JP3770092B2 - Eddy current reducer - Google Patents

Eddy current reducer Download PDF

Info

Publication number
JP3770092B2
JP3770092B2 JP2001040753A JP2001040753A JP3770092B2 JP 3770092 B2 JP3770092 B2 JP 3770092B2 JP 2001040753 A JP2001040753 A JP 2001040753A JP 2001040753 A JP2001040753 A JP 2001040753A JP 3770092 B2 JP3770092 B2 JP 3770092B2
Authority
JP
Japan
Prior art keywords
magnet
ferromagnetic
eddy current
braking
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001040753A
Other languages
Japanese (ja)
Other versions
JP2002247834A (en
Inventor
徹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2001040753A priority Critical patent/JP3770092B2/en
Publication of JP2002247834A publication Critical patent/JP2002247834A/en
Application granted granted Critical
Publication of JP3770092B2 publication Critical patent/JP3770092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は非制動時に磁石からの洩れ磁界による引ずりトルクを抑制するようにした渦電流減速装置に関するものである。
【0002】
【従来の技術】
永久磁石(以下、これを単に磁石という)を用いた渦電流減速装置には特願昭63−127696号公報に開示されるようなドラム型のものと、特願昭63−127695号公報に開示されるような円板型のものとが提案されているが、両者とも非制動時に磁石からの磁界が強磁性部材相互の間から洩れ(希土類の強力な磁石は外部へ出る磁界の直進性が強いので)、回転体に入つて磁気的に引きずりトルクを発生する。引きずりトルクを抑制する対策として、特願平5−34848号公報に開示されるドラム型の渦電流減速装置では、磁石の磁極(外面)の周方向中央部にくぼみを設け、くぼみの内部に非磁性の補強板を重ね合せたり、磁性の弱い補強材を結合したりして、磁石のくぼみ部分の強度を高めるとともに、くぼみからの磁界の強さを弱め、強磁性部材相互の間からの磁気洩れを防止している。
【0003】
しかし、磁石のくぼみに非磁性の補強板を備えたものは、非制動時強磁性部材相互の間を通過する磁界を十分に抑え込むのは困難であり、くぼみを大きく深くすると、制動時の磁界の強さが弱まるという問題がある。また、くぼみに磁性の弱い補強材を結合したものは、磁石の周方向中央部からの磁界をある程度抑え込み、非制動時磁石の両側(回転体の回転方向の前後))に位置する強磁性部材へある程度磁界を通し、強磁性部材相互の間からの磁気洩れを防ぐがまだ不十分であり、制動時の磁界の強さを低下させる。
【0004】
【発明が解決しようとする課題】
本発明の課題は上述の問題に鑑み、非制動時に各磁石の周方向中央部から磁界が案内筒の外筒部の周方向に並ぶ強磁性部材の隙間を経て制動ドラムに及ぶのを、より効果的に抑制するようにした渦電流減速装置を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明の構成は回転軸に結合した制動ドラムの内部に断面長方形の内空部を有する案内筒を配設し、該案内筒の内空部に多数の磁石を周方向等間隔に結合する磁石支持筒を正逆回動可能に支持し、前記案内筒の外筒部に前記磁石と対向するように多数の強磁性板を配設し、前記磁石から前記強磁性板を経て前記制動ドラムへ及ぶ磁界により渦電流に基づく制動力を前記制動ドラムに発生する渦電流減速装置において、前記磁石の前記強磁性板に対向する外面の周方向中央部に設けた軸方向の溝に強磁性板を結合したことを特徴とする。
【0006】
【発明の実施の形態】
本発明では磁石の外面の周方向中央部に設けた軸方向の溝に強磁性板を結合する。非制動位置で磁石の周方向中央部からの磁界は、強磁性板を経て強磁性部材へ流れ込み、強磁性部材相互の隙間から回転体としての制動ドラムまたは制動円板への磁気洩れがなくなる。
【0007】
【実施例】
図1に示すように、ドラム型の渦電流減速装置は回転軸1に結合した制動ドラム7と、制動ドラム7の内部に配置される断面長方形の内空部を有する非磁性体からなる案内筒10と、案内筒10の内空部に正逆回動可能に支持した磁石支持筒14とを備えている。外周面に多数の冷却フイン8を有する制動ドラム7は回転軸1に結合したボス部5から放射方向に延びる多数の支持腕6の先端に一端部を結合される。案内筒10は例えば車両用変速機の壁部に固定されるものであり、外筒部10aに周方向等間隔に板状の強磁性部材15が結合される。好ましくは、強磁性部材15はアルミニウムから案内筒10を鋳造する時に鋳込まれる。強磁性体からなる磁石支持筒14は案内筒10の内筒部10bに滑り軸受12を介して、また側壁にスラスト軸受12aを介して支持され、磁石支持筒14から案内筒10の側壁のスロツト10cを経て外部へ突出するロツド16が流体圧アクチユエータのロツド17aに連結される。アクチユエータ20はシリンダ18にピストン17を嵌装して両端に流体室を区画され、ピストン17からロツド17aが外部へ突出される。磁石支持筒14の外周面には磁石24が周方向等間隔にかつ強磁性部材15に対向する極性が周方向に交互に異なるように結合される。
【0008】
図2に示すように、各磁石24の周方向の両端部には段部35が形成され、周方向に並ぶ磁石24の段部35の間へ非磁性体からなる止め具36が介装され、ボルト37により磁石支持筒14へ締結される。図2に示す制動位置では、各磁石24が強磁性部材15に全面的に重なる。この時、磁石24からの磁界は強磁性部材15を経て制動ドラム7へ達し、制動ドラム7と磁石支持筒14との間には磁気回路wが形成される。回転する制動ドラム7が磁石24からの磁界を受ける時、アクチユエータ20により渦電流に基づく制動トルクを発生する。
【0009】
アクチユエータ20により磁石支持筒14を磁石24の半配列ピツチだけ回動すると、図3に示すように、周方向に並ぶ2つの磁石24が強磁性部材15に部分的に重なり、強磁性部材15と磁石支持筒14との間に短絡的磁気回路zが生じ、制動ドラム7は制動トルクを発生しない。しかし、磁石24の外面から制動ドラム7へ向かう磁界の方向は、磁石24が強力であるほど曲線性をもつので、各磁石24の周方向中央部からの磁界が非磁性体の外筒部10aを経て制動ドラム7に達すると、制動ドラム7が引きずりトルクを発生する。
【0010】
本発明では、引きずりトルクを抑制するために、磁石24の周方向中央部に設けた軸方向の溝に、強磁性板34を埋め込むなどして結合したものであり、強磁性板34が周方向に並ぶ強磁性部材15の間を連絡し、磁石24の周方向中央部からの磁界が強磁性板34により隣りの強磁性部材15へ誘導され、制動ドラム7に達しないようにしたものである。
【0011】
図4に示すように、強磁性板34の周方向寸法bは強磁性部材15の相互の間隔aよりも狭くてもよいが、好ましくは、周方向寸法bは間隔aよりも大きくすれば、磁石24から制動ドラム7への洩れ磁界を完全に防止することができる。しかし、図2に示すように、強磁性部材15の相互の間隔a(図4を参照)をあまり狭くすると、制動時にも磁気回路wを構成する磁界の一部が強磁性部材15の間で短絡し、制動能力が減殺される恐れがあるので、周方向寸法bと間隔aの関係は実験的に求められる。図6に示すように、磁石24の外面の周方向中央部に設ける溝34aの幅は、強磁性板34と同寸でもよいが、図7に示すように、溝34aの幅(周方向寸法)を強磁性板34の幅よりも長くしてもよく、この場合は磁石24の周方向中央部と制動ドラム7との間隔が広くなり、制動ドラム7へ到達する磁界を弱めるだけでなく、強磁性板34が磁界を強磁性部材15へ誘導する(湾曲させる)。
【0012】
磁石支持筒14に対する磁石24の結合手段については図2に示したが、図8に示すように、磁石支持筒14の外周面に設けた磁石24の軸方向寸法と同幅の周方向の溝14aに磁石24を係合し、磁石24の溝34aに強磁性板34を重ね合せたうえ、1本または2本のボルト41により磁石支持筒14へ締結するようにしてもよい。
【0013】
図9に示すように、案内筒10の外筒部10aは、磁性体である鉄から鍛造または鋳造により、厚肉部分と薄肉部分を周方向に交互に形成し、厚肉部分を強磁性部材15とし、薄肉部分にニツケルを溶け込ませて非磁性のオーステナイト組織(部分15aに相当)に変化させるようにしてもよい。また、肉厚が均等な外筒部10aをマルテンサイトまたはフエライト組織のステンレス鋼から形成し、熱処理により強磁性部と非磁性部または弱磁性部を形成するようにしてもよい。
【0014】
図10に示す実施例では、外筒部10aの強磁性部材15の周方向の端壁面に、強磁性部材15の内面に沿つて周方向へ延びる突片15bを設けたものである。換言すれば、強磁性部材15の相互間隔を外周側では広くし、内周側へ至るにつれて次第に狭くなるように構成する。磁石支持筒14の非制動位置で、磁石24の周方向中央部からの磁界は、強磁性板34により強磁性部材15へ誘導され、制動ドラム7には達しない。
【0015】
図11に示す実施例では、磁石24に対する強磁性板34の構成と作用効果については既に述べたとおりであるが、外筒部10aの強磁性部材15の周方向の端壁面15c,15dを径方向の平坦面ではなく傾斜面とし、端壁面15c,15dが径方向に間隔を存して僅かに重なり合うように構成される。磁石支持筒14の非制動位置で、磁石24の周方向中央部から制動ドラム7へ向かう磁界が端壁面15c,15dで遮られるので、引きずりトルクが抑えられる。
【0016】
図12,13に示すように、本発明は円板型の渦電流減速装置にも適用される。円板型の渦電流減速装置では回転軸52に左右1対の制動円板53が結合され、両者の間に断面長方形の内空部を有する非磁性体からなる案内筒55が配設され、案内筒55の内空部に磁石支持筒63が正逆回動可能に支持される。図示してないが、案内筒55は車体の非回転部分に固定される。制動円板53は冷却のための導風路53cを備えられ、ボス部53aを回転軸52にスプライン嵌合されかつ軸方向に移動しないように固定される。回転軸52に軸受54により相対回動可能に支持されたボス部55aから、複数のスポーク55bが放射方向に延出され、スポーク55bの先端に案内筒55が結合される。案内筒55の両側壁55cには、制動円板53に対向する扇形ないし台形の板からなる強磁性部材56が周方向等間隔に結合される。
【0017】
磁石支持筒63は非磁性体からなる外筒60と内筒58との間に、強磁性部材56と同数の磁石62を周方向等間隔に結合され、内筒58が軸受57により案内筒55の内筒部に支持される。磁石62は左右の強磁性部材56に対向する極性が周方向に交互に逆になるように配される。好ましくは、磁石62の両側面に滑り板64が結合され、強磁性部材56との間で円滑な滑りが得られるようになつている。
【0018】
本実施例では磁石支持筒63の非制動位置で、磁石62の周方向中央部から強磁性部材56と強磁性部材56の隙間を経て制動円板53へ磁界が洩れるのを防止するために、磁石62の両側面の周方向中央部に設けた径方向溝に強磁性板70が結合される。磁石支持筒63の非制動位置で、磁石62の周方向中央部から制動円板53へ向かう磁界は、強磁性板70により強磁性部材56へ誘導されて短絡的磁気回路zを形成する。
【0019】
【発明の効果】
本発明は上述のように、回転軸に結合した制動ドラムの内部に断面長方形の内空部を有する案内筒を配設し、該案内筒の内空部に多数の磁石を周方向等間隔に結合する磁石支持筒を正逆回動可能に支持し、前記案内筒の外筒部に前記磁石と対向するように多数の強磁性板を配設し、前記磁石から前記強磁性板を経て前記制動ドラムへ及ぶ磁界により渦電流に基づく制動力を前記制動ドラムに発生する渦電流減速装置において、前記磁石の前記強磁性板に対向する外面の周方向中央部に設けた軸方向の溝に強磁性板を結合したものであり、非制動位置で磁石の周方向中央部からの磁界は、強磁性板を経て強磁性部材へ流れ込み、強磁性部材相互の隙間から制動ドラムまたは制動円板への磁気洩れがなくなり、引きずりトルクが抑えられる。
【図面の簡単な説明】
【図1】本発明に係る渦電流減速装置の正面断面図である。
【図2】同渦電流減速装置の制動時の側面断面図である。
【図3】同渦電流減速装置の非制動時の側面断面図である。
【図4】強磁性部材相互の隙間と磁石に配設される強磁性板との寸法関係を表す側面断面図である。
【図5】強磁性部材相互の隙間と磁石に配設される強磁性板との寸法関係を表す側面断面図である。
【図6】磁石の溝と強磁性板との関係を示す側面図である。
【図7】磁石の溝と強磁性板との関係を示す側面図である。
【図8】磁石支持筒に対する磁石の支持構造を示す側面断面図である。
【図9】案内筒の外筒部の側面断面図である。
【図10】案内筒の外筒部の強磁性部材と磁石との関係を示す側面断面図である。
【図11】案内筒の外筒部の強磁性部材と磁石との関係を示す側面断面図である。
【図12】制動円板型の渦電流減速装置の正面断面図である。
【図13】同渦電流減速装置を周方向に展開して示す平面断面図である。
【符号の説明】
1:回転軸 5:ボス部 6:支持腕 7:制動ドラム 8:冷却フイン 10:案内筒 10a:外筒部 10b:内筒部 12:滑り軸受 12a:スラスト軸受 14a:溝 14:磁石支持筒 15:強磁性部材 15b:突片 15c,15d:端壁面 20:アクチユエータ 24:磁石 34:強磁性板 34a:溝 52:回転軸 53:制動円板 53a:ボス部 54:軸受 53c:導風路 55:案内筒 55a:ボス部 56:強磁性部材 55b:スポーク 57:軸受 55c:側壁 58:内筒 62:磁石 63:磁石支持筒 64:滑り板 70:強磁性板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an eddy current reduction device that suppresses drag torque caused by a leakage magnetic field from a magnet during non-braking.
[0002]
[Prior art]
As an eddy current speed reducing device using a permanent magnet (hereinafter simply referred to as a magnet), a drum type as disclosed in Japanese Patent Application No. 63-127696 and a Japanese Patent Application No. 63-127695 are disclosed. However, in both cases, the magnetic field from the magnets leaks between the ferromagnetic members when not braked (the strong magnets of rare earths have the ability to go straight to the outside). Because it is strong), it enters the rotating body and generates drag torque magnetically. As a measure for suppressing drag torque, in the drum-type eddy current reduction device disclosed in Japanese Patent Application No. 5-34848, a recess is provided in the central portion in the circumferential direction of the magnetic pole (outer surface) of the magnet, and the inner portion of the recess is not covered. By superimposing magnetic reinforcement plates or combining weak magnetic reinforcements, the strength of the magnet's indented portion is increased, and the strength of the magnetic field from the indentation is reduced, so that the magnetism between the ferromagnetic members is reduced. Prevents leakage.
[0003]
However, it is difficult to sufficiently suppress the magnetic field passing between the non-braking ferromagnetic members when the magnet is provided with a non-magnetic reinforcing plate. There is a problem that the strength of. In addition, a weak magnetic member is combined with the recess to suppress the magnetic field from the central part in the circumferential direction of the magnet to some extent, and the ferromagnetic member is located on both sides of the non-braking magnet (before and after the rotating direction of the rotating body). A magnetic field is passed through to a certain extent to prevent magnetic leakage from between the ferromagnetic members, but it is still insufficient, reducing the strength of the magnetic field during braking.
[0004]
[Problems to be solved by the invention]
In view of the above-described problems, the problem of the present invention is that when the magnetic field is not braked, the magnetic field reaches the braking drum through the gap between the ferromagnetic members arranged in the circumferential direction of the outer cylinder part of the guide cylinder. An object of the present invention is to provide an eddy current reduction device which is effectively suppressed.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, the configuration of the present invention is such that a guide cylinder having an inner cavity with a rectangular cross section is disposed inside a brake drum coupled to a rotating shaft, and a number of magnets are provided in the inner cavity of the guide cylinder. A magnet support cylinder coupled at equal intervals in the circumferential direction is supported so as to be able to rotate in the forward and reverse directions, and a large number of ferromagnetic plates are disposed on the outer cylinder portion of the guide cylinder so as to face the magnet. In the eddy current reduction device for generating a braking force based on an eddy current in the braking drum by a magnetic field passing through the magnetic plate to the braking drum, a shaft provided at a circumferential central portion of the outer surface of the magnet facing the ferromagnetic plate A ferromagnetic plate is coupled to the groove in the direction.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the ferromagnetic plate is coupled to the axial groove provided in the center in the circumferential direction of the outer surface of the magnet. The magnetic field from the central portion in the circumferential direction of the magnet at the non-braking position flows into the ferromagnetic member through the ferromagnetic plate, and magnetic leakage from the gap between the ferromagnetic members to the braking drum or the braking disk as a rotating body is eliminated.
[0007]
【Example】
As shown in FIG. 1, the drum-type eddy current reduction device includes a brake drum 7 coupled to a rotating shaft 1 and a guide cylinder made of a non-magnetic material having a rectangular cross section disposed inside the brake drum 7. 10 and a magnet support cylinder 14 supported in the inner space of the guide cylinder 10 so as to be rotatable forward and backward. A brake drum 7 having a large number of cooling fins 8 on its outer peripheral surface is coupled at one end to the tips of a large number of support arms 6 extending radially from a boss portion 5 coupled to the rotary shaft 1. The guide tube 10 is fixed to, for example, a wall portion of a vehicle transmission, and plate-like ferromagnetic members 15 are coupled to the outer tube portion 10a at equal intervals in the circumferential direction. Preferably, the ferromagnetic member 15 is cast when casting the guide tube 10 from aluminum. The magnet support cylinder 14 made of a ferromagnetic material is supported on the inner cylinder portion 10b of the guide cylinder 10 via the slide bearing 12 and on the side wall via the thrust bearing 12a, and the slot on the side wall of the guide cylinder 10 from the magnet support cylinder 14 is supported. A rod 16 projecting outside through 10c is connected to a rod 17a of a fluid pressure actuator. The actuator 20 is fitted with a piston 17 in a cylinder 18 so that fluid chambers are defined at both ends, and a rod 17a protrudes from the piston 17 to the outside. Magnets 24 are coupled to the outer peripheral surface of the magnet support cylinder 14 at equal intervals in the circumferential direction so that the polarities facing the ferromagnetic member 15 are alternately different in the circumferential direction.
[0008]
As shown in FIG. 2, step portions 35 are formed at both ends of each magnet 24 in the circumferential direction, and a stopper 36 made of a nonmagnetic material is interposed between the step portions 35 of the magnets 24 arranged in the circumferential direction. The bolt 37 is fastened to the magnet support cylinder 14. In the braking position shown in FIG. 2, each magnet 24 entirely overlaps the ferromagnetic member 15. At this time, the magnetic field from the magnet 24 reaches the brake drum 7 through the ferromagnetic member 15, and a magnetic circuit w is formed between the brake drum 7 and the magnet support cylinder 14. When the rotating brake drum 7 receives a magnetic field from the magnet 24, the actuator 20 generates a braking torque based on the eddy current.
[0009]
When the actuator 20 rotates the magnet support cylinder 14 by a half arrangement pitch of the magnets 24, the two magnets 24 arranged in the circumferential direction partially overlap the ferromagnetic member 15 as shown in FIG. A short-circuit magnetic circuit z is generated between the magnet support cylinder 14 and the brake drum 7 does not generate a braking torque. However, the direction of the magnetic field from the outer surface of the magnet 24 toward the braking drum 7 has a curvilinearity as the magnet 24 becomes stronger, so that the magnetic field from the central portion in the circumferential direction of each magnet 24 is a non-magnetic outer cylinder portion 10a. When the brake drum 7 is reached after passing through, the brake drum 7 generates drag torque.
[0010]
In the present invention, in order to suppress the drag torque, the ferromagnetic plate 34 is coupled by embedding the ferromagnetic plate 34 in an axial groove provided in the central portion in the circumferential direction of the magnet 24. Are connected so that the magnetic field from the circumferential center of the magnet 24 is guided to the adjacent ferromagnetic member 15 by the ferromagnetic plate 34 and does not reach the braking drum 7. .
[0011]
As shown in FIG. 4, the circumferential dimension b of the ferromagnetic plate 34 may be narrower than the distance a between the ferromagnetic members 15, but preferably, if the circumferential dimension b is larger than the distance a, The leakage magnetic field from the magnet 24 to the braking drum 7 can be completely prevented. However, as shown in FIG. 2, if the distance a (see FIG. 4) between the ferromagnetic members 15 is made too small, a part of the magnetic field constituting the magnetic circuit w is between the ferromagnetic members 15 even during braking. Since there is a risk of short-circuiting and the braking ability being diminished, the relationship between the circumferential dimension b and the distance a is obtained experimentally. As shown in FIG. 6, the width of the groove 34a provided at the center in the circumferential direction of the outer surface of the magnet 24 may be the same as that of the ferromagnetic plate 34. However, as shown in FIG. ) May be longer than the width of the ferromagnetic plate 34. In this case, the distance between the circumferential center of the magnet 24 and the brake drum 7 is increased, and not only the magnetic field reaching the brake drum 7 is weakened, The ferromagnetic plate 34 induces (curves) a magnetic field to the ferromagnetic member 15.
[0012]
The means for coupling the magnet 24 to the magnet support cylinder 14 is shown in FIG. 2, but as shown in FIG. 8, a circumferential groove having the same width as the axial dimension of the magnet 24 provided on the outer peripheral surface of the magnet support cylinder 14 is used. The magnet 24 may be engaged with the magnet 14 a, the ferromagnetic plate 34 may be overlapped with the groove 34 a of the magnet 24, and the magnet support tube 14 may be fastened with one or two bolts 41.
[0013]
As shown in FIG. 9, the outer tube portion 10a of the guide tube 10 is formed by alternately forging or casting iron, which is a magnetic body, to alternately form thick portions and thin portions in the circumferential direction. The thickness may be changed to 15, and nickel may be melted into the thin portion to change to a non-magnetic austenite structure (corresponding to the portion 15a). Alternatively, the outer cylindrical portion 10a having a uniform wall thickness may be formed from martensite or ferritic stainless steel, and a ferromagnetic portion and a nonmagnetic portion or a weak magnetic portion may be formed by heat treatment.
[0014]
In the embodiment shown in FIG. 10, a projecting piece 15b extending in the circumferential direction along the inner surface of the ferromagnetic member 15 is provided on the end wall surface in the circumferential direction of the ferromagnetic member 15 of the outer cylinder portion 10a. In other words, the distance between the ferromagnetic members 15 is increased on the outer peripheral side and gradually decreased toward the inner peripheral side. At the non-braking position of the magnet support cylinder 14, the magnetic field from the central portion in the circumferential direction of the magnet 24 is guided to the ferromagnetic member 15 by the ferromagnetic plate 34 and does not reach the braking drum 7.
[0015]
In the embodiment shown in FIG. 11, the configuration and the function and effect of the ferromagnetic plate 34 with respect to the magnet 24 are as described above, but the circumferential end walls 15 c and 15 d of the ferromagnetic member 15 of the outer cylinder portion 10 a are provided with diameters. The end wall surfaces 15c and 15d are configured to be slightly overlapped with a gap in the radial direction. Since the magnetic field from the circumferential center of the magnet 24 toward the braking drum 7 is blocked by the end wall surfaces 15c and 15d at the non-braking position of the magnet support cylinder 14, drag torque is suppressed.
[0016]
As shown in FIGS. 12 and 13, the present invention is also applied to a disk-type eddy current reduction device. In the disc-type eddy current reduction device, a pair of left and right braking discs 53 are coupled to the rotating shaft 52, and a guide cylinder 55 made of a non-magnetic material having an inner space with a rectangular cross section is disposed between both. A magnet support cylinder 63 is supported in the inner space of the guide cylinder 55 so as to be able to rotate forward and backward. Although not shown, the guide tube 55 is fixed to a non-rotating portion of the vehicle body. The brake disc 53 is provided with an air guide path 53c for cooling, and the boss portion 53a is spline fitted to the rotary shaft 52 and fixed so as not to move in the axial direction. A plurality of spokes 55b extend in a radial direction from a boss portion 55a supported on the rotary shaft 52 by a bearing 54 so as to be relatively rotatable, and a guide tube 55 is coupled to the tip of the spoke 55b. Ferromagnetic members 56 made of fan-shaped or trapezoidal plates facing the brake disc 53 are coupled to both side walls 55c of the guide tube 55 at equal intervals in the circumferential direction.
[0017]
The magnet support cylinder 63 is formed by connecting the same number of magnets 62 as the ferromagnetic member 56 between the outer cylinder 60 and the inner cylinder 58 made of a non-magnetic material at equal intervals in the circumferential direction. Is supported by the inner cylinder portion. The magnets 62 are arranged so that the polarities facing the left and right ferromagnetic members 56 are alternately reversed in the circumferential direction. Preferably, sliding plates 64 are coupled to both side surfaces of the magnet 62 so that smooth sliding with the ferromagnetic member 56 can be obtained.
[0018]
In the present embodiment, in order to prevent the magnetic field from leaking from the circumferential central portion of the magnet 62 to the braking disk 53 through the gap between the ferromagnetic member 56 and the ferromagnetic member 56 at the non-braking position of the magnet support cylinder 63. Ferromagnetic plates 70 are coupled to radial grooves provided in the circumferential center of both sides of the magnet 62. At the non-braking position of the magnet support cylinder 63, the magnetic field from the circumferential central portion of the magnet 62 toward the braking disc 53 is guided to the ferromagnetic member 56 by the ferromagnetic plate 70 to form a short circuit magnetic circuit z.
[0019]
【The invention's effect】
As described above, according to the present invention, a guide cylinder having an inner cavity with a rectangular cross section is disposed inside a brake drum coupled to a rotating shaft, and a large number of magnets are arranged at equal intervals in the inner circumference of the guide cylinder. A magnet support cylinder to be coupled is supported so as to be able to rotate forward and backward, and a large number of ferromagnetic plates are disposed on the outer cylinder portion of the guide cylinder so as to face the magnet, and the magnet passes through the ferromagnetic plate and passes through the ferromagnetic plate. In the eddy current reduction device for generating a braking force based on an eddy current in the braking drum by a magnetic field applied to the braking drum, a strong force is exerted on an axial groove provided in a circumferential central portion of the outer surface of the magnet facing the ferromagnetic plate. A magnetic plate is coupled, and the magnetic field from the center in the circumferential direction of the magnet at the non-braking position flows into the ferromagnetic member through the ferromagnetic plate, and from the gap between the ferromagnetic members to the braking drum or the braking disk. Magnetic leakage is eliminated and drag torque is suppressed.
[Brief description of the drawings]
FIG. 1 is a front sectional view of an eddy current reduction device according to the present invention.
FIG. 2 is a side sectional view of the eddy current reduction device during braking.
FIG. 3 is a side cross-sectional view of the eddy current reduction device when not braked.
FIG. 4 is a side sectional view showing a dimensional relationship between a gap between ferromagnetic members and a ferromagnetic plate disposed in a magnet.
FIG. 5 is a side sectional view showing a dimensional relationship between a gap between ferromagnetic members and a ferromagnetic plate disposed in a magnet.
FIG. 6 is a side view showing a relationship between a groove of a magnet and a ferromagnetic plate.
FIG. 7 is a side view showing a relationship between a groove of a magnet and a ferromagnetic plate.
FIG. 8 is a side sectional view showing a magnet support structure with respect to a magnet support cylinder.
FIG. 9 is a side cross-sectional view of an outer cylinder portion of a guide cylinder.
FIG. 10 is a side cross-sectional view showing the relationship between the ferromagnetic member and the magnet in the outer tube portion of the guide tube.
FIG. 11 is a side sectional view showing a relationship between a ferromagnetic member and a magnet in an outer cylinder portion of the guide cylinder.
FIG. 12 is a front sectional view of a braking disk type eddy current reduction device.
FIG. 13 is a plan sectional view showing the eddy current reduction device developed in the circumferential direction.
[Explanation of symbols]
1: Rotating shaft 5: Boss part 6: Support arm 7: Braking drum 8: Cooling fin 10: Guide cylinder 10a: Outer cylinder part 10b: Inner cylinder part 12: Sliding bearing 12a: Thrust bearing 14a: Groove 14: Magnet support cylinder 15: Ferromagnetic member 15b: Projection piece 15c, 15d: End wall surface 20: Actuator 24: Magnet 34: Ferromagnetic plate 34a: Groove 52: Rotating shaft 53: Braking disc 53a: Boss portion 54: Bearing 53c: Air guide path 55: Guide tube 55a: Boss portion 56: Ferromagnetic member 55b: Spoke 57: Bearing 55c: Side wall 58: Inner tube 62: Magnet 63: Magnet support tube 64: Sliding plate 70: Ferromagnetic plate

Claims (4)

回転軸に結合した制動ドラムの内部に断面長方形の内空部を有する案内筒を配設し、該案内筒の内空部に多数の磁石を周方向等間隔に結合する磁石支持筒を正逆回動可能に支持し、前記案内筒の外筒部に前記磁石と対向するように多数の強磁性板を配設し、前記磁石から前記強磁性板を経て前記制動ドラムへ及ぶ磁界により渦電流に基づく制動力を前記制動ドラムに発生する渦電流減速装置において、前記磁石の前記強磁性板に対向する外面の周方向中央部に設けた軸方向の溝に強磁性板を結合したことを特徴とする渦電流減速装置。A guide cylinder having an inner cavity with a rectangular cross section is disposed inside the brake drum coupled to the rotating shaft, and a magnet support cylinder for coupling a number of magnets at equal intervals in the circumferential direction is arranged in the inner cavity of the guide cylinder. A large number of ferromagnetic plates are disposed so as to be pivotably supported so as to face the magnet on the outer cylinder portion of the guide cylinder, and an eddy current is generated by a magnetic field extending from the magnet to the brake drum through the ferromagnetic plate. In the eddy current reduction device that generates a braking force based on the above-described braking drum, a ferromagnetic plate is coupled to an axial groove provided in a circumferential central portion of the outer surface of the magnet facing the ferromagnetic plate. An eddy current reduction device. 前記強磁性板の周方向の寸法が前記外筒部の強磁性部材相互の間隔よりも広くなつている、請求項1に記載の渦電流減速装置。2. The eddy current reduction device according to claim 1, wherein a dimension in a circumferential direction of the ferromagnetic plate is wider than a distance between the ferromagnetic members of the outer cylinder portion. 前記強磁性板の周方向の寸法が前記外筒部の強磁性部材相互の間隔よりも狭くなつている、請求項1に記載の渦電流減速装置。2. The eddy current reduction device according to claim 1, wherein a dimension in a circumferential direction of the ferromagnetic plate is narrower than an interval between the ferromagnetic members of the outer cylinder portion. 回転軸に結合した左右1対の制動円板の間に非磁性体からなる断面長方形の内空部を有する不動の案内筒を配設し、該案内筒の制動円板と対向する両側壁に多数の強磁性部材を周方向等間隔に結合し、前記案内筒の内空部に多数の磁石を周方向等間隔に結合する磁石支持筒を正逆回動可能に支持し、前記磁石支持筒の強磁性部材に磁石が全面的に対向する制動位置と、前記磁石支持筒の強磁性部材に2つの磁石が部分的に対向する非制動位置とに前記磁石支持筒を回動する手段を備えた渦電流減速装置において、前記磁石の前記強磁性板に対向する外面の周方向中央部に設けた軸方向の溝に強磁性板を結合したことを特徴とする渦電流減速装置。A stationary guide cylinder having an inner space with a rectangular cross section made of a non-magnetic material is disposed between a pair of left and right braking disks coupled to the rotating shaft, and a plurality of guide cylinders on both side walls of the guide cylinder facing the braking disk. A ferromagnetic member is coupled at equal intervals in the circumferential direction, and a magnet support cylinder that couples a number of magnets at equal intervals in the circumferential direction is supported in the inner space of the guide cylinder so as to be able to rotate forward and backward. A vortex provided with means for rotating the magnet support cylinder between a braking position where the magnet faces the magnetic member entirely and a non-braking position where the two magnets partially face the ferromagnetic member of the magnet support cylinder 2. An eddy current reduction device according to claim 1, wherein a ferromagnetic plate is coupled to an axial groove provided in a circumferential central portion of the outer surface of the magnet facing the ferromagnetic plate.
JP2001040753A 2001-02-16 2001-02-16 Eddy current reducer Expired - Fee Related JP3770092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040753A JP3770092B2 (en) 2001-02-16 2001-02-16 Eddy current reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001040753A JP3770092B2 (en) 2001-02-16 2001-02-16 Eddy current reducer

Publications (2)

Publication Number Publication Date
JP2002247834A JP2002247834A (en) 2002-08-30
JP3770092B2 true JP3770092B2 (en) 2006-04-26

Family

ID=18903299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040753A Expired - Fee Related JP3770092B2 (en) 2001-02-16 2001-02-16 Eddy current reducer

Country Status (1)

Country Link
JP (1) JP3770092B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110992B (en) * 2017-11-29 2019-10-11 东南大学 A kind of ring-like built-in type permanent-magnet eddy speed regulating device of translation stator

Also Published As

Publication number Publication date
JP2002247834A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
WO1993009590A1 (en) Eddy current type retarder
JP2000116108A (en) Fddy-current reduction gear
JP3651255B2 (en) Eddy current reducer
JPH0488867A (en) Eddy current type reduction gear
JP3770092B2 (en) Eddy current reducer
JP3690471B2 (en) Eddy current reducer
JP3285059B2 (en) Eddy current type reduction gear
JP3719338B2 (en) Eddy current reducer
JP3959594B2 (en) Eddy current reducer
JPH07245933A (en) Eddy current type reduction gear
JP3706891B2 (en) Eddy current reducer
JP2002272088A (en) Eddy-current decelerator
JP2566803Y2 (en) Eddy current type reduction gear
JP3855590B2 (en) Eddy current reducer
JP2550818B2 (en) Eddy current type speed reducer
JP3704946B2 (en) Permanent magnet type eddy current reducer
JP3882397B2 (en) Eddy current reducer
JP3690486B2 (en) Eddy current reducer
JP3755717B2 (en) Eddy current reducer
JP3216667B2 (en) Eddy current type reduction gear
JP3656444B2 (en) Eddy current reducer
JPH05284723A (en) Eddy current type reduction gear
JP4016537B2 (en) Eddy current reducer
JP3233166B2 (en) Eddy current type reduction gear
JP3755339B2 (en) Eddy current reducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees