JP3776531B2 - Continuous pressure steaming device using water-cooled rotary valve - Google Patents

Continuous pressure steaming device using water-cooled rotary valve Download PDF

Info

Publication number
JP3776531B2
JP3776531B2 JP28252396A JP28252396A JP3776531B2 JP 3776531 B2 JP3776531 B2 JP 3776531B2 JP 28252396 A JP28252396 A JP 28252396A JP 28252396 A JP28252396 A JP 28252396A JP 3776531 B2 JP3776531 B2 JP 3776531B2
Authority
JP
Japan
Prior art keywords
water
rotary valve
cooling water
flow rate
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28252396A
Other languages
Japanese (ja)
Other versions
JPH10117725A (en
Inventor
栄 田中
章夫 藤原
善也 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujiwara Techno Art Co Ltd
Original Assignee
Fujiwara Techno Art Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujiwara Techno Art Co Ltd filed Critical Fujiwara Techno Art Co Ltd
Priority to JP28252396A priority Critical patent/JP3776531B2/en
Publication of JPH10117725A publication Critical patent/JPH10117725A/en
Application granted granted Critical
Publication of JP3776531B2 publication Critical patent/JP3776531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Flow Control (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Soy Sauces And Products Related Thereto (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原料を連続的に供給、移送しながら加圧蒸煮処理する水冷式ロータリーバルブを使用する連続加圧蒸煮装置の改良に関する。
【0002】
【従来の技術】
醤油製造における脱脂大豆に一定温度の温水(以下、撒水用温水と呼ぶ)を撒水しながらの加圧蒸煮、酵素製造におけるフスマに一定温度の撒水用温水を撒水しながらの加圧蒸煮や納豆製造における加圧蒸煮等では、生産効率を高めるため、原料を移送しながら連続的に蒸煮可能な連続加圧蒸煮装置(以下、蒸煮装置と略する)が使用される。この蒸煮装置は、原料を連続的に投入、排出しながら加圧蒸煮缶内を略密閉にして加圧状態を維持するため、加圧蒸煮缶の原料投入口及び原料排出口それぞれにロータリーバルブが用いられるのが通例である。このロータリーバルブは、通常ロータを冷却可能にしている。
【0003】
ロータリーバルブのロータを冷却するのは、次の理由による。蒸煮処理を施す原料は、予め加水されていたり、また撒水用温水が撒水されることから、加圧蒸煮缶からの熱気で加温されたロータリーバルブのロータに付着しやすくなっている。原料がロータに付着すると、原料投入口や原料排出口を詰まらせたり、ロータに長時間付着し続けて変色、焦げつきを起こし、蒸煮後の原料品質を低下させるという問題を惹き起こす。特に、タンパク質を含む脱脂大豆では、タンパク質がゲル化し、粘性を増してロータに付着しやすく、問題は深刻化する。そこで、ロータリーバルブのロータ内部を冷却してロータ表面に水蒸気を結露させ、ロータを覆う薄い水の膜により原料のロータへの付着を抑制し、付着した場合でも容易に剥離できるようにしている。前記ロータ内部の冷却手段としては空冷も考えられるが、ロータを効率よく冷却するには水冷式が好ましく、現在では水冷式ロータリーバルブが一般的になっている。従来は、ロータリーバルブの冷却水の流路と装置内で原料に撒水する撒水用温水の流路とは、その役割の違いから当然に別系統とされていた。
【0004】
【発明が解決しようとする課題】
従来の蒸煮装置では、原料に撒水する撒水用温水を、貯水した撒水タンクに蒸気パイプを潜らせて蒸気により加熱したり、気水混合(蒸気と水との混合、以下同じ)した温水を撒水タンクへ送り込んで生成している。上述のとおり、原料に撒水する撒水用温水とロータリーバルブの冷却水とは別系統の流路を構成しており、一方ではロータ冷却後の加温された冷却水(以下、加温後冷却水と呼ぶ)は棄てられ、他方では撒水用温水を新たに生成していたのである。
【0005】
上記冷却水と撒水用温水との関係は、エネルギーの使用の観点から非常に無駄の多いシステムということができるが、冷却水と撒水用温水とを同列に扱うことはできない。なぜなら、冷却水は、ロータリーバルブのロータを冷却することを主眼としているために流量が一定ではなく、加温後冷却水の温度も変動するが、撒水用温水は定量、定温である必要があるからである。このため、従来は両者を分離せざるを得ず、加温後冷却水のエネルギーを利用することはなかった。
【0006】
そこで、蒸煮装置全体としてのエネルギー利用を効率化し、省エネルギー化を図ることを目的とし、設備的、運用的にコストの削減が可能な蒸煮装置の開発を試みた。
【0007】
【課題を解決するための手段】
検討の結果、開発したものが、原料に撒水用温水を撒水し、この原料を蒸煮処理する装置であって、加圧蒸煮缶の原料投入口又は原料排出口に水冷式ロータリーバルブを配しており、このロータリーバルブを通過した加温後冷却水を用いて撒水用温水を生成する流路又はこの加温後冷却水を前記撒水用温水とする流路を構成した水冷式ロータリーバルブを使用する蒸煮装置である。撒水用温水は、熱交換器を用いて加温後冷却水により間接的に水を昇温させて生成することもできるが、水質的に問題がなければ、加温後冷却水を撒水用温水そのものとして利用する方が効率的である。
【0008】
上記装置においては、加温後冷却水の流量又は温度を制御することで、エネルギーの利用率を上げ、撒水用温水の温度を安定して一定に保つことができる。具体的には、水冷式ロータリーバルブに対し、(a)ロータリーバルブを通過した加温後冷却水の温度から経時的な計測値を取得する温度計測手段と、前記計測値に基づいて冷却水の流量を加減する流量制御手段とを備えた流路を構成する、(b)ロータリーバルブを通過する冷却水の流量から経時的な計測値を取得する流量計測手段と、前記計測値に基づいて冷却水の流量を加減する流量制御手段とを備えた流路を構成した水冷式ロータリーバルブを使用する蒸煮装置である。流量を計測する冷却水は、ロータリーバルブの通過前後を問わない。
【0009】
流量制御手段は、計測値に基づいて流量を決定する計算部(例えばコンピュータや調節計等、現時点での流量をフィードバックする流量計等を含む)と、この計算部により駆動、制御される流量調節部(例えば各種開閉バルブや回転数の増減可能なポンプ等)とからなる。計算部と流量調節部とは一体であってもよい。
【0010】
温度計測手段又は流量計測手段が取得する計測値は、経時的に連続する値であれば、アナログ値、ディジタル値を問わない。例えば、ロータリーバルブから撒水タンクへ向かう配管途中に電磁流量計(流量計測手段)を配し、この電磁流量計の出力、すなわち計測値(アナログ値)を、ロータリーバルブへ冷却水を送り込む配管の開閉弁を操作する調節計(流量制御手段:計算部)に入力し、調節計に開閉弁(流量制御手段:流量調節部)の開度を操作させてもよいし、電磁流量計の出力をサンプリングして得た値を計測値(ディジタル値)としてコンピュータ等(流量制御手段)に入力し、コンピュータに開閉弁の開度を操作するモータ等を制御させてもよい。
【0011】
加温後冷却水を撒水用温水の生成に利用しようとした場合、加温後冷却水を適切な流量に設定していても経時的な変動が生じ(流路を開閉するバルブを流路一定に固定していても水源からの水圧が一定しないので、結果として流量が変動する場合等)、撒水用温水の温度を変動させる。また、必要により外部の水源から水を補給し、別途加温源を用意して加温後冷却水と補充した水とを混合して加温しなければならないが、補充した水の量が多ければ、撒水用温水の温度が一時的に急激に下がるという問題を生ずる。上記流量制御は、経時的に変動する加温後冷却水の温度又は冷却水の流量を安定させ、加温後冷却水による温度一定の撒水用温水の生成を実現するのである。
【0012】
加温後冷却水の温度を計測して冷却水の流量を制御する装置では、例えば、冷却水の流量を増減してロータからの熱量に対する水量を加減することにより、加温後冷却水の温度を撒水用温水の温度に等しくしてやれば、通常必要な撒水用温水に足りない水量だけ撒水用温水に等しい温度の温水を加温後冷却水に加えてやるだけで、安定した一定温度の撒水用温水の確保を可能にする。
【0013】
冷却水の流量を計測して冷却水の流量を制御する装置では、例えば、加温後冷却水の水量を必要な撒水用温水の水量に維持してやれば、撒水用温水の温度が低下した場合に蒸気等により撒水用温水を昇温するだけで、安定した一定温度の撒水用温水の確保を可能にする。このように、本発明は加温後冷却水の流量又は温度のいずれかを定量にすることで、温度変化の小さい撒水用温水の効率的な生成を可能にしている。
【0014】
上述の加温後冷却水の温度又は冷却水の流量の計測値に基づく冷却水の流量制御は、加圧蒸煮圧力、加圧蒸煮温度、熱膨張を考慮したロータリーバルブのロータとケーシングとの隙間の大きさ、あるいはロータの表面への原料の付着程度等に応じて実施することにより、例えば過剰なエネルギーの使用を抑えた省エネルギーを実現したり、蒸煮装置としての性能面での向上が図れるなど、多面的効用を有している。
【0015】
【発明の実施の形態】
以下、図を参照しながら本発明の実施形態について説明する。図1は、醤油製造用の脱脂大豆を蒸煮処理する蒸煮装置の構成図であり、加圧蒸煮缶1の原料投入口2と原料排出口3とに配したロータリーバルブ4,5には共に流量計測による流量制御の流路を構成している。両流路を共に温度計測による流量制御にしてもよい(図2参照)。本例では、撒水タンク6の貯水に対し加温後冷却水を加えると共に、温度調整用に蒸気、水量補充用に水を加える。
【0016】
脱脂大豆は、2t/hの割合で撒水スクリュー7内へ送り込まれて70℃の撒水用温水を2.6t/hの割合で撒水され、予熱スクリュー8を経て加圧蒸煮缶1へ送り出される。加圧蒸煮缶1の原料投入口2及び原料排出口3にはそれぞれロータリーバルブ4,5が配されており、加圧蒸煮缶1内の略密閉状態を実現し、投入された原料を2kg/cm2Gで蒸煮する。
【0017】
本例では、ロータリーバルブ4,5から撒水タンク6へ戻される加温後冷却水の水量それぞれを1.2t/hに保つことにした。すなわち、撒水タンク6へ計2.4t/hの加温後冷却水が戻される。これにより、各ロータリーバルブ4,5から戻される加温後冷却水の温度はそれぞれ65〜70℃の範囲で変動することになるが、生成する撒水用温水に対する加温後冷却水の割合(撒水用温水の生成にはこのほか温度調整用の蒸気、水量補充用の水を用いている)が一定するため、加える蒸気の加減のみで簡単に撒水用温水の温度調整ができるようになる。むしろ、加温後冷却水の流量を、常に必要な撒水用温水の水量以下に抑えることができ、無駄の少ない加温後冷却水の利用が可能になるという利点がある。
【0018】
流量制御は、ロータリーバルブ4(5)を通過してきた加温後冷却水の流量を電磁流量計9が計測し、その計測値を計算部である調節計(図中FIC)10に出力することで、調節計10内において計測値と設定値(予め決定し、調節計に入力しておいた目標値)とを比較した上、その差分に従って調節計10が流量調節部であるロータリーバルブ4(5)へ冷却水を送る配管の開閉バルブ11を開閉操作することで実現する。
【0019】
撒水タンク6では、加温後冷却水に蒸気と水とが加えられ、一定温度(本例では70℃)に保たれた撒水用温水が生成される。蒸気は、撒水タンク6内の撒水用温水の温度を温度センサ12で計測し、調節計(図中TIC)13が供給バルブ14を開閉して、温度が低い場合に必要量を供給する。また、水はフロート弁17を用いた自動給水設備等により、撒水タンク6内の撒水用温水の水量が足りなくなったときに補充される。撒水用温水は供給ポンプ15により撒水タンク6から引き出され、撒水スクリュー7内の撒水パイプ16から原料に向けて撒水される。
【0020】
図2は、酵素製造として、フスマを蒸煮処理する本発明の蒸煮装置の構成図であり、加圧蒸煮缶1の原料投入口2又は原料排出口3に配したロータリーバルブ4,5には共に温度計測による流量制御の流路を構成している。本例では、撒水タンク6の貯水に対し加温後冷却水を加えると共に、水量補充用に65℃の気水混合による温水を加えることにしている。
【0021】
フスマは、1t/hの割合で撒水スクリュー7内へ送り込まれて65℃の撒水用温水を1.4t/hの割合で撒水され、予熱スクリュー8を経て加圧蒸煮缶1へ送り出される。加圧蒸煮缶1の原料投入口2及び原料排出口3にはそれぞれロータリーバルブ4,5が配されており、加圧蒸煮缶1内の略密閉状態を実現し、投入された原料を1.8kg/cm2Gで蒸煮する。
【0022】
本例では、ロータリーバルブ4,5から撒水タンク6へ戻される加温後冷却水の温度それぞれを65℃に保つことにした。これにより、各ロータリーバルブ4,5から戻される加温後冷却水の水量はそれぞれ0.50〜0.65t/hの範囲で変動することになるが、撒水タンク6に戻される加温後冷却水の温度が撒水用温水の温度である65℃に等しいため、温度調整のほとんど必要ない利点がある。加温後冷却水の水量を必要な撒水用温水の水量以下にしておけば、加温後冷却水を無駄に棄てることがなくなるし、水量が不足する場合には、例えば撒水タンク6内の水面高さを監視するレベルセンサ20により電磁弁21の開閉を制御して、気水混合により撒水用温水と同じ65℃に加温された温水を補充してやればよい。
【0023】
温度制御は、ロータリーバルブ4(5)を通過してきた加温後冷却水の温度を温度センサ18が計測し、その計測値を計算部である調節計(図中TIC)19に出力することで、調節計19内において計測値と設定値(予め決定し、調節計に入力しておいた目標値)とを比較した上、その差分に従って調節計19が流量調節部であるロータリーバルブ4(5)へ冷却水を送る配管の開閉バルブ11を開閉操作し、撒水タンク6へ戻される加温後冷却水の流量を制御する形で実現する。
【0024】
撒水タンク6では、加温後冷却水に気水混合による温水が加えられ、一定温度(本例では65℃)に保たれた温水が生成される。気水混合による温水は、レベルセンサ20により制御される電磁弁21の開閉により、撒水タンク6内の撒水用温水の水量が足りなくなったときに補充される。撒水用温水は、供給ポンプ15により撒水タンク6から引き出され、撒水スクリュー7内の撒水パイプ16から原料に向けて撒水される。
【0025】
【発明の効果】
本発明の蒸煮装置により、従来棄てるだけであったロータリーバルブを通過した加温後冷却水の有効利用が図れるようになった。すなわち、この加温後冷却水を撒水用温水の生成、又は撒水用温水そのものとして利用することで運用コストを低減し、流路を簡略化できることで設備コストを低減する。また、撒水タンクにおける撒水用温水の温度調整が簡単になり、この温度調整必要な処理がすべて自動制御で実現される点に本発明の特徴がある。これにより、撒水用温水の温度変動がほとんど見られなくなり、温度的に安定した撒水が実現できる結果、蒸煮処理した製品の品質の向上も図れるのようになるのである。
【図面の簡単な説明】
【図1】醤油製造用の脱脂大豆を蒸煮処理する本発明の蒸煮装置の構成図である。
【図2】酵素製造として、フスマを蒸煮処理する本発明の蒸煮装置の構成図である。
【符号の説明】
1 加圧蒸煮缶
2 原料投入口
3 原料排出口
4 原料投入口のロータリーバルブ
5 原料排出口のロータリーバルブ
6 撒水タンク
7 撒水スクリュー
8 予熱スクリュー
9 電磁流量計
10 調節計(FIC)
11 開閉バルブ
12 撒水タンク内の温度センサ
13 調節計(TIC)
14 供給バルブ
15 供給ポンプ
16 撒水パイプ
17 フロート弁
18 温度センサ
19 調節計(TIC)
20 レベルセンサ(LC)
21 電磁弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a continuous pressure cooking apparatus that uses a water-cooled rotary valve that performs pressure cooking while continuously supplying and transferring raw materials.
[0002]
[Prior art]
Pressurized steaming while pouring warm water of constant temperature (hereinafter referred to as hot water for brine) to defatted soybeans in soy sauce production, pressurized steaming and natto production while pouring hot water of constant temperature for bran in enzyme production In pressure steaming or the like, a continuous pressure steaming device (hereinafter abbreviated as steaming device) that can be steamed continuously while transferring raw materials is used to increase production efficiency. This steaming device keeps the inside of the pressurized steaming cannally sealed while maintaining the pressurized state while continuously charging and discharging the raw materials. Therefore, there are rotary valves at the raw material inlet and the raw material outlet of the pressurized steaming can. It is customary to be used. This rotary valve normally allows the rotor to be cooled.
[0003]
The reason for cooling the rotor of the rotary valve is as follows. Since the raw material to be steamed is pre-hydrated or the warm water for brine is submerged, it is easy to adhere to the rotor of the rotary valve heated by the hot air from the pressurized steaming can. If the raw material adheres to the rotor, the raw material charging port and the raw material discharging port are clogged, or the raw material continues to adhere to the rotor for a long time, causing discoloration and scorching and causing a problem that the raw material quality after cooking is lowered. In particular, in defatted soybeans containing protein, the protein gels, increases in viscosity and easily adheres to the rotor, and the problem becomes serious. Therefore, the inside of the rotor of the rotary valve is cooled to condense water vapor on the rotor surface, and a thin water film covering the rotor is used to suppress adhesion of the raw material to the rotor, so that even if it adheres, it can be easily peeled off. As the cooling means inside the rotor, air cooling is conceivable, but a water-cooled type is preferable for efficiently cooling the rotor, and at present, a water-cooled rotary valve is generally used. Conventionally, the flow path of the cooling water of the rotary valve and the flow path of the hot water for flooding that irrigates the raw material in the apparatus are naturally different systems due to the difference in their roles.
[0004]
[Problems to be solved by the invention]
In a conventional steaming device, hot water for submerged water that is submerged in the raw material is heated by steam by submerging a steam pipe in the stored submerged tank, or hot water that has been mixed with air and water (mixing of steam and water, the same applies hereinafter) is submerged. It is sent to the tank and generated. As described above, the warm water for flooding the raw material and the cooling water for the rotary valve constitute a separate flow path, and on the other hand, the heated cooling water after the rotor cooling (hereinafter referred to as the cooling water after heating). Was abandoned, and on the other hand, it was producing new warm water for flooding.
[0005]
The relationship between the cooling water and the warm water for drinking water can be said to be a very wasteful system from the viewpoint of energy use, but the cooling water and the warm water for drinking water cannot be handled in the same row. Because the cooling water is mainly intended to cool the rotor of the rotary valve, the flow rate is not constant and the temperature of the cooling water fluctuates after heating, but the hot water for drinking water needs to be constant and constant temperature Because. For this reason, conventionally, both had to be separated and the energy of the cooling water after heating was not used.
[0006]
Therefore, the development of a steaming device capable of reducing costs in terms of equipment and operation was attempted with the aim of improving energy efficiency and saving energy as a whole steaming device.
[0007]
[Means for Solving the Problems]
As a result of the study, what has been developed is a device that infuses raw water with hot water for drinking water and steams this raw material, with a water-cooled rotary valve at the raw material inlet or outlet of the pressurized steaming can. In addition, a water-cooled rotary valve is used which forms a flow path for generating warm water for drinking water using the heated water after passing through the rotary valve or a flow path using the cooled water after warming as the warm water for drinking water. Steaming device. The warm water for drinking water can be generated by heating the water indirectly with the cooling water after heating using a heat exchanger, but if there is no problem in water quality, the cooling water after warming is used as the warm water for drinking water. It is more efficient to use it as it is.
[0008]
In the said apparatus, the utilization rate of energy can be raised by controlling the flow volume or temperature of cooling water after heating, and the temperature of the hot water for drinking water can be maintained stably. Specifically, with respect to the water-cooled rotary valve, (a) a temperature measuring means for obtaining a measured value over time from the temperature of the cooling water after passing through the rotary valve, and the cooling water based on the measured value (B) a flow rate measuring means for obtaining a measured value over time from the flow rate of the cooling water passing through the rotary valve, and cooling based on the measured value. It is a steaming device that uses a water-cooled rotary valve that has a flow path provided with a flow rate control means for adjusting the flow rate of water. The cooling water for measuring the flow rate may be before or after passing through the rotary valve.
[0009]
The flow rate control means includes a calculation unit that determines the flow rate based on the measurement value (including a flow meter that feeds back the current flow rate, such as a computer or a controller), and a flow rate adjustment that is driven and controlled by this calculation unit. (For example, various open / close valves and pumps capable of increasing / decreasing the number of revolutions). The calculation unit and the flow rate adjustment unit may be integrated.
[0010]
The measurement value acquired by the temperature measurement unit or the flow rate measurement unit may be an analog value or a digital value as long as it is a value that is continuous over time. For example, an electromagnetic flow meter (flow rate measuring means) is placed in the middle of the piping from the rotary valve to the flooded tank, and the output of this electromagnetic flow meter, that is, the measured value (analog value), is opened and closed for piping that feeds cooling water to the rotary valve. Input to the controller (flow rate control means: calculation part) that operates the valve, let the controller operate the opening of the on-off valve (flow rate control means: flow rate adjustment part), or sample the output of the electromagnetic flowmeter The value obtained in this way may be input as a measured value (digital value) to a computer or the like (flow rate control means), and the computer may control a motor or the like that operates the opening of the on-off valve.
[0011]
If you try to use the cooling water after warming to generate warm water for flooding, even if the cooling water is set to an appropriate flow rate after warming, fluctuations occur over time (the valve that opens and closes the flow path is fixed to the flow path). Since the water pressure from the water source is not constant even if it is fixed to, the flow rate fluctuates as a result. If necessary, water must be replenished from an external water source, and a separate heating source must be prepared. After heating, cooling water and replenished water must be mixed and heated, but the amount of replenished water is large. In this case, there is a problem that the temperature of the hot water for dredging temporarily drops suddenly. The flow rate control stabilizes the temperature of the cooling water after heating or the flow rate of the cooling water that fluctuates with time, and realizes the generation of warm water for drinking water with a constant temperature by the cooling water after heating.
[0012]
In an apparatus that controls the flow rate of cooling water by measuring the temperature of the cooling water after heating, for example, the temperature of the cooling water after heating is increased or decreased by increasing or decreasing the flow rate of the cooling water to increase or decrease the amount of water relative to the amount of heat from the rotor. If the water temperature is equal to the temperature of the warm water for dredging, the amount of water that is usually not enough for the warm water for dredging is added to the cooling water after warming the water at a temperature equal to the warm water for dredging. Allow hot water to be secured.
[0013]
In an apparatus that controls the flow rate of cooling water by measuring the flow rate of cooling water, for example, if the amount of cooling water after heating is maintained at the required amount of hot water for brine, By simply raising the temperature of the hot water for drowning with steam or the like, it becomes possible to secure the hot water for drowning at a stable and constant temperature. Thus, the present invention makes it possible to efficiently generate warm water for drowning with a small temperature change by quantifying either the flow rate or the temperature of the cooling water after heating.
[0014]
The cooling water flow rate control based on the measured value of the cooling water temperature or the cooling water flow rate described above is the clearance between the rotor and casing of the rotary valve considering the pressure cooking pressure, pressure cooking temperature, and thermal expansion. By implementing it according to the size of the material or the degree of adhesion of the raw material to the surface of the rotor, for example, it is possible to achieve energy saving while suppressing the use of excessive energy, and to improve the performance as a steaming device, etc. Have multifaceted utility.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a steaming device for steaming defatted soybeans for soy sauce production, and the flow rate is supplied to both rotary valves 4 and 5 arranged at the raw material inlet 2 and the raw material outlet 3 of the pressurized steaming can 1. A flow path for flow control by measurement is configured. Both flow paths may be controlled by measuring the temperature (see FIG. 2). In this example, cooling water is added to the water stored in the flooded tank 6 after heating, and steam is added for temperature adjustment and water is added for replenishing the amount of water.
[0016]
The defatted soybeans are fed into the irrigation screw 7 at a rate of 2 t / h, irrigated with 70 ° C. warm water for irrigation at a rate of 2.6 t / h, and sent to the pressure steaming can 1 through the preheating screw 8. Rotary valves 4 and 5 are respectively arranged at the raw material inlet 2 and the raw material outlet 3 of the pressurized steaming can 1 to realize a substantially sealed state in the pressurized steaming can 1 and the charged raw material is 2 kg / Cook with cm 2 G.
[0017]
In this example, the amount of the cooling water after heating returned from the rotary valves 4 and 5 to the brine tank 6 is kept at 1.2 t / h. That is, the cooling water is returned to the water tank 6 after heating a total of 2.4 t / h. As a result, the temperature of the cooling water after heating returned from the rotary valves 4 and 5 fluctuates in the range of 65 to 70 ° C., but the ratio of the cooling water after heating to the generated warm water is In addition to this, steam for temperature adjustment and water for replenishing the water amount are constant for the production of hot water for use, so that it is possible to easily adjust the temperature of hot water for drinking water simply by adjusting the amount of added steam. Rather, there is an advantage that the flow rate of the cooling water after heating can always be kept below the required amount of warm water for submerged water, and the use of cooling water after heating can be used with less waste.
[0018]
In the flow rate control, the electromagnetic flow meter 9 measures the flow rate of the cooling water that has passed through the rotary valve 4 (5), and outputs the measured value to the controller (FIC 10) in the calculation unit. Then, in the controller 10, the measured value and the set value (target value determined in advance and input to the controller) are compared, and the controller 10 is a rotary valve 4 (flow control unit) according to the difference. This is realized by opening / closing the opening / closing valve 11 of the pipe for sending the cooling water to 5).
[0019]
In the brine tank 6, steam and water are added to the cooling water after heating, and warm water for brine that is kept at a constant temperature (70 ° C. in this example) is generated. Steam measures the temperature of warm water for flooding in the flooded tank 6 with a temperature sensor 12, and a controller (TIC) 13 opens and closes a supply valve 14 to supply a necessary amount when the temperature is low. Further, the water is replenished when the amount of warm water for drowning in the drowning tank 6 becomes insufficient by an automatic water supply facility using the float valve 17 or the like. The warm water for dredging is drawn from the dredging tank 6 by the supply pump 15 and is drowned from the dredging pipe 16 in the dripping screw 7 toward the raw material.
[0020]
FIG. 2 is a block diagram of the steaming apparatus of the present invention for steaming bran for enzyme production. Both rotary valves 4 and 5 arranged at the raw material inlet 2 or the raw material outlet 3 of the pressure steaming can 1 are used. It constitutes a flow path for flow control by temperature measurement. In this example, the cooling water is added to the stored water in the flooded tank 6 after heating, and hot water by adding 65 ° C. air and water is added to supplement the amount of water.
[0021]
The bran is fed into the irrigation screw 7 at a rate of 1 t / h, and 65 ° C. warm water for irrigation is irrigated at a rate of 1.4 t / h, and is sent to the pressure steaming can 1 through the preheating screw 8. Rotary valves 4 and 5 are arranged at the raw material inlet 2 and the raw material outlet 3 of the pressurized steaming can 1 to realize a substantially sealed state in the pressurized steaming can 1 and 1.8 kg of the charged material. Cook at / cm 2 G.
[0022]
In this example, the temperature of the cooling water after heating returned from the rotary valves 4 and 5 to the brine tank 6 is maintained at 65 ° C. As a result, the amount of the cooling water after heating returned from the rotary valves 4 and 5 varies in the range of 0.50 to 0.65 t / h. The temperature of the cooling water after heating returned to the flooded tank 6 Is equivalent to 65 ° C, which is the temperature of hot water for flooding, and has the advantage that almost no temperature adjustment is required. If the amount of cooling water after heating is made equal to or less than the required amount of warm water for drinking water, the cooling water will not be wasted after heating, and if the amount of water is insufficient, for example, the water surface in the drinking water tank 6 The level sensor 20 that monitors the height may be used to control the opening and closing of the solenoid valve 21 to replenish the hot water heated to 65 ° C., which is the same as the warm water for brine.
[0023]
In the temperature control, the temperature sensor 18 measures the temperature of the cooling water after passing through the rotary valve 4 (5), and outputs the measured value to the controller (TIC) 19 as a calculation unit. In the controller 19, the measured value and the set value (target value determined in advance and inputted to the controller) are compared, and the controller 19 is a rotary valve 4 (5 which is a flow rate adjusting unit) according to the difference. This is realized by opening and closing the opening / closing valve 11 of the pipe for sending the cooling water to the water-cooling water), and controlling the flow rate of the cooling water after returning to the flooded tank 6.
[0024]
In the brine tank 6, warm water is added to the cooling water after heating, and hot water maintained at a constant temperature (65 ° C. in this example) is generated. The hot water by the air-water mixture is replenished when the amount of hot water for drowning in the drowning tank 6 becomes insufficient by opening / closing the electromagnetic valve 21 controlled by the level sensor 20. The warm water for dredging is drawn from the dredging tank 6 by the supply pump 15 and drowned from the dredging pipe 16 in the dripping screw 7 toward the raw material.
[0025]
【The invention's effect】
With the steaming apparatus of the present invention, it has become possible to effectively use the cooling water after heating that has passed through a rotary valve that has been simply discarded. That is, the operation cost can be reduced by using the cooling water after heating as the production of the warm water for the brine or the warm water for the brine itself, and the equipment cost can be reduced by simplifying the flow path. Further, the present invention is characterized in that the temperature adjustment of the warm water for the brine in the flooded tank is simplified and all the processes requiring the temperature adjustment are realized by automatic control. As a result, the temperature variation of the warm water for drinking water is hardly seen, and the temperature stable water can be realized. As a result, the quality of the steamed product can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a steaming apparatus of the present invention for steaming defatted soybeans for producing soy sauce.
FIG. 2 is a configuration diagram of a steaming apparatus according to the present invention for steaming bran as an enzyme.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pressurized steam can 2 Raw material inlet 3 Raw material outlet 4 Rotary valve of raw material inlet 5 Rotary valve of raw material outlet 6 Water tank 7 Water screw 8 Preheating screw 9 Electromagnetic flow meter
10 Controller (FIC)
11 Open / close valve
12 Temperature sensor in the water tank
13 Controller (TIC)
14 Supply valve
15 Supply pump
16 Flooded pipe
17 Float valve
18 Temperature sensor
19 Controller (TIC)
20 Level sensor (LC)
21 Solenoid valve

Claims (3)

原料に温水を撒水し、該原料を蒸煮処理する装置であって、加圧蒸煮缶の原料投入口又は原料排出口に水冷式ロータリーバルブを配しており、該ロータリーバルブを通過して加温された冷却水を用いて原料に撒水する温水を生成する流路又は該冷却水を前記温水とする流路を構成したことを特徴とする水冷式ロータリーバルブを使用する連続加圧蒸煮装置。A device for boiling hot water into the raw material and steaming the raw material. A water-cooled rotary valve is arranged at the raw material inlet or the raw material outlet of the pressurized steaming can, and the water passes through the rotary valve for heating. A continuous pressure steaming apparatus using a water-cooled rotary valve, characterized in that a flow path for generating warm water that is poured into the raw material using the cooled water or a flow path that uses the cooling water as the warm water is configured. 水冷式ロータリーバルブに対し、ロータリーバルブを通過して加温された冷却水の温度から経時的な計測値を取得する温度計測手段と、前記計測値に基づいて該冷却水の流量を加減する流量制御手段とを備えた流路を構成したことを特徴とする請求項1記載の水冷式ロータリーバルブを使用する連続加圧蒸煮装置。A temperature measuring means for obtaining a measured value over time from the temperature of the cooling water heated through the rotary valve with respect to the water-cooled rotary valve, and a flow rate for adjusting the flow rate of the cooling water based on the measured value A continuous pressure steaming apparatus using a water-cooled rotary valve according to claim 1, wherein a flow path comprising a control means is configured. 水冷式ロータリーバルブに対し、ロータリーバルブを通過する冷却水の流量から経時的な計測値を取得する流量計測手段と、前記計測値に基づいて該冷却水の流量を加減する流量制御手段とを備えた流路を構成したことを特徴とする請求項1記載の水冷式ロータリーバルブを使用する連続加圧蒸煮装置。For the water-cooled rotary valve, it is provided with a flow rate measuring means for obtaining a measured value over time from the flow rate of the cooling water passing through the rotary valve, and a flow rate control means for adjusting the flow rate of the cooling water based on the measured value. A continuous pressurized steaming apparatus using the water-cooled rotary valve according to claim 1, wherein the flow path is configured.
JP28252396A 1996-10-24 1996-10-24 Continuous pressure steaming device using water-cooled rotary valve Expired - Lifetime JP3776531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28252396A JP3776531B2 (en) 1996-10-24 1996-10-24 Continuous pressure steaming device using water-cooled rotary valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28252396A JP3776531B2 (en) 1996-10-24 1996-10-24 Continuous pressure steaming device using water-cooled rotary valve

Publications (2)

Publication Number Publication Date
JPH10117725A JPH10117725A (en) 1998-05-12
JP3776531B2 true JP3776531B2 (en) 2006-05-17

Family

ID=17653570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28252396A Expired - Lifetime JP3776531B2 (en) 1996-10-24 1996-10-24 Continuous pressure steaming device using water-cooled rotary valve

Country Status (1)

Country Link
JP (1) JP3776531B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955640B2 (en) * 2008-10-24 2012-06-20 タカノフーズ株式会社 Steamed soybean production method and natto using the same
CN105549524B (en) * 2016-01-06 2018-07-27 李锦记(新会)食品有限公司 A kind of system of bubble beans operation control

Also Published As

Publication number Publication date
JPH10117725A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
CA2534521A1 (en) Steam generation system for a household oven
CN112786925B (en) Heating and humidifying simulation system for hydrogen cavity of fuel cell stack
WO2023116066A1 (en) Instant water heater and control method therefor
JP3776531B2 (en) Continuous pressure steaming device using water-cooled rotary valve
CN101535757A (en) Vapor contact-type heating device
CN109316055A (en) A kind of energy-saving heating means
CN210399558U (en) Zero-cold-water constant-temperature comprehensive water heater
CN208075359U (en) solar water heater
JPS5554210A (en) Cooler for hot rolled material
JP2665832B2 (en) Heating and cooling device
CN217013604U (en) Instant drinking water way and instant drinking water machine
CN113940553B (en) Low-temperature cooking method of steam rice cooker
CN109349933A (en) A kind of intelligent heater
CN211921687U (en) Water circulation device for vacuum coating equipment
CN210506494U (en) Constant temperature treatment equipment for plasma spraying target material back tube
CN219243650U (en) Bracket of gas stove, domestic hot water supply device and system
CN110904427B (en) Water circulation device for vacuum coating equipment
CN215958177U (en) Soybean soaking device
CN220689344U (en) Accurate temperature control's water purification heating system
JP2665838B2 (en) Heating and cooling device
CN219934302U (en) Instant heating device and instant heating equipment
JPH07276369A (en) Steam heating and evaporation cooling device
CN219934261U (en) Water type mould temperature machine
GB2200733A (en) Instantaneous water heaters for showers
CN216308198U (en) Double-container instant heating type water bar

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term