JP3774799B2 - Composition for electrolytic formation of indium oxide film - Google Patents

Composition for electrolytic formation of indium oxide film Download PDF

Info

Publication number
JP3774799B2
JP3774799B2 JP23095197A JP23095197A JP3774799B2 JP 3774799 B2 JP3774799 B2 JP 3774799B2 JP 23095197 A JP23095197 A JP 23095197A JP 23095197 A JP23095197 A JP 23095197A JP 3774799 B2 JP3774799 B2 JP 3774799B2
Authority
JP
Japan
Prior art keywords
oxide film
indium oxide
indium
composition
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23095197A
Other languages
Japanese (ja)
Other versions
JPH1161471A (en
Inventor
昌伸 伊▲崎▼
順一 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuno Chemical Industries Co Ltd
Original Assignee
Okuno Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuno Chemical Industries Co Ltd filed Critical Okuno Chemical Industries Co Ltd
Priority to JP23095197A priority Critical patent/JP3774799B2/en
Publication of JPH1161471A publication Critical patent/JPH1161471A/en
Application granted granted Critical
Publication of JP3774799B2 publication Critical patent/JP3774799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化インジウム膜形成用組成物及び酸化インジウム膜形成方法に関する。
【0002】
【従来の技術】
酸化インジウムは、禁制帯幅が約3.75eVの酸化物半導体であり、光学的透明性を有し、優れた導電性を有するものであり、透明導電性膜の材料として有用である。また、透明導電膜のホスト材としても重要な材料であり、酸化インジウムにSnをドープしたITO(インジウム錫酸化物)膜は高い透明性と導電性を持ち、エッチングによるパターニングが容易なために、ディスプレイ用透明電極材料として最も多く用いられている。
【0003】
現在、酸化インジウム膜は、CVD法、蒸着法、スパッタリング法などの乾式法、スプレーパイロリシス法、ゾルーゲル法、液相成長法などの湿式法などによって、基板上に成膜することが試みられている。これらの中でも、スパッタリング法によれば、低温で成膜でき、均一な膜を形成できるために、現在、酸化インジウム膜の多くは、この方法によって作製されている。しかしながら、スパッタリング法を始めとしたCVD法、蒸着法等の乾式法では、成膜の際に、成膜室の減圧やガス混入、基板の加熱などの処理が必要であり、真空排気装置、基板加熱装置、高周波電源などを含む大規模作製装置が必要となる。更に、これらの方法では、成膜速度が遅く、組成や膜厚の制御が難しく、さらに、使用できる基板の面積が制限され、複雑な形状の基板上に均一な膜を作製することが難しいなどの欠点がある。
【0004】
また、スプレーパイロリシス法やゾルーゲル法では、基板に成膜後、300〜900℃で加熱する必要があるために、加熱炉が必要であり、使用できる基板材料が制限されるという欠点がある。
【0005】
そこで、酸化インジウム膜を幅広い範囲で利用可能とするために、真空排気装置や加熱炉などの大規模設備を必要とせず、大面積で複雑な形状の基材上にも形成可能であり、しかも成膜速度が速く、膜厚や組成が均一で、その制御も容易な酸化インジウム膜の形成方法の開発が望まれている。
【0006】
【発明が解決しようとする課題】
本発明の主な目的は、膜厚や組成が均一で透明性に優れた酸化インジウム膜を、簡単な操作によって形成できる方法を提供することである。
【0007】
【課題を解決するための手段】
本発明者は、上記のような課題に鑑みて鋭意研究を重ねた結果、インジウムイオン及び硝酸イオンを含有する水溶液を用い、この水溶液中に基材を浸漬し、これを陰極として電解を行うことによって、大規模な装置を必要とすることなく、大面積の基材や複雑な形状の基材上にも、膜厚や組成が均一で光学的透明性に優れた酸化インジウム膜を形成できることを見出した。そして、形成された酸化インジウム膜を更に加熱処理することによって、光学的透明性や電気伝導性が更に向上することを見出し、ここに本発明を完成するに至った。
【0008】
即ち、本発明は、下記の酸化インジウム膜形成用組成物及び酸化インジウム膜形成方法を提供するものである。
【0009】
1.インジウムイオン及び硝酸イオンを含有する水溶液からなる酸化インジウム膜電解形成用組成物。
【0010】
2.インジウムイオン源及び硝酸イオン源として、硝酸インジウムを含有する上記1項1に記載の酸化インジウム膜電解形成用組成物。
【0011】
3.上記1項又は2項に記載の酸化インジウム膜形成用組成物中で、酸化インジウム膜形成用基材を陰極として電解を行うことを特徴とする酸化インジウム膜の形成方法。
【0012】
4.上記3項の方法で形成した酸化インジウム膜を100〜800℃で加熱処理することを特徴とする酸化インジウム膜形成方法。
【0013】
【発明の実施の形態】
本発明の酸化インジウム膜電解形成用組成物は、インジウムイオン及び硝酸イオンを含有する水溶液である。このようなインジウムイオン及び硝酸イオンの両方を同時に含有する水溶液を用いて電解反応を行うことによって、光学的透明性に優れ、禁制帯幅が約3.75eVの酸化インジウム膜を形成することができる。インジウムイオンのみを含有し、硝酸イオンを含有しない水溶液からは酸化インジウム膜を電解析出させることはできない。
【0014】
インジウムイオン源となる化合物としては、水溶性インジウム塩を用いればよく、その具体例として硝酸インジウム、硫酸インジウム、塩化インジウム等を挙げることができる。
【0015】
又、硝酸イオン源としては、硝酸、水溶性硝酸塩等を用いることができ、硝酸塩の具体例としては、硝酸インジウム、硝酸アンモニウム、硝酸ナトリウム、硝酸カリウム、硝酸リチウム、硝酸尿素等を挙げることができる。
【0016】
インジウムイオン源となる化合物及び硝酸イオン源となる化合物は、それぞれ、一種単独または二種以上混合して用いることができる。また、インジウムイオンおよび硝酸イオンの両方のイオン源として硝酸インジウムを単独で用いても良い。特に硝酸インジウムを単独で用いる場合には、浴中に不要な成分が存在することがなく、純度の高い酸化インジウムを広い濃度範囲で形成することが可能となる。
【0017】
本発明の組成物では、インジウムイオン濃度と硝酸イオン濃度については、それぞれ広い範囲で調節できるが、濃度が低くなりすぎると電解条件を調整しても酸化インジウム膜を形成することが困難になり、濃度が高くなりすぎると、水酸化インジウム膜が形成され易くなって酸化インジウム膜の純度が低下し易くなる。このため、通常、インジウムイオン濃度は、0.0001mol/l〜0.5mol/l(インジウム分換算で0.0115〜57.4g/l)程度の範囲内にあることが好ましく、0.001mol/l〜0.1mol/l(インジウム分換算で0.115〜11.5g/l)程度の範囲内にあることがより好ましい。また、硝酸イオン濃度は、通常、0.0001mol/l〜1.0mol/l程度の範囲内にあることが好ましく、0.001mol/l〜0.1mol/l程度の範囲内にあることがより好ましい。
【0018】
本発明の組成物を用いて酸化インジウム膜を形成するには、該組成物中に酸化インジウム膜形成用基材を浸漬し、該基材を陰極として電解を行なえばよい。電解方法としては、通常の電解法を採用して、無攪拌または攪拌下で電解を行えばよい。この際、陽極としては、通常のインジウムめっきに用いられる陽極をいずれも使用でき、例えば、可溶性陽極であるインジウムの他に、カーボン、白金、白金めっきチタン等の不溶性陽極材料を用いることができる。特に、陽極としてインジウムを用いた場合には、溶解が均一で、電解液の組成はほぼ安定に保たれる。また、白金や白金めっきチタンなどの不溶性陽極を用いる場合には、インジウム塩及び硝酸塩の補給を行い、電解液のpHを調整することによって連続作業が可能となる。
【0019】
陰極電位は、電解液の濃度などに応じて適宜設定すればよいが、通常、Ag/AgCl基準で、−0.2V〜−2.0V程度が適当であり、−0.5V〜−1.6V程度が好ましい。この電位範囲での陰極電流密度は0.001mA/cm2〜200mA/cm2となるが、陰極電流密度は用いる基材の種類によっても変化する。液温は、通常、20〜90℃程度とすればよく、40〜70℃程度が好ましい。又、液のpHが高くなりすぎると、沈殿が生成して酸化インジウム膜を得ることが難しくなるので、pH1〜5程度とすることが適当であり、2.5〜4程度とすることが好ましい。形成される酸化インジウム膜の膜厚は、電解時間に応じて増加するので、電解時間を適宜設定することによって、目的とする膜厚の酸化インジウム膜を得ることができる。
【0020】
本発明では、酸化インジウム膜を形成する基材の種類については特に限定されず、通常の電気めっきの対象となる全ての材料が含まれる。具体例としては、銅、鉄等の金属材料、NESAガラス、ITOガラス等のガラス材料、セラミックス材料、プラスチックス材料が例示される。セラミックス材料、プラスチックス材料等の非導電性材料に対しては、常法に従って、無電解めっき法等の湿式処理、PVD法等の乾式処理等によって、導電化処理を施せばよい。基材には、上記電解を行う前に、常法に従って、前処理を施してもよい。また、電解後には、水洗ならびに乾燥など通常行われている操作を行ってもよい。
【0021】
本発明では、上記した電解方法によって、酸化インジウム膜を形成した後、更に、加熱処理を行うことによって、酸化インジウム膜の結晶性を向上させて、電気伝導性をより良好にすることができ、基材との密着性も向上させることができる。熱処理温度は、100〜800℃程度が好ましく、200〜600℃程度がより好ましい。熱処理の時間は、特に限定的ではなく、特性の改善が認められる時間とすれば良いが、通常、30分〜3時間程度とすればよい。
【0022】
【発明の効果】
本発明の酸化インジウム膜電解形成用組成物によれば、水溶液からの電解という非常に簡単な方法によって酸化インジウム膜を形成できる。この様な水溶液からの電解法によれば、真空排気装置や加熱炉等の大規模な装置を必要とすることなく、例えば、工業的に広く用いられれている電気めっき装置などの簡単な装置を使用して、大面積の基材や複雑な形状の基材にも膜厚や組成が均一な酸化インジウム膜を形成でき、しかも膜厚や組成を電解条件により容易に制御できるという利点がある。
【0023】
形成される酸化インジウム膜は、禁制帯幅が約3.75eVの光学的透明性に優れた半導体酸化インジウム膜であり、例えば、透明導電膜等として有用性が高く、ディスプレイ用電極材料等として幅広く利用できる。
【0024】
【実施例】
以下に、実施例および比較例を示して、本発明の特徴をより一層明らかにする。
【0025】
実施例1〜6及び比較例1〜6
下記表1及び表2に記載の各組成物を調製した。これらの組成物中のインジウム塩及び硝酸塩の配合量はmol/lで示す。又、表1及び表2には、電解条件を併記する。電位(V)は、Ag/AgCl電極基準で示す。
【0026】
【表1】

Figure 0003774799
【0027】
【表2】
Figure 0003774799
【0028】
これらの各組成物を用い、基材としてのNESAガラスを陰極とし、Pt板を陽極として、表1及び表2に記載した電解条件によって電解を行ない、基材上に電析膜を析出させた。実施例1〜4については、電析膜形成後、表1に示す条件で加熱処理を行った。
【0029】
得られた電析膜の種類、波長800nmにおける透過率(%)、光学的に求めた禁制帯幅、及びシート抵抗値を下記表3及び表4に示す。電析膜の種類はX線回折法により調べた。又、透過率測定の際の参照物質としては大気を用いた。
【0030】
【表3】
Figure 0003774799
【0031】
【表4】
Figure 0003774799
【0032】
以上の結果より、本発明の酸化インジウム膜電解形成用組成物を用いることによって、光学的透明性に優れた禁制帯幅が約3.75eVの半導体酸化インジウムが得られることが判る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an indium oxide film forming composition and an indium oxide film forming method.
[0002]
[Prior art]
Indium oxide is an oxide semiconductor having a forbidden band width of about 3.75 eV, has optical transparency, and excellent conductivity, and is useful as a material for a transparent conductive film. In addition, it is an important material as a host material of the transparent conductive film, and ITO (indium tin oxide) film in which Sn is doped into indium oxide has high transparency and conductivity, and is easily patterned by etching. Most widely used as a transparent electrode material for displays.
[0003]
At present, indium oxide films are attempted to be formed on a substrate by a dry method such as a CVD method, a vapor deposition method, a sputtering method, a wet method such as a spray pyrolysis method, a sol-gel method, or a liquid phase growth method. Yes. Among these, since sputtering can be formed at a low temperature and a uniform film can be formed, most of indium oxide films are currently produced by this method. However, in dry methods such as CVD and vapor deposition such as sputtering, it is necessary to perform processing such as decompression of the deposition chamber, gas mixing, and heating of the substrate during film formation. A large-scale manufacturing device including a heating device, a high-frequency power source, and the like is required. Furthermore, in these methods, the film formation rate is slow, it is difficult to control the composition and film thickness, the area of the substrate that can be used is limited, and it is difficult to produce a uniform film on a substrate having a complicated shape. There are disadvantages.
[0004]
In addition, the spray pyrolysis method and the sol-gel method have a drawback that a heating furnace is required after the film formation on the substrate and the substrate material that can be used is limited.
[0005]
Therefore, in order to make the indium oxide film available in a wide range, it does not require large-scale equipment such as a vacuum exhaust device or a heating furnace, and can be formed on a substrate having a large area and a complicated shape. It is desired to develop a method for forming an indium oxide film that has a high deposition rate, a uniform film thickness and composition, and easy control.
[0006]
[Problems to be solved by the invention]
A main object of the present invention is to provide a method capable of forming an indium oxide film having a uniform film thickness and composition and excellent transparency by a simple operation.
[0007]
[Means for Solving the Problems]
As a result of intensive studies in view of the above problems, the present inventor uses an aqueous solution containing indium ions and nitrate ions, immerses the substrate in this aqueous solution, and performs electrolysis using this as a cathode. Therefore, it is possible to form an indium oxide film having a uniform film thickness and composition and excellent optical transparency on a large-area substrate or a complex-shaped substrate without requiring a large-scale apparatus. I found it. And it discovered that optical transparency and electrical conductivity further improved by heat-processing the formed indium oxide film | membrane, and came to complete this invention here.
[0008]
That is, the present invention provides the following indium oxide film forming composition and indium oxide film forming method.
[0009]
1. An indium oxide film electroforming composition comprising an aqueous solution containing indium ions and nitrate ions.
[0010]
2. 2. The composition for electroforming an indium oxide film according to 1 above, containing indium nitrate as an indium ion source and a nitrate ion source.
[0011]
3. 3. A method for forming an indium oxide film, comprising performing electrolysis using the indium oxide film-forming substrate as a cathode in the indium oxide film-forming composition described in the above item 1 or 2.
[0012]
4). A method for forming an indium oxide film, comprising heat-treating the indium oxide film formed by the method of item 3 at 100 to 800 ° C.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The composition for electrolytic formation of an indium oxide film of the present invention is an aqueous solution containing indium ions and nitrate ions. By performing an electrolytic reaction using an aqueous solution containing both indium ions and nitrate ions at the same time, an indium oxide film having excellent optical transparency and a forbidden band width of about 3.75 eV can be formed. . An indium oxide film cannot be electrolytically deposited from an aqueous solution containing only indium ions and no nitrate ions.
[0014]
As the compound serving as the indium ion source, a water-soluble indium salt may be used, and specific examples thereof include indium nitrate, indium sulfate, and indium chloride.
[0015]
As the nitrate ion source, nitric acid, water-soluble nitrate and the like can be used, and specific examples of nitrate include indium nitrate, ammonium nitrate, sodium nitrate, potassium nitrate, lithium nitrate, urea nitrate and the like.
[0016]
The compound serving as the indium ion source and the compound serving as the nitrate ion source can be used singly or in combination of two or more. Further, indium nitrate may be used alone as an ion source for both indium ions and nitrate ions. In particular, when indium nitrate is used alone, unnecessary components do not exist in the bath, and high-purity indium oxide can be formed in a wide concentration range.
[0017]
In the composition of the present invention, the indium ion concentration and the nitrate ion concentration can be adjusted in a wide range, respectively, but if the concentration is too low, it becomes difficult to form an indium oxide film even if the electrolysis conditions are adjusted, If the concentration is too high, an indium hydroxide film is easily formed, and the purity of the indium oxide film is likely to be lowered. For this reason, usually, the indium ion concentration is preferably in the range of about 0.0001 mol / l to 0.5 mol / l (0.0115 to 57.4 g / l in terms of indium content). More preferably, it is in the range of about 1 to 0.1 mol / l (0.115 to 11.5 g / l in terms of indium content). The nitrate ion concentration is usually preferably in the range of about 0.0001 mol / l to 1.0 mol / l, more preferably in the range of about 0.001 mol / l to 0.1 mol / l. preferable.
[0018]
In order to form an indium oxide film using the composition of the present invention, an indium oxide film-forming substrate is immersed in the composition, and electrolysis is performed using the substrate as a cathode. As an electrolysis method, a normal electrolysis method may be adopted and electrolysis may be performed without stirring or with stirring. At this time, as the anode, any anode used for ordinary indium plating can be used. For example, insoluble anode materials such as carbon, platinum, platinum-plated titanium, and the like can be used in addition to indium which is a soluble anode. In particular, when indium is used as the anode, the dissolution is uniform and the composition of the electrolytic solution is kept almost stable. When an insoluble anode such as platinum or platinum-plated titanium is used, continuous work can be performed by replenishing indium salt and nitrate and adjusting the pH of the electrolyte.
[0019]
The cathode potential may be appropriately set according to the concentration of the electrolytic solution and the like, but is usually about −0.2 V to −2.0 V on the basis of Ag / AgCl, and is −0.5 V to −1. About 6V is preferable. The cathode current density in this potential range is 0.001 mA / cm 2 to 200 mA / cm 2 , but the cathode current density varies depending on the type of substrate used. The liquid temperature is usually about 20 to 90 ° C, preferably about 40 to 70 ° C. Further, if the pH of the liquid becomes too high, it is difficult to obtain an indium oxide film by forming a precipitate. Therefore, the pH is suitably about 1 to 5, and preferably about 2.5 to 4. . Since the thickness of the indium oxide film to be formed increases with the electrolysis time, an indium oxide film having a target thickness can be obtained by appropriately setting the electrolysis time.
[0020]
In this invention, it does not specifically limit about the kind of base material which forms an indium oxide film | membrane, All the materials used as the object of normal electroplating are contained. Specific examples include metal materials such as copper and iron, glass materials such as NESA glass and ITO glass, ceramic materials, and plastics materials. A non-conductive material such as a ceramic material or a plastics material may be subjected to a conductive treatment by a wet process such as an electroless plating method or a dry process such as a PVD method according to a conventional method. The substrate may be pretreated according to a conventional method before the above electrolysis. Moreover, after electrolysis, you may perform operation normally performed, such as washing with water and drying.
[0021]
In the present invention, after the indium oxide film is formed by the above-described electrolysis method, the crystallinity of the indium oxide film can be improved by further performing heat treatment, and the electrical conductivity can be further improved. Adhesion with the substrate can also be improved. The heat treatment temperature is preferably about 100 to 800 ° C, more preferably about 200 to 600 ° C. The time for the heat treatment is not particularly limited, and may be a time during which improvement of characteristics is recognized, but is usually about 30 minutes to 3 hours.
[0022]
【The invention's effect】
According to the composition for forming an indium oxide film of the present invention, the indium oxide film can be formed by a very simple method of electrolysis from an aqueous solution. According to the electrolytic method from such an aqueous solution, a simple apparatus such as an electroplating apparatus widely used industrially is used without requiring a large-scale apparatus such as a vacuum exhaust apparatus or a heating furnace. In use, an indium oxide film having a uniform film thickness and composition can be formed on a large-area substrate or a substrate having a complicated shape, and the film thickness and composition can be easily controlled by electrolytic conditions.
[0023]
The formed indium oxide film is a semiconductor indium oxide film having excellent optical transparency with a forbidden band width of about 3.75 eV. For example, it is highly useful as a transparent conductive film and widely used as a display electrode material. Available.
[0024]
【Example】
Hereinafter, the features of the present invention will be further clarified by showing Examples and Comparative Examples.
[0025]
Examples 1-6 and Comparative Examples 1-6
Each composition described in Table 1 and Table 2 below was prepared. The blending amounts of indium salt and nitrate in these compositions are shown in mol / l. Tables 1 and 2 also show the electrolysis conditions. The potential (V) is shown on the basis of an Ag / AgCl electrode.
[0026]
[Table 1]
Figure 0003774799
[0027]
[Table 2]
Figure 0003774799
[0028]
Using each of these compositions, the NESA glass as the base material was used as the cathode, the Pt plate was used as the anode, and electrolysis was performed according to the electrolysis conditions described in Tables 1 and 2, and an electrodeposited film was deposited on the base material. . About Examples 1-4, the heat processing were performed on the conditions shown in Table 1 after electrodeposition film formation.
[0029]
Table 3 and Table 4 below show the type of electrodeposited film, transmittance (%) at a wavelength of 800 nm, optically determined forbidden band width, and sheet resistance value. The type of electrodeposited film was examined by X-ray diffraction. In addition, air was used as a reference material for the transmittance measurement.
[0030]
[Table 3]
Figure 0003774799
[0031]
[Table 4]
Figure 0003774799
[0032]
From the above results, it can be seen that by using the composition for electroforming an indium oxide film of the present invention, semiconductor indium oxide having a forbidden band width of about 3.75 eV excellent in optical transparency can be obtained.

Claims (4)

インジウムイオン及び硝酸イオンを含有する水溶液からなる陰極電解による酸化インジウム膜形成用組成物。Indium oxide film type forming composition by cathodic electrolysis of an aqueous solution containing indium ion and nitrate ion. インジウムイオン源及び硝酸イオン源として、硝酸インジウムを含有する請求項1に記載の陰極電解による酸化インジウム膜形成用組成物。As the source of indium ions and nitrate ion source, an indium oxide film type forming composition by cathodic electrolysis according to claim 1 containing indium nitrate. 請求項1又は請求項2に記載の酸化インジウム膜形成用組成物中で、酸化インジウム膜形成用基材を陰極として電解を行うことを特徴とする酸化インジウム膜の形成方法。The method for forming an indium oxide film according to claim 1, wherein electrolysis is performed using the indium oxide film forming base material as a cathode in the indium oxide film forming composition according to claim 1. 請求項3の方法で形成した酸化インジウム膜を100〜800℃で加熱処理することを特徴とする酸化インジウム膜形成方法。A method for forming an indium oxide film, comprising heat-treating the indium oxide film formed by the method according to claim 3 at 100 to 800 ° C.
JP23095197A 1997-08-27 1997-08-27 Composition for electrolytic formation of indium oxide film Expired - Fee Related JP3774799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23095197A JP3774799B2 (en) 1997-08-27 1997-08-27 Composition for electrolytic formation of indium oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23095197A JP3774799B2 (en) 1997-08-27 1997-08-27 Composition for electrolytic formation of indium oxide film

Publications (2)

Publication Number Publication Date
JPH1161471A JPH1161471A (en) 1999-03-05
JP3774799B2 true JP3774799B2 (en) 2006-05-17

Family

ID=16915883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23095197A Expired - Fee Related JP3774799B2 (en) 1997-08-27 1997-08-27 Composition for electrolytic formation of indium oxide film

Country Status (1)

Country Link
JP (1) JP3774799B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848714B1 (en) * 2008-04-22 2016-11-23 Rohm and Haas Electronic Materials LLC Method of replenishing indium ions in indium electroplating compositions

Also Published As

Publication number Publication date
JPH1161471A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
KR950011405B1 (en) Cathode for electrolysis and process for producing the same
JP3273294B2 (en) Electrolyte for zinc oxide film production
CN101942683A (en) Method for preparing bismuth film by pulse plating process
Wu et al. The influence of current density and bath temperature on electrodeposition of rhodium film from sulfate–phosphate aqueous solutions
CN112323084A (en) Preparation method of nano indium oxide
Kamada et al. Anodic dissolution of tantalum and niobium in acetone solvent with halogen additives for electrochemical synthesis of Ta2O5 and Nb2O5 thin films
JP3148882B2 (en) Method for producing zinc oxide film
CN103806044A (en) Method for preparing iridium coating by virtue of electrolysis in cesium hexachloroiridate-chloride fused salt system
Green et al. Pulse plating of copper from deep eutectic solvents
JP3774799B2 (en) Composition for electrolytic formation of indium oxide film
JPH07502303A (en) electrochemical method
Ishizaki et al. Electrodeposition of CuInTe2 film from an acidic solution
US4437948A (en) Copper plating procedure
JP3256776B2 (en) Composition for forming zinc oxide film
NO774135L (en) NICKLE COATING PROCEDURES
CN113403654A (en) Green and environment-friendly method for electrodepositing nickel coating
JP2000272922A (en) Composition for electrolytic formation of manganese oxide film
JP4803550B2 (en) Composition for electrolytic formation of silver oxide film
JP2001011642A (en) Transparent conductive zinc oxide film and its production
JP2000273694A (en) Composition for electrolytically forming rare earth oxide
JP3997363B2 (en) Composition for forming indium oxide film
US2335821A (en) Palladium plating bath
JP3887899B2 (en) Method for producing bismuth oxide coating
JPH11158692A (en) Formation of bismuth titanate coating film
CN108486625A (en) A kind of electro-deposition preparation method of ZnSb thin film thermoelectric materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees