JP3770889B2 - フォトニッククリスタルファイバの製造方法 - Google Patents

フォトニッククリスタルファイバの製造方法 Download PDF

Info

Publication number
JP3770889B2
JP3770889B2 JP2003312481A JP2003312481A JP3770889B2 JP 3770889 B2 JP3770889 B2 JP 3770889B2 JP 2003312481 A JP2003312481 A JP 2003312481A JP 2003312481 A JP2003312481 A JP 2003312481A JP 3770889 B2 JP3770889 B2 JP 3770889B2
Authority
JP
Japan
Prior art keywords
photonic crystal
preform
crystal fiber
fiber
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003312481A
Other languages
English (en)
Other versions
JP2004013173A (ja
Inventor
実 ▲吉▼田
正俊 田中
盛行 藤田
俊和 御前
一雄 今村
正隆 中沢
寛和 久保田
悟基 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2003312481A priority Critical patent/JP3770889B2/ja
Publication of JP2004013173A publication Critical patent/JP2004013173A/ja
Application granted granted Critical
Publication of JP3770889B2 publication Critical patent/JP3770889B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02371Cross section of longitudinal structures is non-circular
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/18Axial perturbations, e.g. in refractive index or composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/18Axial perturbations, e.g. in refractive index or composition
    • C03B2203/20Axial perturbations, e.g. in refractive index or composition helical
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres

Description

本発明は、ファイバの中心軸方向に延びる多数の細孔が最密状に配列された多孔部と、該多孔部の中心に中実状又は中空状に形成されたコア部とを備えたフォトニッククリスタルファイバの製造方法に関する。
近年、コア及びクラッドからなる通常の光ファイバでは得ることのできない大きな波長分散を発現するものとしてフォトニッククリスタルファイバが注目されつつある。このものは、ファイバの中心軸方向に延びる多数の細孔が最密状に配列された多孔部と、該多孔部の中心に中実状又は中空状に形成されたコア部とを備えている。
ところで、上記フォトニッククリスタルファイバは、細孔が全て同一径に形成されているため、その断面において隣り合う一対の細孔の中心間距離(格子定数c(図7参照))は全て同一になっている。このように上記フォトニッククリスタルファイバはその断面において軸対称に形成されているため、上記ファイバの断面における光の入射角度(偏波軸の角度)に拘わらず伝播可能な波長は一定であってかつ入射光の波長に対する分散値も一定である。
また、上記フォトニッククリスタルファイバは、中心軸方向に対して各細孔の径が一定に保たれかつ上記格子定数も一定となるように形成されているため、上記中心軸方向に対しても伝播可能な波長及び分散値が一定である。
本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、伝播可能な波長及び分散値が変化し得るフォトニッククリスタルファイバを提供することにある。
本発明の製造方法は、ファイバの中心軸方向に延びる多数の細孔が最密状に配列された多孔部と、該多孔部の中心に中実状又は中空状に形成されたコア部とを備えたフォトニッククリスタルファイバの製造方法である。
上記フォトニッククリスタルファイバは、上記多孔部の各細孔が、楕円形状の断面を有しており、上記多孔部の各細孔の中心間距離が、上記ファイバの中心軸に直交する平面内において三角形の各辺に対応する2方向で互いに異なるファイバである。
そして、上記製造方法は、筒状のサポート管の孔内に、円形状の孔を有する複数の筒状キャピラリを並列に並べて層状にすると共に、当該層において相隣接する一対の筒状キャピラリの間に別のキャピラリを配置して別の層を作成することを繰り返すことにより、上記サポート管の孔の横断面において最密上記キャピラリを充填すると共に、上記中実状のコア部となる棒状コア部材を上記サポート管の中心部に配設する又は上記中空状のコア部となる空間を該サポート管の中心部に形成することによってプリフォームを作製するプリフォーム作製工程と、上記プリフォームを加熱してキャピラリとサポート管とを互いに融着させる仮融着工程と、上記仮融着されたプリフォームを径方向に圧縮して、最密状の配列のまま上記各キャピラリの外周及び孔が楕円形状となるように変形させる圧縮工程と、上記変形されたプリフォームを加熱・延伸してファイバ状に線引きする線引き工程とを備える。
上記フォトニッククリスタルファイバは、各細孔の断面形状が楕円形状であり、それによって各細孔の中心間距離、つまり格子定数がファイバの断面において該ファイバの中心軸に直交する平面内において三角形の各辺に対応する2方向に対して互いに異なる。このため、上記中心軸に対して非対称なフォトニッククリスタルファイバである。
このため、上記ファイバの断面における光の入射角度に応じて格子定数が変化して、伝播可能な波長が変更されると共に分散値も変更される。
そして、本発明の製造方法によると、円形状の孔を有するキャピラリをサポート管の孔内に最密に充填させると共に、コア部材を配設する又は空間を形成することによって、円形状の孔が最密状に配列されかつコア部材が配設された又は空間が形成されたプリフォームが作製される。そして、上記プリフォームを加熱してキャピラリとサポート管とを互いに融着させ、該仮融着されたプリフォームを径方向に圧縮することによって、各キャピラリの外周及び孔が楕円形状に変形される。このため、該各キャピラリが変形されたプリフォームを線引きすることによって、楕円形状の細孔が最密状に配列された多孔部と中実又は中空のコア部を有するフォトニッククリスタルファイバが製造される。このように、細孔の形状が楕円形状とされるため、各細孔の中心間距離が、ファイバの断面において該ファイバの中心軸に直交する平面内において三角形の各辺に対応する2方向に対して互いに異なったフォトニッククリスタルファイバとなる。
以上説明したように、本発明におけるフォトニッククリスタルファイバの製造方法によれば、伝播可能な波長及び分散値が変更するような、断面において中心軸に対し非対称に形成されているフォトニッククリスタルファイバを製造することができる。
以下、本発明の実施形態を図面に基いて説明する。
<第1実施形態>
図1は、本発明の第1実施形態に係るフォトニッククリスタルファイバ1を示し、このフォトニッククリスタルファイバ1は、各細孔12aの中心間距離(格子定数)が上記ファイバ1の中心軸Z1に直交する2方向で互いに異なるように構成されているものである。
すなわち、上記フォトニッククリスタルファイバ1は、ファイバ中心を中心軸Z1方向に延びかつ中実状に形成されたコア部11と、該コア部11の外周部を囲むように設けられ、該コア部11に沿って延びる多数の細孔12aが最密に配列された多孔部12と、これらを被覆するように設けられたサポート部13とを備えている。
そして、第1実施形態に係るフォトニッククリスタルファイバ1は、図2に示すように、各細孔12aが楕円形状に形成されており、これにより、隣り合う一対の細孔12a,12aの中心間距離がX方向及びY方向で互いに異なるようになっている(同図のa,b参照)。
上記フォトニッククリスタルファイバ1の製造方法を図3により説明する。
先ず、SiO2製の円柱体の中心部に断面正6角形の孔22aを中心軸に沿って設けたサポート管22と、互いに同一径を有する複数本の円筒状のSiO2製キャピラリ32と、これらキャピラリ32と同一径を有する1本の円柱状のSiO2製コア部材42とを準備する。
上記キャピラリ32を、上記サポート管22の正6角形状孔22a内に最密に充填していく。このとき、この正6角形状孔22aの内壁における一つの面に対してキャピラリ32を並列に並べるようにして第1層を形成し、該形成された第1層における相隣接する一対のキャピラリ32,32の間に新たなキャピラリ32を載置していくようにして、続く第2層を形成する。このようなキャピラリ32の載置を繰り返すことによって上記正6角形状孔22a内にキャピラリ32を最密に充填するが、上記正6角形状孔22aの中心位置にはキャピラリ32ではなくてコア部材42を配置しておく。
以上の工程により、サポート管22の正6角形状孔22a内にキャピラリ32が最密に充填されかつその中心位置にコア部材42が配置されたフォトニッククリスタルファイバのプリフォーム52が完成する(プリフォーム作製工程)。
そして、上記プリフォーム52に対し線引き加工を施す前に、該プリフォーム52を加熱して上記隣接するキャピラリ32,32同士、上記キャピラリ32とサポート管22、及びキャピラリ32とコア部材42とを互いに仮融着させる(仮融着工程)。
次いで、上記各キャピラリ32の外周及び孔が楕円形状に変形するまで上記仮融着したプリフォーム52を径方向に圧縮する(圧縮行程)。
この変形させたプリフォーム52は、図4に示すように、線引き装置6によって線引き加工を施して細径化(ファイバ化)する。
上記線引き装置6は、上記プリフォーム52の上端部分を把持する把持部材61と、該プリフォーム52を加熱する筒状の線引き炉62とを備えていて、該線引き炉62には上記プリフォーム52を加熱する環状のヒータ62aが配設されている。
そして、上記把持部材61に把持されたプリフォーム52の下端部を線引き炉62内に挿入して、上記ヒータ62aによって上記プリフォーム52の下端部を加熱しファイバ状に線引きする。この線引き加工の際に隣接するキャピラリ32,32同士、上記キャピラリ32とサポート管22、及びキャピラリ32とコア部材42とは互いに融着して一体化される。
以上の工程を経て、図1に示すように、ファイバ中心で中心軸方向に延びかつ中実に形成されたコア部11と、該コア部11の外周囲で上記コア部11に沿って延びる多数の細孔12aが最密に配列された多孔部12と、これらを被覆するサポート部13とを備えかつ上記各細孔12aが楕円形状に形成されたフォトニッククリスタルファイバ1が完成する。
次に、上記第1実施形態の作用・効果を説明する。
各細孔12aが楕円形状であってかつ最密に配列されているため、その格子定数がX方向及びY方向で互いに異なる(図2のa,b参照)。すなわち、中心軸Z1に対して非対称なフォトニッククリスタルファイバ1となる。
このため、上記フォトニッククリスタルファイバ1の断面における光の入射角度に応じて格子定数a,bが変化するため、伝播可能な波長が変更されると共に分散値も変更される。
また、X方向に平行な偏波と、Y方向に平行な偏波との間に伝搬定数差が生じるため、上記ファイバ1は、偏波保持機能を有することとなる。
<第1参考例>
尚、上記フォトニッククリスタルファイバ1は次の方法によって製造してもよい。
先ず、図5に示すように、SiO2製の円柱体の中心部に断面6角形状の孔21aを中心軸に沿って設けたサポート管21と、互いに同一の楕円形状を有する複数本の筒状のSiO2製キャピラリ31と、これらキャピラリ31と同一形状である楕円形状を有する1本の棒状のSiO2製コア部材41とを準備する。
そして、上記キャピラリ31を上記サポート管21の6角形状孔21a内に最密に充填していくと共に、上記6角形状孔21aの中心位置にコア部材41を配置する。
以上の工程により、サポート管21の6角形状孔21a内に楕円形状のキャピラリ31が最密に充填されかつその中心位置に楕円形状のコア部材41が配置されたフォトニッククリスタルファイバ1のプリフォーム51が完成する。
上記プリフォーム51を線引き装置6によって線引き加工を施して細径化する。
この方法によっても、各細孔12aが楕円形状に形成されたフォトニッククリスタルファイバ1を製造することができる。
<第2参考例>
上記第1実施形態では、各細孔12aを楕円形状とすることによって格子定数をX方向及びY方向で互いに異ならせるようにしているが(図2参照)、格子定数をX方向及びY方向で互いに異ならせたフォトニッククリスタルファイバ1は、これに限らず、例えば図6に示すものでもよい。
すなわち、図6に示すフォトニッククリスタルファイバ9においては、各細孔92aは円形状に形成されているが、各細孔92aの中心間距離がX方向及びY方向で互いに異なるように各細孔92aを配設して多孔部92が構成されている(同図のe及びf参照)。尚、同図における93はサポート部である。
このようなフォトニッククリスタルファイバ9は、プリフォーム作製工程及び線引き工程によって製造すればよいが、上記プリフォームの作製の際に、キャピラリとして、断面が略長方形状であってその中心位置に円形状の孔を有するものを用いる。また、コア部材としては、上記キャピラリと同一の断面形状を有するものであってその中心位置に孔が形成されていない中実のものを用いればよい。そして、このキャピラリ及びコア部材をサポート管の孔内に最密に充填してプリフォームを作製すれば、このプリフォームにおける隣合うキャピラリの孔の中心間距離は、該キャピラリの断面における長辺の方向(図6におけるX方向)には長くなる一方、短辺の方向(同図におけるY方向)には短くなる。このため、上記プリフォームを線引きすることによって、図6に示すように、格子定数がX方向及びY方向で互いに異なるフォトニッククリスタルファイバ9を製造することができる。
<第1参考形態>
図7は本発明の第1参考形態に係るフォトニッククリスタルファイバ7を示していて、この第1参考形態に係るフォトニッククリスタルファイバ7は、各細孔72aの径D(図8参照)がファイバ7の中心軸Z1方向に対して変化していると共に、格子定数cも中心軸Z1方向に対して変化している。
すなわち、上記フォトニッククリスタルファイバ7は、ファイバ中心で中心軸Z1方向に延びかつ中実状に形成されたコア部71と、該コア部71の外周部を囲むように設けられ、該コア部71に沿って延びる多数の細孔72aが最密に配列された多孔部72と、これらを被覆するように設けられたサポート部73とを備えていて、該各細孔72aが、上記フォトニッククリスタルファイバ7の一端から他端に向けてその径Dが拡大するように形成されている。このため、格子定数cが上記フォトニッククリスタルファイバ7の一端から他端に向けて大きくなっている。
上記フォトニッククリスタルファイバ7は、プリフォーム52を作製するプリフォーム作製工程と該プリフォーム52を線引きする線引き工程とを経て製造されるが、上記プリフォーム作製工程は、上記第1実施形態に係るものと同様であるので、その説明は省略する(図3参照)。
そして、上記線引き工程は、図4に示すように、線引き装置6を用いて行うが、この線引き工程の際に、各キャピラリ32の上端開口から該各キャピラリ32内にガスを注入しながら線引きを行う。このとき、該ガスの注入量を制御して上記各キャピラリ32の内圧を徐々に高めるようにすることによって、上記キャピラリ32の潰れ量が次第に小さくなって、一端から他端に向けて径Dが次第に拡大する細孔72aを有するフォトニッククリスタルファイバ7が製造される。
そして、上記第1参考形態の場合、各細孔72aの径Dが中心軸Z1方向に対して変化しているため、格子定数cが中心軸Z1方向に対して変更される。尚、各細孔72aの径Dは中心軸Z1方向に対して同様に変化しているため、多孔部72における最密の配列は崩れない。
このように、格子定数cが中心軸Z1方向に対して変更されているため、フォトニッククリスタルファイバ7の中心軸Z1方向に対して伝播可能な波長が変化したり、分散値が変化したりするようになる。
尚、第1参考形態では、各細孔72aの径Dが中心軸Z1方向に徐々に拡大するフォトニッククリスタルファイバ7としているが、第1参考形態に係るフォトニッククリスタルファイバ7の製造方法を用いれば、例えば各細孔72aの径Dが中心軸Z1方向に徐々に縮小するフォトニッククリスタルファイバを製造することができる。また、中心軸Z1方向において細孔72aの径Dが局所的に拡大又は縮小したフォトニッククリスタルファイバを製造することもできる。
また、各細孔72aの径D及び格子定数cを調整することによって、ファイバの中心軸Z1方向の途中位置で特定波長の光のみが選択的に伝播可能となるように中心軸方向に対し伝播可能となる波長を変更させることができると共に、中心軸Z1方向に対して分散値の分布を有するフォトニッククリスタルファイバとすることもできる。特に、任意に選ばれたある波長における波長分散を、異常分散の大きな値から小さな値に変化させることにより、ソリトンパルス圧縮効果を用いて任意の波長域の光パルスを圧縮することが可能になる。
さらに、第1参考形態に係るフォトニッククリスタルファイバの製造方法は、中心軸Z1方向に対して格子定数cが一定になるように形成されたフォトニッククリスタルファイバを製造するのにも適している。
すなわち、例えばプリフォーム52を線引きしている間、各キャピラリ32の内圧を常に所定の圧力となるようにガスの注入量を調整すれば、各キャピラリ32の潰れ量がファイバの中心軸Z1方向に一定となって、該中心軸Z1方向に対して一定の大きさの径Dに形成された細孔72aを有するフォトニッククリスタルファイバを確実に製造することができる。
また、上記キャピラリ32の内圧を調整して該キャピラリ32の潰れを調整することによって、ファイバ化した際に互いに隣り合う3つの細孔72a,72a,…の間に形成される間隙72b(図8参照)の大きさを制御することができ、例えば上記間隙72bが形成されていないフォトニッククリスタルファイバを確実に製造することができる一方、該間隙72bが形成されているフォトニッククリスタルファイバを確実に製造することもできる。
<第2参考形態>
図9は本発明の第2参考形態に係るフォトニッククリスタルファイバ8を示していて、この第2参考形態に係るフォトニッククリスタルファイバ8は、多孔部82が中心軸Z1回りにねじられて形成されている。
すなわち、上記フォトニッククリスタルファイバ8は、ファイバ中心を中心軸Z1方向に延びかつ中実状に形成されたコア部81と、該コア部81の外周部を囲むように設けられ、該コア部81に沿って延びる多数の細孔82aを有する多孔部82と、これらを被覆するように設けられたサポート部83とを備えていて、上記多孔部82がねじられて形成されている。このため、図示は省略するが各細孔82aは上記フォトニッククリスタルファイバ8の中心軸Z1回りに螺旋状に配設されている。
上記フォトニッククリスタルファイバ8は、上記第1参考形態と同様に、プリフォーム52を作製するプリフォーム作製工程と該プリフォーム52を線引きする線引き工程とによって製造される。尚、プリフォーム作製工程は、上記第1実施形態に係るものと同様であるので、その説明は省略する(図3参照)。
そして、上記線引き工程は、図4に示すように、線引き装置6を用いて行うが、この線引きの際に、把持部材61によってプリフォーム52をその中心軸Z2回りに回転させながら線引きを行う。これにより、各キャピラリ32がプリフォーム52の中心軸Z2回りに回りながら線引きされるようになり、その結果、各細孔82aがファイバの中心軸Z1回りに螺旋状に配設された、すなわち多孔部82がねじられて形成されたフォトニッククリスタルファイバ8が製造される。
そして、上記第2参考形態の場合、多孔部82を、ファイバの中心軸Z1回りにねじられて形成することによって、上記ファイバの中心軸Z1方向(光の伝搬する方向)において上記ねじれに起因する実質的な格子が形成される。これにより、上記伝搬方向の分散特性が変化したり、特定波長の光が伝搬できなくなったりすること等、中心軸方向に対して一定の構造に形成されたフォトニッククリスタルファイバでは得られない作用を得ることができる。
尚、上記フォトニッククリスタルファイバ8の線引き工程の際に、プリフォーム52の回転速度を変更すれば、ファイバの中心軸Z1方向において多孔部82のねじれピッチPが変更されたフォトニッククリスタルファイバを製造することができる。
<他の実施形態>
尚、本発明は上記実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、上記実施形態では、フォトニッククリスタルファイバ1,7,8,9のコア部11,71,81を中実状としたが、上記コア部11,71,81は中空状であってもよい。コア部11,71,81が中空状に形成されたフォトニッククリスタルファイバを製造するには、そのプリフォームを製造する際に、コア部材41,42を配置しないでキャピラリ31,32のみをサポート管21,22の6角形状孔21a,22a内に充填するようにしてもよいし、キャピラリ31,32及びコア部材41,42を上記6角形状孔21a,22a内に充填した後に上記コア部材41,2のみを6角形状孔21a,22a内から抜くようにしてもよい。
第1実施形態に係るフォトニッククリスタルファイバを示す斜視図である。 第1実施形態に係るフォトニッククリスタルファイバの多孔部を拡大して示す拡大断面図である。 第1実施形態に係るフォトニッククリスタルファイバの母材を示す断面図である。 線引き装置を示す概略図である。 第1実施形態の第1参考例に係るフォトニッククリスタルファイバの母材を示す図3対応図である。 第1実施形態の第2参考例に係るフォトニッククリスタルファイバを示す図2対応図である。 第1参考形態に係るフォトニッククリスタルファイバを示す斜視図である。 第1参考形態に係るフォトニッククリスタルファイバの多孔部を示す図2対応図である。 第2参考形態に係るフォトニッククリスタルファイバを示す図7対応図である。
符号の説明
1,7〜9 フォトニッククリスタルファイバ
11,71,81 コア部
12,72〜92 多孔部
12a,72a〜92a 細孔
D 細孔の径
Z1 ファイバの中心軸
Z2 プリフォームの中心軸
a〜c,e,f 中心間距離

Claims (1)

  1. ファイバの中心軸方向に延びる多数の細孔が最密状に配列された多孔部と、該多孔部の中心に中実状又は中空状に形成されたコア部とを備えたフォトニッククリスタルファイバの製造方法であって、
    上記フォトニッククリスタルファイバは、最密状に配列された上記多孔部の各細孔が、楕円形状の断面を有しており、上記多孔部の各細孔の中心間距離が、上記ファイバの中心軸に直交する平面内において三角形の各辺に対応する2方向で互いに異なるように構成されており、
    筒状のサポート管の孔内に、円形状の孔を有する複数の筒状キャピラリを並列に並べて層状にすると共に、当該層において相隣接する一対の筒状キャピラリの間に別のキャピラリを配置して別の層を作成することを繰り返すことにより、上記サポート管の孔の横断面において最密上記キャピラリを充填すると共に、上記中実状のコア部となる棒状コア部材を上記サポート管の中心部に配設する又は上記中空状のコア部となる空間を該サポート管の中心部に形成することによってプリフォームを作製するプリフォーム作製工程と、
    上記プリフォームを加熱してキャピラリとサポート管とを互いに融着させる仮融着工程と、
    上記仮融着されたプリフォームを径方向に圧縮して、最密状の配列のまま上記各キャピラリの外周及び孔が楕円形状となるように変形させる圧縮工程と、
    上記変形されたプリフォームを加熱・延伸してファイバ状に線引きする線引き工程とを備えている
    ことを特徴とするフォトニッククリスタルファイバの製造方法。
JP2003312481A 2003-09-04 2003-09-04 フォトニッククリスタルファイバの製造方法 Expired - Fee Related JP3770889B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312481A JP3770889B2 (ja) 2003-09-04 2003-09-04 フォトニッククリスタルファイバの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312481A JP3770889B2 (ja) 2003-09-04 2003-09-04 フォトニッククリスタルファイバの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000287521A Division JP2002098852A (ja) 2000-09-21 2000-09-21 フォトニッククリスタルファイバ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2004013173A JP2004013173A (ja) 2004-01-15
JP3770889B2 true JP3770889B2 (ja) 2006-04-26

Family

ID=30439008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312481A Expired - Fee Related JP3770889B2 (ja) 2003-09-04 2003-09-04 フォトニッククリスタルファイバの製造方法

Country Status (1)

Country Link
JP (1) JP3770889B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068709A1 (en) * 2004-12-22 2006-06-29 3M Innovative Properties Company Hole-assisted fiber and its method of making
DE102011107511B4 (de) * 2011-07-10 2015-11-12 Fiberware Generalunternehmen für Nachrichtentechnik GmbH Verfahren zur Herstellung einer Preform und Preform zum Ziehen einer mikrostrukturierten Lichtleitfaser
CN114740566B (zh) * 2022-03-11 2023-05-02 中国科学院西安光学精密机械研究所 用于太赫兹波高性能成像的聚合物微结构光纤及光纤传像束

Also Published As

Publication number Publication date
JP2004013173A (ja) 2004-01-15

Similar Documents

Publication Publication Date Title
JP4495344B2 (ja) 軸方向に変化する構造を有する導波路
JP7178471B2 (ja) 母材用の要素、ファイバ製造方法、および、母材から線引きされた光ファイバ
US6795635B1 (en) Waveguides having axially varying structure
CN111095059A (zh) 反谐振空芯预制件和光纤以及制造方法
JP5888966B2 (ja) フォトニックバンドギャップファイバの製造方法
US20060088260A1 (en) Photonic bandgap optical waveguide
JP2023155471A (ja) ファイバスキャナのための微細構造光ファイバ発振器および導波管
JPS5848014A (ja) 分光配器の製造方法
WO2002024590A1 (fr) Procede de fabrication d'une fibre en cristal photonique
EP3662310A1 (en) Hollow core photonic bandgap optical fibres and methods of fabrication
JP3770889B2 (ja) フォトニッククリスタルファイバの製造方法
JP2013020075A (ja) マルチコアファイバの製造方法
JP2004102281A (ja) フォトニッククリスタルファイバ及びその製造方法
JP7400585B2 (ja) マルチコアファイバの母材の製造方法及びマルチコアファイバの製造方法
JP3825381B2 (ja) 偏波保持フォトニッククリスタルファイバ
JP4080701B2 (ja) ダブルクラッドファイバ及びその製造方法
JP4116479B2 (ja) テーパー加工フォトニック結晶ファイバ、その製造方法、及びフォトニック結晶ファイバの接続方法
JP3836731B2 (ja) 偏波保存フォトニッククリスタルファイバの製造方法
JP3872264B2 (ja) フォトニッククリスタルファイバの製造方法
JPS59217632A (ja) マルチコアフアイバプリフオ−ムの製造方法
JP2002137931A (ja) フォトニッククリスタルファイバの製造方法
JP2002098852A (ja) フォトニッククリスタルファイバ及びその製造方法
JP2006044950A (ja) 光ファイバ母材の製造方法
JP2006160550A (ja) フォトニッククリスタルファイバとその製造方法、フォトニッククリスタルファイバ製造用プリフォーム
JP6517583B2 (ja) マルチコアファイバ用母材の製造方法、及び、これを用いたマルチコアファイバの製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees