLixMO2(式中、Mは一種以上の遷移金属を表し、xは電池の充放電状態で異なり、通常0.05以上1.10以下である。)を主体とするリチウム複合酸化物が用いられ、具体的には高電圧の発生が可能でかつエネルギー密度に優れた、LiCoO2、LiNiO2、LiNiyCo1-y2(0<y<1)が用いられる。導電剤には、例えば黒鉛粉末が用いられる。
【0016】
正極活物質合剤は、例えば上述した正極活物質、具体的にはLiCoO2粉末86重量部に対して、黒鉛粉末10重量部、PVdF樹脂を4重量部が加えられ、これをNMPに分散させてスラリー状化される。正極活物質合剤は、正極集電体の両面に例えばドクターブレード法等によって均一に塗布され、乾燥炉内において乾燥処理が施されてNMPが飛ばされた後にロールプレス等の加圧処理が施されて高密度化が図られることによって、正極集電体の両面に正極活物質層を構成する。正極材6は、正極集電体の負極活物質合剤の未塗布部位に正極集電リード11が接続されてなる。
【0017】
電解液には、例えばエチレンカーボネート(EC)や、プロピレンカーボネート(PC)或いはブチレンカーボネート(BC)が用いられる。電解液には、カチオンとアニオンとが組み合わされてなり、溶剤に相溶する電解質塩が混合される。電解質塩には、具体的には六フッ化リン酸リチウムや四フッ化ホウ酸リチウムが、電解液に溶解可能な濃度で用いられる。
【0018】
上述した負極材5と正極材6とは、セパレータ7を介して重ね合わされた状態で、図2に示すようにその一端から半割り状の巻芯治具12の外周部に順次巻き付けられる。負極材5と正極材6とは、所定数を巻回した状態で最外周部を例えばテープによって固定された後、巻芯治具12から取り外されることによって螺旋状の巻回体を構成する。
【0019】
ところで、負極材5と正極材6には、重ね合わせ状態で相対する側となるそれぞれの一方側縁に沿った領域が電極活物質の未塗布領域とされ、これら未塗布領域に負極集電リード10或いは正極集電リード11を接合するリード接合部が短冊状に形成されている。したがって、負極材5と正極材6とは、巻回された状態において両端部にそれぞれリード接合部が突出される。
【0020】
発電要素3は、上述した負極材5と正極材6及びセパレータ7との巻回体が、それぞれ各リード接合部と接合された負極集電リード10と正極集電リード11とを引き出して負極集電板8と正極集電板9とに接続されることによって構成する。各負極集電リード10と正極集電リード11とは、負極集電板8と環状の負極押え金具13及び正極集電板9と環状の正極押え金具14とに挟み込まれた後に、それぞれレーザ溶接が施されて強固に接続固定される。
【0021】
以上のように構成された発電要素3は、負極集電板8側を装填側として開口部から電池缶2の内部に装填される。発電要素3は、負極集電板8が電池缶2の底面と接触するとともに抵抗溶接等が施されることによって、電気的導通が図られて電池缶2を負極として構成させる。発電要素3は、後述するように正極蓋構体4が電池缶2の開口部にガスケット15を介してかしめ止めされることによって、正極集電板9と正極リード16とが弾接することにより正極蓋構体4との電気的導通が図られる。
【0022】
ガスケット15は、ポリプロピレンやテフロン等の合成樹脂材料によって全体が段付き筒状を呈して成形されている。ガスケット15は、大径部の外径が電池缶2の内径とほぼ等しく、また小径部の外径が受け部2aの内径よりもやや小径とされている。ガスケット15は、後述するように電池缶2に電池蓋構体4が組み付けられた状態でかしめ部位2bにかしめ処理が施されることによって、電池蓋構体4によって電池缶2の開口部を封止する。
【0023】
正極蓋構体4は、図1及び図3に示すように、電池蓋(トップカバー)17と、安全弁部材18と、ディスクホルダ19と、ストリッパディスク20と、サブディスク21等の部材によって構成されている。電池蓋17は、導電性の円盤状金属材料に例えばプレス深絞り加工を施すことによって全体が略円筒形を呈して形成してなる。電池蓋17には、その一端側の開口部の外周縁部に全周に亘って外周フランジ部17aが一体に張り出し形成されている。電池蓋17は、リチウムイオン二次電池1がバッテリー装置に装填された状態において、筒状部位がバッテリー装置のケースから外方に臨ませられてガス抜き孔を構成する。外周フランジ部17aは、その外径が、電池缶2の内径に対してやや小径とされるとともに、受け部2aの内径よりもやや大径とされている。
【0024】
安全弁部材18も、導電性の円盤状金属材料に例えばプレス加工を施して、発電要素3側に膨出された膨出部位18aの外周縁に外周フランジ部18bを全周に亘って一体に張り出し形成した、全体略浅皿状を呈して形成されてなる。外周フランジ部18bは、電池蓋17の外周フランジ部17aに対応して、その外径が電池缶2の内径よりもやや小径とされるとともに受け部2aの内径よりもやや大径とされている。
【0025】
安全弁部材18には、膨出部位18aの中心部に接続凸部18cが一体に突設されている。安全弁部材18は、詳細を後述するように外周フランジ部18bが電池蓋17の外周フランジ部17aと重ね合わされた状態でスポット溶接が施されることによって、この電池蓋17の内孔を閉塞するとともにスポット溶接部22を介して電池蓋17と機械的かつ電気的に一体化される。
【0026】
ディスクホルダ19は、絶縁性の合成樹脂によって安全弁部材18の中央部位18aの外径とほぼ等しい内径を有する全体筒状に成形され、内部を仕切るようにして隔壁19aが一体に形成されている。ディスクホルダ19は、安全弁部材18の中央部位18aの外周部に圧入されて一体的に組み付けられる。ディスクホルダ19は、この状態において隔壁19aに形成した貫通孔19bを介して安全弁部材18の接続凸部18cを発電要素3側へと突出させる。
【0027】
ストリッパディスク20は、その外径がディスクホルダ19の内径とほぼ同径とされた円盤状を呈して形成されてなり、その底面にサブディスク21が接合されている。ストリッパディスク20は、ディスクホルダ19の隔壁19aによって安全弁部材18の中央部位18aとの絶縁が保持されている。ストリッパディスク20には、その中央部に安全弁部材18の接続凸部18cを発電要素3側へと貫通させる中心孔20aが形成されるとともに、この中心孔20aの周囲に位置して内圧の異常を検出して安全弁部材18を変位させる検出孔20bが形成されている。
【0028】
ストリッパディスク20には、中心孔20aを閉塞するようにしてサブディスク21が結合されている。サブディスク21は、検出孔20bを閉塞させない外径を有しており、正極リード16の一端部が結合される。正極リード16は、例えばアルミ材を略U字状に折曲して形成してなり、その一端部がレーザ溶接によってサブディスク21と一体化されるとともに、他端側が後述するように電池蓋構体4を電池缶2に組み付けた状態において正極集電板9に弾接する。
【0029】
上述したディスクホルダ19には、その内孔に対して、一方側からサブディスク21を結合固定したストリッパディスク20が圧入されるとともに、他方側から安全弁部材18がその膨出部位18aを圧入されることによって組み付けられる。安全弁部材18は、その外周フランジ部18bがディスクホルダ19から突出されるとともに、接続凸部18cがストリッパディスク20の中心孔20aに臨んでサブディスク21と結合される。安全弁部材18は、接続凸部18cとサブディスク21との結合部分に超音波溶接が施されることによって、サブディスク21を介してストリッパディスク20と一体化される。安全弁部材18とストリッパディスク20とは、ディスクホルダ19の隔壁19aが介在してその絶縁が保持されている。
【0030】
安全弁部材18には、上述したようにその外周フランジ部18bに電池蓋17の外周フランジ部17aが重ね合わされ、複数箇所にスポット溶接が施されることによって電池蓋17と一体化される。スポット溶接は、例えば超音波溶接、抵抗溶接或いはレーザ溶接等の適宜の溶接法によって行われる。超音波溶接法は、仕上りの精度が高くまた微小クラックによる漏液等を生じさせることも無いので有効である。電池蓋17と安全弁部材18とは、図3に示すように外周フランジ部17aと外周フランジ部18bとの複数箇所が溶接部位22によって固定される。サブディスク21には、上述したように安全弁部材18の接続凸部18cが溶接されるとともに、正極リード16の他端部が溶接されている。
【0031】
電池蓋構体4は、上述したように電池蓋17と、安全弁部材18と、サブディスク21と、正極リード16がそれぞれ各部を溶接によって一体化されている。したがって、電池蓋構体4は、各部材が充分な機械的強度を以って組み合わされており、また実質的に一体の部材を構成することで各部材間における接触抵抗もほとんど無視することができる構成となっている。
【0032】
以上のように構成された電池蓋構体4は、発電要素3が装填されるとともに開口部にガスケット15が組み付けられかつ電解液が注入された電池缶2に組み付けられる。ガスケット15は、その大径部が電池缶2のかしめ部位2bの内周面に全周に亘って接触した状態にあり、また小径部が受け部2bから内方へと延在した状態にある。電池蓋構体4は、一体化された電池蓋17と安全弁部材18の外周フランジ部17a、18bの外周縁によって、ガスケット15の大径部を電池缶2のかしめ部位2bの内周面に密着させる。電池蓋構体4は、安全弁部材18の外周フランジ部18bがガスケット15の大径部と小径部とを連結する底面部を介して、電池缶2の受け部2a上に保持される。
【0033】
電池缶2には、上述したように電池蓋構体4を組み付けた状態で、かしる部位2bを内側へと折曲するかしめ処理が施される。電池蓋構体4は、これによって弾性変形したガスケット15を介して、電池蓋17と安全弁部材18の外周フランジ部17a、18bの周縁部が受け部2aとかしめ部位2bとによって挟持されることで、電池缶2の開口部を封止する。電池缶2と電池蓋構体4とは、かかる構成によって内部に発電要素3と電解液とを密閉したリチウムイオン二次電池1を構成する。
【0034】
以上のように構成されたリチウムイオン二次電池1においては、ガスケット15の経時変化によって電池蓋17と安全弁部材18の外周フランジ部17a、18bに対する弾性力が次第に低下する。リチウムイオン二次電池1は、上述したように電池蓋構体4を構成する各部材を溶接によって一体化していることから、かかるガスケット15の弾性力の低下によっても各部材間の接触抵抗値が変化するといったことは無い。したがって、リチウムイオン二次電池1は、全体の内部抵抗値が安定した状態に保持され、大電流出力を効率的に出力する。
【0035】
リチウムイオン二次電池1においては、何らかの原因によって発電要素3に定常値よりも大きな電流が流れて過充電状態が継続して内部にガスが発生することによって電池缶2の内部圧力が異常に上昇した場合に、従来のリチウムイオン二次電池と同様に安全弁部材18が動作する。安全弁部材18には、ストリッパディスク20の検出孔20bを介して異常上昇した内部圧力が作用される。安全弁部材18には、外周フランジ部18bが固定されていることから、中央領域が電池蓋17側へと膨らむ膨出変形が生じる。安全弁部材18は、この膨出変形に伴って、接続凸部18cを介して接続されたサブディスク21に対して電池蓋17側への引上げ力を作用させる。
【0036】
サブディスク21は、ディスクホルダ19及びストリッパディスク20によって移動が規制されている。したがって、安全弁部材18は、接続凸部18cとサブディスク21との接続状態が切り離され、正極リード16、換言すれば発電要素3との電気的接続が解除される。リチウムイオン二次電池1は、これによって発電要素3に対する電流供給が絶たれることでガスの発生が停止し、内部圧力の上昇が抑制される。
【0037】
上述した電池蓋構体4においては、電池蓋17と安全弁部材18とが、重ね合わされた外周フランジ部17a、18bとを超音波溶接によって一体化したが、抵抗溶接やレーザ溶接等の他の重ね溶接法によって一体化するようにしてもよいことは勿論である。図4に示した電池蓋構体30は、より効率的かつ高精度の抵抗溶接法が施されるように構成したものである。なお、電池蓋構体30は、構成各部材、部位がその基本的な構成を上述した電池蓋構体4の構成各部材、部位と同等とすることから、それぞれ同一符号を付すことによって詳細な説明を省略する。
【0038】
すなわち、電池蓋構体30は、電池蓋17の外周フランジ部17aに複数個の溶接凸部31を一体に打ち出し形成したことを特徴とする。各溶接凸部31は、外周フランジ部17aの安全弁部材18の外周フランジ部18bと相対する主面側に突出される。各溶接凸部31は、抵抗溶接を施す箇所に対応して、外周フランジ部17aに同一円周上にほぼ等間隔で形成されている。
【0039】
以上のように構成された電池蓋17と安全弁部材18とは、それぞれの外周フランジ部17a、18bが重ね合わされた状態で、各溶接凸部31に対応した箇所が溶接電極によって挟み込まれる。電池蓋17と安全弁部材18とは、溶接電極に電流が流されると溶接凸部31が溶融して溶接が行われて一体化する。電池蓋17と安全弁部材18とは、短時間の電流供給によって溶接凸部32が効率的に発熱溶融することで、高精度の溶接が行われるようになる。
【0040】
図5に示した電池蓋構体35は、より効率的かつ高精度のレーザ溶接法が施されるように構成したものである。電池蓋構体35は、安全弁部材18の外周フランジ部18bの外周縁をかしめるかしめ凸壁36を一体に立設したことを特徴とする。かしめ凸壁36は、その内径を電池蓋17の外周フランジ部17aの外径とほぼ等しくされた筒状立壁からなる。
【0041】
以上のように構成された安全弁部材18には、かしめ凸壁36によって囲まれた内部に電池蓋17が装填され、それぞれの外周フランジ部17a、18bが重ね合わされて組み合わされる。安全弁部材18には、この状態でかしめ凸壁36を図5矢印で示すように内側へと折曲するかしめ処理が施される。電池蓋17と安全弁部材18とは、外周フランジ部17aが、外周フランジ部18bと折曲されたかしめ凸壁36との間に挟持されることで一体的に組み合わされる。しかしながら、電池蓋17と安全弁部材18とは、このままの状態では外周フランジ部17a、18bとの間が圧接状態であることから、かしめ強度により浮き上がりが生じるとともにその材質を異にする金属によって形成された場合に使用する環境温度によって膨張率が異なる等により接触抵抗が大きくなる。
【0042】
電池蓋構体35は、電池蓋17と安全弁部材18とをかしめ凸壁36を介してかしめ止めるとともに、これら部材にレーザ溶接機の出射部37からレーザを照射してレーザ溶接を施して一体化する。レーザ溶接は、この場合、図5に示すように折曲されたかしめ凸壁36側から行うようにする。電池蓋構体35は、万一溶接不良によってかしめ凸壁36と外周フランジ部17a間にブローホールが発生した場合にも、裏側の外周フランジ部17a、18b間にまでその影響が及ばないために密閉性が保持されて漏液が生じることは無い。したがって、電池蓋構体35は、電池蓋17と安全弁部材18とがより効率的かつ高精度にレーザ溶接される。
【0043】
以上のようにして製作された実施例リチウムイオン二次電池と従来の比較例リチウムイオン二次電池について、それぞれ図6及び図7に示した測定装置40、50によって電池内部抵抗値(DCR値)及び電池蓋17と安全弁部材18との間の抵抗値(TC−SC値)の測定を行った。測定装置40は、リチウムイオン二次電池の電池缶2の底面と電池蓋17とにそれぞれ測定端子41、42を接続し、これら測定端子41、42の一方側に電圧計43を接続するとともに他方側に負荷44を接続して構成した。各リチウムイオン二次電池のDCR値は、電圧計43によって、9Aの電流を5秒通電後の電圧値V1と27Aの電流を5秒通電後の電圧値V2とをそれぞれ計測し、(V2−V1)/(27A−9A)によって求めた。
【0044】
測定装置50は、リチウムイオン二次電池の電池蓋17と安全弁部材18とにそれぞれ測定端子51、52を接続し、これら測定端子51、52の一方側に電圧計53を接続するとともに他方側に電流計54と直流電源55とを接続して構成した。TC−SC値は、電圧計53の計測値Vと電流計54の計測値Aとを計測して、V/Aにより間接的に求めた。
【0045】
DCR値及びTC−SC値の測定は、各実施例リチウムイオン二次電池と比較例リチウムイオン二次電池について、それぞれ保存温度25℃及び40℃の状態で、保存日数が0日、6日、12日、20日、25日、32日、41日に計測した抵抗値の平均を求めた。実施例リチウムイオン二次電池のDCR値及びTC−SC値は、表1の通りであった。また、比較例リチウムイオン二次電池のDCR値及びTC−SC値は、表2の通りであった。また、図8は、TC−SC値を縦軸とし、保存日数を横軸として示した実施例リチウムイオン二次電池と比較例リチウムイオン二次電池との特性図である。
【0046】
【表1】

Figure 0004465754
【0047】
【表2】
Figure 0004465754
【0048】
実施例リチウムイオン二次電池は、表1及び図8から明らかなように、保存温度25℃においてDCR値が、保存日数0日で4.33mΩであり、保存日数の増加にしたがって次第に増加して保存日数20日で4.61mΩ、保存日数41日で4.72mΩであった。また、実施例リチウムイオン二次電池は、保存温度40℃においてDCR値が保存日数0日で4.33mΩであり、保存日数の増加にしたがって次第に増加して保存日数20日で4.94mΩ、保存日数41日で5.39mΩであった。
【0049】
また、実施例リチウムイオン二次電池は、表1及び図8から明らかなように、保存温度25℃においてTC−SC値が、保存日数0日で0.12mΩであったが保存日数の増加によってもほとんど変化は無く、保存日数20日で0.15mΩ、保存日数41日で0.14mΩであった。また、実施例リチウムイオン二次電池は、保存温度40℃においてTC−SC値が保存日数0日で0.12mΩであったが保存日数の増加によってもほとんど変化は無く、保存日数20日で0.17mΩ、保存日数41日で0.14mΩであった。
【0050】
実施例リチウムイオン二次電池は、電池蓋17と安全弁部材18とを溶接して一体化した構成であることから、保存温度条件或いは保存期間によってもこれら部材間の接触抵抗値(TC−SC値)にほとんど変化を生じない。したがって、実施例リチウムイオン二次電池においては、保存期間の経過や温度条件による内部抵抗値(DCR値)の変動が小さく、安定した状態に保持されて大電流出力を効率的に出力する。
【0051】
一方、比較例1のリチウムイオン二次電池は、表2及び図8から明らかなように、保存温度25℃においてDCR値が、保存日数0日で5.56mΩであり、保存日数の増加にしたがって次第に増加して保存日数20日で5.89mΩ、保存日数41日で6.11mΩであった。また、比較例1のリチウムイオン二次電池は、保存温度40℃においてDCR値が保存日数0日で4.94mΩであり、保存日数の増加にしたがって次第に増加して保存日数20日で6.00mΩ、保存日数41日で7.44mΩであった。
【0052】
また、比較例2のリチウムイオン二次電池は、表2及び図8から明らかなように、保存温度25℃においてDCR値が、保存日数0日で4.78mΩであり、保存日数の増加にしたがって次第に増加して保存日数20日で5.11mΩ、保存日数41日で5.39mΩであった。また、比較例2のリチウムイオン二次電池は、保存温度40℃においてDCR値が保存日数0日で4.83mΩであり、保存日数の増加にしたがって次第に増加して保存日数20日で6.83mΩ、保存日数41日で7.28mΩであった。
【0053】
比較例1のリチウムイオン二次電池は、表2及び図8から明らかなように、保存温度25℃においてTC−SC値が、保存日数0日で1.47mΩであったが保存日数の増加による変化が生じ、保存日数20日で1.53mΩ、保存日数41日で1.55mΩであった。また、比較例1のリチウムイオン二次電池は、保存温度40℃においてTC−SC値が保存日数0日で0.54mΩであったが保存日数の増加にしたがって次第に増加して保存日数20日で0.90mΩ、保存日数41日で1.76mΩであった。
【0054】
また、比較例2のリチウムイオン二次電池は、表2及び図8から明らかなように、保存温度25℃においてTC−SC値が、保存日数0日で0.36mΩであったが保存日数の増加による変化が生じ、保存日数20日で0.37mΩ、保存日数41日で0.39mΩであった。また、比較例2のリチウムイオン二次電池は、保存温度40℃においてTC−SC値が保存日数0日で0.45mΩであったが保存日数の増加にしたがって次第に増加して保存日数20日で1.84mΩ、保存日数41日で1.91mΩであった。
【0055】
比較例リチウムイオン二次電池は、電池蓋17と安全弁部材18とが外周フランジ部17a、18bをガスケット15の弾性力によって圧接された構成であることから、製品毎にこれら部材間の接触抵抗値(TC−SC値)のバラツキが大きい。また、比較例リチウムイオン二次電池においては、保存日数の増加或いは保存温度によって電池蓋17と安全弁部材18の接触抵抗値が大きく変動するとともに増加する。したがって、比較例リチウムイオン二次電池は、電池蓋17と安全弁部材18の接触抵抗値のバラツキ或いは保存期間の経過や保存温度条件によって内部抵抗値(DCR値)の変動が大きくなり、またその値も大きくなることで次第に大電流の出力が劣化する。
【0056】
なお、上述した実施例リチウムイオン二次電池は、電池蓋17と安全弁部材18の外周フランジ部17a、18bを超音波溶接によって結合したものを用いたが、上述した抵抗溶接或いはレーザ溶接によって結合したリチウムイオン二次電池も同等の特性を有する。
【0057】
また、本発明は、上述したリチウムイオン二次電池に限定されるものではなく、電池蓋17に安全弁部材18が組み付けられたその他の密閉型電池、例えばリチウム一次電池等にも適用可能である。
【0058】
【発明の効果】
以上詳細に説明したように、本発明にかかる密閉型電池によれば、電極蓋と安全弁部材とをそれぞれの外周フランジ部を重ね合わせた後に溶接を施して強固に結合することから、経時変化や仕様環境の温度或いは内部圧力の増加に伴う構成部材の変形等によってもこれら電極蓋と安全弁部材との間が低接触抵抗値の状態に確実に保持されるようになる。したがって、密閉型電池によれば、全体の内部抵抗値が安定した状態に保持されて大電流出力を効率的に出力することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態として示す、リチウムイオン二次電池の要部縦断面図である。
【図2】同リチウムイオン二次電池に備えられる発電要素の構成を説明する図である。
【図3】同リチウムイオン二次電池に備えられる電池蓋構体の縦断面図である。
【図4】同リチウムイオン二次電池に備えられる抵抗溶接法を採用して好適な電池蓋構体の分解縦断面図である。
【図5】同リチウムイオン二次電池に備えられるレーザ溶接法を採用して好適な電池蓋構体を示す縦断面図である。
【図6】リチウムイオン二次電池の内部抵抗値を測定する測定装置の構成図である。
【図7】リチウムイオン二次電池の電池蓋と安全弁部材との間の抵抗値を測定する測定装置の構成図である。
【図8】実施例リチウムイオン二次電池と比較例リチウムイオン二次電池との、電池蓋と安全弁部材間の抵抗値と保存期間−保存温度の特性図である。
【符号の説明】
1 リチウムイオン二次電池、2 電池缶、3 発電要素、4 電池蓋構体、5 負極材、6 正極材、7 セパレータ、15 ガスケット、16 正極リード、17 電池蓋、17a 外周フランジ部、18 安全弁部材、18b 外周フランジ部、18c 接続凸部、19 ディスクホルダ、20 ストリッパディスク、21 サブディスク、22 溶接部位、30 電池蓋構体、31 溶接凸部、35 電池蓋構体、36 カシメ部位、37 レーザ溶接機の出射部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed battery used as a power source for an in-vehicle battery or various electronic devices, and more particularly to a structure for connecting a safety valve member and a battery lid provided for abnormally increasing internal pressure.
[0002]
[Prior art]
Secondary batteries such as lithium secondary batteries and carbon lithium secondary batteries that can be repeatedly charged are used in various electronic devices. In such a secondary battery, the power generation element housed inside may undergo a chemical change and the internal pressure may become abnormally high. For example, in a non-aqueous electrolyte battery such as a lithium secondary battery, when an electric current of a predetermined current value or more flows for some reason and an overcharge state occurs, the electrolytic solution is decomposed and gas is generated inside. When this state is continued, the nonaqueous electrolyte battery is developed to a situation in which the rapid decomposition of the electrolytic solution and the electrode active material is promoted, the internal temperature rises, and gas is blown out.
[0003]
Therefore, in the nonaqueous electrolyte battery, a safety mechanism is provided to prevent such a situation from occurring. The safety mechanism is configured by a member such as a safety valve member or a PTC element disposed between the power generation element and the battery lid, and operates when the internal pressure is abnormally increased or the like, and operates between the power generation element and the battery lid. The connection state is released. The nonaqueous electrolyte battery cuts an excessive current to the power generation element by such a safety mechanism, thereby stopping gas generation and suppressing an increase in internal pressure.
[0004]
In addition, in a lithium ion secondary battery, when performing high output or serial connection, a positive electrode part is comprised by a battery cover and a safety valve member, without incorporating a PTC element. Further, in the lithium ion secondary battery, low-resistance components having the same shape are assembled in place of the PTC element.
[0005]
[Problems to be solved by the invention]
In a lithium ion secondary battery, a positive electrode lead is connected to a positive electrode current collector of a power generation element via a current collecting lead, and the positive electrode lead and the battery lid constitute a safety valve member, a PTC element and the like constituting a safety mechanism. Connected through. The safety valve member is elastically contacted with the positive electrode lead at the center thereof, and the outer peripheral flange portion formed on the outer peripheral portion is overlapped with the outer peripheral flange portion formed on the battery lid. In the safety valve member, the contact state between the outer peripheral flange portion and the outer peripheral flange portion of the battery lid is held by the battery lid by caulking the outer peripheral flange portion to the opening of the battery can through the gasket. Continuity is achieved.
[0006]
By the way, in a lithium ion secondary battery, a gasket formed of a synthetic resin material such as polypropylene or Teflon is generally used. For this reason, in a lithium ion secondary battery, since the elastic force of supporting the contact state between the battery lid and the safety valve member decreases with the aging of the synthetic resin gasket, the battery lid and the safety valve member There is a problem that the contact resistance between the two increases. The lithium ion secondary battery has a problem in that the efficiency is deteriorated because the overall internal resistance value increases due to the increase in the contact resistance.
[0007]
Further, in a lithium ion secondary battery, each member such as a battery lid or a safety valve member may be deformed due to an increase in internal pressure. Accordingly, the lithium ion secondary battery has a problem that the contact resistance between the battery lid and the safety valve member increases, and the overall internal resistance value increases.
[0008]
Therefore, the present invention has been proposed for the purpose of providing a sealed battery that obtains a stable output by suppressing an increase or fluctuation in internal resistance against changes over time, temperature changes, and the like.
[0009]
[Means for Solving the Problems]
  The sealed battery according to the present invention that achieves the above-described object is disposed between the power generation element and the battery lid, and is deformed when an abnormal increase in internal pressure or the like occurs and the power generation element and the battery lid A safety valve member for releasing the electrical connection state is provided. ElectricpondThe outer peripheral flange portion is formed on the entire periphery of the lid, and the outer peripheral flange portion is sealed to the opening portion of the battery can via a gasket and is assembled to the battery can. The safety valve memberpondAn outer peripheral flange portion is formed on the entire circumference corresponding to the outer peripheral flange portion of the lid. The sealed batteryThe outer peripheral flange portions of the battery lid and the safety valve member are flattened, and a plurality of weld convex portions are formed on the coupling surface of the outer peripheral flange portion of at least one of the electrode lid and the safety valve member. They are connected by resistance welding corresponding to the parts.
[0010]
According to the sealed battery according to the present invention configured as described above, the electrode lid and the safety valve member are firmly connected to be kept in a low contact resistance state, and change with time or internal pressure is maintained. The increase in the resistance value between the electrode lid and the safety valve member is also suppressed by the deformation of the constituent member accompanying the increase in the number of the components. In the sealed battery, the overall internal resistance value is thereby maintained in a stable state, and a large current output is efficiently output.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. A sealed battery 1 shown in FIG. 1 as an embodiment is a relatively large lithium ion secondary battery used in, for example, a battery device mounted in a hybrid system car, and is placed inside a battery can 2 constituting a negative electrode. The power generation element 3 is housed, and the battery can 2 is hermetically sealed by a battery lid structure 4 constituting a positive electrode. The battery can 2 is made of a metal can having a bottomed cylindrical shape, and a receiving portion 2a of the battery lid structure 4 is formed by performing bead processing at a predetermined height position from the opening edge of the upper end and narrowing to a small diameter. . The battery can 2 is configured such that the upper part from the receiving part 2a is a caulking part 2b that caulks the battery lid assembly 4 as will be described later.
[0012]
The power generation element 3 includes a sheet-like negative electrode material 5, a positive electrode material 6, a separator 7, a negative electrode current collector plate 8, a positive electrode current collector plate 9 and other members and an electrolytic solution. The power generation element 3 electrically connects the negative electrode material 5 and the negative electrode current collector plate 8 by a large number of negative electrode current collector leads 10, and connects the positive electrode material 6 and the positive electrode current collector plate 9 to a large number of positive electrode current collector leads. 11 is electrically connected.
[0013]
Although details are omitted, the negative electrode material 5 is made of a sheet body having a total thickness of 60 μm by applying a negative electrode active material mixture on both surfaces of a negative electrode current collector made of, for example, a copper foil having a thickness of 15 μm. The negative electrode active material mixture can be doped / undoped with lithium ions, for example, a carbon material such as graphite, non-graphitizable carbon or graphitizable carbon is used as a negative electrode active material, polyvinylidene fluoride (PVdF) as a binder, solvent A slurry obtained by adding n-methylpyrrolidone (NMP) is used. Specifically, the negative electrode active material mixture is obtained by adding 10 parts by weight of PVdF to 90 parts by weight of carbon particles having an average particle diameter of 20 μm and dispersing them in NMP.
[0014]
The negative electrode active material mixture is uniformly applied to both surfaces of the negative electrode current collector by, for example, a doctor blade method, etc., and is subjected to a drying process in a drying furnace and NMP is blown, followed by a pressure treatment such as a roll press. As a result, the negative electrode active material layer is formed on both surfaces of the negative electrode current collector. The negative electrode material 5 has a negative electrode current collector lead 10 connected to an uncoated portion of a negative electrode active material mixture of a negative electrode current collector.
[0015]
Although not described in detail, the positive electrode material 6 is made of, for example, a sheet body in which a positive electrode active material mixture is applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm so that the total thickness is 80 μm. The positive electrode active material mixture is prepared by adding a conductive agent and a binder to the positive electrode active material and dispersing it in a solvent to form a slurry. Examples of the positive electrode active material include LixMO2(Wherein M represents one or more transition metals, and x is different depending on the charge / discharge state of the battery, and is usually 0.05 or more and 1.10 or less). LiCoO that can generate high voltage and has excellent energy density2LiNiO2, LiNiyCo1-yO2(0 <y <1) is used. For example, graphite powder is used as the conductive agent.
[0016]
The positive electrode active material mixture is, for example, the above-described positive electrode active material, specifically, LiCoO.210 parts by weight of graphite powder and 4 parts by weight of PVdF resin are added to 86 parts by weight of powder, and this is dispersed in NMP to form a slurry. The positive electrode active material mixture is uniformly applied to both surfaces of the positive electrode current collector by, for example, a doctor blade method, etc., dried in a drying furnace, and after NMP is blown, a pressure treatment such as a roll press is performed. Thus, the positive electrode active material layer is formed on both surfaces of the positive electrode current collector by increasing the density. The positive electrode material 6 has a positive electrode current collector lead 11 connected to an uncoated portion of the negative electrode active material mixture of the positive electrode current collector.
[0017]
For example, ethylene carbonate (EC), propylene carbonate (PC), or butylene carbonate (BC) is used as the electrolytic solution. In the electrolytic solution, a cation and an anion are combined, and an electrolyte salt compatible with the solvent is mixed. Specifically, lithium hexafluorophosphate or lithium tetrafluoroborate is used as the electrolyte salt at a concentration that can be dissolved in the electrolytic solution.
[0018]
The negative electrode material 5 and the positive electrode material 6 described above are sequentially wound around the outer peripheral portion of the half-shaped core jig 12 as shown in FIG. The negative electrode material 5 and the positive electrode material 6 constitute a spiral wound body by being removed from the core jig 12 after the outermost peripheral portion is fixed with, for example, a tape in a state in which a predetermined number is wound.
[0019]
By the way, in the negative electrode material 5 and the positive electrode material 6, regions along the respective one side edges that are opposed to each other in an overlapped state are uncoated regions of the electrode active material, and the negative electrode current collector leads are formed in these uncoated regions. 10 or a lead joint for joining the positive electrode current collector lead 11 is formed in a strip shape. Therefore, in the wound state of the negative electrode material 5 and the positive electrode material 6, lead joint portions protrude from both ends.
[0020]
In the power generation element 3, the wound body of the negative electrode material 5, the positive electrode material 6, and the separator 7 described above draws out the negative electrode current collecting lead 10 and the positive electrode current collecting lead 11 that are bonded to each lead joint portion, respectively. It is configured by being connected to the electric plate 8 and the positive electrode current collector plate 9. The negative electrode current collecting lead 10 and the positive electrode current collecting lead 11 are respectively sandwiched between the negative electrode current collecting plate 8 and the annular negative electrode holding metal fitting 13 and the positive electrode current collecting plate 9 and the annular positive electrode holding metal fitting 14 and then laser welded. Is applied and firmly connected and fixed.
[0021]
The power generating element 3 configured as described above is loaded into the battery can 2 from the opening with the negative electrode current collector plate 8 side as the loading side. In the power generation element 3, the negative electrode current collector plate 8 comes into contact with the bottom surface of the battery can 2 and is subjected to resistance welding or the like, whereby electrical conduction is achieved and the battery can 2 is configured as a negative electrode. As will be described later, the power generating element 3 includes a positive electrode lid assembly 4 that is clamped to the opening of the battery can 2 via a gasket 15 so that the positive electrode current collector plate 9 and the positive electrode lead 16 are in elastic contact with each other. Electrical continuity with the structure 4 is achieved.
[0022]
The gasket 15 is formed of a synthetic resin material such as polypropylene or Teflon so as to have a stepped cylindrical shape as a whole. In the gasket 15, the outer diameter of the large diameter portion is substantially equal to the inner diameter of the battery can 2, and the outer diameter of the small diameter portion is slightly smaller than the inner diameter of the receiving portion 2a. The gasket 15 seals the opening portion of the battery can 2 by the battery lid assembly 4 by performing a caulking process on the caulking portion 2b in a state where the battery lid assembly 4 is assembled to the battery can 2 as will be described later. .
[0023]
As shown in FIGS. 1 and 3, the positive electrode cover assembly 4 is configured by members such as a battery cover (top cover) 17, a safety valve member 18, a disk holder 19, a stripper disk 20, and a sub disk 21. Yes. The battery lid 17 is formed to have a substantially cylindrical shape as a whole by subjecting a conductive disc-shaped metal material to, for example, press deep drawing. An outer peripheral flange portion 17 a is integrally formed on the battery lid 17 so as to extend over the entire outer peripheral edge portion of the opening on one end side. In the state where the lithium ion secondary battery 1 is loaded in the battery device, the battery lid 17 forms a gas vent hole with the cylindrical portion facing outward from the case of the battery device. The outer diameter of the outer peripheral flange portion 17 a is slightly smaller than the inner diameter of the battery can 2 and is slightly larger than the inner diameter of the receiving portion 2 a.
[0024]
The safety valve member 18 is also formed by, for example, pressing a conductive disc-shaped metal material, and integrally extending an outer peripheral flange portion 18b over the entire circumference on the outer peripheral edge of the bulging portion 18a bulged toward the power generating element 3 side. The whole is formed in a generally shallow dish shape. The outer peripheral flange portion 18b corresponds to the outer peripheral flange portion 17a of the battery lid 17 and has an outer diameter slightly smaller than the inner diameter of the battery can 2 and slightly larger than an inner diameter of the receiving portion 2a. .
[0025]
The safety valve member 18 is integrally provided with a connecting projection 18c at the center of the bulging portion 18a. As will be described later in detail, the safety valve member 18 is spot-welded in a state where the outer peripheral flange portion 18b is overlapped with the outer peripheral flange portion 17a of the battery lid 17, thereby closing the inner hole of the battery lid 17. It is mechanically and electrically integrated with the battery lid 17 via the spot weld 22.
[0026]
The disc holder 19 is formed in an overall cylindrical shape having an inner diameter substantially equal to the outer diameter of the central portion 18a of the safety valve member 18 with an insulating synthetic resin, and a partition wall 19a is integrally formed so as to partition the inside. The disc holder 19 is press-fitted into the outer peripheral portion of the central portion 18a of the safety valve member 18 and assembled integrally. In this state, the disc holder 19 projects the connecting projection 18c of the safety valve member 18 toward the power generation element 3 through the through hole 19b formed in the partition wall 19a.
[0027]
The stripper disk 20 is formed in a disk shape whose outer diameter is substantially the same as the inner diameter of the disk holder 19, and a sub disk 21 is joined to the bottom surface thereof. The stripper disk 20 is insulated from the central portion 18 a of the safety valve member 18 by the partition wall 19 a of the disk holder 19. The stripper disk 20 is formed with a central hole 20a through which the connecting convex part 18c of the safety valve member 18 penetrates toward the power generating element 3 at the center, and is located around the central hole 20a to prevent abnormal internal pressure. A detection hole 20b for detecting and displacing the safety valve member 18 is formed.
[0028]
A sub disk 21 is coupled to the stripper disk 20 so as to close the center hole 20a. The sub disk 21 has an outer diameter that does not block the detection hole 20b, and one end of the positive electrode lead 16 is coupled thereto. The positive electrode lead 16 is formed, for example, by bending an aluminum material into a substantially U shape, and one end of the positive electrode lead 16 is integrated with the sub disk 21 by laser welding, and the other end is described later. 4 is elastically contacted to the positive electrode current collector plate 9 in a state where the battery can 2 is assembled.
[0029]
The above-described disc holder 19 is press-fitted with a stripper disc 20 having a sub-disc 21 coupled and fixed from one side to the inner hole thereof, and a safety valve member 18 is press-fitted with its bulging portion 18a from the other side. Can be assembled. The safety valve member 18 has an outer peripheral flange portion 18 b protruding from the disc holder 19, and a connecting convex portion 18 c facing the center hole 20 a of the stripper disc 20 and coupled to the sub disc 21. The safety valve member 18 is integrated with the stripper disk 20 via the sub disk 21 by ultrasonic welding at the joint portion between the connecting projection 18 c and the sub disk 21. The safety valve member 18 and the stripper disk 20 are insulated from each other through the partition wall 19a of the disk holder 19.
[0030]
As described above, the outer peripheral flange portion 17a of the battery lid 17 is overlapped with the outer peripheral flange portion 18b of the safety valve member 18, and spot welding is performed at a plurality of locations so as to be integrated with the battery lid 17. Spot welding is performed by an appropriate welding method such as ultrasonic welding, resistance welding, or laser welding. The ultrasonic welding method is effective because it has high finishing accuracy and does not cause leakage due to microcracks. As shown in FIG. 3, the battery lid 17 and the safety valve member 18 are fixed at a plurality of locations including an outer peripheral flange portion 17 a and an outer peripheral flange portion 18 b by a welded portion 22. As described above, the connection convex portion 18 c of the safety valve member 18 is welded to the sub disk 21, and the other end portion of the positive electrode lead 16 is welded.
[0031]
As described above, in the battery lid assembly 4, the battery lid 17, the safety valve member 18, the sub disk 21, and the positive electrode lead 16 are integrated with each other by welding. Accordingly, in the battery lid assembly 4, the members are combined with sufficient mechanical strength, and the contact resistance between the members can be almost ignored by constituting a substantially integral member. It has a configuration.
[0032]
The battery lid assembly 4 configured as described above is assembled to the battery can 2 in which the power generation element 3 is loaded, the gasket 15 is assembled in the opening, and the electrolyte is injected. The gasket 15 is in a state where the large diameter portion is in contact with the inner peripheral surface of the caulking portion 2b of the battery can 2 over the entire circumference, and the small diameter portion extends inward from the receiving portion 2b. . In the battery lid assembly 4, the large diameter portion of the gasket 15 is brought into close contact with the inner circumferential surface of the caulking portion 2 b of the battery can 2 by the integrated battery lid 17 and the outer peripheral edges of the outer peripheral flange portions 17 a and 18 b of the safety valve member 18. . The battery lid assembly 4 is held on the receiving portion 2a of the battery can 2 via the bottom surface portion where the outer peripheral flange portion 18b of the safety valve member 18 connects the large diameter portion and the small diameter portion of the gasket 15.
[0033]
The battery can 2 is subjected to a caulking process in which the caulking portion 2b is bent inward with the battery lid assembly 4 assembled as described above. The battery lid assembly 4 is sandwiched between the receiving portion 2a and the caulking portion 2b by the peripheral portions of the outer flange portions 17a and 18b of the battery lid 17 and the safety valve member 18 through the gasket 15 elastically deformed thereby. The opening of the battery can 2 is sealed. The battery can 2 and the battery lid assembly 4 constitute a lithium ion secondary battery 1 in which the power generation element 3 and the electrolytic solution are hermetically sealed.
[0034]
In the lithium ion secondary battery 1 configured as described above, the elastic force with respect to the outer peripheral flange portions 17a and 18b of the battery lid 17 and the safety valve member 18 is gradually reduced due to the aging of the gasket 15. In the lithium ion secondary battery 1, since the members constituting the battery lid assembly 4 are integrated by welding as described above, the contact resistance value between the members changes even when the elastic force of the gasket 15 decreases. There is nothing to do. Therefore, the lithium ion secondary battery 1 is maintained in a state where the entire internal resistance value is stable, and efficiently outputs a large current output.
[0035]
In the lithium ion secondary battery 1, the internal pressure of the battery can 2 rises abnormally due to a current larger than the steady value flowing through the power generation element 3 for some reason and the overcharge state continues to generate gas inside. In this case, the safety valve member 18 operates in the same manner as a conventional lithium ion secondary battery. The safety valve member 18 is subjected to the abnormally increased internal pressure through the detection hole 20b of the stripper disk 20. Since the outer peripheral flange portion 18 b is fixed to the safety valve member 18, bulging deformation in which the central region swells toward the battery lid 17 side occurs. With this bulging deformation, the safety valve member 18 applies a pulling force toward the battery lid 17 to the sub disk 21 connected via the connection projection 18c.
[0036]
The movement of the sub disk 21 is restricted by the disk holder 19 and the stripper disk 20. Therefore, in the safety valve member 18, the connection state between the connection convex portion 18 c and the sub disk 21 is disconnected, and the electrical connection with the positive electrode lead 16, in other words, the power generation element 3 is released. In the lithium ion secondary battery 1, the generation of gas is stopped when the current supply to the power generation element 3 is cut off, and an increase in internal pressure is suppressed.
[0037]
In the battery lid assembly 4 described above, the battery lid 17 and the safety valve member 18 are integrated with the overlapped outer peripheral flange portions 17a and 18b by ultrasonic welding, but other lap welding such as resistance welding and laser welding is performed. Of course, they may be integrated by law. The battery lid assembly 30 shown in FIG. 4 is configured to be subjected to a more efficient and highly accurate resistance welding method. The battery cover assembly 30 has the same constituent elements and parts as those of the battery cover assembly 4 described above, and the detailed description thereof will be provided with the same reference numerals. Omitted.
[0038]
That is, the battery lid assembly 30 is characterized in that a plurality of welding projections 31 are integrally formed by stamping on the outer peripheral flange portion 17 a of the battery lid 17. Each welding convex part 31 protrudes in the main surface side facing the outer peripheral flange part 18b of the safety valve member 18 of the outer peripheral flange part 17a. Each welding convex part 31 is formed in the outer periphery flange part 17a on the same periphery at substantially equal intervals corresponding to the location which performs resistance welding.
[0039]
The battery lid 17 and the safety valve member 18 configured as described above are sandwiched by the welding electrodes at locations corresponding to the respective welding convex portions 31 in a state where the outer peripheral flange portions 17a and 18b are overlapped. The battery lid 17 and the safety valve member 18 are integrated by melting and welding the weld projection 31 when a current is passed through the welding electrode. The battery lid 17 and the safety valve member 18 are welded with high precision by the heat generation and melting of the welding projections 32 efficiently by supplying current for a short time.
[0040]
The battery lid assembly 35 shown in FIG. 5 is configured to be subjected to a more efficient and highly accurate laser welding method. The battery lid assembly 35 is characterized in that a caulking convex wall 36 is integrally erected on the outer peripheral edge of the outer peripheral flange portion 18b of the safety valve member 18. The caulking convex wall 36 is formed of a cylindrical standing wall whose inner diameter is substantially equal to the outer diameter of the outer peripheral flange portion 17 a of the battery lid 17.
[0041]
The safety valve member 18 configured as described above is loaded with the battery cover 17 inside the caulking convex wall 36, and the outer peripheral flange portions 17a and 18b are overlapped and combined. In this state, the safety valve member 18 is subjected to a caulking process in which the caulking convex wall 36 is bent inward as indicated by an arrow in FIG. The battery lid 17 and the safety valve member 18 are integrally combined by sandwiching the outer peripheral flange portion 17a between the outer peripheral flange portion 18b and the bent caulking convex wall 36. However, since the battery lid 17 and the safety valve member 18 are in a pressure contact state between the outer peripheral flange portions 17a and 18b in this state, the battery lid 17 and the safety valve member 18 are formed of a metal that is lifted by caulking strength and has a different material. In this case, the contact resistance increases due to the difference in expansion coefficient depending on the environmental temperature used.
[0042]
The battery lid assembly 35 caulks the battery lid 17 and the safety valve member 18 via a convex wall 36, and irradiates the members with a laser beam from a light emitting portion 37 of a laser welding machine so as to integrate them. . In this case, laser welding is performed from the side of the caulking convex wall 36 that is bent as shown in FIG. Even if a blow hole occurs between the caulking convex wall 36 and the outer peripheral flange portion 17a due to poor welding, the battery lid structure 35 is sealed because the influence does not reach between the outer peripheral flange portions 17a and 18b on the back side. The liquidity is maintained and no leakage occurs. Therefore, in the battery lid assembly 35, the battery lid 17 and the safety valve member 18 are laser-welded more efficiently and with high accuracy.
[0043]
For the example lithium ion secondary battery and the conventional comparative lithium ion secondary battery manufactured as described above, the battery internal resistance value (DCR value) was measured by the measuring devices 40 and 50 shown in FIGS. And the resistance value (TC-SC value) between the battery cover 17 and the safety valve member 18 was measured. The measuring device 40 connects measuring terminals 41 and 42 to the bottom surface of the battery can 2 of the lithium ion secondary battery and the battery lid 17, respectively, and connects the voltmeter 43 to one side of these measuring terminals 41 and 42 and the other. A load 44 is connected to the side. The DCR value of each lithium ion secondary battery was measured with a voltmeter 43 by measuring a voltage value V1 after energizing a current of 9A for 5 seconds and a voltage value V2 after energizing a current of 27A for 5 seconds, respectively (V2- V1) / (27A-9A).
[0044]
The measuring device 50 connects measuring terminals 51 and 52 to the battery lid 17 and the safety valve member 18 of the lithium ion secondary battery, respectively, and connects a voltmeter 53 to one side of these measuring terminals 51 and 52 and to the other side. An ammeter 54 and a DC power supply 55 were connected. The TC-SC value was obtained indirectly by V / A by measuring the measured value V of the voltmeter 53 and the measured value A of the ammeter 54.
[0045]
The measurement of DCR value and TC-SC value was carried out for each example lithium ion secondary battery and comparative example lithium ion secondary battery at storage temperatures of 25 ° C. and 40 ° C., respectively, and the storage days were 0 days, 6 days, The average of resistance values measured on the 12th, 20th, 25th, 32nd, and 41st days was obtained. Table 1 shows the DCR value and TC-SC value of the lithium ion secondary battery of the example. Moreover, the DCR value and TC-SC value of the comparative lithium ion secondary battery were as shown in Table 2. FIG. 8 is a characteristic diagram of an example lithium ion secondary battery and a comparative example lithium ion secondary battery in which the TC-SC value is taken as the vertical axis and the storage days are taken as the horizontal axis.
[0046]
[Table 1]
Figure 0004465754
[0047]
[Table 2]
Figure 0004465754
[0048]
As can be seen from Table 1 and FIG. 8, the lithium ion secondary battery of Example 1 has a DCR value of 4.33 mΩ at a storage temperature of 25 ° C. and 0 days of storage, and gradually increases as the number of storage days increases. It was 4.61 mΩ at 20 storage days and 4.72 mΩ at 41 storage days. In addition, the lithium ion secondary battery of Example has a DCR value of 4.33 mΩ at a storage temperature of 40 ° C. at a storage day of 0 days, and gradually increases with an increase in the storage days, to 4.94 mΩ at a storage day of 20 days. It was 5.39 mΩ in 41 days.
[0049]
In addition, as is clear from Table 1 and FIG. 8, the lithium ion secondary battery of the Example had a TC-SC value of 0.12 mΩ at a storage temperature of 25 ° C., but the increase in the storage days. There was almost no change, and it was 0.15 mΩ after 20 days of storage and 0.14 mΩ after 41 days of storage. In addition, the lithium ion secondary battery of Example 1 had a TC-SC value of 0.12 mΩ at a storage temperature of 40 ° C. and 0 days of storage, but there was almost no change with an increase in the number of storage days. It was 0.14 mΩ after 41 days of storage.
[0050]
Since the lithium ion secondary battery has a structure in which the battery lid 17 and the safety valve member 18 are integrated by welding, the contact resistance value (TC-SC value) between these members depends on the storage temperature condition or the storage period. ) Hardly change. Therefore, in the lithium ion secondary battery of Example, the fluctuation of the internal resistance value (DCR value) due to the passage of the storage period and the temperature condition is small, and it is maintained in a stable state and efficiently outputs a large current output.
[0051]
On the other hand, as is clear from Table 2 and FIG. 8, the lithium ion secondary battery of Comparative Example 1 has a DCR value of 5.56 mΩ at a storage temperature of 25 ° C., with a storage day of 0 days. It gradually increased to 5.89 mΩ for 20 days of storage and 6.11 mΩ for 41 days of storage. In addition, the lithium ion secondary battery of Comparative Example 1 has a DCR value of 4.94 mΩ at 0 storage days at a storage temperature of 40 ° C., and gradually increases as the storage days increase to 6.00 mΩ at 20 storage days. It was 7.44 mΩ at 41 storage days.
[0052]
In addition, as is clear from Table 2 and FIG. 8, the lithium ion secondary battery of Comparative Example 2 has a DCR value of 4.78 mΩ at a storage temperature of 25 ° C., and the increase in the storage days. It gradually increased to 5.11 mΩ at 20 storage days and 5.39 mΩ at 41 storage days. Further, the lithium ion secondary battery of Comparative Example 2 has a DCR value of 4.83 mΩ at a storage temperature of 0 ° C. at a storage temperature of 40 ° C., and gradually increases with an increase in the storage days, and 6.83 mΩ at a storage day of 20 days. It was 7.28 mΩ at 41 storage days.
[0053]
As is clear from Table 2 and FIG. 8, the lithium ion secondary battery of Comparative Example 1 had a TC-SC value of 1.47 mΩ at a storage temperature of 25 ° C., but the increase in the storage days. The change occurred, and the value was 1.53 mΩ after 20 days of storage and 1.55 mΩ after 41 days of storage. In addition, the lithium ion secondary battery of Comparative Example 1 had a TC-SC value of 0.54 mΩ at a storage temperature of 40 ° C. with a storage day of 0 days, but gradually increased with an increase in the storage days, with a storage day of 20 days. 0.90 mΩ and 1.76 mΩ after 41 days of storage.
[0054]
Further, as is clear from Table 2 and FIG. 8, the lithium ion secondary battery of Comparative Example 2 had a TC-SC value of 0.36 mΩ at a storage temperature of 25 ° C. with a storage day of 0 days. The change due to the increase was 0.37 mΩ after 20 days of storage, and 0.39 mΩ after 41 days of storage. In addition, the lithium ion secondary battery of Comparative Example 2 had a TC-SC value of 0.45 mΩ at a storage temperature of 40 ° C. with a storage day of 0 days, but gradually increased with an increase in the storage days, with a storage day of 20 days. It was 1.91 mΩ with 1.84 mΩ and 41 days of storage.
[0055]
Since the comparative example lithium ion secondary battery has a configuration in which the battery lid 17 and the safety valve member 18 are pressed against the outer peripheral flange portions 17a and 18b by the elastic force of the gasket 15, the contact resistance value between these members for each product. The variation in (TC-SC value) is large. Further, in the comparative lithium ion secondary battery, the contact resistance value between the battery lid 17 and the safety valve member 18 greatly increases and increases with the increase in storage days or storage temperature. Therefore, in the comparative lithium ion secondary battery, the variation in the internal resistance value (DCR value) increases depending on the variation in the contact resistance value between the battery lid 17 and the safety valve member 18 or the passage of the storage period and the storage temperature condition. As the current increases, the output of a large current gradually deteriorates.
[0056]
In addition, although the lithium ion secondary battery mentioned above used what combined the battery lid 17 and the outer periphery flange parts 17a and 18b of the safety valve member 18 by ultrasonic welding, it combined by the resistance welding or laser welding mentioned above. Lithium ion secondary batteries have the same characteristics.
[0057]
The present invention is not limited to the above-described lithium ion secondary battery, but can be applied to other sealed batteries in which the safety valve member 18 is assembled to the battery lid 17, such as a lithium primary battery.
[0058]
【The invention's effect】
As described above in detail, according to the sealed battery according to the present invention, the electrode lid and the safety valve member are welded after the outer peripheral flange portions are overlapped, and are firmly bonded to each other. Even when the temperature of the specification environment or the internal pressure increases, the deformation of the constituent members or the like ensures that the gap between the electrode lid and the safety valve member is kept at a low contact resistance value. Therefore, according to the sealed battery, it is possible to efficiently output a large current output while keeping the entire internal resistance value in a stable state.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an essential part of a lithium ion secondary battery shown as an embodiment of the present invention.
FIG. 2 is a diagram illustrating a configuration of a power generation element provided in the lithium ion secondary battery.
FIG. 3 is a longitudinal sectional view of a battery lid assembly provided in the lithium ion secondary battery.
FIG. 4 is an exploded vertical cross-sectional view of a preferred battery lid assembly employing a resistance welding method provided in the lithium ion secondary battery.
FIG. 5 is a longitudinal sectional view showing a battery lid structure suitable for adopting a laser welding method provided in the lithium ion secondary battery.
FIG. 6 is a configuration diagram of a measuring apparatus that measures an internal resistance value of a lithium ion secondary battery.
FIG. 7 is a configuration diagram of a measuring apparatus that measures a resistance value between a battery lid of a lithium ion secondary battery and a safety valve member.
FIG. 8 is a characteristic diagram of a resistance value between a battery lid and a safety valve member, a storage period, and a storage temperature of an example lithium ion secondary battery and a comparative example lithium ion secondary battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery, 2 Battery can, 3 Power generation element, 4 Battery cover structure, 5 Negative electrode material, 6 Positive electrode material, 7 Separator, 15 Gasket, 16 Positive electrode lead, 17 Battery cover, 17a Outer flange part, 18 Safety valve member , 18b Outer peripheral flange portion, 18c Connection convex portion, 19 Disc holder, 20 Stripper disc, 21 Sub-disc, 22 Welding part, 30 Battery lid structure, 31 Welding convex part, 35 Battery lid structure, 36 Caulking part, 37 Laser welding machine Output part

Claims (1)

発電要素と電池蓋との間に配設され、内部圧力の異常上昇によって変形してこれら発電要素と電池蓋との電気的接続状態を解除する安全弁部材を備える密閉型電池において、
全周に形成された外周フランジ部がガスケットを介して電池缶の開口部に封止されることによってこの電池缶に組み付けられる上記電蓋と、
上記電蓋の外周フランジ部に対応して外周フランジ部が全周に形成された上記安全弁部材とを備え、
上記電池蓋及び上記安全弁部材のそれぞれの上記外周フランジ部を平坦とし、上記電池蓋と安全弁部材には、少なくともいずれか一方の部材の上記外周フランジ部の結合面に複数個の溶接凸部が形成され、これら溶接凸部に対応して抵抗溶接が施されることによって結合される密閉型電池。
Is disposed between the power generating element and the battery cover, the sealed battery comprising a safety valve member to release the electrical connection between these power generating element and the battery cover and thus deformed to abnormal Rise of the internal pressure,
And the batteries lid assembled to the battery can by an outer peripheral flange portion formed on the entire circumference is sealed to the opening of the battery can via a gasket,
Peripheral flange corresponding to the outer peripheral flange portion of the batteries lid and a said safety valve member formed on the entire circumference,
The outer peripheral flange portion of each of the battery lid and the safety valve member is flattened, and a plurality of welding convex portions are formed on the joint surface of the outer peripheral flange portion of at least one of the battery lid and the safety valve member. And a sealed battery that is joined by resistance welding corresponding to these weld projections .
JP30769299A 1999-10-28 1999-10-28 Sealed battery Expired - Lifetime JP4465754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30769299A JP4465754B2 (en) 1999-10-28 1999-10-28 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30769299A JP4465754B2 (en) 1999-10-28 1999-10-28 Sealed battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009289855A Division JP5233980B2 (en) 2009-12-21 2009-12-21 Sealed battery

Publications (2)

Publication Number Publication Date
JP2001126695A JP2001126695A (en) 2001-05-11
JP4465754B2 true JP4465754B2 (en) 2010-05-19

Family

ID=17972085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30769299A Expired - Lifetime JP4465754B2 (en) 1999-10-28 1999-10-28 Sealed battery

Country Status (1)

Country Link
JP (1) JP4465754B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321027B2 (en) * 2002-09-13 2009-08-26 ソニー株式会社 Non-aqueous electrolyte battery
JP2005093239A (en) * 2003-09-17 2005-04-07 Sony Corp Battery
JP2006351512A (en) * 2005-05-16 2006-12-28 Matsushita Electric Ind Co Ltd Sealed secondary battery and its manufacturing method
KR100954587B1 (en) * 2007-11-08 2010-04-26 삼성에스디아이 주식회사 Cap assembly and secondary battery using the same
WO2011092845A1 (en) * 2010-01-29 2011-08-04 日立ビークルエナジー株式会社 Sealed battery and method for manufacturing same
CN103503194A (en) * 2011-04-28 2014-01-08 三洋电机株式会社 Sealed Cell and method for manufacturing same
KR101520064B1 (en) 2011-09-09 2015-05-14 주식회사 엘지화학 Method for producing cap assembly, cap assembly thereby and secondary battery having the same
JP7093199B2 (en) * 2018-02-16 2022-06-29 Fdk株式会社 Seal and battery

Also Published As

Publication number Publication date
JP2001126695A (en) 2001-05-11

Similar Documents

Publication Publication Date Title
JP5032737B2 (en) Electrochemical element
JP3738177B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6208687B2 (en) Cylindrical secondary battery and manufacturing method thereof
JP6363893B2 (en) Secondary battery
JP4974734B2 (en) Secondary battery and secondary battery module
JP4124756B2 (en) Sealed battery
JP5368345B2 (en) Non-aqueous electrolyte cylindrical battery
JP2004119330A (en) Secondary battery and its manufacturing method
US9620762B2 (en) Electrical storage element
JP4688688B2 (en) Secondary battery for large current discharge
US20220352606A1 (en) Secondary battery and method for manufacturing same
WO2009153914A1 (en) Battery and method for manufacturing same
JP3627645B2 (en) Lithium secondary battery
JP4465754B2 (en) Sealed battery
JP2003007346A (en) Secondary lithium battery and manufacturing method of the same
JP3588264B2 (en) Rechargeable battery
JP7054454B2 (en) How to manufacture a secondary battery
JP4641731B2 (en) battery
JP3909996B2 (en) Non-aqueous electrolyte secondary battery
JP5233980B2 (en) Sealed battery
JPWO2018012465A1 (en) STORAGE DEVICE AND METHOD FOR MANUFACTURING STORAGE DEVICE
JP4459559B2 (en) Sealed battery
JP3661984B2 (en) Cylindrical secondary battery
WO2014068869A1 (en) Storage battery module
JP2011170972A (en) Method of manufacturing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R151 Written notification of patent or utility model registration

Ref document number: 4465754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term