JP3773381B2 - Anti-vibration rubber carbon black and anti-vibration rubber composition containing the carbon black - Google Patents

Anti-vibration rubber carbon black and anti-vibration rubber composition containing the carbon black Download PDF

Info

Publication number
JP3773381B2
JP3773381B2 JP22316999A JP22316999A JP3773381B2 JP 3773381 B2 JP3773381 B2 JP 3773381B2 JP 22316999 A JP22316999 A JP 22316999A JP 22316999 A JP22316999 A JP 22316999A JP 3773381 B2 JP3773381 B2 JP 3773381B2
Authority
JP
Japan
Prior art keywords
carbon black
rubber
vibration rubber
vibration
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22316999A
Other languages
Japanese (ja)
Other versions
JP2001049143A (en
Inventor
和人 片岡
毅彦 桑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP22316999A priority Critical patent/JP3773381B2/en
Publication of JP2001049143A publication Critical patent/JP2001049143A/en
Application granted granted Critical
Publication of JP3773381B2 publication Critical patent/JP3773381B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、各種工業用機能ゴム部品、特に自動車のエンジンマウント等に用いられる防振ゴム用として好適なカーボンブラック、及び該カーボンブラックをゴム成分に配合した防振ゴム組成物に関する。
【0002】
【従来の技術】
各種の防振材に用いられるゴム材料には、支持する重量物の振動を吸収し、抑制する防振機能と重量物を支える強度特性が要求される。すなわち、防振ゴム材料には動的特性の向上、特に動倍率の低位化(低静動化)が必要とされており、一方、エンジン等の振動体を支持するためにはある程度の静的弾性率を確保することが必要である。一般に、動倍率の低位化を図るためには粒子径が大きく(比表面積が小さく)、ストラクチャーの大きなカーボンブラックを使用したり、その配合量を少なくする等の方法が知られている。
【0003】
例えば、特開平1−272645号公報には天然ゴム(NR)等の原料ゴムに、充填剤としてヨウ素吸着量(IA)10〜40mg/g、ジブチルフタレート(DBP) 吸油量(A法) 100〜500ml/100gの特性を有するカーボンブラックを配合してなる防振ゴム用ゴム組成物が開示されている。
【0004】
また、特開平7−166089号公報にはよう素吸着量(IA)が8〜20mg/g、DBP吸油量(DBPA)が45〜95ml/100g の領域にあり、比着色力が下記算出式−▲1▼で得られるAの値以下であり、かつ下記算出式−▲2▼で得られるBの値が15〜60であるサーマルタイプ高ストラクチャーファーネスカーボンブラックが提案されている。
算出式−▲1▼ A=20+IA
算出式−▲2▼ B=(DBPA/IA)2
【0005】
一方、減衰性を高め、静的弾性率を確保するためには比表面積が大きいカーボンブラックを用い、その配合量は多いほど有利であることが知られている。したがって、防振用ゴム組成物として動倍率の低位化と静的弾性率の高位化とを両立化するためにカーボンブラックに求められる特性は相反するものとなる。
【0006】
【発明が解決しようとする課題】
本発明者らは、この相反する低動倍率化と高静的弾性率とを備え、防振ゴム材料として好適な物性を有する防振ゴム用のカーボンブラックの性状について鋭意研究を行った結果、カーボンブラックの粒子径、ストラクチャー、及び、ゴム中におけるカーボンブラックのミクロ分散性が大きく影響することを見出した。
【0007】
本発明は、上記の知見に基づいて開発されたものであって、その目的は防振ゴム用として好適なカーボンブラック、及び該カーボンブラックを配合した防振ゴム組成物、特にゴム成分に配合してゴム組成物とした際に、一定静的弾性率当たりの動倍率が低い、すなわち、一定静的弾性率当たり従来よりも優れた低動倍率(低静動比)を付与することのできる防振ゴム用カーボンブラック、及び、該カーボンブラックを配合した防振ゴム組成物を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するための本発明による防振ゴム用カーボンブラックは、窒素吸着比表面積(NSA)が14〜18/g、造粒粒子の硬さ(IPH)が9cN以下、DBP吸油量(ml/100g)が95ml/100g以上であって、下記式値を満足することを構成上の特徴とする。
DBP≧13×NSA−171
【0009】
また、本発明の防振ゴム組成物は、請求項1記載のカーボンブラックを、ゴム成分100重量部に対し10〜200重量部配合してなることを構成上の特徴とする。
【0010】
【発明の実施の形態】
本発明の防振ゴム用カーボンブラックは、窒素吸着比表面積(N2SA)が14〜23m2/gの範囲にあることが必要である。動倍率の低減化を図るには比表面積が小さいことが有利であり、窒素吸着比表面積(N2SA)の値が23m2/gを越えると動倍率が大きくなって、一定静的弾性率当たりの低動倍率化が困難となる。一方、窒素吸着比表面積(N2SA)の値が小さくなると通常のファーネス法により製造することが困難となり、更に本発明の特性要件の一つであるDBP吸油量を確保することが難しくなるので、14m2/g以上に設定される。なお、好ましくは窒素吸着比表面積(N2SA)は18m2/g以下に設定する。
【0011】
次に、造粒粒子の硬さ(IPH) を9cN以下の値に設定するのは、ゴム成分中へミクロな状態で分散させるための要件となるものであり、この値が9cNを越えるとゴム中におけるカーボンブラックのミクロ分散化が不充分となり、結果的に一定静的弾性率当たりの低動倍率化を図ることが困難となる。
【0012】
更に、本発明の防振ゴム用カーボンブラックはストラクチャーの大きさを示すDBP吸油量が、DBP≧13×N2 SA−171の式値を満足することが必要である。この式値を満足しない場合には、一定静的弾性率当たりの低動倍率化を図ることが困難となる。なお、DBP吸油量は95ml/100g 以上であることが好ましい。
【0013】
このようにして、カーボンブラックの性状を、窒素吸着比表面積(N2SA)が14〜23m2/g、造粒粒子の硬さ(IPH) が9cN以下、DBP吸油量(ml/100g) の値がDBP≧13×N2 SA−171の式値を満足することによって、ゴム配合物の低動倍率化と高静的弾性率とを高位に両立化することが可能となるが、窒素吸着比表面積(N2SA)を18m2/g以下に、または、DBP吸油量を95ml/100g 以上の値に設定すると、低動倍率化と高静的弾性率との両立化を一層効果的に図ることができる。
【0014】
上記の構成におけるカーボンブラックの各特性は、下記の測定方法によって得られた値が適用される。
▲1▼窒素吸着比表面積(N2 SA);
ASTM D3037−88 “Standard Test Methods for Carbon Black-Surface Area by Nitrogen Adsorption”Method Bによる。
▲2▼造粒粒子の硬さ(IPH);
JISK6219−1997「ゴム用カーボンブラックの基本性能の試験方法」7項A法による。
▲3▼DBP吸油量;
JISK6217−1997「ゴム用カーボンブラックの造粒物の性質の試験方法」9項A法による。
【0015】
本発明の防振ゴム用カーボンブラックは、常法に従って加硫剤、加硫促進剤、老化防止剤、軟化剤、可塑剤等の必要成分とともにゴム成分に配合、混練、加硫処理して目的とする防振ゴム組成物が得られる。ゴム成分としては、天然ゴムをはじめスチレンブタジエンゴム、ポリブタジエンゴム、エチレン−プロピレンゴム等の各種合成ゴムや混合ゴムが対象となる。これらのゴム成分に配合するカーボンブラック量は、ゴム成分100重量部に対しカーボンブラック10〜200重量部の量比に設定される。カーボンブラックの配合比が10重量部未満では充分な静的弾性率が得られず、一方200重量部を越えると加工性が低下するためである。
【0016】
本発明のカーボンブラックは、緩徐に収斂、開拡する鼓状絞り部をもつ広径の円筒反応炉を用い、燃料油と空気または酸素を含む適宜な酸化剤とによる高温燃焼ガス中に原料油の霧化気流を二段に導入することにより製造される。例えば、図1に例示した、炉頭部に接線方向空気供給口1と炉軸方向に装着された複数の燃焼バーナ2及び水冷外套を有し炉軸方向に進退可能な外筒ノズル3とこれに挿着された伸縮自在な中軸筒ノズル4からなる二重筒構造の原料油噴射ノズル5を備えた燃焼室6と、同軸的に鼓状の狭径部7を介して広径反応室8が連設され、下流域に水冷クエンチ9を備えた急冷部10を経て垂直に立ち上がる煙道11に接続する円筒反応炉を用い、原料油は霧化空気とともに外筒ノズル3及び中軸筒ノズル4を介して二段に分割導入される。なお、原料油導入位置は外筒ノズル3の進退と、中軸筒ノズル4の伸縮により適宜変更することができる。
【0017】
原料油にはクレオソート油、エチレンボトム油等の高芳香族系重質油が使用され、高温燃焼ガスとの良好な均質混合状態を得るために霧化噴射ノズルを介して充分な微粒子気流の状態で導入する。本発明のカーボンブラックは、上記の装置において、供給する空気量、燃料油量、原料油導入量、上流側と下流側の原料油導入量の割合、燃焼ガス流速および炉内滞留時間等を制御することにより製造することができる。また、造粒粒子の硬さの調整は公知の乾式あるいは湿式造粒法により造粒条件及び乾燥条件を適宜設定制御することにより造粒粒子の硬さ(IPH) の異なるカーボンブラックを得ることができる。
【0018】
【実施例】
以下、本発明の実施例を比較例と対比して説明する。
【0019】
実施例1〜7、比較例1〜5
炉頭部に接線方向空気供給口1を備えたウインドボックスと下流側出口部が緩やかに収斂する燃焼室6(内径700mm、長さ1200mm)、該燃焼室と同軸的に連設する狭径部7(内径400mm、長さ200mm)、及びこれに引き続き開拡するテーパー状反応室8(内径900mm、長さ9000mm)、反応室の下流域に位置変更し得る水冷クエンチ9を設けた図1に例示した形態の円筒反応炉を設置し、炉頭から炉中心軸に沿って二重筒構造の原料油噴射ノズル5を挿着し、その周辺に4本の燃焼バーナ2を同軸的に設置した。原料油噴射ノズル5は、上流側の原料油導入点(外筒ノズル3の噴出孔)が収斂部位に、下流側原料油導入点(中軸筒ノズル4の噴出孔)は狭径部位にそれぞれ位置するように調整した。なお燃料油及び原料油には表1に示した性状のものを使用した。
【0020】
【表1】

Figure 0003773381
【0021】
上記の反応炉、原料油、燃料油を用いて、全空気供給量、燃料油供給量、燃料油燃焼率、全原料油供給量、上流側および下流側原料油導入量、炉内滞留時間等の生成条件を変えて特性の異なるカーボンブラックを発生し、また湿式造粒法により造粒機のピン回転数、粉末カーボンブラック供給量、造粒水量などを変更して造粒粒子の硬さの異なるカーボンブラックを製造した。表2(実施例)及び表3(比較例)に生成条件と得られたカーボンブラックの特性を示した。
【0022】
【表1】
Figure 0003773381
【0023】
【表3】
Figure 0003773381
【0024】
次に、これらのカーボンブラックを、表4に示す配合比率で天然ゴムに配合した。なお、カーボンブラックのみ変量配合とした。
【0025】
【表4】
Figure 0003773381
【0026】
これらの配合物を145℃の温度で40分間加硫してゴム組成物を作製した。得られたゴム組成物についてゴム物性を測定し、測定した結果を表5(実施例)表6(比較例)に、また静的弾性率(Es)と動倍率(Ed100/Es) の関係を図2に示した。なお、ゴム物性の測定は下記の方法により行った。
【0027】
(1)動倍率;
▲1▼動的弾性率 (Ed100)の測定;
ヴィスコ・エラスティック・スペクトロメーター〔 (株) 岩本製作所製〕を用い、以下の条件で測定した。
試験片;厚さ 2mm、長さ35mm、幅 5mm
周波数;100Hz 、 動的歪率;0.2 %、 温度;室温
▲2▼静的弾性率(Es)の測定;
JIS K6386「防振ゴムのゴム材料」により測定した。
▲3▼動倍率;
動的弾性率 (Ed100)/静的弾性率(Es)から算出した。
【0028】
(2)その他のゴム物性は、JISK6301「加硫ゴム物理試験方法」により測定した。
【0029】
【表5】
Figure 0003773381
【0030】
【表6】
Figure 0003773381
【0031】
表2〜3、表5〜6、及び図1の結果から、実施例のゴム組成物は比較例のゴム組成物に比べて静的弾性率に対する動倍率が低位にあり、静的弾性率の高位化と動倍率の低位化との両立化が図られることが判る。
【0032】
すなわち、造粒粒子の硬さ(IPH) が高く9cNを上回る比較例1は、実施例3に比較してゴム成分中におけるミクロ分散性が低くなるために動的弾性率が上がり、結果的に動倍率が高くなり、静的弾性率に対する動倍率の低減化を図ることができない。比較例2はDBP吸油量が13×N2 SA−171の式値より小さい場合であるが、実施例6に比較して静的弾性率が低位にあり結果的に動倍率が高くなり静的弾性率と低動倍率化の両立化が図られていない。
【0033】
また、比較例3〜5は窒素吸着比表面積(N2SA)が高く、DBP吸油量が式値を満足しない、(比較例4は造粒粒子の硬さも高い)場合であるが、いずれも静的弾性率と低動倍率化の両立は悪化傾向にあることが認められる。
【0034】
【発明の効果】
以上のとおり、窒素吸着比表面積(N2SA)、造粒粒子の硬さ(IPH) 及びDBP吸油量を特定した本発明の防振ゴム用カーボンブラック、及び該カーボンブラックを配合したゴム組成物は、一定静的弾性率当たりの低動倍率化を図ることが可能となる。したがって、例えば自動車のエンジンマウント等の防振ゴム材をはじめ広い用途分野において極めて有用である。
【図面の簡単な説明】
【図1】本発明のカーボンブラックを製造するために用いられる反応炉を例示した側断面図である。
【図2】実施例と比較例による静的弾性率(Es)と動倍率(Ed100/Es) の関係を示したグラフである。
【符号の説明】
1 接線方向空気供給口
2 燃焼バーナ
3 外筒ノズル
4 中軸筒ノズル
5 原料油噴射ノズル
6 燃焼室
7 狭径部
8 広径反応室
9 水冷クエンチ
10 急冷部
11 煙道[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon black suitable for use in various industrial functional rubber parts, particularly an anti-vibration rubber used for engine mounts of automobiles, and an anti-vibration rubber composition containing the carbon black in a rubber component.
[0002]
[Prior art]
A rubber material used for various types of vibration isolating materials is required to have a vibration isolating function that absorbs and suppresses vibration of a heavy object to be supported and strength characteristics that support the heavy object. In other words, the vibration-isolating rubber material is required to improve dynamic characteristics, in particular, to reduce the dynamic magnification (lower static), while to support a vibrating body such as an engine to some extent. It is necessary to ensure the elastic modulus. In general, in order to lower the dynamic magnification, there are known methods such as using carbon black having a large particle size (small specific surface area) and a large structure, or reducing the amount of the compound.
[0003]
For example, JP-A-1-272645 discloses a raw rubber such as natural rubber (NR), iodine adsorption amount (IA) 10-40 mg / g as a filler, dibutyl phthalate (DBP) oil absorption amount (Method A) 100- A rubber composition for an anti-vibration rubber comprising carbon black having a characteristic of 500 ml / 100 g is disclosed.
[0004]
JP-A-7-166089 discloses an iodine adsorption amount (IA) in the range of 8 to 20 mg / g and a DBP oil absorption amount (DBPA) in the range of 45 to 95 ml / 100 g. Thermal type high structure furnace carbon black has been proposed that is not more than the value of A obtained in (1) and has a B value of 15 to 60 obtained by the following calculation formula-(2).
Calculation formula-(1) A = 20 + IA
Formula-( 2 ) B = (DBPA / IA) 2
[0005]
On the other hand, it is known that carbon black having a large specific surface area is used to increase the damping property and ensure the static elastic modulus, and the larger the blending amount, the more advantageous. Therefore, the properties required for carbon black to achieve both a reduction in dynamic magnification and an increase in static elastic modulus as a vibration-proof rubber composition are contradictory.
[0006]
[Problems to be solved by the invention]
The inventors of the present invention, as a result of earnestly studying the properties of carbon black for anti-vibration rubber having the opposite low dynamic magnification and high static elastic modulus and having physical properties suitable as an anti-vibration rubber material, It has been found that the particle size of carbon black, the structure, and the micro-dispersibility of carbon black in rubber are greatly affected.
[0007]
The present invention has been developed on the basis of the above knowledge, and its purpose is to blend carbon black suitable for vibration-proof rubber, and vibration-proof rubber composition containing the carbon black, particularly rubber component. When a rubber composition is used, the dynamic magnification per fixed static elastic modulus is low, that is, it is possible to provide a low dynamic magnification (low static ratio) superior to the conventional per static static modulus. An object of the present invention is to provide a carbon black for vibration rubber and a vibration-proof rubber composition containing the carbon black.
[0008]
[Means for Solving the Problems]
The carbon black for vibration-proof rubber according to the present invention for achieving the above object has a nitrogen adsorption specific surface area (N 2 SA) of 14 to 18 m 2 / g, and the hardness (IPH) of the granulated particles is 9 cN or less, The DBP oil absorption (ml / 100 g) is 95 ml / 100 g or more and satisfies the following formula value.
DBP ≧ 13 × N 2 SA-171
[0009]
The vibration-insulating rubber composition of the present invention is characterized in that carbon black according to claim 1 is blended in an amount of 10 to 200 parts by weight per 100 parts by weight of the rubber component.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The carbon black for vibration-proof rubber of the present invention needs to have a nitrogen adsorption specific surface area (N 2 SA) in the range of 14 to 23 m 2 / g. In order to reduce the dynamic magnification, it is advantageous that the specific surface area is small, and when the value of the nitrogen adsorption specific surface area (N 2 SA) exceeds 23 m 2 / g, the dynamic magnification increases and a constant static elastic modulus is obtained. It is difficult to reduce the dynamic magnification per hit. On the other hand, when the value of the nitrogen adsorption specific surface area (N 2 SA) becomes small, it becomes difficult to produce by a normal furnace method, and further, it becomes difficult to secure the DBP oil absorption amount which is one of the characteristic requirements of the present invention. 14 m 2 / g or more. The nitrogen adsorption specific surface area (N 2 SA) is preferably set to 18 m 2 / g or less.
[0011]
Next, setting the hardness (IPH) of the granulated particles to a value of 9 cN or less is a requirement for dispersion in the rubber component in a microscopic state, and if this value exceeds 9 cN, the rubber Insufficient micro-dispersion of carbon black in the interior makes it difficult to reduce the dynamic magnification per fixed static elastic modulus.
[0012]
Furthermore, in the carbon black for vibration-proof rubber of the present invention, the DBP oil absorption indicating the size of the structure needs to satisfy the formula value of DBP ≧ 13 × N 2 SA-171. If this formula value is not satisfied, it is difficult to reduce the dynamic magnification per certain static elastic modulus. The DBP oil absorption is preferably 95 ml / 100 g or more.
[0013]
In this way, the properties of carbon black were as follows: nitrogen adsorption specific surface area (N 2 SA) of 14-23 m 2 / g, granulated particle hardness (IPH) of 9 cN or less, DBP oil absorption (ml / 100 g). When the value satisfies the formula value of DBP ≧ 13 × N 2 SA-171, it is possible to achieve both a low dynamic ratio and a high static elastic modulus of the rubber compound at a high level. When the specific surface area (N 2 SA) is set to 18 m 2 / g or less, or the DBP oil absorption is set to a value of 95 ml / 100 g or more, it is more effective to achieve both low dynamic magnification and high static elastic modulus. Can be planned.
[0014]
Values obtained by the following measurement methods are applied to the respective characteristics of carbon black in the above configuration.
(1) Nitrogen adsorption specific surface area (N 2 SA);
According to ASTM D3037-88 “Standard Test Methods for Carbon Black-Surface Area by Nitrogen Adsorption” Method B.
(2) Granulated particle hardness (IPH);
According to JIS K6219-1997 “Testing method for basic performance of carbon black for rubber”, item 7A.
(3) DBP oil absorption amount;
According to JIS K6217-1997 “Testing method for properties of granulated carbon black for rubber”, item 9A.
[0015]
The carbon black for anti-vibration rubber of the present invention is blended, kneaded and vulcanized into rubber components together with necessary components such as a vulcanizing agent, a vulcanization accelerator, an anti-aging agent, a softening agent and a plasticizer according to a conventional method. An anti-vibration rubber composition is obtained. The rubber component includes natural rubber, various synthetic rubbers such as styrene butadiene rubber, polybutadiene rubber, and ethylene-propylene rubber, and mixed rubber. The amount of carbon black blended in these rubber components is set to a ratio of 10 to 200 parts by weight of carbon black with respect to 100 parts by weight of the rubber component. This is because a sufficient static elastic modulus cannot be obtained when the blending ratio of the carbon black is less than 10 parts by weight, while the workability decreases when the blending ratio exceeds 200 parts by weight.
[0016]
The carbon black of the present invention uses a wide-diameter cylindrical reactor having a drum-shaped throttle part that slowly converges and spreads, and feedstock oil in a high-temperature combustion gas composed of fuel oil and an appropriate oxidant containing air or oxygen. It is manufactured by introducing the atomized air flow of 2 stages. For example, as shown in FIG. 1, a tangential air supply port 1 at the furnace head, a plurality of combustion burners 2 mounted in the furnace axis direction, and an outer cylinder nozzle 3 that can be advanced and retracted in the furnace axis direction with a water-cooled mantle. A combustion chamber 6 provided with a feed oil injection nozzle 5 having a double cylinder structure composed of a telescopic middle shaft cylinder nozzle 4 inserted in a wide diameter reaction chamber 8 via a coaxial drum-shaped narrow diameter portion 7. Are connected to a flue 11 that rises vertically through a quenching section 10 having a water-cooling quench 9 in the downstream area, and the raw material oil is atomized with the outer cylinder nozzle 3 and the middle shaft nozzle 4. Is divided and introduced in two stages. The feedstock introduction position can be changed as appropriate by the advance and retreat of the outer cylinder nozzle 3 and the expansion and contraction of the central cylinder nozzle 4.
[0017]
Highly aromatic heavy oils such as creosote oil and ethylene bottom oil are used as the feedstock oil, and sufficient fine particle flow is obtained through the atomizing injection nozzle to obtain a good homogeneous mixed state with the high-temperature combustion gas. Introduce in state. The carbon black of the present invention controls the amount of air to be supplied, the amount of fuel oil, the amount of raw material oil introduced, the ratio of the upstream and downstream raw material oil introduced, the combustion gas flow rate, the residence time in the furnace, etc. Can be manufactured. The hardness of the granulated particles can be adjusted by appropriately setting and controlling the granulation conditions and drying conditions by a known dry or wet granulation method to obtain carbon blacks having different granulated particle hardness (IPH). it can.
[0018]
【Example】
Examples of the present invention will be described below in comparison with comparative examples.
[0019]
Examples 1-7, Comparative Examples 1-5
A wind box having a tangential air supply port 1 at the furnace head and a combustion chamber 6 (inner diameter 700 mm, length 1200 mm) in which the downstream outlet portion converges gently, a narrow diameter portion coaxially connected to the combustion chamber 7 (inner diameter 400 mm, length 200 mm), a tapered reaction chamber 8 (inner diameter 900 mm, length 9000 mm) that subsequently expands, and a water-cooled quench 9 that can be repositioned in the downstream region of the reaction chamber are shown in FIG. A cylindrical reactor of the illustrated form was installed, and a raw material oil injection nozzle 5 having a double cylinder structure was inserted along the furnace central axis from the furnace head, and four combustion burners 2 were installed coaxially around the nozzle. . In the raw material oil injection nozzle 5, the upstream raw material oil introduction point (outlet hole of the outer cylinder nozzle 3) is located at the converging part, and the downstream raw material oil introduction point (injection hole of the central shaft nozzle 4) is located at the narrow part. Adjusted to do. The fuel oils and feedstocks having the properties shown in Table 1 were used.
[0020]
[Table 1]
Figure 0003773381
[0021]
Using the above-mentioned reactor, raw material oil, fuel oil, total air supply amount, fuel oil supply amount, fuel oil combustion rate, total raw material oil supply amount, upstream and downstream raw material oil introduction amount, residence time in the furnace, etc. The carbon blacks with different characteristics are generated by changing the production conditions of the particles, and the hardness of the granulated particles is changed by changing the pin rotation speed of the granulator, the amount of powder carbon black supplied, the amount of granulated water, etc. by the wet granulation method. Different carbon blacks were produced. Table 2 (Examples) and Table 3 (Comparative Examples) show the generation conditions and the characteristics of the obtained carbon black.
[0022]
[Table 1]
Figure 0003773381
[0023]
[Table 3]
Figure 0003773381
[0024]
Next, these carbon blacks were blended with natural rubber at a blending ratio shown in Table 4. Only carbon black was used as a variable blend.
[0025]
[Table 4]
Figure 0003773381
[0026]
These blends were vulcanized at a temperature of 145 ° C. for 40 minutes to prepare rubber compositions. The rubber properties of the obtained rubber composition were measured, and the measurement results are shown in Table 5 (Example) and Table 6 (Comparative Example), and the relationship between static elastic modulus (Es) and dynamic magnification (Ed100 / Es). It is shown in FIG. The rubber physical properties were measured by the following method.
[0027]
(1) Dynamic magnification;
(1) Measurement of dynamic elastic modulus (Ed100);
Using a Visco-elastic spectrometer (manufactured by Iwamoto Seisakusho Co., Ltd.), the measurement was performed under the following conditions.
Test piece: Thickness 2mm, length 35mm, width 5mm
Frequency: 100Hz, Dynamic strain rate: 0.2%, Temperature: Room temperature (2) Measurement of static elastic modulus (Es);
It was measured according to JIS K6386 “Rubber material for vibration-proof rubber”.
(3) Dynamic magnification;
It calculated from dynamic elastic modulus (Ed100) / static elastic modulus (Es).
[0028]
(2) Other rubber properties were measured according to JIS K6301 “Physical Test Method for Vulcanized Rubber”.
[0029]
[Table 5]
Figure 0003773381
[0030]
[Table 6]
Figure 0003773381
[0031]
From the results of Tables 2 to 3, Tables 5 to 6, and FIG. 1, the rubber composition of the example has a lower dynamic modulus with respect to the static elastic modulus than the rubber composition of the comparative example. It can be seen that a balance between a higher level and a lower dynamic magnification can be achieved.
[0032]
That is, in Comparative Example 1 in which the hardness (IPH) of the granulated particles is higher than 9 cN, since the microdispersibility in the rubber component is lower than that in Example 3, the dynamic elastic modulus is increased. The dynamic magnification becomes high, and the dynamic magnification relative to the static elastic modulus cannot be reduced. Comparative Example 2 is a case where the DBP oil absorption is smaller than the formula value of 13 × N 2 SA-171. However, the static elastic modulus is lower than that of Example 6 and consequently the dynamic magnification is increased and static. The elastic modulus and the low dynamic magnification have not been made compatible.
[0033]
Comparative Examples 3 to 5 are cases where the nitrogen adsorption specific surface area (N 2 SA) is high and the DBP oil absorption amount does not satisfy the formula value (Comparative Example 4 has high hardness of the granulated particles). It can be seen that the coexistence of static elastic modulus and low dynamic magnification tends to deteriorate.
[0034]
【The invention's effect】
As described above, the carbon black for vibration-proof rubber of the present invention in which the nitrogen adsorption specific surface area (N 2 SA), the hardness of the granulated particles (IPH) and the DBP oil absorption amount are specified, and the rubber composition containing the carbon black Can achieve a low dynamic magnification per fixed static elastic modulus. Therefore, it is extremely useful in a wide range of applications including vibration-proof rubber materials such as automobile engine mounts.
[Brief description of the drawings]
FIG. 1 is a side cross-sectional view illustrating a reactor used for producing carbon black of the present invention.
FIG. 2 is a graph showing the relationship between static elastic modulus (Es) and dynamic magnification (Ed100 / Es) according to an example and a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tangential direction air supply port 2 Combustion burner 3 Outer cylinder nozzle 4 Middle axis cylinder nozzle 5 Raw material oil injection nozzle 6 Combustion chamber 7 Narrow diameter part 8 Wide diameter reaction chamber 9 Water cooling quench
10 Rapid cooling section
11 Flue

Claims (2)

窒素吸着比表面積(NSA)が14〜18/g、造粒粒子の硬さ(IPH)が9cN以下、DBP吸油量(ml/100g)が95ml/100g以上であって、下記式値を満足することを特徴とする防振ゴム用カーボンブラック。
DBP≧13×NSA−171
The nitrogen adsorption specific surface area (N 2 SA) is 14 to 18 m 2 / g, the granulated particle hardness (IPH) is 9 cN or less, and the DBP oil absorption (ml / 100 g) is 95 ml / 100 g or more. Carbon black for anti-vibration rubber characterized by satisfying the value.
DBP ≧ 13 × N 2 SA-171
ゴム成分100重量部に対し請求項1記載のカーボンブラックを10〜200重量部配合してなることを特徴とする防振ゴム組成物。  An anti-vibration rubber composition comprising 10 to 200 parts by weight of the carbon black according to claim 1 per 100 parts by weight of a rubber component.
JP22316999A 1999-08-06 1999-08-06 Anti-vibration rubber carbon black and anti-vibration rubber composition containing the carbon black Expired - Lifetime JP3773381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22316999A JP3773381B2 (en) 1999-08-06 1999-08-06 Anti-vibration rubber carbon black and anti-vibration rubber composition containing the carbon black

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22316999A JP3773381B2 (en) 1999-08-06 1999-08-06 Anti-vibration rubber carbon black and anti-vibration rubber composition containing the carbon black

Publications (2)

Publication Number Publication Date
JP2001049143A JP2001049143A (en) 2001-02-20
JP3773381B2 true JP3773381B2 (en) 2006-05-10

Family

ID=16793892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22316999A Expired - Lifetime JP3773381B2 (en) 1999-08-06 1999-08-06 Anti-vibration rubber carbon black and anti-vibration rubber composition containing the carbon black

Country Status (1)

Country Link
JP (1) JP3773381B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862774B2 (en) * 2016-11-08 2021-04-21 日本ゼオン株式会社 Polymer composition for anti-vibration rubber, cross-linked rubber, and anti-vibration rubber
WO2018235587A1 (en) 2017-06-22 2018-12-27 Nok株式会社 Rubber composition for anti-vibration rubber

Also Published As

Publication number Publication date
JP2001049143A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
CN1210352C (en) Carbon black, method for producing and use of the same
JPH023419B2 (en)
EP0600195B1 (en) Rubber composition
WO2011018887A1 (en) Hard carbon black and rubber composition
US4786677A (en) Rubber composition containing a carbon black particles having two modal diameters in the aggregate
JP3773381B2 (en) Anti-vibration rubber carbon black and anti-vibration rubber composition containing the carbon black
JPH0153978B2 (en)
JP4947515B2 (en) Carbon black for compounding functional rubber parts
JP2857198B2 (en) Rubber composition for heat-resistant and vibration-proof rubber material
JP3819588B2 (en) Soft high structure carbon black
JP2607393B2 (en) Rubber composition
JP3763692B2 (en) Carbon black for compounding functional parts rubber
JP3922962B2 (en) Carbon black for compounding functional rubber parts
JP3827891B2 (en) Carbon black and rubber composition having high-level hysteresis loss characteristics blended with carbon black
JP4068289B2 (en) Carbon black for compounding functional rubber parts
JP3649559B2 (en) Carbon black for rubber compounding of functional parts
JP2005008877A (en) Carbon black and rubber composition
JP2006131819A (en) Rubber composition for vibration proofing rubber, and vibration proofing rubber
JP3950995B2 (en) Rubber composition for heat and vibration proof rubber
JP2001164149A (en) Furnace carbon black for high damping rubber compounding
JPH0153903B2 (en)
JP2001049144A (en) Carbon black with high electrical resistance and rubber composition containing the same
JP3434359B2 (en) Fatigue-resistant rubber composition
KR0128019B1 (en) Improved furnace carbon black
JP3308673B2 (en) Rubber composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060214

R150 Certificate of patent or registration of utility model

Ref document number: 3773381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term