JP3776335B2 - Method for simultaneous removal of chlorine and nitrogen in oil - Google Patents
Method for simultaneous removal of chlorine and nitrogen in oil Download PDFInfo
- Publication number
- JP3776335B2 JP3776335B2 JP2001224205A JP2001224205A JP3776335B2 JP 3776335 B2 JP3776335 B2 JP 3776335B2 JP 2001224205 A JP2001224205 A JP 2001224205A JP 2001224205 A JP2001224205 A JP 2001224205A JP 3776335 B2 JP3776335 B2 JP 3776335B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- water
- nitrogen
- temperature
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は油中の塩素及び窒素の除去方法に関わり、特に廃プラスチックを熱分解及び/又は接触分解して液化した分解油中に含まれる塩素と窒素を効果的に除去して良質の分解生成油とするための、油中塩素及び窒素の除去方法に関する。
【0002】
【従来の技術】
現在の廃プラスチック分解油化方法による分解生成油は原料廃プラスチックの種類に応じて、例えば、50〜1000ppm程度の有機塩素又は/及び無機塩素と800〜2000ppm程度の有機窒素又は/及び無機窒素が含まれており、これらは燃焼時にHClやダイオキシン及びNOXを発生させる原因となる。従って、同分解油を脱塩素、脱窒素する技術の開発は重要な課題となっている。
このような分解油中に含まれる塩素や窒素を除く方法としてはこれまでに、例えば、酸化鉄又はその水化物と高温で接触させて脱塩素処理する方法(特開平10−180759号公報)、Fe3O4を主成分とする酸化鉄/炭素複合体と高温で接触させて脱塩素処理する方法(特開2000−80380号公報)、ポリエチレン/ポリ塩化ビニル、ポリプロピレン/ポリ塩化ビニル、及びポリスチレン/ポリ塩化ビニル混合プラスチックの熱分解で得られた燃料油をFeOOHやFe3O4と接触させて脱塩素処理する方法[Ind Eng.Chem.Res.38,1406‐1410(1999)]、シリカ・アルミナ固体酸触媒を用い、常圧、400℃処理により有機窒素を低減させる方法(プラスチック化学リサイクル研究会,第3回討論会,1998,岡山,2P16「都市分別廃プラスチック熱分解油の接触改質」)等が知られている。
しかし、これら従来の技術では油中塩素濃度は10〜30ppm程度に、また油中窒素濃度は300〜400ppm程度にまでしか低減できなかった。一方、廃プラスチック分解油を燃料として活用する場合、油中塩素濃度は10ppm以下に、油中窒素濃度は100ppm以下に低減することが環境の観点から望ましい。
【0003】
【発明が解決しようとする課題】
本発明は、上記した如き現状に鑑みなされたもので、油中、特に廃プラスチックを熱分解及び/又は接触分解して液化した分解油中に含まれる塩素と窒素をそれぞれ10ppm以下、及び100ppm以下にして良質の分解生成油とするための、油中塩素及び窒素の除去方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、塩素及び窒素を含有する油を密閉容器中、250℃以上で水と接触させるか、又は200℃以上でpHが7以上のアルカリ金属化合物又はアルカリ土類金属化合物の水溶液と接触させて、前記油中の塩素及び窒素を水又は前記水溶液と反応させ、反応後、油と水相を液液分離することを特徴とする、油中塩素及び窒素の同時除去方法に関する。
【0005】
また、本発明は、廃プラスチックを熱分解及び/又は接触分解して得られた分解油を密閉容器中、250℃以上で水と接触させるか、又は200℃以上でpHが7以上のアルカリ金属化合物又はアルカリ土類金属化合物の水溶液と接触させて、前記油中の塩素及び窒素を水又は前記水溶液と反応させ、反応後、油と水相を液液分離することにより油中塩素及び窒素を除去してなる分解生成油に関する。
【0006】
更に、本発明は、塩素と窒素の含有量が、それぞれ10ppm以下、及び100ppm以下である廃プラスチック分解油に関する。
【0007】
更にまた、本発明は、廃プラスチックを熱分解及び/又は接触分解して得られた分解油を密閉容器中、250℃以上で水と接触させるか、又は200℃以上でpHが7以上のアルカリ金属化合物又はアルカリ土類金属化合物の水溶液と接触させて、前記油中の塩素及び窒素を水又は前記水溶液と反応させ、反応後、油と水相を液液分離することを特徴とする、該分解油の改質方法に関する。
【0008】
即ち、本発明は従来の発明とは全く異なる技術的背景に基づく廃プラスチック分解油の脱塩素及び脱窒素処理方法に関するものであり、廃プラスチック分解油化法で製造された分解生成油を密閉容器中、要すれば、N2ガス等の不活性ガス雰囲気下、250℃以上、好ましくは350℃以上、より好ましくは400℃以上で水と接触させるか、又は200℃以上、好ましくは250℃以上、より好ましくは300℃以上で、pHが7以上のアルカリ金属化合物又はアルカリ土類金属化合物の水溶液と接触させて、油中の塩素化合物及び窒素化合物と反応させた後、油と水又は金属化合物水溶液を液液分離することにより油中の塩素と窒素を同時に除去する方法を提供するものである。
【0009】
本発明に係る、油中塩素及び窒素の同時除去方法に適用可能な油としては、塩素及び窒素を含有する油で有ればどのような油でもよいが、特に、廃プラスチックを熱分解及び/又は接触分解して得られた分解油に該方法を適用するのがより効果的である。
即ち、本発明の方法によれば、廃プラスチックを熱分解及び/又は接触分解して得られた分解油中に含まれる塩素と窒素を効果的に除去し、良質の分解生成油を回収することができるので、廃プラスチックを燃料油にリサイクルする方法として実用性が極めて高い。
【0010】
【発明の実施の形態】
本発明において用いられる、pHが7以上のアルカリ金属化合物又はアルカリ土類金属化合物の水溶液としては、特にこれらに限定されるものではないが、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属類や、例えば、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属類の水酸化物、酸化物、炭酸塩、炭酸水素塩、塩基性炭酸塩、脂肪酸塩、燐酸塩及び燐酸水素塩等が好ましいものとして挙げられる。
【0011】
本発明の改質方法、除去方法において、脱塩素反応、脱窒素反応に用いられる密閉容器としては、回分式反応器及び流通式充填層管型反応器が挙げられる。
【0012】
改質反応(脱塩素反応、脱窒素反応)の反応条件としては、塩素及び窒素を含有する油を密閉容器中、要すれば、N2ガス等の不活性ガス雰囲気下、250℃以上で水と接触させるか、又は200℃以上でpHが7以上のアルカリ金属化合物又はアルカリ土類金属化合物の水溶液と接触させて、前記油中の塩素及び窒素を水又は前記水溶液と反応させるわけであるが、このように、水を使用した密閉容器中高温下の反応においては、必然的に系内の圧力は上昇し、反応温度によって内圧は40MPa付近まで上昇する。
従って、回分式反応では、水の亜臨界条件下[気液共存状態(水の分圧は水の飽和蒸気圧にほぼ等しい)]〜超臨界条件下[なお、内容積4.0cm3の反応器を使用した場合、油の体積を無視すると、水の分圧は水1g使用時で22MPa(375℃),28MPa(400℃),33MPa(425℃)にほぼ等しい。]で反応が行われる。
また、流通式反応では、亜臨界条件下(全圧は水の飽和蒸気圧+0.5MPa、故に反応はほぼ完全な液相反応。)で反応が行われる。
(因みに、水の臨界定数は、臨界温度374.2℃、臨界圧力22.12MPaである。)
反応終了後は、油相と水相を分離して、燃料用等にリサイクルし得る油相を分取すればよい。
【0013】
本発明の方法を流通式充填層管型反応器を用いて実施する場合の油の処理装置の一例を図1に模式図で示す。
【0014】
本発明の方法により得られた改質油の分析方法としては、例えば、以下の如き方法が挙げられる。
(i)回分式反応の場合
反応終了→室温に冷却→反応生成物を水とエチルエーテルで洗い出し→0.025または0.50mol/L硫酸で中性〜微酸性化→油相+水相1→油相を水で洗浄→油相+水相2→油相を無水Na2SO4で乾燥→室温でのエーテル減圧留去→改質油
改質油Cl含有量:水相1+水相2→水相 :イオンクロマトグラフ法でCl−濃度測定
改質油N含有量:元素分析法
(ii)流通式反応の場合
反応生成物 →0.50mol/L 硫酸で中性〜微酸性化→油の一部をとり、エチルエーテルに溶解→水で洗浄→油相→無水のNa2SO4で乾燥→室温でのエーテル減圧留去→改質油
改質油Cl含有量:0.5N NaOHと375℃、30分反応→中和後水相のCl−濃度をイオンクロマトグラフ法で測定
改質油N含有量:元素分析法
【0015】
【実施例】
以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
【0016】
実施例1
原料の廃プラスチック熱分解油として、新潟プラスチック油化センター:歴世礦油(株)製分留塔中段油[A重油相当留分。元素分析値(w%) C:86.5、H:11.8、O:0.2、N:0.115、S:0.0043、Cl:62ppm(無機Cl:8ppm,有機Cl:54ppm)]を用いた。
反応は、外径1/2吋,肉厚2mm,長さ6.7cmのSUS316製管の両端をcap型ユニオンで密閉した封管(内容積4.0cm3)(回分式反応器)を用い、N2雰囲気下、温度:室温〜425℃(坩堝炉)、反応時間15−60分で実施した。
反応原料組成は熱分解油1.0g+水又はアルカリ水溶液1.0gとした。
反応終了後、内容物をエチルエーテルと水で洗浄・抽出し、油相と水相を分離した。油相は無水Na2SO4で乾燥後、室温でエーテルを減圧留去して生成油を得、元素分析法で残留窒素濃度を決定した。水相は0.025mol/L H2SO4で中和後、イオンクロマトグラフ法で塩化物イオン濃度を測定し、生成油中の残留塩素濃度を決定した。
【0017】
(1)水による燃料油(廃プラスチック熱分解油)の改質(温度の影響)
結果を表1及び図2に示す。但し、反応時間は何れも30分である。
【0018】
【表1】
【0019】
但し、図2中、●は生成油中の塩素含有量を示し、○は生成油中の窒素含有量を示す。
表1及び図2から明らかな如く、反応温度は、350℃よりも375℃、375℃よりも400℃、400℃よりも425℃と高いほど明らかに良い結果が得られている。
【0020】
(2)アルカリ金属及びアルカリ土類金属水酸化物水溶液による燃料油の改質
結果を表2及び図3に示す。但し、水溶液濃度:0.05N、反応温度:350℃、反応時間:30分。
【0021】
【表2】
【0022】
表2及び図3から明らかな如く、アルカリ土類金属水酸化物よりもアルカリ金属水酸化物の方が一般的に効果が大きいようである。
(3)その他のアルカリ金属及びアルカリ土類金属化合物の水溶液による燃料油の改質
結果を表3に示す。但し、水溶液濃度:0.05N又は金属イオン濃度として0.05M、反応温度:350℃、反応時間:30分。
【0023】
【表3】
【0024】
(4)0.05N NaOH水溶液による燃料油の改質(温度の影響)
結果を表4及び図4に示す。但し、反応時間は何れも30分である。
【0025】
【表4】
【0026】
但し、図4中、●は生成油中の塩素含有量を示し、○は生成油中の窒素含有量を示す。
表4及び図4から明らかな如く、この場合も、反応温度は、300℃よりも325℃、325℃よりも350℃、350℃よりも375℃、375℃よりも400℃と高いほど明らかに良い結果が得られている。
【0027】
(5)燃料油の改質に及ぼす反応時間の影響
結果を表5及び図5に示す。
【0028】
【表5】
【0029】
但し、図5中、○はH2O,425℃の、□は0.05N NaOH,350℃の、△は0.10N NaOH,375℃の場合の結果をそれぞれ示す。
表5及び図5から明らかな如く、反応時間は、15分より30分、30分より45分、45分より60分と、長い方が明らかによい結果がでている。
【0030】
(6)燃料油の改質に及ぼす原料質量比の影響
結果を表6及び図6に示す。但し、熱分解油:1.0g使用、反応温度:350℃、反応時間:30分。
【0031】
【表6】
【0032】
但し、図6中、○及び●は0.05N NaOHを用いた場合の、また、△及び▲は0.10N NaOHを用いた場合の結果をそれぞれ示す。
表6及び図6から明らかな如く、原料質量比(NaOHsoln/Oil)は、0.25より0.50、0.50より0.75、0.75より1.00と大きいほど明らかによい結果がでている。
【0033】
(7)燃料油の改質に及ぼすアルカリ濃度の影響
結果を表7に示す。
但し、反応温度:300℃、反応時間:30分。
【0034】
【表7】
【0035】
表7から明らかな如く、アルカリ濃度は、0.05Nよりも0.10N、0.10Nよりも0.20Nと、高いほど明らかによい結果がでている。
【0036】
実施例2
原料として、実施例1と同じ廃プラスチック熱分解油を用い、反応器として、流通式充填層管型反応器[外径1/2吋,肉厚2mm,長さ16.7cmのSUS316製管(内容積10.0cm3)の内部に3mmラシヒリングを充填したものを1本(内容積6.2cm3 )又は2本(内容積11.6cm3)を直列に接続したもの]を使用して、改質反応を実施した。
【0037】
(1)燃料油の改質に及ぼす反応管内流体線速度の影響
結果を表8に示す。但し、反応原料供給比:0.05N NaOH/燃料油=1/1(w/w)、反応温度:275℃、圧力:6.5MPa、滞留時間:2.75分。
【0038】
【表8】
【0039】
表8から明らかな如く、流通式反応における反応管内流体線速度は、6.07cm/minと11.30cm/minとで、結果に大差なく、反応に影響がないようである。即ち、改質反応は、これらの反応管内流体線速度において、拡散律速でなく、反応律速で進行している。
【0040】
(2)燃料油の改質に及ぼす反応温度の影響
結果を表9及び図7に示す。但し、反応原料供給比:水又は水溶液/燃料油=1/1(w/w)、反応管内流体線速度:6.07cm/min、反応圧力:4.5MPa(250℃),6.5MPa(275℃),9.0MPa(300℃),12.5MPa(325℃)。
【0041】
【表9】
【0042】
但し、図7中、△はH2O(滞留時間2.75分)の、○は0.05N NaOH(2.75分)の、□は0.05N NaOH(5.50分)の、◇は0.10N NaOH(5.50分)の場合の結果をそれぞれ示す。
表9及び図7から明らかな如く、流通式反応の場合も、反応温度は高いほど、また、アルカリ濃度も高いほど明らかによい結果が得られることが判る。更に、回分式反応における反応時間に相当する滞留時間も当然のことながら長い方がよい結果が得られている。
【0043】
(3)燃料油の改質に及ぼす反応原料供給比の影響
結果を表10及び図8に示す。但し、NaOH水溶液濃度:0.10N、滞留時間:5.50分、反応管内流体線速度:6.07cm/min。
【0044】
【表10】
【0045】
但し、図8中、○は300℃,9.0MPaの場合の、また、△は325℃、12.5MPaの場合の結果をそれぞれ示す。
表10及び図8から明らかな如く、流通式反応の場合も、原料供給比(NaOHsoln/Oil)は、0.25より0.50、0.50より0.75、0.75より1.00と大きいほど明らかによい結果がでている。また、この実験においても、反応温度300℃に比べて反応温度325℃の方が明らかによい結果が得られている。
【0046】
以上の結果をまとめると、
▲1▼水を使用する場合も、アルカリ金属化合物或いはアルカリ土類金属化合物の水溶液(以下、単に、アルカリ水溶液と略す。)を使用する場合も、反応温度は高いほどよい。
▲2▼反応時間(滞留時間)は長いほどよい。
▲3▼アルカリ水溶液を使用する場合のアルカリの濃度は高いほどよい。
▲4▼アルカリ金属化合物とアルカリ土類金属化合物とでは、アルカリ金属化合物の方がより効果的である。
▲5▼原料質量比(原料供給比)(アルカリ水溶液/Oil)は大きいほどよい。と言うことになる。
なお、この結論は、回分式反応の場合にも、流通式反応の場合にも当てはまる。
上記結論を踏まえて、状況に合わせて、また、所用設備の容量、能力、ユーティリティー等を考慮して、好ましい条件を適宜選択することにより、目的に適った改質油を必要に応じて随時得ることが出来る。
【0047】
なお、特に有効な処理条件としては、例えば、
(i)流通式充填層管型反応器を使用し、0.10N NaOH水溶液を熱分解油1重量に対して1重量用い、反応温度300℃(9.0MPa)乃至それ以上で、滞留時間5.50分間。
(ii)流通式充填層管型反応器を使用し、0.10N NaOH水溶液を熱分解油1重量に対して0.50重量乃至それ以上用い、反応温度325℃(12.5MPa)乃至それ以上で、滞留時間5.50分間。
(iii)回分式反応器を使用し、0.10N NaOH水溶液を熱分解油1重量に対して1重量用い、反応温度375℃乃至それ以上で、反応時間15分間乃至それ以上。
(iv)回分式反応器を使用し、0.05N NaOH水溶液を熱分解油1重量に対して1重量用い、反応温度375℃乃至それ以上で、反応時間30分間乃至それ以上。
(v)回分式反応器を使用し、水を熱分解油1重量に対して1重量用い、反応温度425℃乃至それ以上で、反応時間45分間乃至それ以上。
等が挙げられる。
なお、上記(i)〜(v)の条件下においては、何れの場合も塩素含有量10ppm以下で、且つ窒素含有量100ppm以下の分解油が得られる。
【0048】
【発明の効果】
本発明は油中、特に廃プラスチックを熱分解及び/又は接触分解して液化した分解油中に含まれる塩素と窒素を効果的に除去して良質の分解生成油とするための、油中塩素及び窒素の除去方法に関するもので、本発明の方法によれば、このような分解油中の塩素濃度を10ppm以下、油中窒素濃度を100ppm以下とすることが出来る点に格別顕著な効果を奏する。
【図面の簡単な説明】
【図1】図1は、本発明の方法を流通式充填層管型反応器を用いて実施する場合の油の処理装置の一例を模式図で示したものである。
【図2】図2は、回分式反応器を使用した場合における、水による燃料油(廃プラスチック熱分解油)の改質(温度の影響)について調べたものである。
【図3】図3は、回分式反応器を使用した場合における、アルカリ金属及びアルカリ土類金属水酸化物水溶液による燃料油の改質について調べたものである。
【図4】図4は、回分式反応器を使用した場合における、0.05N NaOH水溶液による燃料油の改質(温度の影響)について調べたものである。
【図5】図5は、回分式反応器を使用した場合における、燃料油の改質に及ぼす反応時間の影響について調べたものである。
【図6】図6は、回分式反応器を使用した場合における、燃料油の改質に及ぼす原料質量比の影響について調べたものである。
【図7】図7は、流通式充填層管型反応器を使用した場合における、燃料油の改質に及ぼす反応温度の影響について調べたものである。
【図8】図8は、流通式充填層管型反応器を使用した場合における、燃料油の改質に及ぼす反応原料供給比の影響について調べたものである。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for removing chlorine and nitrogen in oil, and in particular, efficiently removes chlorine and nitrogen contained in cracked oil obtained by pyrolyzing and / or catalytically decomposing waste plastic to decompose and produce high quality. The present invention relates to a method for removing chlorine and nitrogen in oil to obtain oil.
[0002]
[Prior art]
Depending on the type of raw material waste plastic, for example, about 50 to 1000 ppm of organic chlorine or / and inorganic chlorine, and about 800 to 2000 ppm of organic nitrogen or / and inorganic nitrogen can be used as the decomposition product oil produced by the present waste plastic decomposition oil conversion method. included are, it causes the generation of HCl and dioxin and NO X during combustion. Therefore, the development of technology for dechlorinating and denitrifying the cracked oil has become an important issue.
As a method of removing chlorine and nitrogen contained in such cracked oil, for example, a method of dechlorinating by contacting with iron oxide or a hydrate thereof at a high temperature (JP-A-10-180759), A method of dechlorinating by contacting with an iron oxide / carbon composite containing Fe 3 O 4 as a main component at high temperature (Japanese Patent Laid-Open No. 2000-80380), polyethylene / polyvinyl chloride, polypropylene / polyvinyl chloride, and polystyrene / Dechlorination treatment of fuel oil obtained by pyrolysis of polyvinyl chloride mixed plastic with FeOOH or Fe 3 O 4 [Ind Eng. Chem. Res. 38 , 1406-1410 (1999)], silica・ Method of reducing organic nitrogen by treatment at 400 ° C under normal pressure using solid alumina acid catalyst (Plastic Chemical Recycling Study Group, 3rd Discussion Meeting, 1998, Okayama, 2P16 Catalytic reforming ") or the like sticks pyrolysis oil is known.
However, these conventional techniques can only reduce the chlorine concentration in oil to about 10 to 30 ppm and the nitrogen concentration in oil to about 300 to 400 ppm. On the other hand, when utilizing waste plastic cracked oil as fuel, it is desirable from an environmental viewpoint to reduce the chlorine concentration in oil to 10 ppm or less and the nitrogen concentration in oil to 100 ppm or less.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the current situation as described above, and chlorine and nitrogen contained in oil, particularly cracked oil liquefied by thermal decomposition and / or catalytic cracking of waste plastic, are 10 ppm or less and 100 ppm or less, respectively. It is an object of the present invention to provide a method for removing chlorine and nitrogen in oil in order to obtain a high-quality decomposition product oil.
[0004]
[Means for Solving the Problems]
In the present invention, oil containing chlorine and nitrogen is brought into contact with water at 250 ° C. or higher in an airtight container, or is brought into contact with an aqueous solution of an alkali metal compound or alkaline earth metal compound having a pH of 7 or higher at 200 ° C. or higher. In addition, the present invention relates to a method for simultaneously removing chlorine and nitrogen in oil, wherein chlorine and nitrogen in the oil are reacted with water or the aqueous solution, and after the reaction, the oil and the aqueous phase are liquid-liquid separated.
[0005]
In addition, the present invention is a method in which a decomposed oil obtained by pyrolyzing and / or catalytically decomposing waste plastic is brought into contact with water at 250 ° C. or higher in a closed container, or an alkali metal having a pH of 7 or higher at 200 ° C. or higher. Contact with an aqueous solution of a compound or an alkaline earth metal compound to react chlorine and nitrogen in the oil with water or the aqueous solution, and after the reaction, the oil and aqueous phase are separated into liquid and liquid to remove chlorine and nitrogen in the oil. It relates to a cracked oil obtained by removal.
[0006]
Furthermore, this invention relates to the waste plastic decomposition oil whose content of chlorine and nitrogen is 10 ppm or less and 100 ppm or less, respectively.
[0007]
Furthermore, the present invention provides a decomposition oil obtained by thermally decomposing and / or catalytically decomposing waste plastic in a closed container with water at 250 ° C. or higher, or an alkali having a pH of 7 or higher at 200 ° C. or higher. Contacting with an aqueous solution of a metal compound or an alkaline earth metal compound to react chlorine and nitrogen in the oil with water or the aqueous solution, and after the reaction, the oil and the aqueous phase are liquid-liquid separated, The present invention relates to a method for reforming cracked oil.
[0008]
That is, the present invention relates to a method for dechlorinating and denitrifying waste plastic cracked oil based on a technical background that is completely different from the conventional invention. Medium, if necessary, contact with water in an inert gas atmosphere such as N 2 gas at 250 ° C. or higher, preferably 350 ° C. or higher, more preferably 400 ° C. or higher, or 200 ° C. or higher, preferably 250 ° C. or higher. More preferably, after contact with an aqueous solution of an alkali metal compound or alkaline earth metal compound having a pH of 7 or higher at 300 ° C. or higher and reacting with a chlorine compound and a nitrogen compound in the oil, the oil and water or the metal compound The present invention provides a method for simultaneously removing chlorine and nitrogen in oil by liquid-liquid separation of an aqueous solution.
[0009]
The oil applicable to the method for simultaneous removal of chlorine and nitrogen in the oil according to the present invention may be any oil as long as it is an oil containing chlorine and nitrogen. Alternatively, it is more effective to apply the method to cracked oil obtained by catalytic cracking.
That is, according to the method of the present invention, chlorine and nitrogen contained in cracked oil obtained by pyrolyzing and / or catalytically cracking waste plastics can be effectively removed, and high-quality cracked product oil can be recovered. Therefore, it is extremely practical as a method for recycling waste plastic into fuel oil.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The aqueous solution of an alkali metal compound or alkaline earth metal compound having a pH of 7 or more used in the present invention is not particularly limited to these, and examples thereof include alkalis such as lithium, sodium, potassium, rubidium, and cesium. Metals and hydroxides, oxides, carbonates, hydrogen carbonates, basic carbonates, fatty acid salts, phosphates and hydrogen phosphates of alkaline earth metals such as magnesium, calcium, strontium, barium, etc. Is preferable.
[0011]
In the reforming method and removal method of the present invention, examples of the closed vessel used for the dechlorination reaction and the denitrogenation reaction include a batch reactor and a flow-type packed bed tubular reactor.
[0012]
The reaction conditions for the reforming reaction (dechlorination reaction, denitrogenation reaction) include oil containing chlorine and nitrogen in a sealed container, and if necessary, water at 250 ° C. or higher in an inert gas atmosphere such as N 2 gas. In contact with an aqueous solution of an alkali metal compound or alkaline earth metal compound having a pH of 7 or higher at 200 ° C. or higher to react chlorine and nitrogen in the oil with water or the aqueous solution. Thus, in a reaction at a high temperature in a sealed container using water, the pressure in the system inevitably increases, and the internal pressure increases to around 40 MPa depending on the reaction temperature.
Therefore, in batch reaction, subcritical conditions of water [gas-liquid coexistence state (the partial pressure of water is almost equal to the saturated vapor pressure of water)] to supercritical conditions [a reaction with an internal volume of 4.0 cm 3 If the volume of oil is ignored, the partial pressure of water is approximately equal to 22 MPa (375 ° C.), 28 MPa (400 ° C.), and 33 MPa (425 ° C.) when 1 g of water is used. The reaction is performed.
In the flow reaction, the reaction is performed under subcritical conditions (the total pressure is the saturated vapor pressure of water + 0.5 MPa, and thus the reaction is almost complete liquid phase reaction).
(Incidentally, the critical constant of water is a critical temperature of 374.2 ° C. and a critical pressure of 22.12 MPa.)
After completion of the reaction, the oil phase and the aqueous phase may be separated, and the oil phase that can be recycled for fuel or the like may be collected.
[0013]
An example of an oil processing apparatus when the method of the present invention is carried out using a flow-type packed bed tubular reactor is schematically shown in FIG.
[0014]
Examples of the method for analyzing the reformed oil obtained by the method of the present invention include the following methods.
(I) In the case of batch reaction, the reaction is completed → cooled to room temperature → washed reaction product with water and ethyl ether → neutralized to slightly acidified with 0.025 or 0.50 mol / L sulfuric acid → oil phase + water phase 1 → washing the oil phase with water → oil phase + aqueous phase 2 → ether was distilled off under reduced pressure → reformate oil phase in over anhydrous Na 2 SO 4 dried → at room temperature reformate Cl content: the aqueous phase 1 + aqueous phase 2 → Aqueous phase: Cl - concentration measurement by ion chromatographic method Modified oil N content: Elemental analysis method (ii) Reaction product in the case of flow-through reaction → 0.50 mol / L Neutralization to slightly acidification with sulfuric acid → Oil A portion of the sample was dissolved in ethyl ether, washed with water, oil phase, dried over anhydrous Na 2 SO 4 , distilled under reduced pressure at room temperature, and reformed oil Cl content: 0.5N NaOH. 375 ° C., Cl of 30 minutes the reaction → neutralization after the aqueous phase - measuring reformate N content concentration by ion chromatography: elemental Precipitation method [0015]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.
[0016]
Example 1
As raw material waste plastic pyrolysis oil, Niigata Plastic Oil Refinery Center: Middle oil of fractionation tower manufactured by Hisei Seisaku Oil Co., Ltd. [A heavy oil equivalent fraction. Elemental analysis value (w%) C: 86.5, H: 11.8, O: 0.2, N: 0.115, S: 0.0043, Cl: 62 ppm (inorganic Cl: 8 ppm, organic Cl: 54 ppm) )] Was used.
The reaction was carried out using a sealed tube (internal volume 4.0 cm 3 ) (batch type reactor) in which both ends of a SUS316 tube having an outer diameter of 1/2 mm, a wall thickness of 2 mm, and a length of 6.7 cm were sealed with a cap-type union. Under N 2 atmosphere, temperature: room temperature to 425 ° C. (crucible furnace), reaction time was 15-60 minutes.
The reaction raw material composition was 1.0 g of pyrolysis oil + 1.0 g of water or alkaline aqueous solution.
After completion of the reaction, the contents were washed and extracted with ethyl ether and water, and the oil phase and the aqueous phase were separated. The oil phase was dried over anhydrous Na 2 SO 4 and then ether was distilled off under reduced pressure at room temperature to obtain a product oil. The residual nitrogen concentration was determined by elemental analysis. The aqueous phase was neutralized with 0.025 mol / L H 2 SO 4 and then the chloride ion concentration was measured by ion chromatography to determine the residual chlorine concentration in the product oil.
[0017]
(1) Reforming fuel oil (waste plastic pyrolysis oil) with water (effect of temperature)
The results are shown in Table 1 and FIG. However, the reaction time is 30 minutes.
[0018]
[Table 1]
[0019]
However, in FIG. 2, ● represents the chlorine content in the product oil, and ○ represents the nitrogen content in the product oil.
As apparent from Table 1 and FIG. 2, the better the reaction temperature is, the higher the reaction temperature is, 375 ° C. than 350 ° C., 400 ° C. than 375 ° C., and 425 ° C. than 400 ° C.
[0020]
(2) The results of reforming fuel oil with aqueous alkali metal and alkaline earth metal hydroxide solutions are shown in Table 2 and FIG. However, aqueous solution concentration: 0.05N, reaction temperature: 350 ° C., reaction time: 30 minutes.
[0021]
[Table 2]
[0022]
As is apparent from Table 2 and FIG. 3, the alkali metal hydroxide generally seems to be more effective than the alkaline earth metal hydroxide.
(3) Table 3 shows the results of reforming fuel oil with aqueous solutions of other alkali metals and alkaline earth metal compounds. However, aqueous solution concentration: 0.05N or 0.05M as metal ion concentration, reaction temperature: 350 ° C., reaction time: 30 minutes.
[0023]
[Table 3]
[0024]
(4) Fuel oil reforming with 0.05N NaOH aqueous solution (effect of temperature)
The results are shown in Table 4 and FIG. However, the reaction time is 30 minutes.
[0025]
[Table 4]
[0026]
However, in FIG. 4, ● represents the chlorine content in the product oil, and ○ represents the nitrogen content in the product oil.
As is apparent from Table 4 and FIG. 4, in this case as well, the reaction temperature is clearly higher at 325 ° C. than 300 ° C., 350 ° C. than 325 ° C., 375 ° C. above 350 ° C. and 400 ° C. above 375 ° C. Good results have been obtained.
[0027]
(5) Table 5 and FIG. 5 show the results of the influence of reaction time on the reforming of fuel oil.
[0028]
[Table 5]
[0029]
In FIG. 5, ◯ indicates the results for H 2 O, 425 ° C., □ indicates 0.05 N NaOH, 350 ° C., and Δ indicates 0.10 N NaOH, 375 ° C., respectively.
As is clear from Table 5 and FIG. 5, the longer the reaction time is, from 15 minutes to 30 minutes, from 30 minutes to 45 minutes, and from 45 minutes to 60 minutes, the results are clearly better.
[0030]
(6) Table 6 and FIG. 6 show the results of the influence of the raw material mass ratio on the reforming of fuel oil. However, pyrolysis oil: 1.0 g used, reaction temperature: 350 ° C., reaction time: 30 minutes.
[0031]
[Table 6]
[0032]
In FIG. 6, ◯ and ● indicate the results when 0.05N NaOH is used, and Δ and ▲ indicate the results when 0.10N NaOH is used.
As is clear from Table 6 and FIG. 6, the higher the raw material mass ratio (NaOHsoln / Oil) is 0.50 from 0.25, 0.75 from 0.50, and 1.00 from 0.75, the better the results. Is out.
[0033]
(7) Table 7 shows the results of the influence of the alkali concentration on the reforming of the fuel oil.
However, reaction temperature: 300 ° C., reaction time: 30 minutes.
[0034]
[Table 7]
[0035]
As apparent from Table 7, the higher the alkali concentration is 0.10N than 0.05N and 0.20N than 0.10N, the better the results.
[0036]
Example 2
The same waste plastic pyrolysis oil as in Example 1 was used as a raw material, and as a reactor, a flow-type packed bed tubular reactor [SUS316 tube (outside diameter 1/2 mm, wall thickness 2 mm, length 16.7 cm ( Using one (internal volume 6.2 cm 3 ) or two (internal volume 11.6 cm 3 ) connected in series with an internal volume 10.0 cm 3 ) filled with 3 mm Raschig rings, A reforming reaction was carried out.
[0037]
(1) Table 8 shows the results of the influence of the fluid linear velocity in the reaction tube on the reforming of fuel oil. However, reaction raw material supply ratio: 0.05N NaOH / fuel oil = 1/1 (w / w), reaction temperature: 275 ° C., pressure: 6.5 MPa, residence time: 2.75 minutes.
[0038]
[Table 8]
[0039]
As is apparent from Table 8, the fluid linear velocity in the reaction tube in the flow-type reaction was 6.07 cm / min and 11.30 cm / min, and the results did not differ greatly, and the reaction did not seem to be affected. That is, the reforming reaction proceeds not at the diffusion rate but at the reaction rate at the fluid linear velocity in these reaction tubes.
[0040]
(2) The results of the influence of reaction temperature on the reforming of fuel oil are shown in Table 9 and FIG. However, reaction raw material supply ratio: water or aqueous solution / fuel oil = 1/1 (w / w), fluid linear velocity in reaction tube: 6.07 cm / min, reaction pressure: 4.5 MPa (250 ° C.), 6.5 MPa ( 275 ° C.), 9.0 MPa (300 ° C.), 12.5 MPa (325 ° C.).
[0041]
[Table 9]
[0042]
However, in FIG. 7, Δ is H 2 O (residence time 2.75 minutes), ○ is 0.05N NaOH (2.75 minutes), □ is 0.05N NaOH (5.50 minutes), ◇ Indicates the results for 0.10 N NaOH (5.50 min).
As is apparent from Table 9 and FIG. 7, it can be seen that, also in the case of the flow-type reaction, the better the results are obtained, the higher the reaction temperature and the higher the alkali concentration. Furthermore, it is natural that the longer the residence time corresponding to the reaction time in the batch reaction, the better.
[0043]
(3) Table 10 and FIG. 8 show the results of the influence of the reaction raw material supply ratio on the reforming of the fuel oil. However, NaOH aqueous solution concentration: 0.10 N, residence time: 5.50 minutes, fluid linear velocity in reaction tube: 6.07 cm / min.
[0044]
[Table 10]
[0045]
However, in FIG. 8, (circle) shows the result in the case of 300 degreeC and 9.0 MPa, and (triangle | delta) shows the result in the case of 325 degreeC and 12.5 MPa, respectively.
As is apparent from Table 10 and FIG. 8, in the case of the flow reaction, the raw material supply ratio (NaOHsoln / Oil) is 0.50 from 0.25, 0.75 from 0.50, and 1.00 from 0.75. The larger the value, the better the result. Also in this experiment, a clearly better result was obtained at a reaction temperature of 325 ° C. than at a reaction temperature of 300 ° C.
[0046]
To summarize the above results,
(1) Even when water is used, the reaction temperature is preferably as high as possible when an aqueous solution of an alkali metal compound or an alkaline earth metal compound (hereinafter simply referred to as an alkaline aqueous solution) is used.
(2) The longer the reaction time (residence time), the better.
(3) The higher the alkali concentration when using an aqueous alkali solution, the better.
(4) Among alkali metal compounds and alkaline earth metal compounds, alkali metal compounds are more effective.
(5) The higher the raw material mass ratio (raw material supply ratio) (alkali aqueous solution / oil), the better. It will be said.
This conclusion applies to both batch-type reactions and flow-type reactions.
Based on the above conclusions, according to the situation, and considering the capacity, capacity, utility, etc. of the facility, appropriate reformed oil suitable for the purpose can be obtained as needed by selecting appropriate conditions. I can do it.
[0047]
As particularly effective processing conditions, for example,
(I) Using a flow-type packed bed tubular reactor, using 1 weight of 0.10N NaOH aqueous solution with respect to 1 weight of pyrolysis oil, at a reaction temperature of 300 ° C. (9.0 MPa) or more, and a residence time of 5 50 minutes.
(Ii) Using a flow-type packed bed tubular reactor, using a 0.10N NaOH aqueous solution at 0.50 to more than 1 weight of pyrolysis oil, and a reaction temperature of 325 ° C. (12.5 MPa) or more And the residence time is 5.50 minutes.
(Iii) Using a batch reactor, using 0.10N NaOH aqueous solution at 1 weight per 1 weight of pyrolysis oil, reaction temperature of 375 ° C. or higher, reaction time of 15 minutes or longer.
(Iv) A batch reactor is used, 0.05N NaOH aqueous solution is used in an amount of 1 weight per 1 weight of pyrolysis oil, the reaction temperature is 375 ° C. or higher, and the reaction time is 30 minutes or longer.
(V) Using a batch reactor, using 1 weight of water with respect to 1 weight of pyrolysis oil, a reaction temperature of 425 ° C. or higher, and a reaction time of 45 minutes or longer.
Etc.
Note that, under the above conditions (i) to (v), a cracked oil having a chlorine content of 10 ppm or less and a nitrogen content of 100 ppm or less is obtained in any case.
[0048]
【The invention's effect】
The present invention relates to chlorine in oil for effectively removing chlorine and nitrogen contained in oil, particularly cracked oil liquefied by pyrolysis and / or catalytic cracking of waste plastic, to obtain a high-quality decomposition product oil. According to the method of the present invention, the chlorine concentration in such cracked oil can be made 10 ppm or less, and the nitrogen concentration in oil can be made 100 ppm or less. .
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an oil treatment apparatus when the method of the present invention is carried out using a flow-type packed bed tubular reactor.
FIG. 2 is an investigation of reforming of fuel oil (waste plastic pyrolysis oil) with water (effect of temperature) when a batch reactor is used.
FIG. 3 is an investigation of reforming of fuel oil with an aqueous alkali metal and alkaline earth metal hydroxide solution when a batch reactor is used.
FIG. 4 is an investigation of reforming of fuel oil (influence of temperature) with a 0.05N NaOH aqueous solution when a batch reactor is used.
FIG. 5 shows the effect of reaction time on the reforming of fuel oil when a batch reactor is used.
FIG. 6 is a graph showing the influence of the raw material mass ratio on the reforming of fuel oil when a batch reactor is used.
FIG. 7 is an investigation of the influence of reaction temperature on the reforming of fuel oil when a flow-type packed bed tubular reactor is used.
FIG. 8 is a graph showing the influence of the reaction raw material supply ratio on the reforming of fuel oil when a flow-type packed bed tubular reactor is used.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001224205A JP3776335B2 (en) | 2001-07-25 | 2001-07-25 | Method for simultaneous removal of chlorine and nitrogen in oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001224205A JP3776335B2 (en) | 2001-07-25 | 2001-07-25 | Method for simultaneous removal of chlorine and nitrogen in oil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003034794A JP2003034794A (en) | 2003-02-07 |
JP3776335B2 true JP3776335B2 (en) | 2006-05-17 |
Family
ID=19057413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001224205A Expired - Fee Related JP3776335B2 (en) | 2001-07-25 | 2001-07-25 | Method for simultaneous removal of chlorine and nitrogen in oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3776335B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3122432A1 (en) | 2021-05-03 | 2022-11-04 | Total Raffinage Chimie | Process for purifying hydrocarbon feedstock in the presence of a solvent and use |
FR3122433A1 (en) | 2021-05-03 | 2022-11-04 | Total Raffinage Chimie | Hydrocarbon feedstock purification process and use |
FR3126710A1 (en) | 2021-09-08 | 2023-03-10 | Totalenergies Raffinage Chimie | Process for purifying hydrocarbon feedstock in aqueous medium and use |
WO2024023444A1 (en) | 2022-07-29 | 2024-02-01 | Totalenergies Onetech | Method for the purification of a plastic liquefaction oil composition by cavitation, and use thereof |
FR3141182A1 (en) | 2022-10-25 | 2024-04-26 | Totalenergies Onetech | Process for purifying a plastic liquefaction oil composition |
FR3141696A1 (en) | 2023-03-02 | 2024-05-10 | Totalenergies Onetech | Process for purifying hydrocarbon feed by treatment in the presence of a strong concentrated base and use |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4724524B2 (en) * | 2005-10-17 | 2011-07-13 | 新日本製鐵株式会社 | Method for neutralizing fuel oil |
WO2013058366A1 (en) * | 2011-10-19 | 2013-04-25 | 株式会社ブレスト | Petrochemical apparatus |
FI128115B2 (en) | 2018-07-20 | 2024-08-20 | Neste Oyj | Purification of recycled and renewable organic material |
FI128121B (en) | 2018-07-20 | 2019-10-15 | Neste Oyj | Production of hydrocarbons from recycled or renewable organic material |
FI128911B (en) | 2018-07-20 | 2021-03-15 | Neste Oyj | Purification of recycled and renewable organic material |
FI128174B (en) | 2018-07-20 | 2019-11-29 | Neste Oyj | Purification of recycled and renewable organic material |
FI128069B2 (en) * | 2018-07-20 | 2024-04-24 | Neste Oyj | Purification of recycled and renewable organic material |
FI20195446A1 (en) * | 2019-05-28 | 2020-11-29 | Neste Oyj | Alkali-enhanced hydrothermal purification of plastic pyrolysis oils |
FI129981B (en) * | 2019-11-29 | 2022-12-15 | Neste Oyj | Method for upgrading liquefied waste plastics |
FI128848B (en) | 2019-11-29 | 2021-01-29 | Neste Oyj | Two-step process for converting liquefied waste plastics into steam cracker feed |
KR20230071424A (en) | 2021-11-16 | 2023-05-23 | 에스케이이노베이션 주식회사 | Refining method of waste plastic pyrolysis oil using sulfur source and molybdenum-based hydrogenation catalyst, and continuous operation method thereof |
WO2024175435A1 (en) * | 2023-02-21 | 2024-08-29 | Shell Internationale Research Maatschappij B.V. | Process for removing contaminants from waste plastics oil |
KR102583281B1 (en) * | 2023-03-02 | 2023-09-26 | 에이치디현대오일뱅크 주식회사 | Method for purifying unpurified pyrolysis oil and purified pyrolysis oil produced thereby |
US12031093B1 (en) | 2023-07-31 | 2024-07-09 | Sk Innovation Co., Ltd. | Method of producing pyrolysis oil with reduced impurities |
-
2001
- 2001-07-25 JP JP2001224205A patent/JP3776335B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3122432A1 (en) | 2021-05-03 | 2022-11-04 | Total Raffinage Chimie | Process for purifying hydrocarbon feedstock in the presence of a solvent and use |
FR3122433A1 (en) | 2021-05-03 | 2022-11-04 | Total Raffinage Chimie | Hydrocarbon feedstock purification process and use |
FR3126710A1 (en) | 2021-09-08 | 2023-03-10 | Totalenergies Raffinage Chimie | Process for purifying hydrocarbon feedstock in aqueous medium and use |
WO2023037059A1 (en) | 2021-09-08 | 2023-03-16 | Totalenergies Onetech | Method for purifying hydrocarbon feedstock in an aqueous medium and use thereof |
WO2024023444A1 (en) | 2022-07-29 | 2024-02-01 | Totalenergies Onetech | Method for the purification of a plastic liquefaction oil composition by cavitation, and use thereof |
FR3138441A1 (en) | 2022-07-29 | 2024-02-02 | Totalenergies Onetech | Method for purifying a plastic liquefaction oil composition by cavitation and use |
FR3141182A1 (en) | 2022-10-25 | 2024-04-26 | Totalenergies Onetech | Process for purifying a plastic liquefaction oil composition |
WO2024089319A1 (en) | 2022-10-25 | 2024-05-02 | Totalenergies Onetech | Method for the purification of a plastic liquefaction oil composition |
FR3141696A1 (en) | 2023-03-02 | 2024-05-10 | Totalenergies Onetech | Process for purifying hydrocarbon feed by treatment in the presence of a strong concentrated base and use |
Also Published As
Publication number | Publication date |
---|---|
JP2003034794A (en) | 2003-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3776335B2 (en) | Method for simultaneous removal of chlorine and nitrogen in oil | |
US4230486A (en) | Process for removal and recovery of mercury from liquids | |
US5660807A (en) | Process for the removal of HCN from gas mixtures | |
JP2544391B2 (en) | Hydrotreating method of mineral oil contaminated with chlorbiphenyl etc. | |
US7955578B2 (en) | Method and apparatus for treating gas containing flourine-containing compounds | |
US2979384A (en) | Process for production of hydrogen and sulfur | |
TWI679186B (en) | Method for producing hexafluoro-1,3-butadiene | |
US7807040B2 (en) | Recovery process | |
US4281200A (en) | Catalytic process for converting oxazolidinones to their corresponding aminoalcohols | |
JP3989540B2 (en) | Carbonization of halogenated carbon | |
US4039646A (en) | Process for preparing sulphur hexafluoride | |
US4039613A (en) | Process for production of hydrogen and sulfur from hydrogen sulfide as raw material | |
US4541907A (en) | Process for decomposing chlorinated hydrocarbon compounds | |
PL128579B1 (en) | Method of regenerating rhodium catalyst poisoned with sulphur | |
JPS62298540A (en) | Removal of dimethyl ether from methyl chloride | |
JP2000511506A (en) | Method for separating and selectively removing impurity hydrogen from a process stream | |
JP3847632B2 (en) | Treatment method of low-level radioactive waste using supercritical water | |
JP2004131358A (en) | Method and apparatus for producing hydrogen by using mixed molten salt | |
US4108967A (en) | Process for preparing sulphur hexafluoride | |
RU2170699C2 (en) | Method of purifying sulfur hexafluoride | |
JPH11140460A (en) | Thermal decomposition of plastics, and device and dechlorinating agent used therefor | |
JP2002173302A (en) | Method of producing gaseous mixture of carbon monoxide with hydrogen | |
WO2024145203A1 (en) | A process for simultaneously converting hydrogen halides to halogens and carbon to hydrocarbons | |
CN112875746A (en) | Resourceful treatment method of waste and application thereof | |
JPH08133200A (en) | Continuous carbon removing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060222 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110303 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140303 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |