JP3771532B2 - Tillage equipment - Google Patents

Tillage equipment Download PDF

Info

Publication number
JP3771532B2
JP3771532B2 JP2002343278A JP2002343278A JP3771532B2 JP 3771532 B2 JP3771532 B2 JP 3771532B2 JP 2002343278 A JP2002343278 A JP 2002343278A JP 2002343278 A JP2002343278 A JP 2002343278A JP 3771532 B2 JP3771532 B2 JP 3771532B2
Authority
JP
Japan
Prior art keywords
tractor
rotary
speed
tilling
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002343278A
Other languages
Japanese (ja)
Other versions
JP2003225004A (en
Inventor
孝明 須藤
治 中川
東光 高橋
隆司 平野
勝 山本
光登志 宮崎
哲也 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Yanmar Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd, Yanmar Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP2002343278A priority Critical patent/JP3771532B2/en
Publication of JP2003225004A publication Critical patent/JP2003225004A/en
Application granted granted Critical
Publication of JP3771532B2 publication Critical patent/JP3771532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、耕耘作業を行う耕耘ロータリ作業機をトラクタによって牽引する耕耘装置に関する。
【0002】
【従来の技術】
従来、トラクタの後側に耕耘ロータリ作業機を昇降自在に装設し、このロータリ作業機によって耕耘作業を行うが、耕耘作業時のトラクタ走行速度を速くしてできるだけ早く作業を終了することが望まれていた。
【0003】
【発明が解決しようとする課題】
前記従来技術は、走行速度を早くすることにより耕耘作業能率を向上させることができるが、圃場の枕地でトラクタを方向転換時、操向ハンドル及びブレーキペダルの各操作並びにロータリ作業機上昇操作に加えて走行速度を減速させるアクセルレバーまたは変速レバー操作を行う必要がある。
しかし乍ら、前記各操作を作業者が行って走行速度を減速させかつ方向転換させることにより、操作が煩雑になり易い。また方向転換のための走行速度の減速タイミングまたは耕耘作業中止タイミング及び再開タイミングが早くなったり遅れたりして枕地幅が不均一に形成され易い。
一般にトラクタの1往復で耕耘が行える大きさ以下の枕地幅が好ましいが、走行速度を必要以上に早く減速した場合、方向転換に必要な幅以上に枕地幅が大きく形成されたり、枕地に到達するまでの時間が長くなって作業能率が低下する不具合が生じると共に、走行速度を減速するタイミングが遅れた場合、方向転換に必要な幅以上に圃場の端部にトラクタが接近し、前進走行だけで方向転換を行えなくなり、前進と後進の切換による面倒な方向転換を行う必要がある。このように、耕耘作業時の走行速度を高速にすることにより、圃場枕地でのトラクタの方向転換操作が容易に行えなくなる等の問題が生じる。
【0004】
【課題を解決するための手段】
然るに、本発明は、前走行輪(4)を装設させるフロントアクスルケース(75)に油圧ステアリングシリンダ(76)を設け、また前走行輪(4)の方向転換角を検出する切れ角検出ロッド(79)を前記油圧ステアリングシリンダ(76)に平行に設け、該切れ角検出ロッド(79)に溝部(81)を設け、該溝部(81)に嵌入する鋼球(82)を設け、該鋼球(82)が押上げられてステアリングセンサ(83)が枕地方向転換に必要な旋回角度であることを検出する一方、切れ角検出ロッド(79)の直進位置復帰によって鋼球(82)が溝部(81)に戻ることによってトラクタ(1)の方向転換が終了したことをステアリングセンサ(83)が検出する構造とし、前記ステアリングセンサ(83)をコントローラ(69)に接続させ、操向ハンドル(5)の切り角により、枕地方向転換に必要な旋回角度であることを、該ステアリングセンサ(83)が検出し、コントローラ(69)によって、エンジン出力回路(64)のエンジン回転数下げ動作により走行速度を減速し、方向転換毎に略同一タイミングでトラクタ(1)の走行速度を減速するので、圃場枕地にトラクタが到達したときに操向ハンドルによって旋回操作を行うことにより、操向ハンドルの旋回操作をセンサが検出し、切換手段によってトラクタ走行速度を自動的に減速させるから、往復走行により耕耘作業を行う圃場枕地での方向転換時、方向転換毎に略同一タイミングでトラクタ走行速度が減速され、従来よりも高速走行で耕耘を行っても、従来と同様のトラクタ方向転換操作だけでトラクタを適正速度で旋回させ得、略同一幅の枕地がトラクタの方向転換によって形成され、高速耕耘作業での方向転換操作の簡略化並びに枕地耕耘処理の簡略化などを容易に行い得るものである。
【0005】
【実施例】
以下、本発明の実施例を図面に基づいて詳述する。
図1は走行速度制御回路図、図2は全体の側面図、図3は同平面図、図4は耕耘ロータリ作業機部の側面図である。
図中(1)はトラクタであり、エンジン(2)を内設させるボンネット(3)両側に左右の前走行輪(4)(4)を装設させ、前記ボンネット(3)後部に操向ハンドル(5)を設け、該ハンドル(5)後方に運転席(6)を設置させ、運転席(6)両側外方に左右の後走行輪(7)(7)を装設させると共に、運転席(6)前側のステップ(8)に左右ブレーキペダル(9)(9)及びクラッチペダル(10)を配設させ、作業者が運転席(6)に座乗して走行移動するように構成している。
【0006】
また、前記走行輪(4)(7)を駆動するミッションケース(11)にロワリンク(12)及びトップリンク(13)を介して耕耘ロータリ作業機(14)を取付け、該作業機(14)をトラクタ(1)後側に昇降自在に装設させるもので、走行主変速レバー(15)と、前記作業機(14)を手動操作で昇降させるポジションコントロールレバー(16)と、前記作業機(14)を非作業上昇位置及び耕耘作業下降位置にワンタッチ動作で昇降させる昇降スイッチ(17)を、運転席(6)の右側に配置させると共に、走行副変速レバー(18)と、前記作業機(14)への出力を変更させるPTO変速レバー(19)を、運転席(6)の左側に配置させる。
【0007】
さらに、図4乃至図7に示す如く、前記作業機(14)の中央にギアボックス(20)を配置し、トラクタ(1)のPTO軸(21)から動力を伝えると共に、前記ギアボックス(20)側面より両側方にビーム(22)を突出し、該ビーム(22)のそれぞれの中途部に支持プレート(23)を固設し、該支持プレート(23)の前端にはロワリンク(12)を連結させ、支持プレート(23)後端にはデプスフレーム(24)の前端を枢支し、該デプスフレーム(24)後端側に左右尾輪(25)(25)を設けている。
【0008】
前記ビーム(22)の外側端にチェーンケース(26)上部とサイドサポート(27)上部が固設され、該チェーンケース(26)下部とサイドサポート(27)下部の間に耕耘爪軸(28)が横架され、該耕耘爪軸(28)上にナタ爪よりなる多数のロータリ爪(29)…が側面視で放射状に植設されると共に、該ロータリ爪(29)の回転軌跡上方がロータリカバー(30)によって覆われ、両側はサイドカバー(31)によって覆われている。そして、該耕耘爪軸(28)はギアボックス(20)内のギア、ビーム(22)内の伝動軸、チェーンケース(26)内のスプロケット及びチェーンを介して駆動され、ロータリ爪(29)…が回転されることによって耕耘ができると共に、ハンドル(32)の回転操作によって耕耘爪軸(28)軸芯を中心にロータリカバー(30)を前後に回転させることができるようにしている。
【0009】
そして、前記ビーム(22)に固定するプレート(33)を前方に突設させ、該プレート(33)前端に支持杆(34)が横架され、該支持杆(34)に取付プレート(35)が固定され、該取付プレート(35)に切断刃(36)の上部が固定されている。なお、切断刃(36)を左右幅方向でロワーリンク(12)より機外側方に4本装着すると共に、切断刃(36)の中間部は後方に湾曲させ、前後に傾斜させる切断刃(36)の直線形下部を前記ロータリ爪(29)の回転軌跡の前部内に後傾形に臨ませている。つまり、側面視において切断刃(36)の下部がロータリ爪(29)の回転軌跡の前部でオーバーラップするように配置させると共に、切断刃(36)とこれに隣り合うロータリ爪(29)の左右方向間隔は狭くして残耕ができないようにしている。但し、外側2本の切断刃(36)(36)はロータリ爪(29)と偏心爪(37)の間に設ける。また、切断刃(36)の後面とロータリカバー(30)の間には仕切板(38)が配設されている。即ち、該仕切板(38)は切断刃(36)の背面に固設されており、仕切板(38)をロータリカバー(30)に接近させて、藁や雑草等が入り込み絡み付かないようにしている。また、仕切板(38)は三角形状に構成されて、上部の辺はロータリカバー(30)の内側の形状に合わせ、前部の辺は切断刃(36)の後面の形状に合わせて密着して固定できるようにし、後部の辺は円弧状として藁等を下方へ導く形状としている。そして、仕切板(38)の幅(板厚)は切断刃(36)の幅より狭くして、藁や雑草等が絡みつかないようにしている。
【0010】
さらに、ロータリ爪(29)上側のロータリカバー(30)後端に第1支点軸(39)を介して鋼板製第1リヤカバー(40)を上下方向に揺動自在に連結させ、第1リヤカバー(40)後端にゴム製第2リヤカバー(41)前端を固定させ、下方に均し空間(42)を形成する第2リヤカバー(41)後端に鋼板製第3リヤカバー(43)前端を固定させると共に、第1リヤカバー(40)後端部の第2支点軸(44)と第3リヤカバー(43)前端部の第3支点軸(45)を左右一対のリンク(46)(46)によって連結させ、第3支点軸(45)と略同軸上に第4支点軸(47)を設け、第4支点軸(47)に第1吊下ロッド(48)下端を連結させ、第3リヤカバー(43)後端部の第5支点軸(49)に左右一対の第2吊下ロッド(50)下端を連結させ、第1リヤカバー(40)の支持体(51)に第1及び第2吊下ロッド(48)(50)上端側を昇降自在に取付け、各吊下ロッド(48)(50)と第3リヤカバー(43)によって側面視三角形を形成させ、また第2及び第3及び第5支点軸(44)(45)(49)を結ぶ線によって側面視三角形を形成させたもので、第2支点軸(44)または第3支点軸(45)を中心に第3リヤカバー(43)を上方移動させ、第2支点軸(44)及び支持体(51)の吊下ロッド(48)(50)連結部を支点とした前記カバー(43)及び各ロッド(48)(50)の両てこ機構の動作により各ロッド(48)(50)の下方突張りによって前方移動が規制される第3リヤカバー(43)を後上方に移動させ、第3リヤカバー(43)両側部が平面視で前後移動するフローティング動作を行わせる。また、第5支点軸(49)と第1リヤカバー(40)の支持体(51)間に左右一対のガスダンパ(52)を連結させたもので、全ストローク略一定のバネ定数が得られかつストロークも大きく形成できるガスダンパ(52)によって第3リヤカバー(43)を支持させ、トラクタ(1)が左右に傾いても第3リヤカバー(43)の左右均等な加圧によって耕耘面を均すことができるように構成している。
【0011】
また、前記吊下ロッド(48)(50)上端側を支持体(51)…の軸受体(53)…に遊嵌挿入させ、軸受体(53)…の上面側に当接するピン(54)…を前記ロッド(48)(50)に植設させ、前記ロッド(48)(50)の下方抜出しを防ぎ、第3リヤカバー(43)の前方移動を制限すると共に、スプリング(55)(55)を巻装させた左右一対のロッド(56)(56)下端を第1リヤカバー(40)上面に連結させ、前記ロッド(56)上端側をロータリカバー(30)の支持体(57)に摺動自在に取付け、第1リヤカバー(40)をスプリング(55)によって下方に弾圧するように構成している。
【0012】
また、前記第3リヤカバー(43)上面にレーキ支持体(58)を着脱自在に固定させ、該支持体(58)に固定させるレーキ(59)を第3リヤカバー(43)後方に延出させると共に、図6に示す如く、第2吊下ロッド(50)上端側を取付ける支持体(51)の軸(60)に前記ガスダンパ(52)上端を連結させ、第2吊下ロッド(50)とガスダンパ(52)を可及的に接近させて略平行に設けると共に、前記デプスフレーム(24)後端に支持フレーム(61)を介して左右一対の尾輪(25)(25)を取付け、左右尾輪(25)(25)間に前記レーキ(59)を配設させるもので、枕地方向転換時に畦などにレーキ(59)が衝突するのを前記尾輪(25)によって防止すると共に、路上走行または上方に持上げての保守作業などにおいてレーキ(59)左右外側のバンパとして尾輪(25)を兼用させるように構成している。
【0013】
さらに、ロータリ爪(29)の回転軌跡上端と略同じ高さまたはそれ以上に高い位置に第1支点軸(39)を取付け、耕耘作業時に第1支点軸(39)を中心にリヤカバー(40)(41)(43)が上昇することにより、ロータリ爪(29)の回転軌跡後方でリヤカバー(40)(41)(43)下方に大きな面積の均し空間(42)が形成され、リヤカバー(40)(41)(43)によって前方に押す土がロータリ爪(29)の土跳ね上げ部に至るのを防止し、高速走行での耕耘作業によるロータリ爪(29)の耕耘負荷増加を防止するもので、耕耘作業時、ロータリ爪(29)が地上に抜出する地点(A)を中心とする半径の円弧線上に、リヤカバー(40)(41)(43)が耕土によって持上げられて配置され、ロータリ爪(29)の回転軌跡の面積の約50パーセント以上の大きさの均し空間(42)をロータリ爪(29)回転軌跡後側とリヤカバー(40)(41)(43)の間に形成させ、細かい土塊または軽い土塊など小形物がロータリ爪(29)によってロータリカバー(40)(41)下面の高位置に飛散され、大きい土塊または重い土塊または切り株(稲株)など大形物がロータリ爪(29)によって低い位置に飛散され、ロータリ爪(29)の飛散による比重分離作用によって小形物が上層となり、また大形物が下層となり、上層の小形物がリヤカバー(41)(43)によって均平にされ、後方のレーキ(59)によって大形物がさらに下方に押下げられる。従って、大形物によって培土内部の通気性及び通水性が良好に保たれると共に、播種または苗移植に適した状態に培土表層部が小形物によって形成される。
【0014】
さらに、前記耕耘爪軸(28)を中心に同一円周上に90度の間隔で4本のロータリ爪(29)…を取付け、各ロータリ爪(29)先端側を交互に左右方向に向けて湾曲させ、耕耘爪軸(28)の直交平面上で4本1列のロータリ爪(29)…を耕耘爪軸(28)軸芯線方向に複数列設けるもので、左右方向で対向させるロータリ爪(29)(29)の先端軌跡間に間隙を設け、ロータリ爪(29)の左右側方湾曲幅を先端軌跡間隙の約2倍の大きさとし、左右方向のロータリ爪(29)(29)基端間隔が先端軌跡間隙の約5倍の大きさになるようにロータリ爪(29)を形成している。また、前記ロータリ爪(29)は土を切取った後に掬取る形状に湾曲させ、ロータリ爪(29)の先端湾曲部の水平分力により土を横方向に押移動させる力並びにロータリ爪(29)の弾力変形の横方向の反撥力により掬取り土を耕耘爪軸(28)軸芯と略平行な横方向に押出し、左右ロータリ爪(29)(29)先端軌跡間隙の残耕となる部位の土を破砕させ、残耕が形成されるのを防ぐ構造としたもので、従来のロータリ爪取付け本数の約70パーセントの本数のロータリ爪(29)…を取付け、ロータリ爪(29)の回転速度を従来の回転速度(1分間に約200〜400回転)と略同一とし、トラクタ(1)の走行速度を従来の走行速度(1秒間に約0.5メートル)の約2倍とし、従来に比べて耕耘負荷を増大させることなく、作業能率を約2倍にして耕耘作業を行えるように構成している。また、前記ロータリ爪(29)の土中突入地点に対し側面視で重複する位置で前記切断刃(36)を土中に突入させ、切断刃(36)の土中突入部を後方傾斜支持させ、かつ切断刃(36)の左右両面を幅を有する偏平面で形成し、牽引により切断刃(36)が土中に進入する下向きの力と、切開される土が復元力によって切断刃(36)側面に圧接する力が、切断刃(36)の抜出し抵抗力として発生し、ロータリ爪(29)の土中突入抵抗の反力と略等しいか若干大きい切断刃(36)の抜出し抵抗力により、土中突入抵抗の反力によって耕耘ロータリ作業機(14)全体が上方に持上げられるのを防ぎ、ロータリ爪(29)が土中突入によって発生する衝撃を緩和させるように構成している。なお、耕耘爪軸(28)後方側では、リヤカバー(40)(41)(43)の均平力の反力(持上げ力)に対向してロータリ爪(29)抜出し力の反力が発生し、各反力の均衡によって姿勢が安定する。
【0015】
さらに、図1に示す如く、PTO変速レバー(19)の耕耘作業操作などにより耕耘ロータリ作業機(14)が耕耘作業動作中であることを検出する作業センサ(62)と、前記昇降スイッチ(17)と、エンジン(2)の回転数を増減させる電子ガバナのモータまたはアクセルレバーを切換えるモータまたはソレノイド等によって構成するエンジン回転制御機構(63)を作動させるエンジン出力回路(64)と、ミッションケース(11)の無段変速機構(65)を作動させる走行変速回路(66)と、ロワリンク(12)を上下動させて耕耘ロータリ作業機(14)を昇降させる油圧シリンダなどの昇降機構(67)を作動させる昇降回路(68)を、マイクロコンピュータで構成するコントローラ(69)に接続させるもので、エンジン出力回路(64)によりエンジン(2)の回転数を変更させ、また走行変速回路(66)により走行速度を変更させ、また昇降回路(68)により作業機(14)支持高さを変更させるように構成している。
【0016】
さらに、図8に示す如く、第1支点軸(39)を中心に上下に回転する第1リヤカバー(40)動作を検出するポテンショメータまたはリミットスイッチ等のリヤカバーセンサ(70)をロータリカバー(30)上面に設け、図1のようにリヤカバーセンサ(70)をコントローラ(69)に接続させるもので、トラクタ(1)に耕耘ロータリ作業機(14)を昇降自在に装設させる耕耘装置において、耕耘ロータリ作業機(14)の昇降自在なリヤカバー(40)の非耕耘作業位置への下降を検出する前記センサ(70)の検出結果に基づきトラクタ(1)走行速度を減速させる切換手段であるコントローラ(69)を設けている。そして、図15のフローチャートに示す如く、畦際にトラクタ(1)が到達して作業機(14)上昇操作を行うと、リヤカバーセンサ(70)の入力によりリヤカバー(40)が最下降位置に下降し、前記作業機(14)が地上の非作業位置に持上げられたことを検出したとき、エンジン出力回路(64)のエンジン(2)回転数下げ動作により、エンジン(2)回転が低下して走行速度が減速されるもので、圃場枕地にトラクタ(1)が到達したときに耕耘ロータリ作業機(14)を上昇させる操作を行うことにより、耕耘ロータリ作業機(14)の上昇をリヤカバー(40)の下降によってセンサ(70)が検出し、コントローラ(69)によってトラクタ(1)走行速度を自動的に減速させ、往復走行により耕耘作業を行う圃場枕地での方向転換時、方向転換毎に略同一タイミングでトラクタ(1)走行速度が減速され、従来と同様のトラクタ(1)方向転換操作だけで略同一幅の枕地が形成される。一方、圃場枕地でのトラクタ(1)の方向転換を終了して作業機(14)下降操作を行うと、昇降スイッチ(17)下げ操作入力等により前記作業機(14)の下降を検出したとき、エンジン出力回路(64)のエンジン(2)回転数上げ動作により、エンジン(2)回転が増大して走行速度が増速復帰され、高速走行で耕耘作業が行われるように構成している。
【0017】
さらに、図9、図10に示す如く、前記ロワリンク(12)を油圧力によって上下させるリフトアーム(71)と、該アーム(71)の上昇または下降動作をフィードバックして油圧供給を中止させるフィードバックリンク機構(72)と、リフトアーム(71)の上昇及び下降動作をフィードバックリンク機構(72)を介して検出するリフトアーム上げセンサ(73)及びリフトアーム下げセンサ(74)を設け、各センサ(73)(74)をコントローラ(69)に接続させるもので、トラクタ(1)に耕耘ロータリ作業機(14)を昇降自在に装設させる耕耘装置において、耕耘ロータリ作業機(14)を昇降させるリフトアーム(71)の非耕耘作業位置への上昇を検出する前記センサ(73)の検出結果に基づきトラクタ(1)走行速度を減速させる切換手段であるコントローラ(69)を設けている。そして、図16のフローチャートに示す如く、畦際にトラクタ(1)が到達して作業機(14)上昇操作を行うと、リフトアーム上げセンサ(73)入力によりリフトアーム(71)が上昇して前記作業機(14)が地上の非作業位置に持上げられたことを検出したとき、エンジン出力回路(64)のエンジン(2)回転数下げ動作により、エンジン(2)回転が低下して走行速度が減速されるもので、圃場枕地にトラクタ(1)が到達したときに耕耘ロータリ作業機(14)を上昇させる操作を行うことにより、耕耘ロータリ作業機(14)を地上に持上げるリフトアーム(71)の上昇動作をセンサ(73)が検出し、コントローラ(69)によってトラクタ(1)走行速度を自動的に減速させ、往復走行により耕耘作業を行う圃場枕地での方向転換時、方向転換毎に略同一タイミングでトラクタ(1)走行速度が減速され、従来と同様のトラクタ(1)方向転換操作だけで略同一幅の枕地が形成される。一方、圃場枕地でのトラクタ(1)の方向転換を終了して作業機(14)下降操作を行うと、リフトアーム下げセンサ(74)入力により前記作業機(14)の下降を検出したとき、エンジン出力回路(64)のエンジン(2)回転数上げ動作により、エンジン(2)回転が増大して走行速度が増速復帰され、高速走行で耕耘作業が行われるように構成している。
【0018】
さらに、図11、図12、図13に示す如く、前走行輪(4)を装設させるフロントアクスルケース(75)に油圧ステアリングシリンダ(76)を設け、前走行輪(4)を方向転換させるタイロッド(77)を前記シリンダ(76)のピストン(78)に連結させ、また前走行輪(4)の方向転換角を検出する切れ角検出ロッド(79)を前記ケース(75)に設け、ハンドル(5)を回転させてシリンダ(76)を作動させることにより、ピストン(78)が退入して枕地方向転換のためのトラクタ(1)の所定以上の旋回角度でタイロッド(77)がプレート(80)に当接して切れ角検出ロッド(79)を摺動させ、該ロッド(79)の溝部(81)の鋼球(82)(82)が押上げられてステアリングセンサ(83)が枕地方向転換に必要な旋回角度であることを検出する一方、切れ角検出ロッド(79)の直進位置復帰によって鋼球(82)が溝部(81)に戻ることによってトラクタ(1)方向転換が終了したことをステアリングセンサ(83)が検出する構造であり、前記ステアリングセンサ(83)をコントローラ(69)に接続させるもので、トラクタ(1)に耕耘ロータリ作業機(14)を昇降自在に装設させる耕耘装置において、操向ハンドル(5)の切り角により耕耘ロータリ作業機(14)の耕耘作業中止状態を検出する前記センサ(83)の検出結果に基づきトラクタ(1)走行速度を減速させる切換手段であるコントローラ(69)を設けている。
そして、図17のフローチャートに示す如く、畦際にトラクタ(1)が到達して操向ハンドル(5)旋回操作を行うと、前走行輪(4)が耕耘作業時以上に大きく方向転換されたことを検出するステアリングセンサ(83)入力により、ハンドル(5)操向角度が所定以上で方向転換を行うことを検出したとき、昇降スイッチ(17)上げ操作により前記作業機(14)が地上の非作業位置に持上げられた状態となり、エンジン出力回路(64)のエンジン(2)回転数下げ動作により、エンジン(2)回転が低下して走行速度が減速されるもので、圃場枕地にトラクタ(1)が到達したときに操向ハンドル(5)によって旋回操作を行うことにより、操向ハンドル(5)の旋回操作によって耕耘作業の中止をセンサ(83)が検出し、コントローラ(69)によってトラクタ(1)走行速度を自動的に減速させ、往復走行により耕耘作業を行う圃場枕地での方向転換時、方向転換毎に略同一タイミングでトラクタ(1)走行速度が減速され、従来よりも約2倍の高速走行で耕耘を行っても、従来と同様のトラクタ(1)方向転換操作だけでトラクタ(1)を適正速度で旋回させ、略同一幅の枕地がトラクタ(1)の方向転換によって形成される。一方、圃場枕地でのトラクタ(1)の方向転換を終了して作業機(14)を下降操作し操向ハンドル(5)を直進操作すると、ステアリングセンサ(83)入力により前記作業機(14)を着地させるトラクタ(1)の直進移動が検出され、エンジン出力回路(64)のエンジン(2)回転数上げ動作により、エンジン(2)回転が増大して走行速度が増速復帰され、高速走行で耕耘作業が行われるように構成している。
【0019】
さらに、図14に示す如く、左右ブレーキペダル(9)(9)の踏込み操作を夫々検出する左右ブレーキセンサ(84)(84)を設け、該センサ(84)(84)をコントローラ(69)に接続させ、圃場枕地で方向転換時、旋回内側のブレーキペダル(9)操作による旋回内側の後走行輪(7)の制動を前記センサ(84)によって検出するもので、トラクタ(1)に耕耘ロータリ作業機(14)を昇降自在に装設させる耕耘装置において、ブレーキペダル(9)操作により耕耘ロータリ作業機(14)の耕耘作業中止状態を検出する前記センサ(84)の検出結果に基づきトラクタ(1)走行速度を減速させる切換手段であるコントローラ(69)を設けている。そして、図18のフローチャートに示す如く、畦際に到達して左右いずれか一方の旋回内側のブレーキペダル(9)を踏んで旋回操作すると、左右ブレーキセンサ(84)(84)入力により、左右ブレーキセンサ(84)(84)の一方がオンになって耕耘作業中止及び方向転換開始を検出したとき、昇降スイッチ(17)上げ操作により前記作業機(14)が地上の非作業位置に持上げられた状態となり、エンジン出力回路(64)のエンジン(2)回転数下げ動作により、エンジン(2)回転が低下して走行速度が減速されるもので、圃場枕地にトラクタ(1)が到達したときに左右ブレーキペダル(9)(9)のいずれか旋回内側のブレーキペダル(9)操作を行うことにより、旋回内側の走行制動を行う旋回内側のブレーキペダル(9)操作によって耕耘作業の中止をセンサ(84)が検出し、コントローラ(69)によってトラクタ(1)走行速度を自動的に減速させ、往復走行により耕耘作業を行う圃場枕地での方向転換時、方向転換毎に略同一タイミングでトラクタ(1)走行速度が減速され、従来と同様のトラクタ(1)方向転換操作だけで略同一幅の枕地が形成される。一方、圃場枕地でのトラクタ(1)の方向転換を終了して作業機(14)を下降操作して直進を再開すると、ブレーキセンサ(84)のブレーキ解除入力により前記作業機(14)の下降により直進を再開して耕耘作業を行うことを検出したとき、エンジン出力回路(64)のエンジン(2)回転数上げ動作により、エンジン(2)回転が増大して走行速度が増速復帰され、高速走行で耕耘作業が行われるように構成している。
【0020】
さらに、図1に示す如く、前記耕耘ロータリ作業機(14)による耕耘作業中に比べて該作業機(14)を持上げて耕耘作業を中止したときにエンジン(2)出力が負荷減少により増大することを検出するエンジン出力センサ(85)を設け、該センサ(85)をコントローラ(69)に接続させるもので、トラクタに耕耘ロータリ作業機を昇降自在に装設させる耕耘装置において、エンジン出力変化により耕耘ロータリ作業機の耕耘作業中止状態を検出するセンサの検出結果に基づきトラクタ走行速度を減速させる切換手段を設けている。
そして、図19のフローチャートに示す如く、畦際にトラクタ(1)が到達して作業機(14)上昇操作を行うと、エンジン出力センサ(85)入力により、昇降スイッチ(17)上げ操作で前記作業機(14)が地上の非作業位置に持上げられてエンジン(2)出力が増大したことを検出し、エンジン出力回路(64)のエンジン(2)回転数下げ動作により、エンジン(2)回転が低下して走行速度が減速されるもので、圃場枕地にトラクタ(1)が到達したときに耕耘ロータリ作業機(14)を上昇させて耕耘作業を中止する操作を行うことにより、耕耘ロータリ作業機(14)の上昇によるエンジン(2)出力の変化をセンサ(85)が検出し、コントローラ(69)によってトラクタ(1)走行速度を自動的に減速させ、往復走行により耕耘作業を行う圃場枕地での方向転換時、方向転換毎に略同一タイミングでトラクタ(1)走行速度が減速され、従来と同様のトラクタ(1)方向転換操作だけで略同一幅の枕地が形成される。
一方、圃場枕地でのトラクタ(1)の方向転換を終了して作業機(14)を下降操作を行うと、昇降スイッチ(17)による前記作業機(14)の下降操作を検出したとき、エンジン出力回路(64)のエンジン(2)回転数上げ動作により、エンジン(2)回転が増大して走行速度が増速復帰され、高速走行で耕耘作業が行われるように構成している。
【0021】
さらに、図1に示す如く、前記耕耘ロータリ作業機(14)に取付けて該作業機(14)の未耕地面に対する支持高さを検出する超音波センサ(86)を設け、耕深センサを兼用する前記超音波センサ(86)をコントローラ(69)に接続させるもので、トラクタ(1)に耕耘ロータリ作業機(14)を昇降自在に装設させる耕耘装置において、耕耘ロータリ作業機(14)の対地高さにより耕耘ロータリ作業機(14)の耕耘作業中止状態を検出する前記センサ(86)の検出結果に基づきトラクタ(1)走行速度を減速させる切換手段であるコントローラ(69)を設けている。そして、図20のフローチャートに示す如く、畦際にトラクタ(1)が到達して作業機(14)上昇操作を行うと、超音波センサ(86)入力により前記作業機(14)が耕深自動調節範囲よりも高い地上の非作業位置に持上げられたことを検出し、エンジン出力回路(64)のエンジン(2)回転数下げ動作により、エンジン(2)回転が低下して走行速度が減速されるもので、圃場枕地にトラクタ(1)が到達したときに耕耘ロータリ作業機(14)を上昇させる操作を行うことにより、耕耘ロータリ作業機(14)の対地高さによって耕耘作業の中止をセンサ(86)が検出し、コントローラ(69)によってトラクタ(1)走行速度を自動的に減速させ、往復走行により耕耘作業を行う圃場枕地での方向転換時、方向転換毎に略同一タイミングでトラクタ(1)走行速度が減速され、従来と同様のトラクタ(1)方向転換操作だけで略同一幅の枕地が形成される。
一方、圃場枕地でのトラクタ(1)の方向転換を終了して作業機(14)下降操作を行うと、超音波センサ(86)入力により前記作業機(14)の下降を検出したとき、エンジン出力回路(64)のエンジン(2)回転数上げ動作により、エンジン(2)回転が増大して走行速度が増速復帰され、高速走行で耕耘作業が行われると共に、耕耘作業時、耕耘ロータリ作業機(14)の未耕地面に対する高さが超音波センサ(86)から入力され、ロータリ爪(29)の耕深は適正範囲であるか否かを判断し、耕深が適正範囲外に変化したとき、超音波センサ(86)の検出結果に基づき、昇降回路(68)の耕深自動調節動作により昇降機構(67)を自動制御し、ロータリ爪(29)の耕深を略一定に保つもので、走行速度の切換と耕深調節の各自動制御を超音波センサ(86)を兼用して行うように構成している。
【0022】
さらに、前記各センサ(70)(73)(74)(83)(84)(85)(86)の検出結果に基づき走行変速回路(66)を増減速動作させて無段変速機構(65)を自動制御し、上記実施例と同様に、耕耘作業から方向転換動作に移行するときに走行速度を減速し、方向転換動作から耕耘作業に移行するときに走行速度を増速させることも行えると共に、リヤカバーセンサ(70)をポテンショメータ型構造にし、該リヤカバーセンサ(70)の検出結果に基づき昇降回路(68)を耕深自動調節動作させ、昇降機構(67)の自動制御によってロータリ爪(29)の耕深を略一定に保つ耕深調節にリヤカバーセンサ(70)を兼用することも行える。
【0023】
【発明の効果】
以上実施例から明らかなように本発明は、前走行輪(4)を装設させるフロントアクスルケース(75)に油圧ステアリングシリンダ(76)を設け、また前走行輪(4)の方向転換角を検出する切れ角検出ロッド(79)を前記油圧ステアリングシリンダ(76)に平行に設け、該切れ角検出ロッド(79)に溝部(81)を設け、該溝部(81)に嵌入する鋼球(82)を設け、該鋼球(82)が押上げられてステアリングセンサ(83)が枕地方向転換に必要な旋回角度であることを検出する一方、切れ角検出ロッド(79)の直進位置復帰によって鋼球(82)が溝部(81)に戻ることによってトラクタ(1)の方向転換が終了したことをステアリングセンサ(83)が検出する構造とし、前記ステアリングセンサ(83)をコントローラ(69)に接続させ、枕地方向転換に必要な旋回角度であることを、該ステアリングセンサ(83)が検出すると、コントローラ(69)によって、エンジン出力回路(64)のエンジン回転数を下げ、走行速度を減速し、方向転換毎に略同一タイミングでトラクタ(1)の走行速度を減速するので、圃場枕地にトラクタ(1)が到達したときに操向ハンドル(5)によって旋回操作を行うことにより、操向ハンドル(5)の旋回操作によって耕耘作業の中止をセンサ(83)が検出し、切換手段(69)によってトラクタ(1)走行速度を自動的に減速させるから、往復走行により耕耘作業を行う圃場枕地での方向転換時、方向転換毎に略同一タイミングでトラクタ(1)走行速度が減速され、従来よりも高速走行で耕耘を行っても、従来と同様のトラクタ(1)方向転換操作だけでトラクタ(1)を適正速度で旋回させることができ、略同一幅の枕地がトラクタ(1)の方向転換によって形成され、高速耕耘作業での方向転換操作の簡略化並びに枕地耕耘処理の簡略化などを容易に行うことができるものである。
【図面の簡単な説明】
【図1】 走行速度制御回路図。
【図2】 全体の側面図。
【図3】 同平面図。
【図4】 耕耘ロータリ作業機の側面図。
【図5】 ロータリ爪部の側面図。
【図6】 リヤカバーの平面図。
【図7】 ロータリ爪部の背面図。
【図8】 リヤカバーセンサ部の側面図。
【図9】 リフトアーム部の側面図。
【図10】 同平面図。
【図11】 ステアリングセンサ部の平面図。
【図12】 同側面図。
【図13】 同拡大図。
【図14】 ブレーキセンサ部の側面図。
【図15】 走行速度制御フローチヤート。
【図16】 同フローチヤート。
【図17】 同フローチヤート。
【図18】 同フローチヤート。
【図19】 同フローチヤート。
【図20】 同フローチヤート。
【符号の説明】
(1) トラクタ
(2) エンジン
(5) 操向ハンドル
(14) 耕耘ロータリ作業機
(69) コントローラ(切換手段)
(83) ステアリングセンサ
[0001]
[Industrial application fields]
The present invention relates to a tilling device that pulls a tilling rotary working machine that performs tilling work with a tractor.
[0002]
[Prior art]
Conventionally, a tilling rotary working machine is installed on the rear side of the tractor so that it can be raised and lowered, and this rotary working machine is used for plowing work. It is hoped that the tractor traveling speed during plowing work will be increased to finish the work as soon as possible. It was rare.
[0003]
[Problems to be solved by the invention]
The prior art can improve the efficiency of tillage work by increasing the traveling speed, but when turning the tractor at the headland in the field, each operation of the steering handle and the brake pedal, and the rotary work machine ascent operation In addition, it is necessary to operate an accelerator lever or a shift lever that reduces the traveling speed.
However, if the operator performs each of the above operations to reduce the traveling speed and change the direction, the operation tends to be complicated. Moreover, the headland width is likely to be unevenly formed because the deceleration speed of the traveling speed for changing the direction or the timing for stopping the tilling work and the restarting timing are advanced or delayed.
Generally, a headland width that is smaller than the size that can be cultivated by one reciprocation of the tractor is preferable, but if the traveling speed is decelerated more than necessary, the headland width is formed larger than the width necessary for direction change, or the headland When the time to reach the length of time becomes longer and the work efficiency decreases, and when the timing for decelerating the travel speed is delayed, the tractor approaches the end of the field beyond the width required for the direction change and moves forward. It is not possible to change the direction only by traveling, and it is necessary to perform a troublesome change of direction by switching between forward and reverse. As described above, by increasing the traveling speed at the time of tillage work, there arises a problem that the direction change operation of the tractor at the field headland cannot be easily performed.
[0004]
[Means for Solving the Problems]
However, according to the present invention, the hydraulic steering cylinder (76) is provided in the front axle case (75) on which the front traveling wheel (4) is installed, and the turning angle detection rod for detecting the direction change angle of the front traveling wheel (4). (79) , Provided in parallel to the hydraulic steering cylinder (76), the cutting angle detection rod (79) is provided with a groove (81), a steel ball (82) fitted into the groove (81) is provided, and the steel ball (82) Is pushed up and the steering sensor (83) detects that the turning angle is necessary for changing the headland direction, and the steel ball (82) is moved into the groove (81) by the straight position return of the cutting angle detection rod (79). The steering sensor (83) detects that the direction change of the tractor (1) is completed by returning to, the steering sensor (83) is connected to the controller (69), and the steering handle (5) is turned off. Depending on the corner The steering sensor (83) detects that the turning angle is necessary for the headland direction change, By the controller (69), the engine output circuit (64) Reduce the running speed by lowering the engine speed, Every change of direction , Since the traveling speed of the tractor (1) is decelerated at substantially the same timing, the turning operation of the steering handle is detected by the sensor when the steering handle is turned when the tractor reaches the field headland. Since the tractor traveling speed is automatically reduced by means, the tractor traveling speed is decelerated at approximately the same timing for each direction change when changing direction on the field headland where plowing work is performed by reciprocating travel, and the tractor traveling speed is higher than before. Even when plowing, the tractor can be turned at an appropriate speed just by changing the direction of the tractor as before, and a headland of approximately the same width is formed by changing the direction of the tractor, simplifying the direction changing operation at high speed tillage work. And simplification of the headland cultivation treatment can be easily performed.
[0005]
【Example】
Embodiments of the present invention will be described below in detail with reference to the drawings.
1 is a travel speed control circuit diagram, FIG. 2 is a side view of the whole, FIG. 3 is a plan view of the same, and FIG. 4 is a side view of a tillage rotary working unit.
In the figure, reference numeral (1) denotes a tractor, in which the left and right front running wheels (4) and (4) are installed on both sides of the bonnet (3) in which the engine (2) is installed, and the steering handle is disposed at the rear of the bonnet (3). (5) is provided, the driver seat (6) is installed behind the steering wheel (5), the left and right rear traveling wheels (7) (7) are installed on both sides of the driver seat (6), and the driver seat (6) The left and right brake pedals (9), (9) and the clutch pedal (10) are arranged in the front step (8) so that an operator can sit on the driver's seat (6) and travel. ing.
[0006]
Further, a rotary rotary working machine (14) is attached to a transmission case (11) for driving the traveling wheels (4) and (7) via a lower link (12) and a top link (13), and the working machine (14) is attached. The tractor (1) is mounted on the rear side of the tractor (1) so as to be movable up and down. The main shift lever (15), the position control lever (16) for manually moving the working machine (14) up and down, and the working machine (14 ) Is placed on the right side of the driver's seat (6), and the traveling auxiliary transmission lever (18) and the working machine (14) ) Is arranged on the left side of the driver's seat (6).
[0007]
Further, as shown in FIGS. 4 to 7, a gear box (20) is arranged in the center of the work machine (14) to transmit power from the PTO shaft (21) of the tractor (1), and at the same time, the gear box (20 ) The beam (22) protrudes from the side to both sides, a support plate (23) is fixed to each middle part of the beam (22), and a lower link (12) is connected to the front end of the support plate (23) The front end of the depth frame (24) is pivotally supported at the rear end of the support plate (23), and left and right tail wheels (25) (25) are provided on the rear end side of the depth frame (24).
[0008]
The upper part of the chain case (26) and the upper part of the side support (27) are fixed to the outer end of the beam (22), and the tilling claw shaft (28) is placed between the lower part of the chain case (26) and the lower part of the side support (27). A large number of rotary claws (29) made up of nail claws are planted radially on the tilling claw shaft (28) in a side view, and a rotary cover ( 30) and both sides are covered by side covers (31). The tilling claw shaft (28) is driven via a gear in the gear box (20), a transmission shaft in the beam (22), a sprocket in the chain case (26) and a chain, and the rotary claw (29). Is rotated so that the rotary cover (30) can be rotated back and forth around the axis of the tilling claw shaft (28) by rotating the handle (32).
[0009]
Then, a plate (33) fixed to the beam (22) is projected forward, a support rod (34) is horizontally mounted on the front end of the plate (33), and a mounting plate (35) is mounted on the support rod (34). Is fixed, and the upper portion of the cutting blade (36) is fixed to the mounting plate (35). Four cutting blades (36) are mounted on the outer side of the lower link (12) in the left-right width direction, and the cutting blade (36) is curved rearward and tilted forward and backward. The straight lower portion of the rotary claw (29) faces a rearwardly inclined shape in the front portion of the rotation locus of the rotary claw (29). That is, in a side view, the lower part of the cutting blade (36) is arranged so as to overlap the front part of the rotational trajectory of the rotary claw (29), and the cutting blade (36) and the rotary claw (29) adjacent thereto are arranged. The distance between the left and right direction is narrow so that no remaining tillage is possible. However, the outer two cutting blades (36) (36) are provided between the rotary claw (29) and the eccentric claw (37). A partition plate (38) is disposed between the rear surface of the cutting blade (36) and the rotary cover (30). That is, the partition plate (38) is fixed to the back surface of the cutting blade (36), and the partition plate (38) is brought close to the rotary cover (30) so that folds, weeds, etc. may not enter and get entangled. ing. In addition, the partition plate (38) is configured in a triangular shape, the upper side is matched to the shape inside the rotary cover (30), and the front side is closely matched to the shape of the rear surface of the cutting blade (36). The rear side has an arc shape so as to guide the bag or the like downward. And the width | variety (plate thickness) of a partition plate (38) is made narrower than the width | variety of a cutting blade (36), and a wrinkle, a weed, etc. are prevented from getting entangled.
[0010]
Furthermore, a steel plate first rear cover (40) is connected to the rear end of the rotary cover (30) above the rotary claw (29) via a first fulcrum shaft (39) so as to be swingable in the vertical direction. 40) The front end of the rubber second rear cover (41) is fixed to the rear end, and the front end of the third rear cover (43) made of steel plate is fixed to the rear end of the second rear cover (41) that forms a leveling space (42) below. At the same time, the second fulcrum shaft (44) at the rear end of the first rear cover (40) and the third fulcrum shaft (45) at the front end of the third rear cover (43) are connected by a pair of left and right links (46) (46). The fourth fulcrum shaft (47) is provided substantially coaxially with the third fulcrum shaft (45), and the lower end of the first suspension rod (48) is connected to the fourth fulcrum shaft (47) to provide the third rear cover (43). A pair of left and right second suspension locks on the fifth fulcrum shaft (49) at the rear end (50) The lower ends are connected, and the upper ends of the first and second suspension rods (48), (50) are attached to the support body (51) of the first rear cover (40) so as to be movable up and down, and each suspension rod (48) (50) and the third rear cover (43) form a side view triangle, and a line connecting the second, third and fifth fulcrum shafts (44) (45) (49) forms a side view triangle. Then, the third rear cover (43) is moved upward about the second fulcrum shaft (44) or the third fulcrum shaft (45), and the suspension rod (48) of the second fulcrum shaft (44) and the support body (51) is provided. ) (50) The forward movement is restricted by the downward tension of the rods (48) and (50) by the operation of the lever mechanisms of the cover (43) and the rods (48) and (50) with the connecting portion as a fulcrum. Move the third rear cover (43) rearward and upward to Yakaba (43) sides is to perform a floating action of moving back and forth in a plan view. Further, a pair of left and right gas dampers (52) are connected between the fifth fulcrum shaft (49) and the support (51) of the first rear cover (40), and a substantially constant spring constant can be obtained for the entire stroke. The third rear cover (43) is supported by a gas damper (52) that can be formed larger, and even when the tractor (1) is tilted left and right, the tilling surface can be leveled by the right and left equal pressure of the third rear cover (43). It is configured as follows.
[0011]
Further, the upper end side of the suspension rod (48) (50) is loosely inserted into the bearing body (53) of the support body (51), so that the pin (54) abutting on the upper surface side of the bearing body (53). Are embedded in the rods (48) and (50), the rods (48) and (50) are prevented from being pulled out downward, the forward movement of the third rear cover (43) is restricted, and the springs (55) and (55) The lower end of a pair of left and right rods (56) and (56) wound with a rod is coupled to the upper surface of the first rear cover (40), and the upper end side of the rod (56) slides on the support (57) of the rotary cover (30). The first rear cover (40) is configured to be freely pressed downward by a spring (55).
[0012]
A rake support (58) is detachably fixed to the upper surface of the third rear cover (43), and a rake (59) fixed to the support (58) is extended to the rear of the third rear cover (43). 6, the upper end of the gas damper (52) is connected to the shaft (60) of the support (51) to which the upper end side of the second suspension rod (50) is attached, and the second suspension rod (50) and the gas damper are connected. (52) are made as close to each other as possible and provided substantially in parallel, and a pair of left and right tail wheels (25) and (25) are attached to the rear end of the depth frame (24) via a support frame (61). The rake (59) is disposed between the wheels (25) and (25), and the tail wheel (25) prevents the rake (59) from colliding with the eaves or the like when the headland direction is changed. Running or lifting upwards for maintenance It is configured to also serve the tail wheel (25) works in such as a bumper of the rake (59) left and right outer.
[0013]
Further, the first fulcrum shaft (39) is mounted at a position substantially equal to or higher than the upper end of the rotation trajectory of the rotary claw (29), and the rear cover (40) is centered on the first fulcrum shaft (39) during tillage work. (41) Ascending (43), a large space (42) with a large area is formed below the rear cover (40) (41) (43) behind the rotational trajectory of the rotary claw (29). ) (41) Prevents the soil pushed forward by (43) from reaching the soil raising part of the rotary claw (29) and prevents an increase in the tilling load on the rotary claw (29) due to the cultivation work at high speed. At the time of tillage work, the rear covers (40), (41), and (43) are lifted by the tillage and arranged on the arcuate line with the radius around the point (A) where the rotary claws (29) are extracted to the ground. Rotary claw (2 ), A uniform space (42) having a size of about 50% or more of the area of the rotation trajectory is formed between the rear side of the rotary claw (29) rotation trajectory and the rear cover (40) (41) (43). Alternatively, a small object such as a light clot is scattered by a rotary claw (29) to a high position on the lower surface of the rotary cover (40) (41), and a large object such as a large clot, a heavy clot, or a stump (rice plant) The small object becomes the upper layer, the large object becomes the lower layer, and the upper small object is leveled by the rear cover (41) (43) by the specific gravity separation effect of the scattering of the rotary claw (29). The large object is pushed down further by the rear rake (59). Therefore, the large-sized product maintains the air permeability and water permeability inside the soil well, and the soil surface layer is formed by the small-sized material in a state suitable for sowing or seedling transplantation.
[0014]
Further, four rotary claws (29) are attached at intervals of 90 degrees on the same circumference around the tilling claw shaft (28), and the front end sides of the rotary claws (29) are alternately directed in the left-right direction. The rotary claw (29) is arranged in a plurality of rows in the direction of the axis of the tilling claw shaft (28) on the orthogonal plane of the tilling claw shaft (28). 29) A gap is provided between the tip trajectories of (29), the lateral bending width of the rotary claw (29) is about twice as large as the tip trajectory gap, and the left and right rotary claws (29) (29) base end The rotary claw (29) is formed so that the distance is about five times the tip trajectory gap. Further, the rotary claw (29) is bent into a shape to be picked up after the soil is cut off, and the force to push and move the soil in the horizontal direction by the horizontal component of the tip bending portion of the rotary claw (29) and the rotary claw (29 ) The laterally repelling force of the elastic deformation of) pushes the dredging soil in a lateral direction substantially parallel to the tilling claw shaft (28) axis, resulting in a residual tillage of the left and right rotary claws (29) (29) tip trajectory gap Rotating the rotary claw (29) by attaching approximately 70% of the rotary claws (29) ... of the conventional rotary claw attachment number. The speed is substantially the same as the conventional rotational speed (about 200 to 400 revolutions per minute), and the traveling speed of the tractor (1) is about twice the conventional traveling speed (about 0.5 meters per second). Without increasing the tillage load compared to It is configured to allow the tilling by approximately double the efficiency. Further, the cutting blade (36) is plunged into the soil at a position overlapping the ground crushing point of the rotary claw (29) in a side view, and the soil plunging portion of the cutting blade (36) is supported to be inclined backward. In addition, both the left and right sides of the cutting blade (36) are formed by flat surfaces having a width, and the cutting blade (36) enters the soil by pulling downward and the cutting soil (36) is restored by the restoring force. ) A force that presses against the side surface is generated as an extraction resistance force of the cutting blade (36), and is caused by an extraction resistance force of the cutting blade (36) that is substantially equal to or slightly larger than the reaction force of the rotary claw (29). The entire rotary rotary working machine (14) is prevented from being lifted upward by the reaction force of the entry resistance in the soil, and the rotary claw (29) is configured to alleviate the impact generated by the entry into the soil. Note that, on the rear side of the tilling claw shaft (28), a reaction force of the rotary claw (29) extraction force is generated opposite to the reaction force (lifting force) of the flat force of the rear covers (40) (41) (43). The posture is stabilized by the balance of each reaction force.
[0015]
Further, as shown in FIG. 1, a working sensor (62) for detecting that the tilling rotary working machine (14) is in a tilling operation by a tilling operation of the PTO speed change lever (19) and the lift switch (17) ), An engine output circuit (64) for operating an engine rotation control mechanism (63) constituted by a motor or solenoid for switching the motor or accelerator lever of an electronic governor that increases or decreases the rotation speed of the engine (2), and a mission case ( 11) a travel transmission circuit (66) that operates the continuously variable transmission mechanism (65), and a lifting mechanism (67) such as a hydraulic cylinder that moves the lower link (12) up and down to raise and lower the tillage rotary working machine (14). The lift circuit (68) to be operated is connected to a controller (69) composed of a microcomputer. The engine output circuit (64) is used to change the rotational speed of the engine (2), the travel speed change circuit (66) is used to change the running speed, and the lifting / lowering circuit (68) is used to change the working machine (14) support height. It is configured as follows.
[0016]
Further, as shown in FIG. 8, a rear cover sensor (70) such as a potentiometer or a limit switch for detecting the operation of the first rear cover (40) rotating up and down around the first fulcrum shaft (39) is attached to the upper surface of the rotary cover (30). As shown in FIG. 1, the rear cover sensor (70) is connected to the controller (69), and the tiller rotary work is performed in the tiller device in which the tiller rotary work machine (14) is mounted on the tractor (1) so as to be movable up and down. A controller (69) which is a switching means for decelerating the traveling speed of the tractor (1) based on the detection result of the sensor (70) which detects the lowering of the rear cover (40) which can be moved up and down of the machine (14) to the non-plowing work position. Is provided. Then, as shown in the flowchart of FIG. 15, when the tractor (1) arrives and the work implement (14) is raised, the rear cover (40) is lowered to the lowest position by the input of the rear cover sensor (70). When it is detected that the work implement (14) is lifted to a non-working position on the ground, the engine (2) rotation is reduced by the engine (2) speed reduction operation of the engine output circuit (64). The traveling speed is decelerated, and when the tractor (1) reaches the field headland, an operation to raise the tillage rotary work machine (14) is performed, thereby raising the rise of the tillage rotary work machine (14) to the rear cover ( 40), the sensor (70) detects the lowering of the tractor (1) automatically by the controller (69), and the field headland performs the tilling work by reciprocating traveling. When turning is decelerated tractor (1) traveling speed substantially at the same timing for each direction change, similar to the conventional tractor (1) headland of substantially the same width just turning operation is formed. On the other hand, when the direction change of the tractor (1) on the field headland is finished and the work machine (14) is lowered, the lowering of the work machine (14) is detected by an operation input of the lift switch (17) or the like. When the engine output circuit (64) increases the rotational speed of the engine (2), the rotation of the engine (2) is increased and the traveling speed is returned to increase speed, so that the tilling operation is performed at high speed. .
[0017]
Further, as shown in FIGS. 9 and 10, a lift arm (71) that moves the lower link (12) up and down by hydraulic pressure, and a feedback link that feeds back the raising or lowering operation of the arm (71) to stop the hydraulic supply. A mechanism (72) and a lift arm raising sensor (73) and a lift arm lowering sensor (74) for detecting the lifting and lowering operations of the lift arm (71) via the feedback link mechanism (72) are provided. ) (74) is connected to the controller (69), and in the tilling device in which the cultivator rotary working machine (14) is mounted on the tractor (1) so as to be movable up and down, the lift arm for raising and lowering the tilling rotary work machine (14) The tractor (1) based on the detection result of the sensor (73) for detecting the rise of the (71) to the non-plowing work position. Are provided controller (69) is a switching means to decelerate the line speed. Then, as shown in the flowchart of FIG. 16, when the tractor (1) arrives and the work implement (14) is raised, the lift arm (71) is raised by the input of the lift arm raising sensor (73). When it is detected that the work implement (14) is lifted to a non-working position on the ground, the engine (2) rotation speed is reduced by the engine (2) rotation speed reduction operation of the engine output circuit (64), and the traveling speed is reduced. The lift arm lifts the tillage rotary work machine (14) to the ground by performing an operation to raise the tillage rotary work machine (14) when the tractor (1) reaches the field headland. The field headland where the sensor (73) detects the ascending motion of (71), the tractor (1) traveling speed is automatically reduced by the controller (69), and the tilling operation is performed by reciprocating traveling When turning is decelerated tractor (1) traveling speed substantially at the same timing for each direction change, similar to the conventional tractor (1) headland of substantially the same width just turning operation is formed. On the other hand, when the direction change of the tractor (1) on the field headland is finished and the work machine (14) is lowered, the lowering of the work machine (14) is detected by the input of the lift arm lowering sensor (74). The engine output circuit (64) is configured to increase the engine (2) rotation speed, thereby increasing the engine (2) rotation, returning the traveling speed to an increased speed, and performing the tilling operation at a high speed.
[0018]
Furthermore, as shown in FIGS. 11, 12, and 13, a hydraulic steering cylinder (76) is provided in the front axle case (75) on which the front traveling wheel (4) is installed, and the direction of the front traveling wheel (4) is changed. A tie rod (77) is connected to the piston (78) of the cylinder (76), and a cutting angle detection rod (79) for detecting the direction change angle of the front traveling wheel (4) is provided on the case (75). When the cylinder (76) is operated by rotating (5), the piston (78) retreats and the tie rod (77) is plated at a turning angle greater than a predetermined angle of the tractor (1) for turning the headland. (80), the cutting angle detecting rod (79) is slid, the steel balls (82) (82) of the groove (81) of the rod (79) are pushed up, and the steering sensor (83) is moved to the pillow. Earth direction The turning angle detection rod (79) detects that the turning angle is necessary, and the steel ball (82) returns to the groove (81) by returning the straight angle position of the cutting angle detection rod (79). A tilling device having a structure which is detected by a steering sensor (83), which connects the steering sensor (83) to a controller (69), and in which a tilling rotary working machine (14) is mounted on the tractor (1) so as to be movable up and down. The tractor (1) is a switching means for decelerating the traveling speed based on the detection result of the sensor (83) for detecting the tillage work suspension state of the tillage rotary working machine (14) by the turning angle of the steering handle (5). A controller (69) is provided.
Then, as shown in the flowchart of FIG. 17, when the tractor (1) arrives at the dredging and the steering handle (5) is turned, the front traveling wheel (4) is largely turned more than during the tillage work. When the steering sensor (83) detecting that the steering angle of the steering wheel (5) is greater than a predetermined value and turning is detected, the working machine (14) The engine (2) rotation speed is lowered by the engine (2) rotation speed reduction operation of the engine output circuit (64) and the traveling speed is reduced. By turning the steering handle (5) when (1) arrives, the sensor (83) detects that the tilling operation has been stopped by turning the steering handle (5), and the control The tractor (1) traveling speed is automatically decelerated by the roller (69), and the tractor (1) traveling speed is decelerated at substantially the same timing for each direction change when the direction is changed in the field headland where plowing work is performed by reciprocating traveling. Even when plowing at about twice as high speed as before, the tractor (1) can be swung at an appropriate speed just by changing the direction of the tractor (1) as before. It is formed by changing the direction of (1). On the other hand, when the direction change of the tractor (1) at the field headland is finished and the work implement (14) is lowered and the steering handle (5) is operated straight, the work implement (14) is input by the steering sensor (83). ) Landing on the tractor (1) is detected, and the engine (2) rotation speed increasing operation of the engine output circuit (64) increases the engine (2) rotation, and the traveling speed is returned to increase speed. It is configured so that the tilling work is performed while traveling.
[0019]
Furthermore, as shown in FIG. 14, left and right brake sensors (84) and (84) for detecting the depression of the left and right brake pedals (9) and (9) are provided, and the sensors (84) and (84) are provided to the controller (69). It is connected and detects braking of the rear running wheel (7) inside the turning by operating the brake pedal (9) inside the turning by the sensor (84) at the time of turning on the field headland. Based on the detection result of the sensor (84) for detecting the tillage stop state of the tillage rotary work machine (14) by operating the brake pedal (9) in the tilling device for mounting the rotary work machine (14) so as to be movable up and down. (1) A controller (69) is provided as switching means for decelerating the traveling speed. Then, as shown in the flowchart of FIG. 18, when the vehicle arrives at the heel and depresses one of the left and right brake pedals (9) and turns, the left and right brake sensors (84) and (84) input the left and right brakes. When one of the sensors (84) and (84) is turned on to detect tilling work stoppage and start of turning, the lifting / lowering switch (17) is lifted to lift the work implement (14) to a non-working position on the ground. When the tractor (1) arrives at the field headland, the engine (2) rotation is reduced and the traveling speed is reduced by the engine (2) rotation speed reduction operation of the engine output circuit (64). A brake pedal on the inside of the turn that performs running braking on the inside of the turn by operating one of the left and right brake pedals (9) and 9 (9) on the inside of the turn 9) The sensor (84) detects the suspension of the tilling operation by the operation, and the controller (69) automatically decelerates the traveling speed of the tractor (1) and changes the direction at the field headland where the tilling operation is performed by reciprocating traveling. The traveling speed of the tractor (1) is decelerated at approximately the same timing for each change of direction, and a headland having substantially the same width is formed only by the tractor (1) direction changing operation similar to the conventional one. On the other hand, when the direction change of the tractor (1) at the field headland is finished and the work machine (14) is lowered to resume the straight traveling, the brake machine (84) receives the brake release input of the work machine (14). When it is detected that the straightening is resumed by the descent and the tilling work is performed, the engine (2) rotation speed increasing operation of the engine output circuit (64) increases the rotation of the engine (2) and the traveling speed is returned to the increased speed. The plowing work is performed at high speed.
[0020]
Further, as shown in FIG. 1, the output of the engine (2) increases due to the load reduction when the working machine (14) is lifted and the tilling work is stopped as compared with during the tilling work by the tilling rotary working machine (14). An engine output sensor (85) for detecting this is provided, and the sensor (85) is connected to the controller (69). In the tillage device in which the tiller rotary working machine is mounted on the tractor so as to be movable up and down, There is provided switching means for decelerating the tractor traveling speed based on the detection result of the sensor that detects the tillage work stoppage state of the tillage rotary working machine.
Then, as shown in the flowchart of FIG. 19, when the tractor (1) arrives on the heel and performs the raising operation of the work implement (14), the lifting switch (17) is raised by the input of the engine output sensor (85). It is detected that the work machine (14) is lifted to a non-working position on the ground and the output of the engine (2) is increased, and the engine (2) rotation speed is reduced by the engine output circuit (64). When the tractor (1) reaches the field headland, the rotary rotary working machine (14) is raised to stop the tilling work, thereby reducing the tilling rotary. The sensor (85) detects a change in the output of the engine (2) due to the rise of the work implement (14), and the controller (69) automatically reduces the traveling speed of the tractor (1) to reciprocate. When changing direction at a field headland where more tillage work is performed, the traveling speed of the tractor (1) is decelerated at approximately the same timing for each change of direction, and a pillow with substantially the same width is obtained only by the same tractor (1) direction changing operation as before. A ground is formed.
On the other hand, when the direction change of the tractor (1) at the field headland is finished and the work machine (14) is lowered, when the lowering operation of the work machine (14) by the lift switch (17) is detected, The engine output circuit (64) is configured to increase the engine (2) rotation speed to increase the rotation of the engine (2) and return the traveling speed to an increased speed so that the tilling work is performed at a high speed.
[0021]
Further, as shown in FIG. 1, an ultrasonic sensor (86) is provided which is attached to the tillage rotary working machine (14) and detects the support height of the working machine (14) with respect to the uncultivated ground, and is also used as a tilling depth sensor. The ultrasonic sensor (86) to be connected to the controller (69) is a tilling device in which the tiller rotary working machine (14) is mounted on the tractor (1) so as to be movable up and down. A controller (69) is provided as a switching means for reducing the traveling speed of the tractor (1) based on the detection result of the sensor (86) for detecting the tillage stop state of the tillage rotary working machine (14) based on the height to the ground. . Then, as shown in the flowchart of FIG. 20, when the tractor (1) arrives at the dredging and performs the raising operation of the work implement (14), the work implement (14) is automatically operated by the ultrasonic sensor (86) input. It is detected that the vehicle has been lifted to a non-working position on the ground that is higher than the adjustment range, and the engine (2) rotation speed reduction operation of the engine output circuit (64) reduces the engine (2) rotation and reduces the traveling speed. Therefore, when the tractor (1) reaches the field headland, the tilling rotary working machine (14) is lifted to stop the tilling work depending on the height of the tilling rotary working machine (14) with respect to the ground. The sensor (86) detects, the controller (69) automatically reduces the traveling speed of the tractor (1), and the direction changes in the field headland where the tillage work is performed by reciprocating traveling, the direction is almost the same every time the direction is changed. Tractor (1) traveling speed is reduced at the timing, similar to the conventional tractor (1) headland of substantially the same width just turning operation is formed.
On the other hand, when the direction change of the tractor (1) at the field headland is completed and the work machine (14) is lowered, when the work machine (14) is detected to be lowered by the ultrasonic sensor (86) input, The engine (2) rotation speed increasing operation of the engine output circuit (64) increases the rotation of the engine (2) to return the traveling speed to an increased speed. The height of the work implement (14) with respect to the uncultivated ground is input from the ultrasonic sensor (86), and it is determined whether or not the plowing depth of the rotary claw (29) is within the proper range. When changed, based on the detection result of the ultrasonic sensor (86), the lifting mechanism (67) is automatically controlled by the tilling depth automatic adjustment operation of the lifting circuit (68), and the tilling depth of the rotary claw (29) is made substantially constant. Keeping, switching of traveling speed and adjusting plowing depth Each automatic control of being configured to perform also serves as a ultrasonic sensor (86).
[0022]
Further, based on the detection results of the sensors (70), (73), (74), (83), (84), (85), and (86), the traveling transmission circuit (66) is operated to increase and decrease speed, thereby continuously variable transmission mechanism (65). In the same way as in the above embodiment, the traveling speed can be reduced when shifting from the tilling operation to the direction changing operation, and the traveling speed can be increased when moving from the direction changing operation to the tilling operation. The rear cover sensor (70) has a potentiometer type structure, the lifting / lowering circuit (68) is automatically adjusted based on the detection result of the rear cover sensor (70), and the rotary pawl (29) is automatically controlled by the lifting mechanism (67). The rear cover sensor (70) can also be used for adjusting the tilling depth to keep the tilling depth substantially constant.
[0023]
【The invention's effect】
As is clear from the above embodiments, the present invention is provided with a hydraulic steering cylinder (76) in the front axle case (75) on which the front traveling wheel (4) is mounted, and the direction turning angle of the front traveling wheel (4) is increased. The detection angle detection rod (79) to detect , Provided in parallel to the hydraulic steering cylinder (76), the cutting angle detection rod (79) is provided with a groove (81), a steel ball (82) fitted into the groove (81) is provided, and the steel ball (82) Is pushed up and the steering sensor (83) detects that the turning angle is necessary for changing the headland direction, and the steel ball (82) is moved into the groove (81) by the straight position return of the cutting angle detection rod (79). The steering sensor (83) detects that the direction change of the tractor (1) has been completed by returning to, and the steering sensor (83) is connected to the controller (69), When the steering sensor (83) detects that the turning angle is necessary for headland direction change, By the controller (69), the engine output circuit (64) Reduce the engine speed, reduce the running speed, Every change of direction , Since the traveling speed of the tractor (1) is decelerated at substantially the same timing, when the tractor (1) reaches the field headland, a turning operation is performed by the steering handle (5), so that the steering handle (5) The sensor (83) detects that the tilling operation is stopped by the turning operation, and the switching means (69) automatically reduces the traveling speed of the tractor (1). When the direction is changed, the tractor (1) travel speed is reduced at approximately the same timing, and even if plowing is performed at a higher speed than before, the tractor (1) can be moved only by the direction change operation. It can be swung at an appropriate speed, and a headland with substantially the same width is formed by changing the direction of the tractor (1), simplifying the direction changing operation in the high speed tillage work, simplifying the headland tilling process, etc. Those that can be easily performed.
[Brief description of the drawings]
FIG. 1 is a travel speed control circuit diagram.
FIG. 2 is an overall side view.
FIG. 3 is a plan view of the same.
FIG. 4 is a side view of a tillage rotary working machine.
FIG. 5 is a side view of a rotary claw portion.
FIG. 6 is a plan view of a rear cover.
FIG. 7 is a rear view of a rotary claw portion.
FIG. 8 is a side view of a rear cover sensor unit.
FIG. 9 is a side view of a lift arm portion.
FIG. 10 is a plan view of the same.
FIG. 11 is a plan view of a steering sensor unit.
FIG. 12 is a side view of the same.
FIG. 13 is an enlarged view of the same.
FIG. 14 is a side view of a brake sensor unit.
FIG. 15 is a travel speed control flow chart.
FIG. 16 is the same flow chart.
FIG. 17 is the same flow chart.
FIG. 18 is the same flow chart.
FIG. 19 is the same flow chart.
FIG. 20 is the same flow chart.
[Explanation of symbols]
(1) Tractor
(2) Engine
(5) Steering handle
(14) Tillage rotary work machine
(69) Controller (switching means)
(83) Steering sensor

Claims (1)

前走行輪(4)を装設させるフロントアクスルケース(75)に油圧ステアリングシリンダ(76)を設け、また前走行輪(4)の方向転換角を検出する切れ角検出ロッド(79)を前記油圧ステアリングシリンダ(76)に平行に設け、該切れ角検出ロッド(79)に溝部(81)を設け、該溝部(81)に嵌入する鋼球(82)を設け、該鋼球(82)が押上げられてステアリングセンサ(83)が枕地方向転換に必要な旋回角度であることを検出する一方、切れ角検出ロッド(79)の直進位置復帰によって鋼球(82)が溝部(81)に戻ることによってトラクタ(1)の方向転換が終了したことをステアリングセンサ(83)が検出する構造とし、前記ステアリングセンサ(83)をコントローラ(69)に接続させ、枕地方向転換に必要な旋回角度であることを、該ステアリングセンサ(83)が検出すると、コントローラ(69)によって、エンジン出力回路(64)のエンジン回転数を下げ、走行速度を減速し、方向転換毎に略同一タイミングでトラクタ(1)の走行速度を減速することを特徴とする耕耘装置。The hydraulic steering cylinder (76) provided before the running wheel (4) on the front axle case (75) to So設, also a turning angle detection rod (79) for detecting the turning angle of the front running wheel (4), wherein Provided in parallel to the hydraulic steering cylinder (76), the groove angle detection rod (79) is provided with a groove (81), a steel ball (82) fitted into the groove (81) is provided, and the steel ball (82) While being pushed up, the steering sensor (83) detects that the turning angle is necessary for changing the headland direction, and the steel ball (82) is moved into the groove (81) by the straight position return of the cutting angle detection rod (79). Back to the structure steering sensor that turning of the tractor (1) has been completed (83) is detected by, is connected the steering sensor (83) to the controller (69), headland direction To be a turning angle required for conversion, when the steering sensor (83) detects, by a controller (69), lower the engine speed of the engine output circuit (64), decelerates the running speed, for each direction change , tilling apparatus characterized by decelerating the travel speed of the tractor (1) at substantially the same timing.
JP2002343278A 2002-11-27 2002-11-27 Tillage equipment Expired - Fee Related JP3771532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343278A JP3771532B2 (en) 2002-11-27 2002-11-27 Tillage equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343278A JP3771532B2 (en) 2002-11-27 2002-11-27 Tillage equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29236094A Division JP3612583B2 (en) 1994-10-31 1994-10-31 Tillage equipment

Publications (2)

Publication Number Publication Date
JP2003225004A JP2003225004A (en) 2003-08-12
JP3771532B2 true JP3771532B2 (en) 2006-04-26

Family

ID=27751453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343278A Expired - Fee Related JP3771532B2 (en) 2002-11-27 2002-11-27 Tillage equipment

Country Status (1)

Country Link
JP (1) JP3771532B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749762B2 (en) * 2005-05-19 2011-08-17 ヤンマー株式会社 Riding speed control device for passenger tractor
JP5138392B2 (en) * 2008-01-16 2013-02-06 ヤンマー株式会社 Agricultural machine
JP5368129B2 (en) * 2009-02-12 2013-12-18 ヤンマー株式会社 Work vehicle

Also Published As

Publication number Publication date
JP2003225004A (en) 2003-08-12

Similar Documents

Publication Publication Date Title
JP3771532B2 (en) Tillage equipment
JP3478448B2 (en) Moving agricultural machine
JP3612583B2 (en) Tillage equipment
JP5434409B2 (en) Work vehicle
JP3632779B2 (en) Mobile farm machine
JP3565378B2 (en) Tillage equipment
JP3587901B2 (en) Moving agricultural machine
JPH08154419A (en) Ground working apparatus
JP5656344B2 (en) Traveling vehicle
JP3613352B2 (en) Mobile farm machine
JP3511077B2 (en) Moving agricultural machine
JPH11168907A (en) Tractor
JP3883337B2 (en) Paddy field machine
JP3655072B2 (en) Tractor
JP3486855B2 (en) Ground work equipment
JP2001086819A (en) Paddy field working machine
JP2011045262A (en) Working vehicle
JP3655073B2 (en) Tractor
JPH08187002A (en) Tillage device
JP5540511B2 (en) Seedling transplanter
JP2010263803A (en) Working machine
JPH08187010A (en) Tilling device
JP3407173B2 (en) Tractor drive control device
JP5561316B2 (en) Traveling vehicle
JP5831500B2 (en) Working machine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060209

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees