JP3771691B2 - 絶縁性ガスの状態監視装置及び絶縁性ガスの状態監視装置の制御方法 - Google Patents

絶縁性ガスの状態監視装置及び絶縁性ガスの状態監視装置の制御方法 Download PDF

Info

Publication number
JP3771691B2
JP3771691B2 JP27176897A JP27176897A JP3771691B2 JP 3771691 B2 JP3771691 B2 JP 3771691B2 JP 27176897 A JP27176897 A JP 27176897A JP 27176897 A JP27176897 A JP 27176897A JP 3771691 B2 JP3771691 B2 JP 3771691B2
Authority
JP
Japan
Prior art keywords
pressure
state
insulating gas
monitoring device
state monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27176897A
Other languages
English (en)
Other versions
JPH11111122A (ja
Inventor
幸雄 渡部
修 小谷津
登 中山
匠 興津
誠一 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP27176897A priority Critical patent/JP3771691B2/ja
Publication of JPH11111122A publication Critical patent/JPH11111122A/ja
Application granted granted Critical
Publication of JP3771691B2 publication Critical patent/JP3771691B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/065Means for detecting or reacting to mechanical or electrical defects
    • H02B13/0655Means for detecting or reacting to mechanical or electrical defects through monitoring changes of gas properties

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Installation Of Bus-Bars (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気的絶縁性の高い絶縁性ガス、例えば六フッ化硫黄気体(以下、SF6 ガスという。)が密封された金属製の円筒型圧力容器等の密閉構造を有する圧力容器内の絶縁性ガスの状態を監視する絶縁性ガスの状態監視装置及びその制御方法に係り、特に電力分野におけるガス絶縁開閉装置(以下、GIS:Gas Insulated Switchgearという。)、ガス絶縁送電線(以下、GIL:Gas Insulated transmission Lineという。)及びガス絶縁変圧器(Gas insulated transformer)に密封されている絶縁性ガスの衝撃圧力検出、異常高圧検出、異常低圧検出などの絶縁性ガスの状態を監視するとともに自己診断機能を備えた絶縁性ガスの状態監視装置及び絶縁性ガスの状態監視装置の制御方法に関する。
【0002】
【従来の技術】
まず具体的な従来例の説明に先立ち、SF6 ガス状態の監視技術分野における背景技術について説明する。以下、気体とガスとは同じ意味として用い、GIS、GIL及びガス絶縁変圧器などのガス封入電気機器を総称してGISと表記する。
第1背景技術
図29に第1背景技術としての監視システムの一例を示す。
【0003】
GISには、不燃性であり、電気的絶縁性の高いSF6 ガスが密封されており、圧力導入管111が設けられたゲージ箱112と、衝撃圧力継電器(以下、SPリレーという。)121と、が取り付けられている。
ゲージ箱112内には、一端が圧力導入管111が接続され、点検時等には閉状態とされるが、通常使用時においては、常に開状態とされている常時開放型止め弁113と、一端が常時開放型止め弁113の他端に直列に接続され、他端がSF6 ガスの充排気口114として解放状態とされている常時閉塞型止め弁115と、常時開放型止め弁113と常時閉塞型止め弁115との間の中間接続点に配管116を介して接続され、検出ガス圧力及び検出ガス温度に基づいて標準温度(20[℃])における標準圧力に換算したガス圧力に基づいてガス圧力の監視を行うための温度補償圧力スイッチ117と、常時開放型止め弁113と常時閉塞型止め弁115との間の中間接続点に配管116を介して接続され、ブルドン管によりガス圧力を検出する圧力ゲージ(ガス圧力計または連成計とも呼ばれる)118と、温度補償圧力スイッチ117により駆動される常時開接点119と、常時開接点119の状態を外部に伝達するための端子120と、を備えて構成されている。
【0004】
温度補償圧力スイッチ117は、密度スイッチとも呼ばれている。
これは温度補償圧力スイッチ117は密度を直接的に検出しているのではないが、ガス圧力の検出及びガス温度の検出による温度補償作用の結果、間接的にガスの密度を監視することとなるためである。
【0005】
図30に温度補償圧力スイッチ117の動作特性の一例を示す。
常時開接点119は、図30に示すように、温度補償圧力が上昇した場合に閉状態(オン状態)となり、温度補償圧力が下降した場合に開状態(オフ状態)となる接点119Hと、温度補償圧力が温度補償圧力が下降した場合に閉状態(オン状態)となり、温度補償圧力が上昇した場合に開状態(オフ状態)となる接点119Lとを備えて構成されている。
【0006】
一方、SPリレー121は、図29に示すように、GIS(あるいはGIL)内の圧力が急激に変動した場合に、GIS内の圧力上昇とイコライザ(絞り口)123を介してGISと連通している容器122内の圧力空間122Aの圧力上昇との時間的な差に応じて生じる圧力差に起因して変形するベローズ124と、GIS内の圧力空間122A内の圧力より所定圧力以上高くなった場合にベローズ124の変形により作動し、図示しない補助リレー等を介して図示しない警報回路、遮断回路等を作動させるためのマイクロスイッチ125と、マイクロスイッチ125及びベローズ124を正常位置(圧力に差がない場合の位置)に復帰させるためのスプリング126と、を備えて構成されている。
【0007】
SPリレー121は、上述した構造により、GIS内の圧力が急激に増大した場合に、GIS内の圧力上昇と圧力空間122Aの圧力上昇との時間的な差に応じて生じる圧力差に起因してベローズ124が変形し、マイクロスイッチ125を作動させ、外部の警報回路等を作動させ、あるいは、GISに供給される電流を遮断することとなる。
第2背景技術
次に衝撃圧力(SP)検出について説明する。
【0008】
SF6 ガスが封入されている電力分野におけるGISにあっては、圧力容器内の気体圧力上昇の種類としては、以下に示す▲1▼〜▲6▼などが挙げられる。
▲1▼ 短絡事故(尖絡事故の一種)に起因する「瞬時」な圧力の異常上昇(→0.005〜0.02秒間で検出)
▲2▼ 地絡事故(尖絡事故の一種)に起因する「急」な圧力の異常上昇(→0.1秒で検出)
▲3▼ 地絡事故程度ではないが、重度の部分放電に起因する「ゆっくり」とした圧力の異常上昇(→1秒で検出)
▲4▼ 軽度の部分放電に起因する「ゆっくり」とした圧力の異常上昇(→10秒で検出)
▲5▼ 負過電流の増大などによる導体部の発熱に起因する「非常にゆっくり」とした圧力の異常上昇(高圧警報で検出)
▲6▼ 圧力容器の周囲温度上昇などに起因するが、ほぼ数分単位で監視すれば、変化なしと見なせる圧力上昇
このような電気的な現象あるいは事故に対して、設備や電力供給に及ぼす被害、損害を最小限にくい止めるべく、SF6 ガス圧力の上昇の度合いが急激であればあるほど、できるだけ速やかに警報を発したいという要求がある。
【0009】
次に本技術分野における従来例を具体的に説明する。
第1従来例
温度補償圧力スイッチとして、実開昭59−9450号記載のものを図31に示す。
【0010】
温度補償圧力スイッチ131は、後述の感温筒133内の圧力を機械的に検出するための圧力検出具132と、温度補償を行うための温度を検出する感温筒133と、圧力検出具132及び後述の圧力検出具135により駆動されるマイクロスイッチ134と、圧力容器に接続された圧力導入管を介して圧力を機械的に検出する圧力検出具135と、を備えて構成されている。
【0011】
次に概要動作を説明する。
温度補償圧力スイッチ131は、一方の圧力検出具135により検出した圧力容器内の圧力と、他方の圧力検出具132が検出した感温筒133の検出する温度に応じた圧力との機械的な検出結果によりマイクロスイッチ134を駆動していた。
第2従来例
図32に特開平7−103842号に開示されている連成計付圧力スイッチ136の外観図を示す。
【0012】
連成計付圧力スイッチ136は、圧力ゲージ(計)に接点が組み込まれた構造を有しており、図29における圧力スイッチ117及び圧力ゲージ118が同時に機能するように構成されている。
第3従来例
設備や電力供給に及ぼす被害、損害を最小限にくい止めるべく、SF6 ガス圧力の上昇の度合いが急激であればあるほど、できるだけ速やかに警報を発したいという要求に応えるべく、本願出願人は、実公昭35−17394号においてSPリレーを提案している。
【0013】
図33にSPリレーの断面図を示す。
SPリレー140は、GIS等の圧力容器から導かれた圧力導入管に接続された原圧室141にSF6 ガス圧力の変動があると、ベローズ外室BのSF6 ガス圧力は時間遅れなく上昇するが、補助圧室142のSF6 ガス圧力はイコライザ143の流路抵抗により時間遅れを伴って上昇する。
【0014】
このことは、原圧室141のSF6 ガスの圧力上昇が急激であれば、時間の経過とともに圧力差(差圧)が増加することを意味している。
そして、この圧力差(差圧)が設定圧力差(設定差圧)に達したときに、マイクロスイッチ144が作動し、警報を発するように構成されている。
【0015】
より具体的には、図34に示すように、時間T1経過後に圧力差(差圧)が設定圧力差(設定差圧)ΔPに達したときに警報が発せられる。
さらに詳細には、図35に示す動作特性を有する場合、マイクロスイッチの動作までの時間は、例えば、以下の通りとなる。
【0016】
▲1▼ 原圧室141内の圧力上昇率が10.0[kg/cm2/sec]のときには、マイクロスイッチは2.45[msec]で動作する。
▲2▼ 原圧室141内の圧力上昇率が1.0[kg/cm2/sec]のときには、マイクロスイッチは24.5[msec]で動作する。
【0017】
▲3▼ 原圧室141内の圧力上昇率が0.1[kg/cm2/sec]のときには、マイクロスイッチは245[msec]で動作する。
▲4▼ 原圧室141内の圧力上昇率が0.01[kg/cm2/sec]のときには、マイクロスイッチは2.45[sec]で動作する。
【0018】
▲5▼ 原圧室141内の圧力上昇率が0.003[kg/cm2/sec]以下の場合には、イコライザからSF6 ガスが流れ込むため、圧力差(差圧)が発生せず、マイクロスイッチは動作しない。
上述の▲1▼ないし▲5▼の説明は、従来単位系であったが、後述のためにSI単位系で別例を示す。
【0019】
厳密には、10[kg/cm2]=0.980665[MPa]であるが、説明の簡略化のため、10[kg/cm2]≒1.0[MPa]として説明を進める。
▲6▼ 圧力上昇率が0.245[MPa/sec]のときには、マイクロスイッチは、0.01[sec](10[msec])で動作した。
【0020】
▲7▼ 圧力上昇率が0.0245[MPa/sec]のときには、マイクロスイッチは、0.1[sec](100[msec])で動作した。
▲8▼ 圧力上昇率が0.00245[MPa/sec]のときには、マイクロスイッチは、1[sec]で動作した。
【0021】
▲9▼ 圧力上昇率が0.000245[MPa/sec]のときには、マイクロスイッチは、10[sec]で動作した(なお、従来式はイコライザの作用により、0.0003[MPa/sec]以下では動作しない。)
第4従来例
図36に、特開平5−26750号公報に開示されている管路気中送電線(GIL)の管内ガス圧監視装置の概要構成図を示す。
【0022】
管内ガス圧監視装置150は、長年にわたり使用されてきた警報用の温度補償圧力スイッチ及び圧力計に代えて、SF6 ガスの密閉容器毎(密閉単位区間毎)に少なくとも一の圧力センサ151及び少なくとも一の温度センサ152を配置して密閉容器154毎の圧力及び温度を測定している。
【0023】
そして複数の密閉容器154に対応して設けられたローカルステーション155は、通信装置としての機能を備えて、複数の圧力データDP及び温度データDTを収集する。
複数のローカルステーション155は、収集した複数の圧力データDP及び温度データDTを複数のローカルステーション155に共通の通信線156を介して中央監視室に設けられた中央監視装置(コンピュータ)157に通報する。
【0024】
これにより中央監視装置157は、通報されてきた検出ガス圧力と検出ガス温度とを用いて、いわゆるボイル−シャルルの法則に基づいて標準温度(20[℃])における標準圧力に換算したガス圧力を算出し、この算出したガス圧力に基づいて各SF6 ガスの密閉容器154毎の圧力状態や異常圧力低下等を遠隔で集中監視を行うこととなっていた。
【0025】
【発明が解決しようとする課題】
上記第1従来例においては、図30に示したように、GISの放圧板が破裂する作動点がPhに設定してある(放圧板については後述する)。
温度がth以上に高くなると、SF6 ガスの特性に従い、温度補償圧力スイッチ117の常時開接点119Hの作動点は作動点Phより高くなってしまう。
【0026】
この場合、常時開接点119Hは、閉状態(オン状態)にならない。
この結果、SF6 ガスの圧力が何らかの原因で異常上昇した場合、安全確保のため設けられている放圧板が破裂し、正常状態に復帰させるまでの手間がかかるという問題点が生じる。
【0027】
また、上記第2従来例の連成計付圧力スイッチ(温度補償なし)においては、図37の動作特性の一例に示すように、温度がth’より低くなると、ガスが漏れていないにもかかわらず、常時開接点119Lは閉状態(オン状態)になり、低圧警報が誤って出力されてしまうという問題点があった。
【0028】
ところで、連成計付圧力スイッチとしては、温度補償式のものも存在するが、温度補償式連成計付圧力スイッチにおいては、第1従来例の場合と同様に、GISの後述する放圧板が破裂する作動点がPhに設定してあるため、温度がth以上に高くなると、SF6 ガスの特性に従い、温度補償圧力スイッチ136の常時開接点119Hの作動点は作動点Phより高くなってしまい、常時開接点119Hは、閉状態(オン状態)にならない。この結果、SF6 ガスの圧力が何らかの原因で異常上昇した場合、安全確保のため設けられている放圧板が破裂し、正常状態に復帰させるまでの手間がかかるという問題点が生じることとなる。
【0029】
さらに、上記第3従来例によれば、マイクロスイッチが検出する圧力上昇率は補助圧室の容積、孔143A及びニードル弁143Bを備えて構成されているイコライザ143を通る気体の量、マイクロスイッチ144自体の作動圧力によって定まるが、実際にはニードル弁143Bの調整によって決定することとなる。
【0030】
しかしながら、上記第3従来例にあっては、組立検査時におけるニードル弁143Bの位置調整作業が極めて困難であり、所定の設定値に調整するのに多大な時間を要し、不用意に操作されると正確な動作を保証することができないという不具合があった。
【0031】
さらにまた、上記第4従来例においても、第1従来例と同様、各密閉容器154内の異常圧力低下を早期に検出するためのものであり、気体圧力の異常上昇については、考慮されていないという問題点があった。
なお、気体圧力の異常上昇について考慮した場合には、ローカルステーション155が収集した圧力データDPは共通の通信線156を介して中央監視装置(コンピュータ)157に通報されるが、収集に要する時間、通報に要する時間が多少なりとも必要であり、短絡事故に起因する瞬時な圧力の異常上昇(前述の▲1▼の場合)や、地絡事故に起因する急な圧力の異常上昇(前述の▲2▼の場合)に対しては、有用な処理が施せないという問題点があった。
【0032】
ここで、気体圧力が異常高圧となった場合の安全確保のための動作について説明する。
従来、気体が密封された圧力容器は当該圧力容器内の気体圧力の異常上昇時には、安全弁、または、放圧弁を作動させることにより気体を大気中等に放出するように構成されていた。
【0033】
より具体的には、SF6 ガスが密封されたGISにおける一例を、図38に示す特開平8−103007号公報記載のガス絶縁開閉装置の放圧装置を参照して説明する。
上記GISの放圧装置は、放圧板161を有し、GIS164に密封されたSF6 ガスの圧力が何らかの原因により異常に上昇した場合には、対応するGIS(圧力容器)164の放圧板161が破裂することにより、SF6 ガスは放圧口162を介して直方体状の中空のガス収容容器163に流入するようにされていた。
【0034】
この結果、SF6 ガスは電気室に充満することもなく、屋外設備であっても大気中に放出されることはなく、周囲環境への影響が小さくなる等の効果を奏するものとなっている。
しかしながら、異常高圧時には放圧板161を破裂させることとなるため、その後の復帰作業においては、放圧板の交換、ガス排気処理等のコストが必要となる。従って、できうる限り、放圧板を破裂させないための構造及びそのような事故を招かないための装置の信頼性の向上が望まれている。
【0035】
そこで、本発明の第1の目的は、装置の信頼性を維持すべく、自己診断が可能で、圧力容器を破損から守り、あるいは、状態を告知することにより、安全性、保全性、点検性に優れた絶縁性ガス状態の監視装置及びその制御方法を提供することにある。
【0036】
また、本発明の第2の目的は、ユーザに余分な負担を欠けず、また、使い勝手の良い絶縁性ガスの状態監視装置及びその制御方法を提供ることにある。
【0037】
【課題を解決するための手段】
請求項1記載の発明は、圧力容器内に密封された絶縁性ガスの圧力を検出し、圧力検出信号を出力する圧力センサと、前記圧力検出信号が信号入力端子に入力され、圧力基準信号が圧力基準信号入力端子に入力され、前記圧力検出信号を増幅して増幅圧力検出信号として出力する圧力検出信号増幅アンプとが接続され、前記絶縁性ガスの圧力状態を監視する絶縁性ガスの状態監視装置において、前記圧力基準信号入力端子に自己診断信号を入力する自己診断信号出力手段と、前記自己診断信号が入力されることに起因して発生する前記増幅圧力検出信号の変動成分を検出する変動成分検出手段と、前記検出した変動成分に基づいて前記圧力検出信号増幅アンプの異常を判別するアンプ異常判別手段と、を備えて構成する。
【0038】
請求項2記載の発明は、請求項1記載の発明において、前記アンプ異常判別手段の判別に基づいて、前記圧力検出信号増幅アンプが異常状態にあることを表示するアンプ異常表示手段を備えて構成する。
請求項3記載の発明は、請求項1または請求項2記載の発明において、前記アンプ異常判別手段の判別に基づいて、前記圧力検出信号増幅アンプが異常状態にある旨の警報を出力するアンプ異常警報出力手段を備えて構成する。
【0039】
請求項4記載の発明は、請求項1乃至請求項3のいずれかに記載の発明において、前記アンプ異常判別手段の判別により前記圧力検出信号増幅アンプが正常であり、かつ、前記圧力検出信号が所定の基準圧力検出信号範囲に含まれるか否かを判別するアンプ状態判別手段と、前記判別の結果に基づいて、前記圧力検出信号が前記基準圧力検出信号範囲に含まれない場合に前記圧力センサが異常状態にあることを表示する圧力センサ異常表示手段と、を備えて構成する。
【0040】
請求項5記載の発明は、複数のスイッチング素子を絶縁性ガスの状態に応じて制御する絶縁性ガスの状態監視装置において、前記複数のスイッチング素子を駆動するための複数の駆動制御信号を出力する駆動制御信号出力手段と、各前記スイッチング素子の駆動状態を検出し複数の駆動検出信号を出力する駆動状態検出手段と、前記駆動制御信号と当該駆動制御信号に対応する前記駆動検出信号に基づいて当該駆動制御信号に対応する前記スイッチング素子が異常状態にあるか否かを判別するスイッチング素子状態判別手段と、を備えて構成する。
【0041】
請求項6記載の発明は、請求項5記載の発明において、対応する各前記スイッチング素子に電源からの駆動電源を供給するためのヒューズ素子と、前記スイッチング素子状態判別手段の判別結果に基づいて、異常状態が短絡状態であるスイッチング素子について、前記ヒューズ素子を溶断する溶断制御手段と、を備えて構成する。
【0042】
請求項7記載の発明は、請求項5または請求項6記載の発明において、いずれかのスイッチング素子が異常状態にあることを告知するスイッチング素子異常告知手段を備えて構成する。
請求項8記載の発明は、請求項7記載の発明において、異常状態にあるスイッチング素子を告知する異常スイッチング素子特定告知手段を備えて構成する。
【0043】
請求項9記載の発明は、複数のスイッチング素子を絶縁性ガスの状態に応じて制御する絶縁性ガスの状態監視装置において、前記複数のスイッチング素子を駆動するための複数の駆動制御信号を出力する駆動制御信号出力手段と、前記駆動制御信号出力手段が暴走状態にあるか否かを判別する暴走状態判別手段と、対応する各前記スイッチング素子に電源からの駆動電源を供給するためのヒューズ素子と、前記暴走状態判別手段の判別結果に基づいて、前記ヒューズ素子を溶断する溶断制御手段と、を備えて構成する。
【0044】
請求項10記載の発明は、絶縁性ガスの異常圧力状態を検出する絶縁性ガスの状態監視装置において、前記異常圧力状態を検出しガス漏れ警報を出力するか否かを判別するための、ガス漏れ警報設定値を設定するガス漏れ警報設定値設定手段と、前記異常圧力状態を検出し操作鎖錠警報を出力するか否かを判別するための、操作鎖錠警報設定値を設定する操作鎖錠警報設定値設定手段と、前記ガス漏れ警報設定値が前記操作鎖錠警報設定値と逆転しないように監視する逆転監視手段とを備えて構成する。
【0045】
請求項11記載の発明は、請求項1乃至請求項10のいずれかに記載の発明において、前記絶縁性ガスの状態に対応する複数のデータのうち表示を希望するいずれか一のデータをユーザが選択するためのデータ選択手段と、前記データ選択手段により選択されたいずれか一の前記データに基づいて表示する表示手段と、前記データ選択手段による前記データの選択が所定時間以上なされなかった場合に、予め設定した前記複数のデータのうちのいずれか一のデータを前記表示手段に表示させるための表示復帰手段と、を備えて構成する。
【0046】
請求項12記載の発明は、請求項11記載の発明において、前記表示復帰手段において設定されているデータは、前記絶縁性ガス圧力の温度補償を行った補正圧力に対応する補正圧力データであるように構成する。
請求項13記載の発明は、請求項11または請求項12記載の発明において、通常動作状態において、ユーザが操作可能な手段は、前記データ選択手段のみであるように構成する。
【0047】
請求項14記載の発明は、圧力容器内に密封された絶縁性ガスの圧力を検出し、圧力検出信号を出力する圧力センサと、前記圧力検出信号が信号入力端子に入力され、圧力基準信号が圧力基準信号入力端子に入力され、前記圧力検出信号を増幅して増幅圧力検出信号として出力する圧力検出信号増幅アンプとが接続され、前記絶縁性ガスの圧力状態を監視する絶縁性ガスの状態監視装置の制御方法において、前記圧力基準信号入力端子に自己診断信号を入力する自己診断信号出力工程と、前記自己診断信号が入力されることに起因して発生する前記増幅圧力検出信号の変動成分を検出する変動成分検出工程と、前記検出した変動成分に基づいて前記圧力検出信号増幅アンプの異常を判別するアンプ異常判別工程と、を備えて構成する。
【0048】
請求項15記載の発明は、請求項14記載の発明において、前記アンプ異常判別手段の判別に基づいて、前記圧力検出信号増幅アンプが異常状態にあることを表示するアンプ異常表示工程を備えて構成する。
請求項16記載の発明は、請求項14または請求項15記載の発明において、前記アンプ異常判別手段の判別に基づいて、前記圧力検出信号増幅アンプが異常状態にある旨の警報を出力するアンプ異常警報出力工程を備えて構成する。
【0049】
請求項17記載の発明は、請求項14乃至請求項16のいずれかに記載の発明において、前記アンプ異常判別工程における判別により前記圧力検出信号増幅アンプが正常であり、かつ、前記圧力検出信号が所定の基準圧力検出信号範囲に含まれるか否かを判別するアンプ状態判別工程と、前記判別の結果に基づいて、前記圧力検出信号が前記基準圧力検出信号範囲に含まれない場合に前記圧力センサが異常状態にあることを表示する圧力センサ異常表示工程と、を備えて構成する。
【0050】
請求項18記載の発明は、複数のスイッチング素子を絶縁性ガスの状態に応じて制御する絶縁性ガスの状態監視装置の制御方法において、前記複数のスイッチング素子を駆動するための複数の駆動制御信号を出力する駆動制御信号出力工程と、各前記スイッチング素子の駆動状態を検出する駆動状態検出工程と、前記駆動制御信号及び前記スイッチング素子の駆動状態に基づいて当該駆動制御信号に対応する前記スイッチング素子が異常状態にあるか否かを判別するスイッチング素子状態判別工程と、を備えて構成する。
【0051】
請求項19記載の発明は、請求項18記載の絶縁性ガスの状態監視装置の制御方法において、前記スイッチング素子状態判別工程の判別結果に基づいて、異常状態が短絡状態であるスイッチング素子について、対応する各前記スイッチング素子に電源からの駆動電源を供給するためのヒューズ素子を溶断する溶断制御工程を備えて構成する。
【0052】
請求項20記載の発明は、請求項18または請求項19記載の発明において、いずれかのスイッチング素子が異常状態にあることを告知するスイッチング素子異常告知工程を備えて構成する。
請求項21記載の発明は、請求項20記載の発明において、異常状態にあるスイッチング素子を告知する異常スイッチング素子特定告知工程を備えて構成する。
【0053】
請求項22記載の発明は、複数のスイッチング素子を絶縁性ガスの状態に応じて制御する絶縁性ガスの状態監視装置の制御方法において、前記複数のスイッチング素子を駆動するための複数の駆動制御信号を出力する駆動制御信号出力工程と、前記駆動制御信号出力工程における駆動制御信号の出力状態が非制御状態にあるか否かを判別する暴走状態判別工程と、前記暴走状態判別手段の判別結果に基づいて、対応する各前記スイッチング素子に電源からの駆動電源を供給するためのヒューズ素子を溶断する溶断制御工程と、を備えて構成する。
【0054】
請求項23記載の発明は、絶縁性ガスの異常圧力状態を検出する絶縁性ガスの状態監視装置の制御方法において、前記異常圧力状態を検出しガス漏れ警報を出力するか否かを判別するための、ガス漏れ警報設定値を設定するガス漏れ警報設定値設定工程と、前記異常圧力状態を検出し操作鎖錠警報を出力するか否かを判別するための、操作鎖錠警報設定値を設定する操作鎖錠警報設定値設定工程と、前記ガス漏れ警報設定値が前記操作鎖錠警報設定値と逆転しないように監視する逆転監視工程とを備えて構成する。
【0055】
請求項24記載の発明は、請求項14乃至請求項23のいずれかに記載の発明において、前記絶縁性ガスの状態に対応する複数のデータのうち表示を希望するいずれか一のデータをユーザが選択するためのデータ選択工程と、前記データ選択工程において選択されたいずれか一の前記データに基づいて表示する表示工程と、前記データ選択工程における前記データの選択が所定時間以上なされなかった場合に、予め設定した前記複数のデータのうちのいずれか一のデータを前記表示手段に表示させるための表示復帰工程と、を備えて構成する。
【0056】
請求項25記載の発明は、請求項24記載の発明において、前記表示復帰工程において設定されているデータは、前記絶縁性ガス圧力の温度補償を行った補正圧力に対応する補正圧力データであるように構成する。
請求項1記載の発明によれば、自己診断信号出力手段は、前記圧力基準信号入力端子に自己診断信号を入力する。
【0057】
変動成分検出手段は、自己診断信号が入力されることに起因して発生する増幅圧力検出信号の変動成分を検出する。
アンプ異常判別手段は、変動成分検出手段により検出した変動成分に基づいて圧力検出信号増幅アンプの異常を判別する。
【0058】
請求項2記載の発明によれば、請求項1記載の発明の作用に加えて、アンプ異常表示手段は、アンプ異常判別手段の判別に基づいて、圧力検出信号増幅アンプが異常状態にあることを表示する。
請求項3記載の発明によれば、請求項1または請求項2記載の発明の作用に加えて、アンプ異常警報出力手段は、アンプ異常判別手段の判別に基づいて、圧力検出信号増幅アンプが異常状態にある旨の警報を出力する。
【0059】
請求項4記載の発明によれば、請求項1乃至請求項3のいずれかに記載の発明の作用に加えて、アンプ状態判別手段は、アンプ異常判別手段の判別により圧力検出信号増幅アンプが正常であり、かつ、圧力検出信号が所定の基準圧力検出信号範囲に含まれるか否かを判別する。
【0060】
圧力センサ異常表示手段は、アンプ状態判別手段の判別の結果に基づいて、圧力検出信号が基準圧力検出信号範囲に含まれない場合に圧力センサが異常状態にあることを表示する。
請求項5記載の発明によれば、駆動制御信号出力手段は、複数のスイッチング素子を駆動するための複数の駆動制御信号をスイッチング素子状態判別手段に出力する。
【0061】
駆動状態検出手段は、各スイッチング素子の駆動状態を検出し複数の駆動検出信号をスイッチング素子状態判別手段に出力する。
スイッチング素子状態判別手段は、駆動制御信号と当該駆動制御信号に対応する駆動検出信号に基づいて当該駆動制御信号に対応するスイッチング素子が異常状態にあるか否かを判別する。
【0062】
請求項6記載の発明によれば、請求項5記載の発明の作用に加えて、溶断制御手段は、スイッチング素子状態判別手段の判別結果に基づいて、異常状態が短絡状態であるスイッチング素子がいずれか一つでもあれば、ヒューズ素子を溶断する。
【0063】
請求項7記載の発明によれば、請求項5または請求項6記載の発明の作用に加えて、スイッチング素子異常告知手段は、いずれかのスイッチング素子が異常状態にあることを告知する。
請求項8記載の発明によれば、請求項7記載の発明の作用に加えて、異常スイッチング素子特定告知手段は、異常状態にあるスイッチング素子を告知する。
【0064】
請求項9記載の発明によれば、駆動制御信号出力手段は、複数のスイッチング素子を駆動するための複数の駆動制御信号を出力する。
暴走状態判別手段は、駆動制御信号出力手段が暴走状態にあるか否かを判別する。
【0065】
溶断制御手段は、暴走状態判別手段の判別結果に基づいて、ヒューズ素子を溶断する。
請求項10記載の発明によれば、ガス漏れ警報設定値設定手段は、異常圧力状態を検出しガス漏れ警報を出力するか否かを判別するための、ガス漏れ警報設定値を設定する。
【0066】
操作鎖錠警報設定値設定手段は、異常圧力状態を検出し操作鎖錠警報を出力するか否かを判別するための、操作鎖錠警報設定値を設定する。
逆転監視手段は、ガス漏れ警報設定値が操作鎖錠警報設定値と逆転しないように監視する。
【0067】
請求項11記載の発明によれば、請求項1乃至請求項10のいずれかに記載の発明の作用に加えて、データ選択手段により絶縁性ガスの状態に対応する複数のデータのうち表示を希望するいずれか一のデータをユーザが選択すると、表示手段は、データ選択手段により選択されたいずれか一のデータに基づいて表示する。
【0068】
これらと並行して表示復帰手段は、データ選択手段によるデータの選択が所定時間以上なされなかった場合に、予め設定した複数のデータのうちのいずれか一のデータを表示手段に表示させる。
請求項12記載の発明によれば、請求項11記載の発明の作用に加えて、表示復帰手段において設定されているデータは、絶縁性ガス圧力の温度補償を行った補正圧力に対応する補正圧力データであるので、ユーザの操作性を妨げることなく、補正圧力データを標準的に表示することができる。
【0069】
請求項13記載の発明によれば、請求項11または請求項12記載の発明の作用に加えて、通常動作状態において、ユーザが操作可能な手段は、データ選択手段のみであるので、誤操作による弊害が生じない。
請求項14記載の発明によれば、自己診断信号出力工程は、圧力基準信号入力端子に自己診断信号を入力する。
【0070】
変動成分検出工程は、自己診断信号が入力されることに起因して発生する増幅圧力検出信号の変動成分を検出する。
アンプ異常判別工程は、変動成分検出工程において、検出した変動成分に基づいて圧力検出信号増幅アンプの異常を判別する。
【0071】
請求項15記載の発明によれば、請求項14記載の発明の作用に加えて、アンプ異常表示工程は、アンプ異常判別手段の判別に基づいて、圧力検出信号増幅アンプが異常状態にあることを表示する。
請求項16記載の発明によれば、請求項14または請求項15記載の発明の作用に加えて、アンプ異常警報出力工程は、アンプ異常判別手段の判別に基づいて、圧力検出信号増幅アンプが異常状態にある旨の警報を出力する。
【0072】
請求項17記載の発明によれば、請求項14乃至請求項16のいずれかに記載の発明の作用に加えて、アンプ状態判別工程は、アンプ異常判別工程における判別により圧力検出信号増幅アンプが正常であり、かつ、圧力検出信号が所定の基準圧力検出信号範囲に含まれるか否かを判別する。
【0073】
圧力センサ異常表示工程は、判別の結果に基づいて、圧力検出信号が基準圧力検出信号範囲に含まれない場合に圧力センサが異常状態にあることを表示する。請求項18記載の発明によれば、駆動制御信号出力工程は、複数のスイッチング素子を駆動するための複数の駆動制御信号を出力する。
【0074】
駆動状態検出工程は、各スイッチング素子の駆動状態を検出する。
スイッチング素子状態判別工程は、駆動制御信号及びスイッチング素子の駆動状態に基づいて当該駆動制御信号に対応するスイッチング素子が異常状態にあるか否かを判別する。
【0075】
請求項19記載の発明によれば、請求項18記載の絶縁性ガスの状態監視装置の制御方法において、溶断制御工程は、スイッチング素子状態判別工程の判別結果に基づいて、異常状態が短絡状態であるスイッチング素子について、対応する各スイッチング素子に電源からの駆動電源を供給するためのヒューズ素子を溶断する。
【0076】
請求項20記載の発明によれば、請求項18または請求項19記載の発明の作用に加えて、スイッチング素子異常告知工程は、いずれかのスイッチング素子が異常状態にあることを告知する。
請求項21記載の発明によれば、請求項20記載の発明の作用に加えて、異常スイッチング素子特定告知工程は、異常状態にあるスイッチング素子を告知する。
【0077】
請求項22記載の発明によれば、駆動制御信号出力工程は、複数のスイッチング素子を駆動するための複数の駆動制御信号を出力する。
暴走状態判別工程は、駆動制御信号出力工程における駆動制御信号の出力状態が非制御状態にあるか否かを判別する。
【0078】
溶断制御工程は、暴走状態判別手段の判別結果に基づいて、対応する各スイッチング素子に電源からの駆動電源を供給するためのヒューズ素子を溶断する。
請求項23記載の発明によれば、ガス漏れ警報設定値設定工程は、異常圧力状態を検出しガス漏れ警報を出力するか否かを判別するための、ガス漏れ警報設定値を設定する。
【0079】
操作鎖錠警報設定値設定工程は、異常圧力状態を検出し操作鎖錠警報を出力するか否かを判別するための、操作鎖錠警報設定値を設定する。
逆転監視工程は、ガス漏れ警報設定値が操作鎖錠警報設定値と逆転しないように監視する。
【0080】
請求項24記載の発明によれば、請求項14乃至請求項23のいずれかに記載の発明の作用に加えて、データ選択工程は、絶縁性ガスの状態に対応する複数のデータのうち表示を希望するいずれか一のデータをユーザが選択する。
表示工程は、データ選択工程において選択されたいずれか一のデータに基づいて表示する。
【0081】
表示復帰工程は、データ選択工程におけるデータの選択が所定時間以上なされなかった場合に、予め設定した複数のデータのうちのいずれか一のデータを表示手段に表示させる。
請求項25記載の発明によれば、請求項24記載の発明の作用に加えて、表示復帰工程において設定されているデータは、絶縁性ガス圧力の温度補償を行った補正圧力に対応する補正圧力データであるので、操作性を犠牲にすることなく、常に補正圧力データを表示させることができる。
【0082】
【発明の実施の形態】
次に図面を参照して本発明の好適な実施形態を説明する。
図1に実施形態のSF6 ガスの状態監視システムの概要構成図を示す。
SF6 ガスの状態監視システム1は、大別すると、絶縁性を有する不燃性ガスとしてSF6 ガスを密封したGIS(あるいはGIL)2内に連通する圧力導入管3が接続され、検出圧力、検出温度、温度補償圧力をアナログ信号として伝送する第1アナログ信号伝送ライン4を介して出力するとともに、検出圧力に基づく異常高圧警報、衝撃圧力検出信号あるいは異常低圧警報などの警報をディジタルデータとして第1ディジタル信号伝送ライン5を介して出力する複数のSF6 ガスの状態監視装置6と、対応する複数のSF6 ガスの状態監視装置6にアナログ信号伝送ライン4を介して接続された複数のアナログ系ローカル監視装置7と、対応する複数のSF6 ガスの状態監視装置6に第1ディジタル信号伝送ライン5を介して接続された複数のディジタル系ローカル監視装置8と、アナログ系ローカル監視装置7に第2アナログ信号伝送ライン9を介して接続された第1中央監視装置10と、ディジタル系ローカル監視装置8に第2ディジタル信号伝送ライン11を介して接続された第2中央監視装置12と、各種操作信号を出力する電気機器回路操作部13と、を備えて構成されている。
【0083】
この場合において、GIS(あるいはGIL)2内には、シーリングを兼ねた絶縁スペーサ2Aがおよそ3万〜50万[V]の電圧を有する電流を流す送電線2Bを支持しており、絶縁スペーサ2A及びGIS(あるいはGIL)2により仕切られた空間は、それぞれ独立の圧力容器2Cを形成している。
【0084】
図2にGISに設置された1個のSF6 ガスの状態監視装置6の詳細説明図を示す。
GIS2には、ゲージ箱6Gが取り付けられており、ゲージ箱6G内には、常時開放形の止め弁3A、常時閉塞形の止め弁3B及びSF6 ガスの状態監視装置6が収納されている。
【0085】
この場合において、SF6 ガスの状態監視装置6は、取付板6Bによりゲージ箱6Gに固定されている。
SF6 ガスの状態監視装置6の正面には、一の表示切替スイッチ35のみが操作可能部分として配置された操作表示パネル6Pが設けられており、カバー6Dはカバー締付ネジ6Cにより、図示しないケース本体に締め付けられ固着されている。
【0086】
このため通常状態においては、意図的にカバー6Dをあけない限りは、監視者は表示切替スイッチ35のみを操作することしかできず、各種設定値の変更はできないように構成されている。
この結果、操作ミスが発生する心配がなく、使い勝手のよい構成となっている。
【0087】
操作表示パネル6Pに配された表示部25には、通常は補正圧力(MPa(at 20℃))が表示されており、この状態で、表示切替スイッチ35を1回押下する毎に、検出圧力(ゲージ圧力:MPa)→検出温度(℃)→第1高圧警報設定値(MPa)→第2高圧警報設定値(MPa(at 20℃))→SP(衝撃圧力)検出設定値(kPa/100ms)→(ガス漏れ)警報設定値(MPa(at 20℃))→操作鎖錠警報設定値(MPa(at 20℃))の順番で表示し、再び補正圧力(MPa(at 20℃))の表示に戻る。 また、いずれかの表示の最中であっても、予め設定した所定の時間、例えば10秒間表示切替スイッチ35を押下しなければ、自動的に補正圧力(MPa(at 20℃))の表示に戻るように構成している。
【0088】
すなわち、スイッチの押し忘れがあっても支障がなく、使い勝手のよい構成になっている。
SF6 ガスの状態監視装置6の出力信号は後述する10極の端子台28に接続された8本の電線により、SF6ガスの状態監視装置6のコード入口ゴムならびにゲージ箱6Gの電線管口を経由して、アナログ系ローカル監視装置7あるいはディジタル系ローカル監視装置8に対して所定の布線が施される。残りの2本の電線(電源+、電源−)は信号線ではないが、同様に布線される。
【0089】
図3にSF6 ガスの状態監視装置6の概要構成ブロック図を示す。
SF6 ガスの状態監視装置6は、各種データの設定や表示切替を行うための切替設定部23と、SF6 ガスの状態監視装置6全体を制御するコントロール部24と警報、各種データ及び表示しているデータに対応する単位を表示する表示部25と、高圧警報データ、ガス漏れ警報データあるいは鎖錠出力データを対応するディジタル系ローカル監視装置8に伝送するための警報出力部26と、対応するアナログ系ローカル監視装置7にアナログ信号を伝送するためのアナログ信号伝送部27と、図示しない外部の直流電源あるいは対応するローカル監視装置7,8と結線するための端子台28と、外部の直流電源の電圧を所定の内部電源電圧に降圧する絶縁型DC/DCコンバータ29と、端子台28と絶縁型DC/DCコンバータ29との中間に配された全波整流器65と、図示しない電源スイッチあるいはリセットスイッチを操作者が操作することによりコントロール部24の動作を初期化するリセット信号SRSTを出力するリセット信号出力部30と、圧力導入管3を介してGIS(あるいはGIL)2の圧力容器2C内のSF6 ガスの気体圧力を検出し原圧力検出信号SPOを出力する気体圧力検出センサ31と、原圧力検出信号SPOを電圧信号である原圧力電圧信号SVPOに変換して出力する圧力/電圧変換器(P/V変換器)32と、気体圧力検出センサ31と一体に形成され、SF6 ガスの気体温度を検出し原温度検出信号STOを出力する気体温度検出センサ33と、原温度検出信号STOを電圧信号である原温度電圧信号SVTOに変換して出力する温度/電圧変換器(T/V変換器)34と、表示切替を行うための表示切替信号SDSWを出力する表示切替スイッチ35と、コントロール部24が後述の記憶ユニット45に格納された所定の処理プログラムに従わずに暴走状態に陥った状態を検出して、第2順位のリセット処理を行うためのウオッチドッグタイマ信号SWDTを出力する外部ウオッチドッグタイマ53と、光結合器61と、電圧/電流変換を行うV/I変換器62と、伝送信号出力部63と、全波整流器64と、を備えて構成されている。
【0090】
この場合において、圧力導入管3の途中には、点検時等には閉状態とされるが、通常使用時においては、常に開状態とされている常時開放型止め弁3Aが設けられ、圧力導入管3の端部には、一端が常時開放型止め弁3Aの他端に直列に接続され、他端がSF6 ガスの充排気口として解放状態とされている常時閉塞型止め弁3Bが設けられている。
【0091】
切換設定部23は、設定切替時に設定切替信号SSSWを出力する設定切替スイッチ36と、各種警報設定を行うための設定信号SSETを出力する警報設定部37と、鎖錠出力条件を設定するための鎖錠設定信号SSELを出力する鎖錠設定部37’と、補正圧力表示値を較正するための表示値較正信号SCALを出力する補正圧力表示値較正部37”と、衝撃圧力を検出するための各種設定を行うための衝撃圧力検出設定信号SSPDを出力する衝撃圧力(SP)検出設定部38と、衝撃圧力検出時に手動(マニュアル)で復帰させるための手動復帰信号SSPRを出力するマニュアル復帰スイッチ39と、を備えて構成されている。
【0092】
コントロール部24は、コントロール部24全体を制御するためのコントロールユニット40と、各種演算を行うための演算ユニット41と、各種比較を行うための比較ユニット42と、比較ユニット42における比較結果に基づいて各種判断を行う判断ユニット43と、入力されたアナログ信号のアナログ/ディジタル変換を行うA/D変換器44と、各種データを記憶するROMで構成された記憶ユニット45Aと、各種データを一時的に記憶するRAMで構成された記憶ユニット45Bと、複数のタイマを有し、サンプリングタイム信号などを出力する計時ユニット46と、を備えて構成されている。
【0093】
この場合において、A/D変換器44は、気体圧力検出センサ31が出力した原圧力検出信号SP0を変換してP/V変換器32が出力した原圧力電圧信号SVP0をコントロールユニット40が指示する所定のサンプリングタイム毎にサンプリングしてアナログ/ディジタル変換するよう構成されている。
【0094】
また、A/D変換器44は、気体温度検出センサ33が出力した原温度検出信号ST0を変換してT/V変換器34が出力した原温度電圧信号SVT0をコントロールユニット40が指示するタイミングにサンプリングしてアナログ/ディジタル変換するように構成されている。
【0095】
さらに記憶ユニット45Aは、第1高圧警報設定値データPH、第2高圧警報設定値データPH’及び衝撃圧力(SP)検出最小値データPREF1 を記憶している。
表示部25は、数値表示制御信号SNDに基づいて気体温度、気体圧力、標準温度における気体圧力(温度補償圧力あるいは補正圧力)あるいは気体圧力上昇率等を数値表示する数値表示部50と、単位/状態表示制御信号SSCに基づいて単位表示あるいは状態表示を行う単位/状態表示部51と、出力表示制御信号SODに基づいて警報出力時に当該出力している警報内容を表示する出力表示部52と、を備えて構成されている。
【0096】
警報出力部26は、コントロール部24の暴走時に電源供給を切断することにより暴走を停止するためのヒューズ素子溶断部54と、高圧警報制御信号SHEに基づいて高圧警報リレースイッチ55を駆動するための高圧警報出力信号SCHEを出力する高圧警報出力部56と、ガス漏れ警報制御信号SLEに基づいてガス漏れ警報リレースイッチ57を駆動するためのガス漏れ警報出力信号SCLEを出力する警報出力部58と、操作鎖錠出力制御信号SLCに基づいて操作鎖錠リレースイッチ59を駆動するための操作鎖錠出力信号SCLCを出力する操作鎖錠出力部60と、を備えて構成されている。
【0097】
この場合において、各リレースイッチ55,57,59には、図4に示すように、各リレースイッチ55,57,59を実際に駆動するための駆動回路55D、57D、59Dが設けられており、駆動回路55D、57D、59Dは同一構成であるので、駆動回路55Dのみ詳細に図示している。
【0098】
なお、高圧警報制御信号SHEに基づいて高圧警報リレースイッチ55を駆動するための高圧警報出力信号SCHEを出力する高圧警報出力部56には、検出圧力との比較の結果による第1高圧警報出力、補正圧力との比較の結果による第2高圧警報出力、SP(衝撃圧力)検出の結果によるSP検出警報出力、自己診断の結果による異常警報出力の4つの論理和をとることにより警報が出力される。
【0099】
端子台28は、図3に示すように、正側電源端子(+)、負側電源端子(−)、高圧警報出力端子(H3,C3)、ガス漏れ警報出力端子(L1、C1)、操作施錠出力端子(L2,C2)、正側伝送信号端子(+)、負側伝送信号端子(−)の10極の端子が設けられている。
【0100】
図5にP/V変換器32及びT/V変換器34部分の詳細構成ブロック図を示す。
P/V変換器32の前段には、時定数略3[msec]のローパスフィルタを構成する抵抗R1 及びコンデンサC1 が設けられ、T/V変換器34の前段には、時定数略20[msec]のローパスフィルタを構成する抵抗R2 及びコンデンサC2 が設けられている。
【0101】
P/V変換器32は、−0.101〜1.000[MPa]に相当する原圧力検出信号SPOを、0.500〜4.500[V]の電圧を有する原圧力電圧信号SVPO(最小分解能:2.400[kPa/digit])に変換してコントロール部24の第1A/D変換端子AD0に出力する圧力アンプ32Aと、原圧力電圧信号SVPOを4倍に増幅することにより0.500〜4.500[V]の電圧を有する増幅原圧力電圧信号SVP1(最小分解能:0.600[kPa/digit])に変換してコントロール部24の第2A/D変換端子AD1 に出力する衝撃圧力(SP)アンプ32Bと、を備えて構成されている。
【0102】
また、コントロール部24の出力端子JCPからの信号により、自己診断信号出力手段JCP’を駆動制御し、圧力アンプ32Aに自己診断信号を入力するよう構成されている。
ここで、衝撃圧力アンプ32Bは、検出温度−20〜60[℃]の範囲において、0.362〜0.637[MPa]の範囲の検出圧力を増幅している。
【0103】
従って、圧力アンプ32Aの出力である原圧力電圧信号SVPO信号を変換してちょうど4倍に増幅すると、圧力アンプ32Aの1[digit]の変化に対して、衝撃圧力アンプ32Bは、4[digit]変化することを意味する。
そこで、原圧力電圧信号SVPO及び増幅原圧力電圧信号SVP1の2つの信号の変化分(2つの圧力上昇率)を確認して衝撃圧力(SP)検出を行うことで、より信頼性の高い確実な衝撃圧力(SP)検出を行っているのである。
【0104】
T/V変換器34は、−20〜60[℃]に相当する原温度検出信号STOを、0.500〜4.500[V]の電圧を有する原温度電圧信号SVTOに変換してコントロール部24の第3A/D変換端子AD4に出力する温度アンプ34を備えて構成されている。
【0105】
また、T/V変換器34は、コントロール部24の出力端子JCTからの信号により、自己診断信号出力手段JCT’を駆動制御し、温度アンプ34に自己診断信号を入力するように構成されている。
図6にコントロール部24における記憶ユニット45A及び記憶ユニット45Bを含む実際のメモリアドレス配置を示す。
【0106】
コントロール部24のメモリアドレス配置は、最も低アドレス側から最も高アドレス側に向かって、入出力ポート、タイマ等の制御レジスタ領域、ユーザRAM領域、ROM領域が配置されている。
ユーザRAM領域には、低アドレス側から高アドレス側に向かって、優先順位が最も高い第1順位の割込処理が生じた場合のみ記憶内容が初期化(クリア)される第1RAM領域と、優先順位が第1順位の割込処理あるいは優先順位が次に高い第2順位の割込処理が生じた場合に記憶内容が初期化(クリア)される第2RAM領域と、未使用領域と、が順次配置されている。
【0107】
ROM領域には、低アドレス側から高アドレス側に向かって、ユーザ仕様に基づく各種ユーザデータが記憶されたユーザROM領域と、リセット等の第1順位割込、ウオッチドッグタイマ等による第2順位割込およびタイマ割込等のより低順位の割込アドレス等が記録された割込ベクトル領域と、ICの検査などのために必要とされ、ユーザが使用することができない予約領域と、が順次配置されている。
【0108】
図7にSF6 ガスの状態監視装置6の部分破断正面図を示す。
SF6 ガスの状態監視装置6に設けられた操作表示パネル6P上には、数値表示部50を構成する7セグメント表示素子SEGと、単位表示部51を構成する2個のLED51A〜51Bと、出力表示部52を構成する高圧警報出力表示LED52A、ガス漏れ警報出力表示LED52B、鎖錠出力表示LED52C及び当該SF6 ガスの状態監視装置6自体の異常状態検出時に点灯する異常状態表示LED52Dと、表示切替スイッチ35と、が配置されている。
【0109】
図8にSF6 ガスの状態監視装置6の操作表示パネル6P(またはカバー6D)を取り除いた場合の正面図を示す。
SF6 ガスの状態監視装置6のケーシング6C上には、表示切替スイッチ35と、設定切替スイッチ36と、警報設定部37を構成するガス漏れ警報設定半固定抵抗37Aと、操作鎖錠設定部37’を構成する操作鎖錠設定半固定抵抗37’Aと、補正圧力表示値較正部37”を構成する表示値較正半固定抵抗37”Aと、衝撃圧力検出設定部38を構成する衝撃圧力検出設定半固定抵抗38Aと、マニュアル復帰スイッチ39と、10極の端子台28と、が配置されている。
【0110】
図9に気体圧力検出センサ31及び気体温度検出センサ33を一体に形成した複合センサの断面図を示す。
複合センサは、圧力導入管3に取り付けるための継手80と、キャップ部81と、ヘッダ部82と、キャップ部81及びヘッダ部82により形成される間隙内に配置され、圧力導入管3内のSF6 ガスの圧力を伝達するとともに、後述のダイヤフラム及び後述のセンサチップを保護するためのカバー部83と、圧力導入管3内のSF6 ガスの圧力に応じて変形するダイヤフラム84と、シリコンオイル85を介してダイヤフラム84の変形量に対応するひずみ量を検出して圧力導入管3内のSF6 ガスの圧力を検出する圧力検出用チップ及びSF6 ガスの温度を検出する温度検出用チップが配置されたセンサチップ86と、センサチップ86の出力端子が接続された中継基板87と、中継基板87上に設けられたコネクタ88と、を備えて構成されている。
【0111】
次に図10乃至図12の処理フローチャートを参照してSF6 ガスの状態監視システムの動作をSF6 ガスの状態監視装置6の動作を主体として説明する。
この場合において、予めガス漏れ警報設定半固定抵抗37Aによりガス漏れ警報基準圧力PLが設定され、操作鎖錠設定半固定抵抗37’Aにより操作鎖錠基準圧力PL'が設定され、SP(衝撃圧力)検出設定半固定抵抗38AによりSP検出基準圧力PREF2が設定されているものとする。
【0112】
図10にSF6 ガスの状態監視装置6のメイン処理フローチャートを示す。
SF6 ガスの状態監視装置6のコントロール部24は、電源がオン(パワーオンリセット)された場合には、第1順位スタートによる各種初期化処理(第1初期化処理)を行う(ステップS1)。
【0113】
より詳細には、コントロール部24におけるレジスタ群のセット、入出力ポート(I/Oポート)のセット、RAMで構成された記憶ユニット45Bのデータの全初期化(オールクリア)、ROMで構成された記憶ユニット45Aのデータ(例えば、固定値の第1高圧警報設定値PH、第2高圧警報設定値PH’、SP検出最小値データPREF1等)を記憶ユニット45Bに転送したり、各種タイマの設定などを行う。
【0114】
次にコントロール部24は、動作モードが計測モードであるか否かを判別する(ステップS2)。
すなわち、ジャンパ線J1があるときは試験モード、ジャンパ線J1がないときは計測モードであり、これらのうちいずれであるかを判別することとなる。
【0115】
ステップS2の判別において、動作モードが計測モードである場合には(ステップS2;Yes)、数値表示を通常は補正圧力表示とし(ステップS3)、処理をステップS11に移行する。
ステップS2の判別において、動作モードが試験モードである場合には(ステップS2;No)、数値表示を補正圧力P20→検出圧力Pt→検出温度t→補正圧力P20→……という順番で、サイクリックに0.75秒表示、0.25秒非表示の状態で点滅表示を行い(ステップS4)、処理をステップS11に移行する。
【0116】
なお、試験モードの最中にキー入力がなされた場合には、当該キー入力に従って動作することとなる。さらに、装置完成後の検査時には、必ず試験モードから動作を行い、各種半固定抵抗の設定値は、試験の際にキー入力の操作をしてから読み込まれることとなる。また、リセット時には、ROMである第1記憶ユニット45Aから固定設定値(標準設定値)を読み込んでスタートすることとなる。
【0117】
より詳細には、図示した固定設定値は、第1高圧警報設定値PH、第2高圧警報設定値PH’、SP検出最小値データPREF1である。また、図示しない固定設定値は、ガス漏れ警報基準圧力PL相当値、操作鎖錠警報基準圧力PL'相当値、SP検出基準圧力PREF2相当値である。
【0118】
また、SF6 ガスの状態監視装置6のコントロール部24は、外部ウォッチドッグタイマ53により割込がなされた場合には、第2順位スタートによる各種初期化処理(第2初期化処理)を行う(ステップS5)。
より詳細には、RAMである第2記憶ユニット45Bの一部クリアを行い、後述のリングバッファメモリRBM1〜RBM3'のデータ、第1タイマ(20ms)の計時(カウント)数、外部ウォッチドッグタイマ53の処理回数等はクリアしない。
【0119】
次にコントロール部24は、第2順位スタート回数は2回目か否かを判別する(ステップS6)。
ステップS6の判別において、第2順位スタート回数が1回目である場合には(ステップS6;No)、プログラムの暴走からの復帰を一度試み、外部ウォッチドッグタイマ53の割込回数に2を加算し(ステップS7)、処理をステップS11に移行する。
【0120】
ステップS6の判別において、第2順位スタート回数が2回目である場合には(ステップS6;Yes)、高圧警報出力オン、高圧警報出力表示及び異常表示の二つのLEDを0.25秒オン/0.25秒オフの早い点滅状態とし、数値表示部50にコントロール部24が異常であることを示す図28(c)に示すように、「E−c」の表示(及び「CPU」の表示)を交互に点滅表示する。さらに高圧警報フラグをセットする(ステップS8)。
【0121】
次に、コントロール部24は、端子safeを“H”レベルにし、ヒューズに電流を流して溶断し、端子safeを“L”レベルに戻す(ステップS9)。
そして、コントロール部24は、待機状態(Wait状態)となる(ステップS10)。
【0122】
さらにコントロール部24は、計時ユニット46の複数のタイマのうち、20[msec]でカウントが終了する第1タイマ(=20[msec]タイマ)により割込を行う第1タイマ割込処理(高圧警報出力制御処理)に移行する(ステップS11)。ここで、2回目以降は、自動的に20msec毎に、第1タイマ割込処理に移行することは、言うまでもない。
【0123】
図14及び図15第1タイマ割込処理の処理フローチャートを示す。
まず、第1タイマ割込処理においては、第1タイマ(20ms)の計時数が10分の奇数倍の場合には(ステップS51;Yes)、P/V変換器32の異常診断を行う(ステップS53)。
【0124】
より具体的には、図5に示すように、コントロール部24が端子JCPより自己診断信号出力手段JCP’に信号を送出し、自己診断信号出力手段JCP’が自己診断信号を圧力アンプ32Aに入力したとき、圧力アンプ32Aの出力増加分がδSVP0であれば、正常であると判別し、そうでなければ高圧警報出力をオンにする。また、衝撃圧力(SP)アンプ32Bの出力増加分がδSVP1(=δSVP0×4)であれば、正常であると判別し、そうでなければ高圧警報出力をオンにする。
【0125】
また、第1タイマ(20ms)の計時数が10分の偶数倍の場合には、T/V変換器34並びに衝撃圧力検出設定部38、ガス漏れ警報設定部37及び操作鎖錠警報設定部37’を構成する3つの半固定抵抗器の異常診断を行う(ステップS54)。
【0126】
より具体的には、図5に示すように、コントロール部24が端子JCTより自己診断信号出力手段JCT’に信号を送出し、自己診断信号出力手段JCT’が自己診断信号を温度アンプ34に入力したとき、温度アンプ34の出力増加分がδSVT0であれば、正常であると判別し、そうでなければ、高圧警報出力をオンする。
【0127】
また、衝撃圧力検出設定部38、ガス漏れ警報設定部37及び操作鎖錠警報設定部37’を構成する3つの半固定抵抗器が正常であれば、逆転防止処理をして設定値として設定し、そうでなければ、第1記憶ユニット45AのROMに格納され、3つの半固定抵抗器に対応している固定設定値を設定値として設定する。
【0128】
ステップS53とステップS54とにおいて、正常であると判別されたら、そのままステップS55に移行するが、異常と判別されたら、ステップS8、ステップS9と同様の処理をする。ただし、数値表示部には、図28(a)に示すように「E−A」および「検出圧力Pt」あるいは「検出温度t」とを交互に点滅表示し、ステップS55に移行する。ここの処理では、待機状態(Wait状態)にはならない。
【0129】
次にコントロール部24のコントロールユニット40は、衝撃圧力アンプ32Bの出力である増幅原圧力電圧信号SVP1をA/D変換器44を介して読み込み、増幅原圧力電圧信号SVP1に対応する気体圧力Pt’として読み込む(ステップS55)。
【0130】
さらにコントロール部24のコントロールユニット40は、圧力アンプ32Aの出力である原圧力電圧信号SVP0をA/D変換器44を介して読み込み、原圧力電圧信号SVPOに対応する気体圧力Ptとして読み込む(ステップS56)。この場合において、増幅原圧力電圧信号SVP1を原圧力電圧信号SVP0よりも先に読み込むのは、増幅原圧力電圧信号SVP1の分解能の方が原圧力電圧信号SVP0の分解能よりも高いからである。
【0131】
次にコントロール部24は、読み込んだ気体圧力Ptが、次式、
−0.101[MPa]≦Pt≦1.000[MPa]
を満たしているか否かを圧力センサ31の故障診断を行うべく判別する(ステップS57)。
【0132】
ステップS57の判別において、
Pt<−0.101[MPa]
あるいは、
1.000[MPa]<Pt
である場合には、圧力センサ31の出力が異常、すなわち、圧力センサ31が故障しているとして、高圧警報出力オン、高圧警報出力表示及び異常表示の二つのLEDを0.25秒オン/0.25秒オフの早い点滅状態とし、数値表示部50に圧力センサ31が異常であることを表す、図28(b)に示すような、「E−S」と「検出圧力Pt」とを交互に点滅表示する。さらに高圧警報フラグをセットする(ステップS62)。
【0133】
そして、オン時出力部異常診断(ステップS63)を行い、コントロール部24は、待機状態(Wait状態)となる(ステップS64)。
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介して高圧警報出力が保持されている旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2デジタル信号伝送ライン11を介して第2中央監視装置12に高圧警報出力が保持されている旨及び当該高圧警報出力が保持されているSF6 ガスの状態監視装置6を特定する情報とともに伝達される。
【0134】
これにより第2中央監視装置12は、必要に応じて送電を中止したり、監視者への通報を行うこととなる。すなわち、監視者は事故点標定の対処が可能となる。
また、監視者は特定されたSF6 ガスの状態監視装置6の操作表示パネル6Pの表示部25の表示状態を視認することにより、故障の詳細を判断し、迅速な対応が可能となる。
【0135】
ここで、図4及び図13を参照してオン時出力部異常診断について、高圧警報出力リレースイッチ55及び駆動回路55Dを例として説明する。
まず、コントロール部24は、リレーコイルをオフしバック接点をオンさせるために、トランジスタの短絡故障を調べるべく、端子out を“L”レベルとする(ステップS201)。
【0136】
次にコントロール部24は、端子inの信号レベルを読み込む(ステップS202)。
そしてコントロール部24は、端子inの信号レベルが“L”レベルか否かを判別し(ステップS203)、端子inの信号レベルが“L”レベルである場合には(ステップS203;Yes)、トランジスタは正常であるとして処理を終了する。
【0137】
ステップS203の判別において、端子inの信号レベルが“H”レベルである場合には(ステップS203;No)、トランジスタの短絡故障であるとして、端子safeを“H”レベルにし、ヒューズに電流を流して溶断する(ステップS204)。
【0138】
そして、数値表示部50に警報出力部が異常であることを表す「E−o」と、たとえば「H−3」(図28(d)参照)を交互に点滅表示するとともに、単位/状態表示部51に当該状態を点滅表示し(ステップS205)、端子safeを再び“L”レベルとして(ステップS206)、処理を終了する。
【0139】
この場合において、警報出力部26が異常であることを表す「E−o」(図28(d)参照)の表示は、高圧警報出力が異常である場合には、「H−3」の表示と交互に、ガス漏れ警報出力が異常である場合には「L−1」の表示と交互に、操作鎖錠警報出力が異常である場合には「L−2」の表示と交互に点滅表示される。
【0140】
この場合において、処理ステップS62の表示の制御よりも、処理ステップS63のルーチン内のステップ(S203;No)の表示の制御の方が優先度が高い。
なお、後述するオフ時出力部異常診断の場合も同様である。
【0141】
以上のように、トランジスタが短絡している場合には、それを検出し、ヒューズの溶断によって電源供給を停止し、リレーコイルをオフし、バック接点をオンするので、安全性の確保が確実となる。
次にコントロール部24は、図16(a)に示すように、時間的に連続する5個のサンプリングタイムに対応する最新の5個の気体圧力Pt(n-4)、Pt(n-3)、Pt(n-2),Pt(n-1),Pt(n)を5個の気体圧力データPt1(n-4)、Pt1(n-3)、Pt1(n-2),Pt1(n-1),Pt1(n)として、リングバッファメモリRBM1の5つの記憶領域M11、M12、M13、M14、M15に更新しつつ順次格納する。
【0142】
同様に、コントロール部24は、図16(b)に示すように、時間的に連続する5個のサンプリングタイムに対応する最新の5個の気体圧力Pt’(n-4)、Pt’(n-3)、Pt’(n-2),Pt’(n-1),Pt’(n)を5個の気体圧力データPt’1(n-4)、Pt’1(n-3)、Pt’1(n-2),Pt’1(n-1),Pt’1(n)として、リングバッファメモリRBM1’の5つの記憶領域M11’、M12’、M13’、M14’、M15’に更新しつつ順次格納する。
【0143】
そして、衝撃圧力検出サブルーチンに処理を移行する(ステップS60)。
図17乃至図19に衝撃圧力検出サブルーチンの処理フローチャートを示す。コントロール部24は、計時ユニット46の第1タイマの計時が最初の10分を計時終了したか否か判別する(ステップS81)。これは、電源が投入されてから10分間は、GISの圧力容器内の状態が非定常状態にある可能性が高いため誤って衝撃圧力を検出しないように、部分放電に起因するゆっくりとした圧力の異常上昇を検出するための計時を電源投入から10分間は行わないようにするための処理である。
【0144】
ステップS81の判別により電源が投入されてからいまだ10分が経過していない場合には(ステップS81;No)、処理をステップS82に移行する。
ステップS81の判別により電源が投入されてから10分が経過している場合には(ステップS81;Yes)、コントロール部24は、計時ユニット46の複数のタイマのうち、10[sec]でカウントが終了する第3タイマ(=10[sec]タイマ)のタイマフラグをセットする(ステップS83)。この場合において、第3タイマは実際のカウントは開始しない。
【0145】
次にコントロール部24は、計時ユニット46の第1タイマが電源を投入されてから最初の1分間を計時したか否かを後述する第2タイマ(=1[sec]タイマ)のタイマフラグがセットされているか否かに基づいて判別する(ステップS82)。
【0146】
これは電源が投入されてから1分間は、気体圧力検出センサ31がウォームアップ途上にあって、不安定動作状態にあるために、誤って衝撃圧力を検出しないように、地絡事故程度ではないが重度の部分放電に起因するゆっくりとした圧力の異常上昇を検出するための後述の第2タイマ(=1[sec]タイマ)の計時を1分間だけ行わないようにするための処理である。
【0147】
ステップS82の判別により電源が投入されてからいまだ1分が経過していない場合には(ステップS82;No)、処理をステップS85に移行する。
ステップS82の判別により電源が投入されてから1分が経過している場合には(ステップS82;Yes)、コントロール部24は、計時ユニット46の複数のタイマのうち、1[sec]でカウントが終了する第2タイマ(=1[sec]タイマ)のタイマフラグをセットする(ステップS84)。この場合において、第2タイマは実際のカウントは開始しない。
【0148】
次に、
ΔSVP1≦4×ΔSVP0≦ΔSVP1+4
を満たしているか否かを判別する(ステップS85)。この判別処理は、SP検出を確実に行うために、圧力上昇分のデータのチェックを行うものである。
【0149】
ステップS85の条件を満たしていない場合には(ステップS85;No)、データエラーとして、処理をステップS61に移行する。
ステップS85の条件を満たしている場合には(ステップS85;Yes)、リングバッファメモリRBM1’に格納した最新の5個の気体圧力Pt’(n-4)、Pt’(n-3)、Pt’(n-2),Pt’(n-1),Pt’(n)に対応する5個の気体圧力データPt’1(n-4)、Pt’1(n-3)、Pt’1(n-2),Pt’1(n-1),Pt’1(n)に基づいて圧力上昇率を演算する(ステップS86)。
【0150】
より具体的には、5個の気体圧力データPt’1(n-4)、Pt’1(n-3)、Pt’1(n-2),Pt’1(n-1),Pt’1(n)のうちの最小値を有する気体圧力データPt’minと最大値を有する気体圧力データPt’maxとを選択し、100[msec]当たりの圧力上昇率を演算する。
【0151】
すなわち、求めるべき圧力上昇率RP1は、気体圧力Pt’minと気体圧力Pt’maxとの間の時間差をΔT1(=20、40、60または80[msec]のいずれか)とすると、
Figure 0003771691
となる。
【0152】
ここで、気体圧力Pt’maxが読み込まれた時間は、気体圧力Pt’minが読み込まれた時間よりも後であることは圧力上昇を検出していることからいうまでもない。
すなわち、気体圧力Pt’maxは気体圧力Pt’minよりも新しいデータとなる。
【0153】
また、図示はしないが、求める圧力上昇率RP1 、後述する圧力上昇率RP2、RP3 はいずれも正の値に限って対応する設定圧力上昇率RPREF1 、RPREF2 、RPREF3 を越えているか否かの判別処理がなされる。圧力上昇率RP1 、後述する圧力上昇率RP2、RP3 が負の値の場合には、判別処理は無駄となるからである。
【0154】
また、圧力上昇率RP1 を求めるに際し、時間差ΔT1 は、20[msec]、40[msec]、60[msec]あるいは、80[msec]のいずれかとなるが、リングバッファメモリRBM1’に格納されている5個の気体圧力データは、最新の気体圧力データPt’1(n)、20[msec]前の気体圧力データPt’1(n-1)、40[msec]前の気体圧力データPt’1(n-2)、60[msec]前の気体圧力データPt’1(n-3)、80[msec]前の気体圧力データPt’(n-4)であり、割込タイマは20[msec]毎にサンプリングしている。
【0155】
従って、最新の気体圧力データPt’1(n)は、初回の第1タイマリスタート時点から100[msec]後、気体圧力データPt’1(n-1)は、初回の第1タイマリスタート時点から80[msec]後、気体圧力データPt’1(n-2)は、初回の第1タイマリスタート時点から60[msec]後、気体圧力データPt’1(n-3)は初回の第1タイマリスタート時点から40[msec]後、気体圧力データPt’1(n-4)は初回の第1タイマリスタート時点から20[msec]後の気体圧力データを読み込んでいることになる。なお、リングバッファメモリRBM1 、リングバッファメモリRBM1’、後述するリングバッファメモリRBM2 、RBM2’ 、リングバッファメモリRBM3 、RBM3 ’には、初期化処理の時点で適時のデータが格納されていることは言うまでもない。
【0156】
これにより計算上の時間差ΔT1 が20[msec]、40[msec]、60[msec]あるいは80[msec]のいずれかとなるのは止むを得ない。もちろん、6個の気体圧力データの比較を行えば、時間差ΔT1 として100[msec]の場合も可能である。
【0157】
次にコントロール部24は、求めた圧力上昇率RP1が設定圧力上昇率RPREF1を越えているか否かを判別する(ステップS87)。
この場合において、設定圧力上昇率RPREF1(短絡事故相当圧力上昇率データに相当)は、図20に示すように、当該圧力上昇率で100[msec](=20[msec]×5)経過後に圧力容器2Cが正常時に到達すべき圧力である基準圧力PREF(=例えば、1.000〜3.000[kPa])に到達する場合の圧力上昇率として定めてある。
【0158】
ステップS87の判別において、求めた圧力上昇率RP1が設定圧力上昇率RPREF1を越えていない場合には(ステップS87;No)、処理をステップS93に移行する。
ステップS87の判別において、求めた圧力上昇率RP1が設定圧力上昇率RPREF1を越えている場合には(ステップS87;Yes)、コントロールユニット40は、高圧警報制御信号SHEにより高圧警報出力部56を駆動し、高圧警報リレースイッチ55を動作(オン:閉状態:警報出力保持)させ、高圧警報出力表示LED52Aを0.25秒オン/0.25秒オフで点滅させる(ステップS88)。
【0159】
次にコントロールユニット40は、高圧警報フラグをセットし(ステップS89)、数値表示制御信号SNDを出力することにより、演算した圧力上昇率を数値表示部50の7セグメント表示素子SEGに数値表示する(ステップS90)。そして単位表示部51のLED51A(単位=[kPa/100msec]に対応)を点滅する(ステップS91)。
【0160】
次にオン時出力部異常診断を行う(ステップS92)。
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介して高圧警報出力が保持されている旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2デジタル信号伝送ライン11を介して第2中央監視装置12に高圧警報出力が保持されている旨及び当該高圧警報出力が保持されているSF6 ガスの状態監視装置6を特定する情報とともに伝達される。
【0161】
これにより第2中央監視装置12は、必要に応じて送電を中止したり、監視者への通報を行うこととなる。すなわち、監視者は事故点標定の対処が可能となる。
また、監視者は特定されたSF6 ガスの状態監視装置6の操作表示パネル6Pの表示部25の表示状態を視認することにより、故障の詳細を判断し、迅速な対応が可能となる。
【0162】
続いてコントロール部24は、第2タイマ(=1[sec]タイマ)のフラグがセットされているか否かを判別し(ステップS93)、フラグがセットされていない場合には(ステップS93;No)、処理をステップS61に移行する。ステップS93の判別においてフラグがセットされている場合には(ステップS93;Yes)、第2タイマ(=1[sec]タイマ)を20msec毎にカウントアップする(ステップS94)。
【0163】
続いてコントロール部24は、計時ユニット46の第2タイマが計時終了したか否かを判別する(ステップS95)。
すなわち、計時ユニット46の第2タイマ(=1[sec]タイマ)は、第1タイマ(=20[msec]タイマ)の50回の計時(カウント)で1回の計時を終了するので、計時が終了していなければ(ステップS95;No)、処理をステップS61に移行する。
【0164】
ステップS95の判別において、第2タイマの計時が終了している場合には(ステップS95;Yes)、コントロール部24は、図16(c)及び図16(d)に示すように、第2タイマの出力に基づくサンプリングタイムである時間的に連続する2個のサンプリングタイムに対応する最新の2個の気体圧力Pt(n-1),Pt(n)を2個の気体圧力データPt2(n-1),Pt2(n)として、リングバッファメモリRBM2の2つの記憶領域M21、M22に更新しつつ順次格納するとともに、最新の2個の気体圧力Pt’(n-1),Pt’(n)を2個の気体圧力データPt’2(n-1),Pt’2(n)として、リングバッファメモリRBM2’の2つの記憶領域M21’、M22’に更新しつつ順次格納する(ステップS96)。
【0165】
次に、
ΔSVP1≦4×ΔSVP0≦ΔSVP1+4
を満たしているか否かを判別する(ステップS97)。
ステップS97の条件を満たしていない場合には(ステップS97;No)、データエラーとして、処理をステップS61に移行する。
【0166】
ステップS97の条件を満たしている場合には(ステップS97;Yes)、リングバッファメモリRBM2’に格納した最新の2個の気体圧力Pt’(n-1),Pt’(n)に対応する2個の気体圧力データPt’2(n-1),Pt’2(n)に基づいて圧力上昇率を演算する(ステップS98)。
【0167】
より具体的には、2個の気体圧力データPt’2(n-1),Pt’2(n)に基づいて100[msec]当たりの圧力上昇率を演算する。
すなわち、求めるべき圧力上昇率RP2は、サンプリングタイムが1[sec]であるので、気体圧力Pt’2(n-1),Pt’2(n)の差の1/10に等しい。
【0168】
Figure 0003771691
となる。
そして、計時ユニット46は、第2タイマをリスタートさせる(ステップS99)。
【0169】
次にコントロール部24は、求めた圧力上昇率RP2が設定圧力上昇率RPREF2を越えているか否かを判別する(ステップS100)。
この場合において、設定圧力上昇率RPREF2(地絡事故相当圧力上昇率データに相当)は、図20に示すように、当該圧力上昇率で圧力を上昇させた場合に、検出圧力が1[sec]経過後に圧力容器2Cが正常時に到達すべき圧力である基準圧力PREFに到達する場合の圧力上昇率として定めてある。
【0170】
ステップS100の判別において、求めた圧力上昇率RP2が設定圧力上昇率RPREF2を越えていない場合には(ステップS100;No)、処理をステップS106に移行する。
ステップS100の判別において、求めた圧力上昇率RP2が設定圧力上昇率RPREF2を越えている場合には(ステップS100;Yes)、コントロールユニット40は、高圧警報制御信号SHEにより高圧警報出力部56を駆動し、高圧警報リレースイッチ55を動作(オン:閉状態:警報出力保持)させ、高圧警報出力表示LED52Aを0.25秒オン/0.25秒オフで点滅表示させる(ステップS101)。
【0171】
次にコントロールユニット40は、高圧警報フラグをセットし(ステップS102)、数値表示制御信号SNDを出力することにより、演算した圧力上昇率を数値表示部50の7セグメント表示素子SEGに数値表示する(ステップS103)。
【0172】
そして単位表示部51のLED51A(単位=[kPa/100msec]に対応)を点滅表示する(ステップS104)。
次にオン時出力部異常診断を行う(ステップS105)。
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介して高圧警報出力が保持されている旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2デジタル信号伝送ライン11を介して第2中央監視装置12に高圧警報出力が保持されている旨及び当該高圧警報出力が保持されているSF6 ガスの状態監視装置6を特定する情報とともに伝達される。
【0173】
これにより第2中央監視装置12は、必要に応じて送電を中止したり、監視者への通報を行うこととなる。すなわち、監視者は事故点標定の対処が可能となる。
また、監視者は特定されたSF6 ガスの状態監視装置6の操作表示パネル6Pの表示部25の表示状態を視認することにより、故障の詳細を判断し、迅速な対応が可能となる。
【0174】
続いてコントロール部24は、第3タイマ(=10[sec]タイマ)のフラグがセットされているか否かを判別し(ステップS106)、フラグがセットされていない場合には(ステップS106;No)、処理をステップS61に移行する。
【0175】
ステップS106の判別においてフラグがセットされている場合には(ステップS106;Yes)、第3タイマ(=10[sec]タイマ)を1sec毎にカウントアップする(ステップS107)。
続いてコントロール部24は、計時ユニット46の第3タイマが計時終了したか否かを判別する(ステップS110)。
【0176】
すなわち、計時ユニット46の第3タイマ(=10[sec]タイマ)は、第2タイマ(=1[sec]タイマ)の10回の計時(カウント)で計時を終了するので、計時が終了していなければ(ステップS110;No)、処理をステップS61に移行する。
【0177】
ステップS110の判別において、第3タイマの計時が終了している場合には(ステップS110;Yes)、コントロール部24は、図16(e)及び図16(f)に示すように、第3タイマの出力に基づくサンプリングタイムである時間的に連続する2個のサンプリングタイムに対応する最新の2個の気体圧力Pt(n-1),Pt(n)を2個の気体圧力データPt3(n-1),Pt3(n)として、リングバッファメモリRBM3の2つの記憶領域M21、M22に更新しつつ順次格納するとともに、最新の2個の気体圧力Pt’(n-1),Pt’(n)を2個の気体圧力データPt’3(n-1),Pt’3(n)として、リングバッファメモリRBM3’の2つの記憶領域M31’、M32’に更新しつつ順次格納する(ステップS111)。
【0178】
次に、
ΔSVP1≦4×ΔSVP0≦ΔSVP1+4
を満たしているか否かを判別する(ステップS112)。
ステップS112の条件を満たしていない場合には(ステップS112;No)、データエラーとして、処理をステップS61に移行する。
【0179】
ステップS112の条件を満たしている場合には(ステップS112;Yes)、リングバッファメモリRBM3’に格納した最新の2個の気体圧力Pt’(n-1),Pt’(n)に対応する2個の気体圧力データPt’3(n-1),Pt’3(n)に基づいて圧力上昇率を演算する(ステップS113)。
【0180】
より具体的には、2個の気体圧力データPt’3(n-1),Pt’3(n)に基づいて100[msec]当たりの圧力上昇率を演算する。
すなわち、求めるべき圧力上昇率RP3は、サンプリングタイムが10[sec]であるので、気体圧力Pt’3(n-1),Pt’3(n)の差の1/100に等しい。
【0181】
Figure 0003771691
となる。
そして、計時ユニット46は、第3タイマをリスタートさせる(ステップS114)。
【0182】
次にコントロール部24は、求めた圧力上昇率RP3が設定圧力上昇率RPREF3を越えているか否かを判別する(ステップS115)。
この場合において、設定圧力上昇率RPREF3(部分放電相当圧力上昇率データに相当)は、図20に示すように、当該圧力上昇率で圧力を上昇させた場合に、検出圧力が10[sec]経過後に圧力容器2Cが正常時に到達すべき圧力である基準圧力PREFに到達する場合の圧力上昇率として定めてある。
【0183】
ステップS115の判別において、求めた圧力上昇率RP3が設定圧力上昇率RPREF3を越えていない場合には(ステップS115;No)、処理をステップS61に移行する。
ステップS115の判別において、求めた圧力上昇率RP3が設定圧力上昇率RPREF3を越えている場合には(ステップS115;Yes)、コントロールユニット40は、高圧警報制御信号SHEにより高圧警報出力部56を駆動し、高圧警報リレースイッチ55を動作(オン:閉状態:警報出力保持)させ、高圧警報出力表示LED52Aを0.25秒オン/0.25秒オフで点滅させる(ステップS116)。
【0184】
次にコントロールユニット40は、高圧警報フラグをセットし(ステップS117)、数値表示制御信号SNDを出力することにより、演算した圧力上昇率を数値表示部50の7セグメント表示素子SEGに数値表示する(ステップS118)。
【0185】
そして単位表示部51のLED51A(単位=[kPa/100msec]に対応)を点滅表示する(ステップS119)。
次にオン時出力部異常診断を行い(ステップS120)、処理をステップS61に移行する。
【0186】
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介して高圧警報出力が保持されている旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2デジタル信号伝送ライン11を介して第2中央監視装置12に高圧警報出力が保持されている旨及び当該高圧警報出力が保持されているSF6 ガスの状態監視装置6を特定する情報とともに伝達される。
【0187】
これにより第2中央監視装置12は、必要に応じて送電を中止したり、監視者への通報を行うこととなる。すなわち、監視者は事故点標定の対処が可能となる。
また、監視者は特定されたSF6 ガスの状態監視装置6の操作表示パネル6Pの表示部25の表示状態を視認することにより、故障の詳細を判断し、迅速な対応が可能となる。
【0188】
次にコントロール部24の比較ユニット42は、比較対象圧力(検出圧力)Ptと第1高圧基準圧力PHを比較し、判断ユニット43は比較ユニット42の比較結果に基づいて、比較対象圧力Ptが第1高圧基準圧力PH以上か否か、すなわち、
Pt≧PH
を満たしているかを判別する(ステップS61)。
【0189】
ステップS61の判別において、
Pt<PH
の場合(ステップS61;No)には、コントロールユニット40は、高圧警報フラグがセットされているか否かを判別する(ステップS65)。
【0190】
ステップS65の判別において、高圧警報フラグがセットされていない場合には(ステップS65;No)、高圧警報リレースイッチ55を復帰(オフ)し、高圧警報出力表示LED52Aを消灯し(ステップS66)、オフ時出力部異常診断を行って(ステップS67)、処理をステップS70に移行する。
【0191】
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介して高圧警報出力が解除された旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2ディジタル信号伝送ライン11を介して第2中央監視装置12に高圧警報出力が解除された旨が伝達されることとなる。
【0192】
ステップS61の判別において、
Pt≧PH
の場合(ステップS61;Yes)には、コントロールユニット40は、高圧警報制御信号SHEにより高圧警報出力部56を駆動し、高圧警報リレースイッチ55を動作(オン:閉状態:警報出力保持)させ、高圧警報出力表示LED52Aを0.25秒オン/0.25秒オフで点滅表示させ、高圧警報フラグをセットする(ステップS68)。
【0193】
次にオン時出力部異常診断を行う(ステップS69)。
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介して高圧警報出力が保持されている旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2デジタル信号伝送ライン11を介して第2中央監視装置12に高圧警報出力が保持されている旨及び当該高圧警報出力が保持されているSF6 ガスの状態監視装置6を特定する情報とともに伝達される。
【0194】
これにより第2中央監視装置12は、必要に応じて送電を中止したり、監視者への通報を行うこととなる。すなわち、監視者は事故点標定の対処が可能となる。
また、監視者は特定されたSF6 ガスの状態監視装置6の操作表示パネル6Pの表示部25の表示状態を視認することにより、故障の詳細を判断し、迅速な対応が可能となる。
【0195】
そして外部ウォッチドッグタイマ53のリセットを行い(ステップS70)、第1タイマ(20ms)の計時を1つ加算し(ステップS71)、第1タイマ(20ms)をリスタートして(ステップS72)、処理をステップS12に移行する。
【0196】
ここで、具体的な数値を一例として挙げる。
図20に示すように、基準圧力上昇値PREFを第3従来例と同じように2.450[kPa]とする。
Figure 0003771691
以上より、計算で求めたRP1,RP2、RP3に基づいてSF6 ガスの状態を判別する。
【0197】
すなわち、、
Figure 0003771691
マ)によって気体圧力は検出されているので、負荷電流増大などによる「非常にゆっくり」とした圧力の異常上昇、あるいは、何らかの原因で衝撃圧力の検出に失敗した場合には高圧警報が出力される。 上記説明においては、SP基準圧力上昇値PREFの値を2.450[kPa/100msec]としていたが、GISの圧力容器の容量などによりこの値は変化させる必要があり、本実施形態においては、図8に示した半固定抵抗38Aを調整することによって容易に変更することができるようになっている。
【0198】
次にコントロール部24のコントロールユニット40は、再び処理をメイン処理フローチャートに戻し、原温度電圧信号SVTOをA/D変換器44を介して読み込み、原温度電圧信号SVTOに対応する気体温度tを読み込む(ステップS12)。
【0199】
次にコントロールユニット40は、読み込んだ気体温度tが、
−20[℃]≦t≦60[℃]
を満たしているか否かを判別する(ステップS13)。
ステップS13の判別において、
t<−20[℃]
あるいは、
60[℃]<t
である場合には(ステップS13;No)、高圧警報出力オン、高圧警報出力表示及び異常表示の二つのLEDを0.25秒オン/0.25秒オフの早い点滅表示とし、数値表示部50に温度センサ33が異常であることを示す「E−S」と「検出温度t」とを交互に点滅表示する(図28(b)参照)。さらに高圧警報フラグをセットする(ステップS14)。
【0200】
そして、オン時出力部異常診断(ステップS15)を行い、コントロール部24は、待機状態(Wait状態)となる(ステップS16)。
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介して高圧警報出力が保持されている旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2デジタル信号伝送ライン11を介して第2中央監視装置12に高圧警報出力が保持されている旨及び当該高圧警報出力が保持されているSF6 ガスの状態監視装置6を特定する情報とともに伝達される。
【0201】
これにより第2中央監視装置12は、必要に応じて送電を中止したり、監視者への通報を行うこととなる。すなわち、監視者は事故点標定の対処が可能となる。
また、監視者は特定されたSF6 ガスの状態監視装置6の操作表示パネル6Pの表示部25の表示状態を視認することにより、故障の詳細を判断し、迅速な対応が可能となる。
【0202】
ステップS13の判別において、
−20[℃]≦t≦60[℃]
である場合には(ステップS13;Yes)、コントロール部24のコントロールユニット40は、気体のモル容積算出処理に移行する(ステップS17)。
【0203】
図21に気体のモル容積算出処理フローチャートを示す。
まず、コントロール部24の演算ユニット41は、ステップS12で読み込んだ気体温度t[℃]を次式により絶対温度T[K]に変換する(ステップS220)。
【0204】
T=t+273.15
次にコントロール部24の演算ユニット41は、ステップS56で読み込んだ気体圧力Ptの圧力単位[MPa]を次式により絶対標準大気圧の圧力単位[atm-abs]に変換する(ステップS221)。
【0205】
Pb[atm-abs]=(Pt[MPa]/0.101325)+1
次に演算ユニット41は、実在気体の状態方程式に絶対温度T[K]及び気体圧力Pb[atm-abs]を代入し(ステップS222)、モル容積Vについての3次方程式をカルダノの公式を用いて解くことによりモル容積Vを算出する(ステップS223)。
【0206】
この場合において、実在気体の状態方程式としては、一般の不燃性ガスの場合には、例えば、次式で示すビリアル型状態方程式のLeiden型を用いる。
PV/RT=1+(B/V)+(C/V2)+……
ここで、Bを第2のビリアル係数、Cを第3のビリアル係数と呼び、ビリアル係数B、Cは温度Tの関数である。一般的には、第2ビリアル係数B及び第3ビリアル係数Cを選択、代入すれば、上記ビリアル型状態方程式は、モル容積Vについての3次方程式となり、実用的に用いられる。
【0207】
また、本実施形態の場合のように不燃性ガスとしてSF6 ガスを用いる場合には、例えば、Beattie-Bridgemanの式を用いる。Beattie-Bridgemanの式をそのモル容積Vについて整理し、モル容積Vについての分かりやすい3次方程式の形に直す。以下の説明においては、実在気体の状態方程式、状態方程式、状態式とはBeattie-Bridgemanの式を意味するものとする。
【0208】
モル容積Vについて所定の変換、代入操作をすると、変数yについての2乗項を含まない3次方程式が後述の形で得られる。
ここでカルダノの公式について説明する。
方程式y3+3py+q=0の根は、
A=1/2(−q+√(q2+4p3)) ……(1)
B=1/2(−q−√(q2+4p3)) ……(2)
の立方根、すなわち、次式で表される立方根α、βを、
【0209】
【数1】
Figure 0003771691
【0210】
のように選ぶとき、次式で表される。
【0211】
【数2】
Figure 0003771691
【0212】
【数3】
Figure 0003771691
【0213】
ここで、ωは1の虚の立方根を表す。
この公式をカルダノの公式と呼んでいる。
この場合において、本実施形態においては、(1)式及び(2)式において、一つの実数根を求めるために平方(√)内の値が正であるという条件を設定して処理を行っている。
【0214】
カルダノの公式を用いて得られる解は1つの実数根及び2つの虚数根であるが、測定温度t、測定圧力Ptに対して、実際に存在するモル容積Vは明らかに1つしかないことから、実数根を求めればよいので、得られたモル容積Vが実数根か否かを判別する(ステップS224)。
ステップS224の判別において、モル容積Vが虚数根である場合には(ステップS224;No)、今回のモル容積Vとして前回のモル容積V’を使用して(ステップS225)、処理をステップS227に移行する。
【0215】
ステップS224の判別において、モル容積Vが実数根である場合には(ステップS224;Yes)、当該モル容積Vを今回のモル容積Vとし(ステップS226)、前回のモル容積V’と今回のモル容積Vの平均値(移動平均値)である平均モル容積VMEANを算出する(ステップS227)。
【0216】
続いて演算ユニット41は、求めた平均モル容積VMEANを実在気体の状態方程式に代入することによる、基準温度(=20[℃])における補正圧力P20の算出処理に移行する(ステップS18)。
図22に補正圧力P20の算出処理フローチャートを示す。
【0217】
まずコントロール部24の演算ユニット41は、基準温度(=20[℃])を絶対温度T20[K]に変換する(ステップS228)。
Figure 0003771691
なお、この演算は毎回行う必要はなく、予め定数として格納しておくように構成することも可能である。
【0218】
次に演算ユニット41は実在気体の状態方程式に基準温度(=20[℃])に相当する絶対温度T20及び平均モル容積VMEANを代入し(ステップS229)、補正圧力Pb20についての1次方程式により絶対標準大気圧の圧力単位[atm-abs]を有する基準温度(=20[℃])における補正圧力Pb20を求める(ステップS230)。
【0219】
次に演算ユニット41は、補正圧力Pb20の圧力単位[atm-abs]を次式により圧力単位[MPa]に変換することにより補正圧力P20とする(ステップS231)。
P20=(Pb20−1)×0.101325
次にコントロール部24の比較ユニット42は、得られた補正圧力P20と第2高圧警報設定値PH’とを比較し、判断ユニット43は比較ユニット42の比較結果に基づいて、補正圧力P20が第2高圧警報設定値PH’以上か否か、すなわち、 P20≧PH’
を満たしているか否かを判別する(ステップS18a)。
【0220】
ステップS18aの判別において、補正圧力P20が第2高圧警報設定値PH’以上である場合、すなわち、
P20≧PH’
を満たしている場合には(ステップS18a;Yes)、コントロールユニット40は、高圧警報制御信号SHEにより高圧警報出力部56を駆動し、高圧警報リレースイッチ55を動作(オン:閉状態:警報出力保持)させ、高圧警報出力表示LED52Aを0.25秒オン/0.25秒オフで点滅表示させ、高圧警報フラグをセットする(ステップS19)。
【0221】
そして、オン時出力部異常診断を行って(ステップS20)、処理をステップS24に移行する。
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介して高圧警報出力が保持されている旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2デジタル信号伝送ライン11を介して第2中央監視装置12に高圧警報出力が保持されている旨及び当該高圧警報出力が保持されているSF6 ガスの状態監視装置6を特定する情報とともに伝達される。
【0222】
これにより第2中央監視装置12は、必要に応じて送電を中止したり、監視者への通報を行うこととなる。すなわち、監視者は事故点標定の対処が可能となる。
また、監視者は特定されたSF6 ガスの状態監視装置6の操作表示パネル6Pの表示部25の表示状態を視認することにより、故障の詳細を判断し、迅速な対応が可能となる。
【0223】
ステップS18の判別において、補正圧力P20が第2高圧警報設定値PH’未満である場合、すなわち、
P20<PH’
である場合には(ステップS18a;No)、コントロールユニット40は、高圧警報フラグがセットされているか否かを判別する(ステップS21)。
【0224】
ステップS21の判別において、高圧警報フラグがセットされている場合には(ステップS21;Yes)、処理をステップS24に移行する。
ステップS21の判別において、高圧警報フラグがセットされていない場合には(ステップS21;No)、コントロールユニット40は、高圧警報制御信号SHEにより高圧警報出力部56を駆動し、高圧警報リレースイッチ55を復帰(オフ:開状態:警報出力解除)させ、高圧警報出力表示LED52Aを消灯する(ステップS22)。
【0225】
そして、オフ時出力部異常診断を行って(ステップS23)、処理をステップS24に移行する。
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介して高圧警報出力が解除された旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2ディジタル信号伝送ライン11を介して第2中央監視装置12に高圧警報出力が解除された旨が伝達されることとなる。
【0226】
ここで、図4及び図23を参照してオフ時出力部異常診断について、高圧警報出力リレースイッチ55及び駆動回路55Dを例として説明する。
まず、コントロール部24は、リレーコイルをオンしバック接点をオフさせるために、トランジスタの開放故障を調べるべく、端子out を“H”レベルとする(ステップS211)。
【0227】
次にコントロール部24は、端子inの信号レベルを読み込む(ステップS212)。
そしてコントロール部24は、端子inの信号レベルが“H”レベルか否かを判別し(ステップS213)、端子inの信号レベルが“H”レベルである場合には(ステップS213;Yes)、トランジスタは正常であるとして処理を終了する。
【0228】
ステップS213の判別において、端子inの信号レベルが“L”レベルである場合には(ステップS213;No)、トランジスタの開放故障であるとして、端子safeを“H”レベルにし、ヒューズに電流を流して溶断する(ステップS214)。
【0229】
そして、数値表示部50に警報出力部が異常であることを表す「E−o」と、たとえば「H−3」(図28(d)参照)を交互に点滅表示するとともに、単位/状態表示部51に当該状態を点滅表示し(ステップS215)、端子safeを再び“L”レベルとして(ステップS216)、処理を終了する。
【0230】
以上のように、トランジスタが開放している場合には、それを検出し、ヒューズの溶断によって電源供給を停止するので、メンテナンス性が的確になる。
なお、トランジスタの開放故障あるいはリレーコイルの断線故障の場合には、オフ時出力部異常診断を行うまでもなく、リレーコイルはオフしバック接点はオンしているので、フェイルセーフの作用をしている。
【0231】
次にコントロール部24の比較ユニット42は、得られた補正圧力P20とガス漏れ警報設定値PLとを比較し、判断ユニット43は比較ユニット42の比較結果に基づいて、補正圧力P20がガス漏れ警報設定値PL以下か否か、すなわち、
P20≦PL
を満たしているか否かを判別する(ステップS24)。
【0232】
ステップS24の判別において、補正圧力P20がガス漏れ警報設定値PL以下である場合、すなわち、
P20≦PL
を満たしている場合には(ステップS24;Yes)、コントロールユニット40は、ガス漏れ警報制御信号SLEによりガス漏れ警報出力部58を駆動し、ガス漏れ警報リレースイッチ57を動作(オン:閉状態:警報出力保持)させ、ガス漏れ警報出力表示LED52Bを0.25秒オン/0.25秒オフで点滅表示させる(ステップS25)。
【0233】
そして、オン時出力部異常診断を行って(ステップS26)、処理をステップS29に移行する。
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介してガス漏れ警報出力が保持されている旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2デジタル信号伝送ライン11を介して第2中央監視装置12にガス漏れ警報出力が保持されている旨及び当該ガス漏れ警報出力が保持されているSF6 ガスの状態監視装置6を特定する情報とともに伝達される。
【0234】
これにより第2中央監視装置12は、必要に応じて送電を中止したり、監視者への通報を行うこととなる。すなわち、監視者は事故点標定の対処が可能となる。
また、監視者は特定されたSF6 ガスの状態監視装置6の操作表示パネル6Pの表示部25の表示状態を視認することにより、故障の詳細を判断し、迅速な対応が可能となる。
【0235】
ステップS24の判別において、補正圧力P20がガス漏れ警報設定値PLよりも大である場合、すなわち、
P20>PL
である場合には(ステップS24;No)、コントロールユニット40は、ガス漏れ警報制御信号SLEによりガス漏れ警報出力部58を駆動し、ガス漏れ警報リレースイッチ57を復帰(オフ:開状態:警報出力解除)させ、ガス漏れ警報出力表示LED52Bを消灯する(ステップS27)。
【0236】
そして、オフ時出力部異常診断を行って(ステップS28)、処理をステップS29に移行する。
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介してガス漏れ警報出力が解除された旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2ディジタル信号伝送ライン11を介して第2中央監視装置12にガス漏れ警報出力が解除された旨が伝達されることとなる。
【0237】
次にコントロール部24の比較ユニット42は、得られた補正圧力P20と操作鎖錠警報設定値PL’とを比較し、判断ユニット43は比較ユニット42の比較結果に基づいて、補正圧力P20が操作鎖錠設定値PL’以下か否か、すなわち、
P20≦PL’
を満たしているか否かを判別する(ステップS29)。
【0238】
ステップS29の判別において、補正圧力P20が操作鎖錠警報設定値PL’以下である場合、すなわち、
P20≦PL’
を満たしている場合には(ステップS29;Yes)、コントロールユニット40は、操作鎖錠警報制御信号SLCにより操作鎖錠警報出力部60を駆動し、操作鎖錠警報リレースイッチ59を動作(オン:閉状態:警報出力保持)させ、操作鎖錠警報出力表示LED52Cを0.25秒オン/0.25秒オフで点滅表示させる(ステップS30)。
【0239】
そして、オン時出力部異常診断を行って(ステップS31)、処理をステップS34に移行する。
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介して操作鎖錠警報出力が保持されている旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2デジタル信号伝送ライン11を介して第2中央監視装置12に操作鎖錠警報出力が保持されている旨及び当該操作鎖錠警報出力が保持されているSF6 ガスの状態監視装置6を特定する情報とともに伝達される。
【0240】
これにより第2中央監視装置12は、必要に応じて送電を中止したり、監視者への通報を行うこととなる。すなわち、監視者は事故点標定の対処が可能となる。
また、監視者は特定されたSF6 ガスの状態監視装置6の操作表示パネル6Pの表示部25の表示状態を視認することにより、故障の詳細を判断し、迅速な対応が可能となる。
【0241】
ステップS29の判別において、補正圧力P20が操作鎖錠設定値PL’よりも大である場合、すなわち、
P20>PL’
である場合には(ステップS29;No)、コントロールユニット40は、操作鎖錠警報制御信号SLCにより操作鎖錠警報出力部60を駆動し、操作鎖錠警報リレースイッチ59を復帰(オフ:開状態:警報出力解除)させ、操作鎖錠警報出力表示LED52Cを消灯する(ステップS32)。
【0242】
そして、オフ時出力部異常診断を行って(ステップS33)、処理をステップS34に移行する。
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介して操作鎖錠警報出力が解除された旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2ディジタル信号伝送ライン11を介して第2中央監視装置12に操作鎖錠警報出力が解除された旨が伝達されることとなる。
【0243】
次にコントロールユニット40は、補正圧力P20に相当する温度補償圧力電圧信号SVCP0を光結合器61に出力処理、補正圧力P20の表示処理を行う(ステップS34)。
ここで、光結合器61を用いる理由及び具体的な処理について説明する。
【0244】
通常、コントロール部24を構成する場合には、1チップマイクロコンピュータで構成されており、内蔵のD/A変換器としては分解能が8ビットのものが一般的である。しかし、より高分解能を望む場合には、外付けで10ビット以上の分解能を有するD/A変換器を用いる必要がある。
【0245】
例えば、補正圧力P20に相当する温度補償圧力電圧信号SVCP0の出力形態がパルス出力あるいはシリアル出力の場合には、光結合器61は一つのフォトカプラで構成し、V/I変換器62の前段にF/V変換器あるいはシリアル入力/パラレル出力型のCMOS−ICによるシフトレジスタの出力側にラダー抵抗網を配置してD/A変換器を構成し、次段のV/I変換器62に温度補償圧力電圧信号SVCP1を送出する構成とする。
【0246】
また、温度補償圧力電圧信号SVCP0の出力形態がパラレル出力の場合には、光結合器61は、複数のフォトカプラで構成し、V/I変換器62の前段に複数のCMOS−ICによるバッファと当該バッファの出力側にラダー抵抗網を配置してD/A変換器を構成し、次段のV/I変換器62に温度補償圧力電圧信号SVCP1を送出する構成とする。
【0247】
このように外付けのD/A変換器を用いるためには様々なビット数に対応する必要があり、光結合器61を用いているのである。
これにより光結合器61は電気的に絶縁状態で温度補償圧力電圧信号SVCP1を電圧/電流変換器62に出力する。これにより電圧/電流変換器62は、温度補償圧力電圧信号SVCP1の電圧/電流変換を行って温度補償圧力電流信号SACPとして伝送信号出力部63に出力する。
【0248】
この結果、伝送信号出力部63は、温度補償圧力電流信号SACPを4〜20[mA]の電流範囲を有する温度補償圧力伝送信号STACPとして全波整流器64、端子台28及び第1アナログ信号伝送ライン4を介してアナログ系ローカル監視装置7に出力する。
【0249】
これらの結果、アナログ系ローカル監視装置7には、第1アナログ信号伝送ライン4を介して温度補償圧力伝送信号STACPが伝送されることとなり、アナログ系ローカル監視装置7は、温度補償圧力伝送信号STACPを仲介して第1中央監視装置10に伝送することとなる。
【0250】
これにより第1中央監視装置10は、温度補償圧力伝送信号STACPに基づいて必要に応じて送電を中止したり、監視者への通報を行うこととなる。すなわち、監視者は、予防保全の対処が可能となる。
また、コントロールユニット40は補正圧力P20に対応する数値表示制御信号SNDを数値表示部50に出力する。
【0251】
この結果、図24に示すように、数値表示部50には、補正圧力P20の値(図24では、「0.42」)が表示されることとなる(ステップS34)。
ここにおいて、補正圧力表示値較正部37’’は、補正圧力表示値較正用半固定抵抗器37’’Aにて構成されている。SF6ガスの状態監視システム1は、GISの複数の圧力容器2Cに封入されているSF6ガスの圧力を重点的に監視している。補正圧力表示値較正用半固定抵抗器37’’Aは、表示している補正圧力P20の値を±0.02MPaの範囲で微調整ができる。SF6ガスの状態監視装置6とSF6ガスの状態監視システム1との表示値を合わせる作用をする。また、同じ場所に設置されている複数のSF6ガスの状態監視装置6同士の表示値を合わせる作用もする。
【0252】
次に判断ユニット43は、キー入力があったか否かを判別する(ステップS35)。
ステップS35の判別において、キー入力が行われなかった場合には(ステップS35;No)、処理をステップS12に移行し、ステップS12からステップS35の処理を繰り返す。
【0253】
ステップS35の判別において、キー入力が行われた場合には(ステップS35;Yes)、高圧警報フラグがセットされているか否かを判別する(ステップS36)。
ここにおいて、コントロール部24が、待機状態(Wait状態)から復帰する場合は、ステップS36に移行する。待機(Wait)状態からの復帰は、通常は、マニュアル復帰スイッチを所定時間(略数秒間)、押下することによっている。
【0254】
高圧警報フラグがセットされている場合には(ステップS36;Yes)、マニュアル復帰スイッチ39が操作されたか否かを手動復帰信号SSPRに基づいて判別する(ステップS38)。
ステップS38の判別において、マニュアル復帰スイッチ39が操作されていない場合には(ステップS38;No)、処理をステップS12に移行し以下、同様の処理を繰り返す。
【0255】
ステップS38の判別において、マニュアル復帰スイッチ39が操作された場合には(ステップS38;Yes)、コントロール部24のコントロールユニット40は、高圧警報制御信号SHEにより高圧警報出力部56を駆動し、高圧警報リレースイッチ55を復帰(オフ:開状態:警報出力解除)させ(ステップS39)、高圧警報出力表示LED52Aを消灯し、場合によっては単位/状態表示部51の当該LEDも消灯する(ステップS40)。
【0256】
そして、数値表示部50には、補正圧力P20の値(単位:MPa(at20℃))が表示されることとなる(ステップS41)。
ここにおいて、高圧警報制御信号SHEに基づいて高圧警報リレースイッチ55を駆動する高圧警報出力部56には、検出圧力との比較の結果による第1高圧警報出力、補正圧力との比較の結果による第2高圧警報出力、SP(衝撃圧力)検出の結果によるSP検出警報出力、自己診断の結果による異常警報出力の4つの警報信号が論理和にて出力されていて、マニュアル復帰スイッチ39が操作された場合に、高圧警報リレースイッチ55は復帰(オフ:開状態:警報出力解除)する。
【0257】
この結果、ディジタル系ローカル監視装置8には、第1ディジタル信号伝送ライン5を介して高圧警報出力が解除された旨が伝達されることとなり、ひいては、ディジタル系ローカル監視装置8が第2ディジタル信号伝送ライン11を介して第2中央監視装置12に高圧警報出力が解除された旨が伝達されることとなる。
【0258】
次に、コントロールユニット40は、オフ時出力部異常診断を行い(ステップS41a)、高圧警報フラグをクリアし(ステップS42)、処理をステップS12に移行し以下、同様の処理を繰り返す。
ステップS36の判別において、高圧警報フラグがセットされていない場合には(ステップS36;No)、キー入力処理サブルーチンに移行し(ステップS37)、キー入力処理終了後、処理をステップS12に移行し、以下、同様の処理を繰り返す。
【0259】
図25ないし図27にキー入力処理フローチャートを示す。
なお、前記した0.25秒オン/0.25秒オフの早い点滅表示は、キー入力処理ルーチンでは行わない。キー入力処理ルーチンでは、0.5秒オン/0.5秒オフの遅い点滅表示を行う。
【0260】
まず、判断ユニット43は、設定切替スイッチ36の操作が行われたか否かを判別する(ステップS131)。
ステップS131の判別において、設定切替スイッチ36の操作が行われていない場合には(ステップS131;No)、処理をステップS146に移行する。
【0261】
ステップS131の判別において、設定切替スイッチ36の操作が行われた場合には(ステップS131;Yes)、単位/状態表示部51のSP上昇率の単位(=kPa/100ms)を表示するための表示用LED51Aを点滅表示する(ステップS132)。
【0262】
そして、コントロール部24は数値表示部50の7セグメント表示素子SEGに数値表示制御信号SNDを出力することにより、SP(衝撃圧力)上昇設定値PREF(=PREF1+PREF2 )を点滅表示する(ステップS132a)。
次にコントロール部24は、SP(衝撃圧力)上昇設定値PREFが所定の範囲内に属するかを判別し(ステップS133)、所定の範囲内に属していない場合には(ステップS133;No)、第1記憶ユニット45AであるROMに記憶している固定設定値PREF1をSP上昇設定値PREFとして設定する(ステップS134)。
【0263】
次に判断ユニット43は、再び設定切替スイッチ36の操作が行われたか否かを判別する(ステップS135)。
ステップS135の判別において、設定切替スイッチ36の操作が行われていない場合には(ステップS135;No)、処理をステップS146に移行する。
【0264】
ステップS135の判別において、設定切替スイッチ36の操作が行われた場合には(ステップS135;Yes)、出力表示部52のガス漏れ警報出力表示用LED52Bを0.5秒オン/0.5秒オフで点滅し(ステップS136)、数値表示部50にガス漏れ警報設定値PLを点滅表示する(ステップS137)。
【0265】
次に判断ユニット43は、ガス漏れ警報設定値PLは第2高圧警報設定値PH’より0.15[MPa]以上低いか否かを判別し(ステップS138)、ガス漏れ警報設定値PLが第2高圧警報設定値PH’より0.15[MPa]以上低くない場合には(ステップS138;No)、
PL=PH’−0.15
に設定する(ステップS139)。
【0266】
次に判断ユニット43は、再び設定切替スイッチ36の操作が行われたか否かを判別する(ステップS140)。
ステップS140の判別において、設定切替スイッチ36の操作が行われていない場合には(ステップS140;No)、処理をステップS146に移行する。
【0267】
ステップS140の判別において、設定切替スイッチ36の操作が行われた場合には(ステップS140;Yes)、出力表示部52の操作鎖錠警報出力表示用LED52Cを点滅し(ステップS141)、数値表示部50に操作鎖錠警報設定値PL’を点滅表示する(ステップS142)。
【0268】
次に判断ユニット43は、操作鎖錠警報設定値PL’はガス漏れ警報設定値PLより0.05[MPa]以上低いか否かを判別し(ステップS143)、操作鎖錠警報設定値PL’がガス漏れ警報設定値PLより0.05[MPa]以上低くない場合には(ステップS143;No)、
PL’=PL−0.05
に設定する(ステップS145)。
【0269】
次に判断ユニット43は、表示切替スイッチ35の操作が行われたか否かを判別する(ステップS146)。
ステップS146の判別において、表示切替スイッチ35の操作が行われていない場合には(ステップS146;No)、処理をステップS12に移行する。
【0270】
ステップS146の判別において、表示切替スイッチ35の操作が行われた場合には(ステップS146;Yes)、数値表示部50に測定した気体圧力(検出圧力)Ptを表示するとともに(ステップS147)、単位/状態表示部51の「MPa」LED51Bを点滅表示する(ステップS148)。
【0271】
次に判断ユニット43は、再び表示切替スイッチ35の操作が行われたか否かを判別する(ステップS149)。
ステップS149の判別において、表示切替スイッチ35の操作が行われていない場合には(ステップS149;No)、処理をステップS12に移行する。
【0272】
ステップS149の判別において、表示切替スイッチ35の操作が行われた場合には(ステップS149;Yes)、数値表示部50の上位2桁に測定した気体温度(検出温度)tを点灯表示し、下位1桁に単位を意味する「c」を点滅表示する(ステップS151)。
【0273】
次に判断ユニット43は、気体温度tの表示開始から10秒が経過したか否かを判別し(ステップS152)、10秒が経過した場合には(ステップS152;Yes)、処理をステップS12に移行する。
ステップS152の判別において、気体温度tの表示開始から10秒が経過していない場合には(ステップS152;No)、判断ユニット43は、再び表示切替スイッチ35の操作が行われたか否かを判別する(ステップS153)。
【0274】
ステップS153の判別において、表示切替スイッチ35の操作が行われていない場合には(ステップS153;No)、処理をステップS12に移行する。ステップS153の判別において、表示切替スイッチ35の操作が行われた場合には(ステップS153;Yes)、数値表示部50に第1高圧警報設定値PHを点灯表示し(ステップS154)、単位/状態表示部51の「MPa」LED51Bを点滅表示し(ステップS155)、高圧警報出力表示LED52Aを点滅表示する(ステップS156)。
【0275】
次に判断ユニット43は、第1高圧警報設定値PHの表示開始から10秒が経過したか否かを判別し(ステップS157)、10秒が経過した場合には(ステップS157;Yes)、処理をステップS12に移行する。
ステップS157の判別において、第1高圧警報設定値PHの表示開始から10秒が経過していない場合には(ステップS157;No)、判断ユニット43は、再び表示切替スイッチ35の操作が行われたか否かを判別する(ステップS158)。
【0276】
ステップS158の判別において、表示切替スイッチ35の操作が行われていない場合には(ステップS158;No)、処理をステップS12に移行する。ステップS158の判別において、表示切替スイッチ35の操作が行われた場合には(ステップS158;Yes)、数値表示部50に第2高圧警報設定値PH’を点灯表示し(ステップS159)、高圧警報出力表示LED52Aを点滅表示する(ステップS161)。
【0277】
次に判断ユニット43は、第2高圧警報設定値PH’の表示開始から10秒が経過したか否かを判別し(ステップS162)、10秒が経過した場合には(ステップS162;Yes)、処理をステップS12に移行する。
ステップS162の判別において、第2高圧警報設定値PH’の表示開始から10秒が経過していない場合には(ステップS162;No)、判断ユニット43は、再び表示切替スイッチ35の操作が行われたか否かを判別する(ステップS163)。
【0278】
ステップS163の判別において、表示切替スイッチ35の操作が行われていない場合には(ステップS163;No)、処理をステップS12に移行する。ステップS163の判別において、表示切替スイッチ35の操作が行われた場合には(ステップS163;Yes)、数値表示部50にSP上昇設定値PREFを点灯表示し(ステップS166)、単位/状態表示部51の「kPa/100ms」LED51Aを点滅表示する(ステップS167)。
【0279】
次に判断ユニット43は、SP上昇設定値PREFの表示開始から10秒が経過したか否かを判別し(ステップS168)、10秒が経過した場合には(ステップS168;Yes)、処理をステップS12に移行する。
ステップS168の判別において、SP上昇設定値PREFの表示開始から10秒が経過していない場合には(ステップS168;No)、判断ユニット43は、再び表示切替スイッチ35の操作が行われたか否かを判別する(ステップS169)。
【0280】
ステップS169の判別において、表示切替スイッチ35の操作が行われていない場合には(ステップS169;No)、処理をステップS12に移行する。ステップS169の判別において、表示切替スイッチ35の操作が行われた場合には(ステップS169;Yes)、数値表示部50にガス漏れ警報設定値PLを点灯表示し(ステップS172)、ガス漏れ警報出力表示LED52Bを点滅表示する(ステップS174)。
【0281】
次に判断ユニット43は、ガス漏れ警報設定値PLの表示開始から10秒が経過したか否かを判別し(ステップS175)、10秒が経過した場合には(ステップS175;Yes)、処理をステップS12に移行する。
ステップS175の判別において、ガス漏れ警報設定値PLの表示開始から10秒が経過していない場合には(ステップS175;No)、判断ユニット43は、再び表示切替スイッチ35の操作が行われたか否かを判別する(ステップS176)。
【0282】
ステップS176の判別において、表示切替スイッチ35の操作が行われていない場合には(ステップS176;No)、処理をステップS12に移行する。ステップS176の判別において、表示切替スイッチ35の操作が行われた場合には(ステップS176;Yes)、数値表示部50に操作鎖錠警報設定値PL’を表示し(ステップS177)、操作鎖錠警報出力表示LED52Cを点滅表示する(ステップS178)。
【0283】
次に判断ユニット43は、操作鎖錠警報設定値PL’の表示開始から10秒が経過したか否かを判別し(ステップS179)、10秒が経過した場合には(ステップS179;Yes)、処理をステップS12に移行する。
ステップS179の判別において、操作鎖錠設定値PL’の表示開始から10秒が経過していない場合には(ステップS179;No)、判断ユニット43は、再び表示切替スイッチ35の操作が行われることにより(ステップS180)、数値表示部50には補正圧力P20が点灯表示されることとなる(ステップS181)。
【0284】
以上の説明のように、本実施形態によれば、アンプの異常、センサの異常、コントローラ(CPU、マイクロプロセッサ)の異常及び警報出力部の異常を容易に把握することができるので、メンテナンス及び異常に対する措置を迅速、かつ、的確に行うことが可能となる。
【0285】
この結果、システム全体の信頼性を向上することが可能となる。
【0286】
【発明の効果】
請求項1記載の発明によれば、アンプ異常判別手段は、変動成分検出手段により検出した変動成分に基づいて圧力検出信号増幅アンプの異常を判別するので、確実にアンプの異常を検出して、絶縁性ガスの状態監視装置の信頼性を向上することができる。
【0287】
請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、アンプ異常表示手段は、アンプ異常判別手段の判別に基づいて、圧力検出信号増幅アンプが異常状態にあることを表示するので、故障個所を容易に特定し、メンテナンスを容易とすることができる。
【0288】
請求項3記載の発明によれば、請求項1または請求項2記載の発明の効果に加えて、アンプ異常警報出力手段は、アンプ異常判別手段の判別に基づいて、圧力検出信号増幅アンプが異常状態にある旨の警報を出力するので、ユーザは確実にアンプの異常を知ることができ、対応する措置を迅速にとることができ、信頼性が高いシステムを構築することが可能となる。
【0289】
請求項4記載の発明によれば、請求項1乃至請求項3のいずれかに記載の発明の効果に加えて、圧力センサ異常表示手段は、アンプ状態判別手段の判別の結果に基づいて、圧力検出信号が基準圧力検出信号範囲に含まれない場合に圧力センサが異常状態にあることを表示するので、圧力センサの異常に伴うシステムの信頼性低下を防止することができるとともに、メンテナンス性を向上させることができる。
【0290】
請求項5記載の発明によれば、スイッチング素子状態判別手段は、駆動制御信号と当該駆動制御信号に対応する駆動検出信号に基づいて当該駆動制御信号に対応するスイッチング素子が異常状態にあるか否かを判別するので、確実、かつ、迅速に異常を検出することができ、迅速なメンテナンス作業が行える。
【0291】
請求項6記載の発明によれば、請求項5記載の発明の効果に加えて、溶断制御手段は、スイッチング素子状態判別手段の判別結果に基づいて、異常状態が短絡状態であるスイッチング素子が、いずれか一つでもあればヒューズ素子を溶断するので、一部の不良によりシステム全体に影響が及ぶことはないとともに、メンテナンス性が向上してユーザの使い勝手も向上する。
【0292】
請求項7記載の発明によれば、請求項5または請求項6記載の発明の効果に加えて、スイッチング素子異常告知手段は、いずれかのスイッチング素子が異常状態にあることを告知するので、システムが異常状態にあることを容易に知ることにより対応する措置を迅速にとることができ、システムの信頼性及びメンテナンス性が向上する。
【0293】
請求項8記載の発明によれば、請求項7記載の発明の効果に加えて、異常スイッチング素子特定告知手段は、異常状態にあるスイッチング素子を告知するので、容易に異常状態にあるスイッチング素子を特定して対応する措置を迅速にはかることができる。
【0294】
請求項9記載の発明によれば、駆動制御信号出力手段は、複数のスイッチング素子を駆動するための複数の駆動制御信号を出力し、暴走状態判別手段は、駆動制御信号出力手段が暴走状態にあるか否かを判別し、溶断制御手段は、暴走状態判別手段の判別結果に基づいて、ヒューズ素子を溶断するので、事故が発生する前にシステムを停止することができ、被害を拡大することなく、迅速な対応をはかることができる。
【0295】
請求項10記載の発明によれば、逆転監視手段は、ガス漏れ警報設定値が操作鎖錠警報設定値と逆転しないように監視するので、常に最適なガス漏れ警報及び操作鎖錠警報を行うことができ、システムの信頼性が向上する。
請求項11記載の発明によれば、請求項1乃至請求項10のいずれかに記載の発明の効果に加えて、ユーザが表示選択操作を途中でやめてしまった場合でも、表示復帰手段により、データ選択手段によるデータの選択が所定時間以上なされなかった場合に、予め設定した複数のデータのうちのいずれか一のデータを表示手段に表示させることとなるので、操作性を向上させることができる。
【0296】
請求項12記載の発明によれば、請求項11記載の発明の効果に加えて、表示復帰手段において設定されているデータは、絶縁性ガス圧力の温度補償を行った補正圧力に対応する補正圧力データであるので、ユーザの操作性を妨げることなく、補正圧力データを標準的に表示することができ、使い勝手が向上する。
【0297】
請求項13記載の発明によれば、請求項11または請求項12記載の発明の効果に加えて、通常動作状態において、ユーザが操作可能な手段は、データ選択手段のみであるので、誤操作による弊害が生じず、誤操作によるシステムダウンなどの弊害が生じることもない。
【0298】
請求項14記載の発明によれば、アンプ異常判別工程は、変動成分検出工程において、検出した変動成分に基づいて圧力検出信号増幅アンプの異常を判別するので、確実にアンプの異常を検出して、絶縁性ガスの状態監視装置の信頼性を向上することができる。
【0299】
請求項15記載の発明によれば、請求項14記載の発明の効果に加えて、アンプ異常表示工程は、アンプ異常判別手段の判別に基づいて、圧力検出信号増幅アンプが異常状態にあることを表示するので、故障個所を容易に特定し、メンテナンスを容易とすることができる。
【0300】
請求項16記載の発明によれば、請求項14または請求項15記載の発明の効果に加えて、アンプ異常警報出力工程は、アンプ異常判別手段の判別に基づいて、圧力検出信号増幅アンプが異常状態にある旨の警報を出力するので、ユーザは確実にアンプの異常を知ることができ、対応する措置を迅速にとることができ、信頼性が高いシステムを構築することが可能となる。
【0301】
請求項17記載の発明によれば、請求項14乃至請求項16のいずれかに記載の発明の効果に加えて、圧力センサ異常表示工程は、アンプ状態判別工程における判別の結果に基づいて、圧力検出信号が基準圧力検出信号範囲に含まれない場合に圧力センサが異常状態にあることを表示するので、圧力センサの異常に伴うシステムの信頼性低下を防止することができるとともに、メンテナンス性を向上させることができる。
【0302】
請求項18記載の発明によれば、スイッチング素子状態判別工程は、駆動制御信号及びスイッチング素子の駆動状態に基づいて当該駆動制御信号に対応するスイッチング素子が異常状態にあるか否かを判別するので、確実、かつ、迅速に異常を検出することができ、迅速なメンテナンス作業が行える。
【0303】
請求項19記載の発明によれば、請求項18記載の絶縁性ガスの状態監視装置の制御方法において、溶断制御工程は、スイッチング素子状態判別工程の判別結果に基づいて、異常状態が短絡状態であるスイッチング素子について、対応する各スイッチング素子に電源からの駆動電源を供給するためのヒューズ素子を溶断するので、一部の故障によりシステム全体に影響が及ぶことはないとともに、メンテナンス性が向上してユーザの使い勝手も向上する。
【0304】
請求項20記載の発明によれば、請求項18または請求項19記載の発明の効果に加えて、スイッチング素子異常告知工程は、いずれかのスイッチング素子が異常状態にあることを告知するので、システムが異常状態にあることを容易に知ることにより対応する措置を迅速にとることができ、システムの信頼性及びメンテナンス性が向上する。
【0305】
請求項21記載の発明によれば、請求項20記載の発明の効果に加えて、異常スイッチング素子特定告知工程は、異常状態にあるスイッチング素子を告知するので、容易に異常状態にあるスイッチング素子を特定して対応する措置を迅速にはかることができる。
【0306】
請求項22記載の発明によれば、溶断制御工程は、暴走状態判別手段の判別結果に基づいて、対応する各スイッチング素子に電源からの駆動電源を供給するためのヒューズ素子を溶断するので、事故が発生する前にシステムを停止することができ、被害を拡大することなく、迅速な対応をはかることができる。
【0307】
請求項23記載の発明によれば、逆転監視工程は、ガス漏れ警報設定値が操作鎖錠警報設定値と逆転しないように監視するので、常に最適なガス漏れ警報及び操作鎖錠警報を行うことができ、システムの信頼性が向上する。
請求項24記載の発明によれば、請求項14乃至請求項23のいずれかに記載の発明の効果に加えて、表示復帰工程は、データ選択工程におけるデータの選択が所定時間以上なされなかった場合に、予め設定した複数のデータのうちのいずれか一のデータを表示手段に表示させるので、自動的に表示を復帰させることができ、操作性を向上させることができる。
【0308】
請求項25記載の発明によれば、請求項24記載の発明の効果に加えて、表示復帰工程において設定されているデータは、絶縁性ガス圧力の温度補償を行った補正圧力に対応する補正圧力データであるので、操作性を犠牲にすることなく、常に補正圧力データを表示させることができるので、ユーザの操作性を妨げることなく、補正圧力データを標準的に表示することができ、使い勝手が向上する。
【図面の簡単な説明】
【図1】絶縁性ガスであるSF6 ガスの状態監視システムの概要構成図である。
【図2】ゲージ箱の取り付け状態の説明図である。
【図3】SF6 ガスの状態監視装置の概要構成ブロック図である。
【図4】警報出力リレー部の概要構成図である。
【図5】P/V変換器及びT/V変換器の詳細構成ブロック図である。
【図6】実施形態のメモリアドレス配置の説明図である。
【図7】SF6ガスの状態監視装置の部分破断正面図である。
【図8】SF6 ガスの状態監視装置のカバーを取り外した状態の正面図である。
【図9】複合センサの断面図である。
【図10】メイン処理フローチャート(その1)である。
【図11】メイン処理フローチャート(その2)である。
【図12】メイン処理フローチャート(その3)である。
【図13】オン時出力部異常診断処理フローチャートである。
【図14】第1タイマ割込の処理フローチャート(その1)である。
【図15】第1タイマ割込の処理フローチャート(その2)である。
【図16】リングバッファメモリのデータ格納状態説明図である。
【図17】SP検出処理の処理フローチャート(その1)である。
【図18】SP検出処理の処理フローチャート(その2)である。
【図19】SP検出処理の処理フローチャート(その3)である。
【図20】設定圧力上昇率の説明図である。
【図21】モル容積算出処理フローチャートである。
【図22】補正圧力(標準圧力)算出処理フローチャートである。
【図23】オフ時出力部異常診断処理フローチャートである。
【図24】 実施形態の表示状態の説明図である。
【図25】キー入力処理フローチャート(その1)である。
【図26】キー入力処理フローチャート(その2)である。
【図27】キー入力処理フローチャート(その3)である。
【図28】異常検出時の表示状態説明図である。
【図29】第1背景技術の説明図である。
【図30】温度補償圧力スイッチの動作特性の説明図である。
【図31】第1従来例の説明図である。
【図32】第2従来例の説明図である。
【図33】第3従来例の説明図である。
【図34】第3従来例の動作説明図である。
【図35】第3従来例の動作特性説明図である。
【図36】第4従来例の説明図である。
【図37】第2従来例の問題点の説明図である。
【図38】従来の圧力容器内の気体圧力の異常上昇時の安全装置の説明図である。
【符号の説明】
1 SF6 ガスの状態監視システム
2 圧力容器またはGIS(あるいはGIL)
3 圧力導入管
4 第1アナログ信号伝送ライン
5 第1ディジタル信号伝送ライン
6 SF6 ガスの状態監視装置
7 アナログ系ローカル監視装置
8 ディジタル系ローカル監視装置
9 第2アナログ信号伝送ライン
10 第1中央監視装置
11 第2ディジタル信号伝送ライン
12 第2中央監視装置
13 電気機器回路操作部
23 切替設定部
24 コントロール部
25 表示部
26 警報出力部
27 アナログ信号伝送部
28 端子台
29 絶縁型DC/DCコンバータ
30 リセット信号出力部
31 圧力センサ
32 P/V変換器
33 温度センサ
34 T/V変換器
35 表示切替スイッチ
36 設定切替スイッチ
37 ガス漏れ警報設定部
38 衝撃圧力検出設定部
39 マニュアル復帰スイッチ
53 外部ウォッチドッグタイマ
54 ヒューズ素子溶断部

Claims (25)

  1. 圧力容器内に密封された絶縁性ガスの圧力を検出し、圧力検出信号を出力する圧力センサと、前記圧力検出信号が信号入力端子に入力され、圧力基準信号が圧力基準信号入力端子に入力され、前記圧力検出信号を増幅して増幅圧力検出信号として出力する圧力検出信号増幅アンプとが接続され、前記絶縁性ガスの圧力状態を監視する絶縁性ガスの状態監視装置において、
    前記圧力基準信号入力端子に自己診断信号を入力する自己診断信号出力手段と、
    前記自己診断信号が入力されることに起因して発生する前記増幅圧力検出信号の変動成分を検出する変動成分検出手段と、
    前記検出した変動成分に基づいて前記圧力検出信号増幅アンプの異常を判別するアンプ異常判別手段と、
    を備えたことを特徴とする絶縁性ガスの状態監視装置。
  2. 請求項1記載の絶縁性ガスの状態監視装置において、
    前記アンプ異常判別手段の判別に基づいて、前記圧力検出信号増幅アンプが異常状態にあることを表示するアンプ異常表示手段を備えたことを特徴とする絶縁性ガスの状態監視装置。
  3. 請求項1または請求項2記載の絶縁性ガスの状態監視装置において、
    前記アンプ異常判別手段の判別に基づいて、前記圧力検出信号増幅アンプが異常状態にある旨の警報を出力するアンプ異常警報出力手段を備えたことを特徴とする絶縁性ガスの状態監視装置。
  4. 請求項1乃至請求項3のいずれかに記載の絶縁性ガスの状態監視装置において、
    前記アンプ異常判別手段の判別により前記圧力検出信号増幅アンプが正常であり、かつ、前記圧力検出信号が所定の基準圧力検出信号範囲に含まれるか否かを判別するアンプ状態判別手段と、
    前記判別の結果に基づいて、前記圧力検出信号が前記基準圧力検出信号範囲に含まれない場合に前記圧力センサが異常状態にあることを表示する圧力センサ異常表示手段と、
    を備えたことを特徴とする絶縁性ガスの状態監視装置。
  5. 複数のスイッチング素子を絶縁性ガスの状態に応じて制御する絶縁性ガスの状態監視装置において、
    前記複数のスイッチング素子を駆動するための複数の駆動制御信号を出力する駆動制御信号出力手段と、
    各前記スイッチング素子の駆動状態を検出し複数の駆動検出信号を出力する駆動状態検出手段と、
    前記駆動制御信号と当該駆動制御信号に対応する前記駆動検出信号に基づいて当該駆動制御信号に対応する前記スイッチング素子が異常状態にあるか否かを判別するスイッチング素子状態判別手段と、
    を備えたことを特徴とする絶縁性ガスの状態監視装置。
  6. 請求項5記載の絶縁性ガスの状態監視装置において、
    対応する各前記スイッチング素子に電源からの駆動電源を供給するためのヒューズ素子と、
    前記スイッチング素子状態判別手段の判別結果に基づいて、異常状態が短絡状態であるスイッチング素子について、前記ヒューズ素子を溶断する溶断制御手段と、
    を備えたことを特徴とする絶縁性ガスの状態監視装置。
  7. 請求項5または請求項6記載の絶縁性ガスの状態監視装置において、
    いずれかのスイッチング素子が異常状態にあることを告知するスイッチング素子異常告知手段を備えたことを特徴とする絶縁性ガスの状態監視装置。
  8. 請求項7記載の絶縁性ガスの状態監視装置において、
    異常状態にあるスイッチング素子を告知する異常スイッチング素子特定告知手段を備えたことを特徴とする絶縁性ガスの状態監視装置。
  9. 複数のスイッチング素子を絶縁性ガスの状態に応じて制御する絶縁性ガスの状態監視装置において、
    前記複数のスイッチング素子を駆動するための複数の駆動制御信号を出力する駆動制御信号出力手段と、
    前記駆動制御信号出力手段が暴走状態にあるか否かを判別する暴走状態判別手段と、
    対応する各前記スイッチング素子に電源からの駆動電源を供給するためのヒューズ素子と、
    前記暴走状態判別手段の判別結果に基づいて、前記ヒューズ素子を溶断する溶断制御手段と、
    を備えたことを特徴とする絶縁性ガスの状態監視装置。
  10. 絶縁性ガスの異常圧力状態を検出する絶縁性ガスの状態監視装置において、
    前記異常圧力状態を検出しガス漏れ警報を出力するか否かを判別するための、ガス漏れ警報設定値を設定するガス漏れ警報設定値設定手段と、
    前記異常圧力状態を検出し操作鎖錠警報を出力するか否かを判別するための、操作鎖錠警報設定値を設定する操作鎖錠警報設定値設定手段と、
    前記ガス漏れ警報設定値が前記操作鎖錠警報設定値と逆転しないように監視する逆転監視手段と
    を備えたことを特徴とする絶縁性ガスの状態監視装置。
  11. 請求項1乃至請求項10のいずれかに記載の絶縁性ガスの状態監視装置において、
    前記絶縁性ガスの状態に対応する複数のデータのうち表示を希望するいずれか一のデータをユーザが選択するためのデータ選択手段と、
    前記データ選択手段により選択されたいずれか一の前記データに基づいて表示する表示手段と、
    前記データ選択手段による前記データの選択が所定時間以上なされなかった場合に、予め設定した前記複数のデータのうちのいずれか一のデータを前記表示手段に表示させるための表示復帰手段と、
    を備えたことを特徴とする絶縁性ガスの状態監視装置。
  12. 請求項11記載の絶縁性ガスの状態監視装置において、
    前記表示復帰手段において設定されているデータは、前記絶縁性ガス圧力の温度補償を行った補正圧力に対応する補正圧力データであることを特徴とする絶縁性ガスの状態監視装置。
  13. 請求項11または請求項12記載の絶縁性ガスの状態監視装置において、
    通常動作状態において、ユーザが操作可能な手段は、前記データ選択手段のみであることを特徴とする絶縁性ガスの状態監視装置。
  14. 圧力容器内に密封された絶縁性ガスの圧力を検出し、圧力検出信号を出力する圧力センサと、前記圧力検出信号が信号入力端子に入力され、圧力基準信号が圧力基準信号入力端子に入力され、前記圧力検出信号を増幅して増幅圧力検出信号として出力する圧力検出信号増幅アンプとが接続され、前記絶縁性ガスの圧力状態を監視する絶縁性ガスの状態監視装置の制御方法において、
    前記圧力基準信号入力端子に自己診断信号を入力する自己診断信号出力工程と、
    前記自己診断信号が入力されることに起因して発生する前記増幅圧力検出信号の変動成分を検出する変動成分検出工程と、
    前記検出した変動成分に基づいて前記圧力検出信号増幅アンプの異常を判別するアンプ異常判別工程と、
    を備えたことを特徴とする絶縁性ガスの状態監視装置の制御方法。
  15. 請求項14記載の絶縁性ガスの状態監視装置の制御方法において、
    前記アンプ異常判別手段の判別に基づいて、前記圧力検出信号増幅アンプが異常状態にあることを表示するアンプ異常表示工程を備えたことを特徴とする絶縁性ガスの状態監視装置の制御方法。
  16. 請求項14または請求項15記載の絶縁性ガスの状態監視装置の制御方法において、
    前記アンプ異常判別手段の判別に基づいて、前記圧力検出信号増幅アンプが異常状態にある旨の警報を出力するアンプ異常警報出力工程を備えたことを特徴とする絶縁性ガスの状態監視装置の制御方法。
  17. 請求項14乃至請求項16のいずれかに記載の絶縁性ガスの状態監視装置の制御方法において、
    前記アンプ異常判別工程における判別により前記圧力検出信号増幅アンプが正常であり、かつ、前記圧力検出信号が所定の基準圧力検出信号範囲に含まれるか否かを判別するアンプ状態判別工程と、
    前記判別の結果に基づいて、前記圧力検出信号が前記基準圧力検出信号範囲に含まれない場合に前記圧力センサが異常状態にあることを表示する圧力センサ異常表示工程と、
    を備えたことを特徴とする絶縁性ガスの状態監視装置の制御方法。
  18. 複数のスイッチング素子を絶縁性ガスの状態に応じて制御する絶縁性ガスの状態監視装置の制御方法において、
    前記複数のスイッチング素子を駆動するための複数の駆動制御信号を出力する駆動制御信号出力工程と、
    各前記スイッチング素子の駆動状態を検出する駆動状態検出工程と、
    前記駆動制御信号及び前記スイッチング素子の駆動状態に基づいて当該駆動制御信号に対応する前記スイッチング素子が異常状態にあるか否かを判別するスイッチング素子状態判別工程と、
    を備えたことを特徴とする絶縁性ガスの状態監視装置の制御方法。
  19. 請求項18記載の絶縁性ガスの状態監視装置の制御方法において、
    前記スイッチング素子状態判別工程の判別結果に基づいて、異常状態が短絡状態であるスイッチング素子について、対応する各前記スイッチング素子に電源からの駆動電源を供給するためのヒューズ素子を溶断する溶断制御工程を備えたことを特徴とする絶縁性ガスの状態監視装置の制御方法。
  20. 請求項18または請求項19記載の絶縁性ガスの状態監視装置の制御方法において、
    いずれかのスイッチング素子が異常状態にあることを告知するスイッチング素子異常告知工程を備えたことを特徴とする絶縁性ガスの状態監視装置の制御方法。
  21. 請求項20記載の絶縁性ガスの状態監視装置の制御方法において、
    異常状態にあるスイッチング素子を告知する異常スイッチング素子特定告知工程を備えたことを特徴とする絶縁性ガスの状態監視装置の制御方法。
  22. 複数のスイッチング素子を絶縁性ガスの状態に応じて制御する絶縁性ガスの状態監視装置の制御方法において、
    前記複数のスイッチング素子を駆動するための複数の駆動制御信号を出力する駆動制御信号出力工程と、
    前記駆動制御信号出力工程における駆動制御信号の出力状態が非制御状態にあるか否かを判別する暴走状態判別工程と、
    前記暴走状態判別手段の判別結果に基づいて、対応する各前記スイッチング素子に電源からの駆動電源を供給するためのヒューズ素子を溶断する溶断制御工程と、
    を備えたことを特徴とする絶縁性ガスの状態監視装置の制御方法。
  23. 絶縁性ガスの異常圧力状態を検出する絶縁性ガスの状態監視装置の制御方法において、
    前記異常圧力状態を検出しガス漏れ警報を出力するか否かを判別するための、ガス漏れ警報設定値を設定するガス漏れ警報設定値設定工程と、
    前記異常圧力状態を検出し操作鎖錠警報を出力するか否かを判別するための、操作鎖錠警報設定値を設定する操作鎖錠警報設定値設定工程と、
    前記ガス漏れ警報設定値が前記操作鎖錠警報設定値と逆転しないように監視する逆転監視工程と
    を備えたことを特徴とする絶縁性ガスの状態監視装置の制御方法。
  24. 請求項14乃至請求項23のいずれかに記載の絶縁性ガスの状態監視装置の制御方法において、
    前記絶縁性ガスの状態に対応する複数のデータのうち表示を希望するいずれか一のデータをユーザが選択するためのデータ選択工程と、
    前記データ選択工程において選択されたいずれか一の前記データに基づいて表示する表示工程と、
    前記データ選択工程における前記データの選択が所定時間以上なされなかった場合に、予め設定した前記複数のデータのうちのいずれか一のデータを前記表示手段に表示させるための表示復帰工程と、
    を備えたことを特徴とする絶縁性ガスの状態監視装置の制御方法。
  25. 請求項24記載の絶縁性ガスの状態監視装置の制御方法において、
    前記表示復帰工程において設定されているデータは、前記絶縁性ガス圧力の温度補償を行った補正圧力に対応する補正圧力データであることを特徴とする絶縁性ガスの状態監視装置の制御方法。
JP27176897A 1997-10-03 1997-10-03 絶縁性ガスの状態監視装置及び絶縁性ガスの状態監視装置の制御方法 Expired - Fee Related JP3771691B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27176897A JP3771691B2 (ja) 1997-10-03 1997-10-03 絶縁性ガスの状態監視装置及び絶縁性ガスの状態監視装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27176897A JP3771691B2 (ja) 1997-10-03 1997-10-03 絶縁性ガスの状態監視装置及び絶縁性ガスの状態監視装置の制御方法

Publications (2)

Publication Number Publication Date
JPH11111122A JPH11111122A (ja) 1999-04-23
JP3771691B2 true JP3771691B2 (ja) 2006-04-26

Family

ID=17504584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27176897A Expired - Fee Related JP3771691B2 (ja) 1997-10-03 1997-10-03 絶縁性ガスの状態監視装置及び絶縁性ガスの状態監視装置の制御方法

Country Status (1)

Country Link
JP (1) JP3771691B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392336B1 (ko) * 2000-10-23 2003-07-22 주식회사 효성 가스 절연 전력 기기의 지락 사고구간 표시장치
DE10242443B4 (de) * 2002-09-11 2004-11-04 Comde Gmbh Überwachungsanordnung für Hochspannungsschaltanlagen
WO2010086024A1 (de) * 2009-01-30 2010-08-05 Wika Alexander Wiegand Gmbh & Co.Kg Messeinrichtung zum bestimmen der füllmenge eines sf6-gases in einer isolierkammer oder einer schaltanlage und dementsprechendes verfahren
KR101128421B1 (ko) 2010-06-30 2012-03-23 한국전력공사 가스절연개폐장치의 순간 압력상승 감지 스위치 및 제어 방법
CN103675206B (zh) * 2013-11-27 2015-06-10 中国船舶重工集团公司第七一八研究所 一种检测六氟化硫的系统
CN109213214B (zh) * 2017-07-03 2024-04-02 国网安徽省电力公司电力科学研究院 一种混合气体密度控制器
CN109088334B (zh) * 2018-08-31 2024-04-02 科润智能控制股份有限公司 一种美式光伏箱式变电站箱体
EP3621096A1 (en) * 2018-09-07 2020-03-11 Siemens Aktiengesellschaft Gas monitoring system for gas-insulated switchgears
CN112213634B (zh) * 2020-10-26 2023-05-09 浙江天正电气股份有限公司 一种检测断路器运行状态的方法及装置
CN112446618B (zh) * 2020-11-27 2023-08-29 中国南方电网有限责任公司超高压输电公司检修试验中心 一种多组分指标联合研判的开关设备状态评价方法及装置

Also Published As

Publication number Publication date
JPH11111122A (ja) 1999-04-23

Similar Documents

Publication Publication Date Title
JP3771691B2 (ja) 絶縁性ガスの状態監視装置及び絶縁性ガスの状態監視装置の制御方法
US6766835B1 (en) Tank monitor system
US7801648B2 (en) Automatic trip device and control method thereof
EP1085534B1 (en) Intelligent analysis system and method for fluid-filled electrical equipment
CN104566838B (zh) 空调器的故障检测方法和装置
US6772598B1 (en) Refrigerant leak detection system
CN107631407B (zh) 空调器的接线故障检测方法及装置、空调器
JP2001235498A (ja) 流体充填電気装置の知能型解析システム及び方法
JPH11264499A (ja) オイルミスト発生システム及び方法
CN206541771U (zh) 一种接点可保持的六氟化硫气体密度继电器
JP3621812B2 (ja) Sf6 ガスの状態監視装置及びsf6 ガスの状態監視装置の制御方法
US5537858A (en) System for the nonintrusive monitoring of electrical circuit breaker vessel pressure
WO2022271599A1 (en) Leak detection system for vehicle battery environment and related methodology
KR200491236Y1 (ko) 히터 온도 조절장치
JP3621814B2 (ja) Sf6ガスの状態監視装置及びsf6ガスの状態監視装置の制御方法
CN116047280A (zh) 一种智能气体密度继电器装置
KR20190014405A (ko) 유입변압기 진단 장치 및 그 설치 방법
KR102428822B1 (ko) 콘덴서 전원의 결상 및 열화 감지시스템
CN217304184U (zh) 温度测量装置及设备监控系统
CN112269125A (zh) 压力开关在线校验方法
CN220957081U (zh) 阀门检测装置和液冷系统
CN108871621A (zh) 一种变电站指针式主变温度系统故障检测方法及装置
JP2004177213A (ja) 異常対応型ヘリウムリークディテクタ
CN218496269U (zh) 一种消防感温电缆报警检测工具
KR102342502B1 (ko) 열화탐지 계전기 및 열화탐지 계전기의 열화감지방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees