JP3656444B2 - Eddy current reducer - Google Patents

Eddy current reducer Download PDF

Info

Publication number
JP3656444B2
JP3656444B2 JP02472999A JP2472999A JP3656444B2 JP 3656444 B2 JP3656444 B2 JP 3656444B2 JP 02472999 A JP02472999 A JP 02472999A JP 2472999 A JP2472999 A JP 2472999A JP 3656444 B2 JP3656444 B2 JP 3656444B2
Authority
JP
Japan
Prior art keywords
eddy current
magnet
reduction device
coupled
brake drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02472999A
Other languages
Japanese (ja)
Other versions
JP2000224835A (en
Inventor
徹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP02472999A priority Critical patent/JP3656444B2/en
Publication of JP2000224835A publication Critical patent/JP2000224835A/en
Application granted granted Critical
Publication of JP3656444B2 publication Critical patent/JP3656444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は案内筒の加工と案内筒に対する強磁性板の結合が簡単な渦電流減速装置に関するものである。
【0002】
【従来の技術】
制動ドラムの内部に配置した案内筒の断面長方形の内空部に、可動の磁石支持筒と不動の磁石支持筒を収容し、可動の磁石支持筒を正逆回動して各磁石支持筒の外周面に結合した軸方向に並ぶ磁石(永久磁石、以下同じ)の極性が異なる非制動位置と、軸方向に並ぶ磁石の極性が同じ制動位置とに切り換える従来の渦電流減速装置では、非制動時に磁石の磁界が制動ドラムに及ばないように、制動ドラムの内周面に対向する案内筒に、かなり厚い強磁性板(普通には10〜16mm)を埋設しなければならない。このため、アルミニウム鋳物からなる案内筒に強磁性板を鋳込むか、非磁性体のステンレス板からプレス成形した案内筒に多数の開口を設け、各開口に強磁性板を嵌合したうえ溶接している。前者の方法は歩留りが低く、後者の方法は加工に手数がかかり、いずれもコスト低減が難しい。
【0003】
【発明が解決しようとする課題】
本発明の課題は上述の問題に鑑み、案内筒の加工が容易であり、軽量化とコスト低減に役立つ渦電流減速装置を提供することにある。
【0004】
【課題を解決するための手段】
上記課題を解決するために、本発明の構成は回転軸に結合した制動ドラムと、該制動ドラムの内部にあつて少くとも1つの可動の磁石支持筒と、該可動の磁石支持筒の外周面に等間隔に結合した多数の磁石とを有し、該磁石からの磁界に基づく渦電流により制動ドラムに制動力を発生させる渦電流減速装置において、前記磁石の外周側に軟磁性体の薄板からなる案内筒を設置し、該案内筒の内外周面の一方に各磁石に対向する強磁性板を結合したことを特徴とする。
【0005】
【発明の実施の形態】
本発明では軟磁性体の薄板からなる案内筒の磁石と対向する部分に厚めの強磁性板を溶接により結合し、案内筒を磁石の外周側に配置する。案内筒の強磁性板と強磁性板の間(磁石と磁石の間)の部分は、磁界が透過しにくいように板厚を薄くしてもよい。案内筒の剛性強度を確保するために、薄肉の部分にアルミニウム、ステンレスなどの非磁性体からなる補強板を溶接、ろう付けなどにより結合してもよい。
【0006】
また、制動ドラムに渦電流が流れやすくするために、制動ドラムの強磁性板に対向しない部分に銅などの良伝導体からなる環状体を結合する。
【0007】
【実施例】
図1に示すように、本発明による渦電流減速装置は、例えば車両用変速機の出力回転軸2にスプライン嵌合した取付フランジ3に、制動ドラム8のボス部5のフランジ5aと、駐車ブレーキの制動ドラム4の端壁板とを一緒に複数のボルト6とナツトにより締結される。ボス部5から径外方へ突出する多数の支持腕7の先端に、多数の冷却フイン9を外周面に備える制動ドラム8の基端部ないし右端部が溶接などにより結合される。制動ドラム8の開放端部ないし左端部の端壁面には銅などの良伝導体からなる環状板10が結合され、制動ドラム8の内周面の強磁性板41と対向しない左端部に、環状板10と一体の筒ないし環状板11が結合される。制動ドラム8の内周面の強磁性板41と対向しない右端部にも、同様の筒ないし環状板12が結合される。各環状板10〜12は制動ドラム8の内部を流れる渦電流の軸方向の広がりをもたせ、制動トルクを増大させる。
【0008】
制動ドラム8の内部には、断面長方形の内空部を有する案内筒21が配設される。案内筒21は非磁性体からなる側壁24と内側案内筒23とを有する断面L字形の筒部分と、非磁性体の環状板からなる側壁24aとを複数のボルトにより結合し、軟磁性体の薄板から成形した外側案内筒22の両側縁部20を径内方へ折り曲げたうえ側壁24,24aに固定される。外側案内筒22の外周面には、制動ドラム8の内周面に対向して多数のブロツク状の強磁性板(ポールピース)41が周方向等間隔に結合される。
【0009】
案内筒21の内空部には、磁性体からなる可動の磁石支持筒25と不動の磁石支持筒26とが収容される。可動の磁石支持筒25は軸受25aにより内側案内筒23に正逆回動可能に支持され、磁石支持筒26はボルトなどにより内側案内筒23に固定される。各磁石支持筒25,26の外周面には各強磁性板41に対向する多数の磁石15,16が周方向等間隔に、かつ強磁性板41に対向する極性が周方向に交互に異なるように結合される。
【0010】
可動の磁石支持筒25を正逆回動するための流体圧アクチユエータ31は、側壁24と一体に形成したシリンダ32にピストン33を嵌挿して両端室を区画し、ピストン33に結合したロツドの外端を、磁石支持筒25から側壁24のスリツト35を経て外部へ突出する腕34に連結される。
【0011】
上述の渦電流減速装置において、非制動時、軸方向に並ぶ磁石支持筒25の磁石15と磁石支持筒26の磁石16との、強磁性板41に対する極性が互いに逆の状態にあり、磁石支持筒25,26と強磁性板41との間に短絡的磁気回路zが生じる。したがつて、磁石15,16の磁界は制動ドラム8に及ばないので、制動ドラム8に制動トルクは発生しない。制動時、アクチユエータ31により磁石支持筒25を磁石15の配列ピツチだけ回動すると、各磁石支持筒25,26の磁石15,16の強磁性板41に対する極性が同じになる。したがつて、磁石15,16からの磁界を回転する制動ドラム8が横切る時、制動ドラム8に渦電流に基づく制動トルクが発生する。この時、図2に示すように、制動ドラム8と磁石支持筒25,26との間に磁気回路wが生じる。
【0012】
しかし、実際には制動ドラム8の高速回転中は、磁気回路wは制動ドラム8の矢印xで示す回転方向へ引きずられたような格好になるので、後述するように、強磁性板41の側面断面の形状は長方形にするよりも、図9,10に示すような形状が好ましく、また制動ドラム8の中速回転では、図8に示すような形状が好ましい。
【0013】
図2に示すように、各磁石15,16は磁石支持筒25,26の外周面に重ね合され、かつ周方向に隣接する磁石15,16の間に保持具29を挟むように、磁石15,16の前後端壁に形成した肩部15aへ保持具29を重ね合せ、複数のボルト28により支持筒25,26へそれぞれ締結される。
【0014】
図3に示すように、薄い軟磁性板からなる外側案内筒22の内周面の、強磁性板41の相互の間の部分に軸方向の溝を設けて薄肉部42を形成することにより、外側案内筒22と磁石支持筒25との間に洩れ磁界による短絡的磁気回路が生じるのを抑制できる。外側案内筒22の薄肉部42を補強するために、軸方向の溝を覆うように非磁性体からなる補強板43を外側案内筒22に溶接、ろう付けなどにより結合するのが好ましい。図4に示す実施例では、断面溝型の補強板44を結合することにより、外側案内筒22の剛性強度を一層高めることができる。
【0015】
図5に示すように、外側案内筒22の外周面に軸方向の溝を設けて薄肉部42を形成し、軸方向の溝に断面溝型の補強板45を係合し、補強板45の前後端縁を周方向に並ぶ強磁性板41に係合するようにすれば、強磁性板41の周方向の位置決めが容易になる。
【0016】
図6に示す実施例では、図5に示す実施例とは逆に、外側案内筒22の内周面に強磁性板41を溶接により結合し、さらに外側案内筒22の内周面に溝を設けて薄肉部53を強磁性板41と強磁性板41との間に形成し、該溝に断面溝型の補強板45を係合すると同時に、補強板45の前後端縁を強磁性板41の後前端面に係合したものである。
【0017】
図7に示す実施例では、外側案内筒22はそれぞれ薄肉部53,42を有する軟磁性板からなる内外1対の筒体22a,22bからなり、筒体22a,22bの間に強磁性板41を挟むように結合したものであり、外側案内筒22に対する強磁性板41の結合強度を高めることができる。
【0018】
以上説明した各実施例では、強磁性板41はブロツク状のものであるが、本発明はこれに限定されるものではなく、図8〜10に示すように円筒面をなす外面46と内面47の一方または両面を外側案内筒22に結合するようにし、図8に示す実施例では、前端面(制動ドラム8の回転方向前方の端面)48の外周側を切除して傾斜面48aを形成し、同様に後端面49の外周側を切除して傾斜面49aを形成することにより、磁石15,16からの磁束を絞つて(磁束密度を高めて)制動ドラム8へ導き、制動トルクを高めることができる。図9に示す実施例では、前端面48と後端面49を制動ドラム8の図2に矢印xで示す回転方向へ傾け、全体として平行四辺形状に構成することにより、制動ドラム8の高速回転での磁石15,16からの磁束を強磁性板41の前端部(制動ドラム8の回転方向)へ絞り込むことができる。図10に示す実施例では、強磁性板41の外面46の後半部分を切除して段部46aを形成したものであり、制動ドラム8の高速回転で磁石15,16からの磁束を強磁性板41の前端部へ一層絞り込んで制動ドラム8へ及ぼすことができる。
【0019】
以上の示す実施例では、案内筒21の内空部に可動の磁石支持筒25と不動の磁石支持筒26とを収容しているが、案内筒21の内空部に可動の磁石支持筒25だけを収容する渦電流減速装置にも適用できる。非制動時、図2に示す制動位置から磁石支持筒25を磁石15の半配列ピツチだけ回動し、周方向に並ぶ極性が異なる2つの磁石が共通の強磁性板41に部分的に対向するようにすれば、2つの磁石15の内外面を挟む磁石支持筒25と強磁性板41との間に短絡的磁気回路が生じ、制動ドラム8には磁界が及ばない。
【0020】
図11に示すように、本発明は磁石支持筒25を流体圧アクチユエータ31により制動ドラム8の内部へ押し込んだ制動位置と、制動ドラム8の内部から引き出した非制動位置とに切り換える形式の渦電流減速装置にも適用できる。案内筒21は磁性体からなる外側案内筒19と側壁24と内側案内筒23を有する断面C字形の筒部分と、前述した軟磁性板からなる外側案内筒22と、非磁性体からなる側壁24aとを結合して、断面長方形の内空部21aを形成される。外側案内筒22の内周面に多数の強磁性板41が周方向等間隔に結合される。各強磁性板41に対向する磁石15を支持する磁石支持筒25が内空部21aに収容される。磁石支持筒25は内側案内筒23に沿つて往復動可能に支持される。流体圧アクチユエータ31のピストン33から側壁24を貫通して内空部21aへ延びるロツド34aが、磁石支持筒25に結合される。しかし、外側案内筒22と強磁性板41との結合は、図2,4,5,7に示すように構成することができる。流体圧アクチユエータ31はシリンダ32が制動ドラム8の軸方向に配設され、かつ端壁を側壁24に結合される点で図1に示すものと異なる。制動ドラム8については図1に示すものと同様である。
【0021】
非制動時、図11に示す制動位置から磁石支持筒25を制動ドラム8の外部へ引き出すと、磁石15は外側案内筒19と磁石支持筒25との間に短絡的磁気回路が形成され、制動ドラム8には磁界が及ばない。
【0022】
【発明の効果】
本発明は上述のように、回転軸に結合した制動ドラムと、該制動ドラムの内部にあつて少くとも1つの可動の磁石支持筒と、該可動の磁石支持筒の外周面に等間隔に結合した多数の磁石とを有し、該磁石からの磁界に基づく渦電流により制動ドラムに制動力を発生させる渦電流減速装置において、前記磁石の外周側に軟磁性体の薄板からなる案内筒を設置し、該案内筒の内外周面の一方に各磁石に対向して強磁性板を結合したから、強磁性板を支持する外側案内筒をプレス成形により構成でき、また、強磁性板を溶接、ろう付けなどにより結合できるので加工が容易であり、かつ強磁性板をアルミニウムなどの外側案内筒へ鋳込む従来例に比べて歩留りが良く、加工経費を節減でき、強磁性板と外側案内筒との高い結合強度が得られる。
【図面の簡単な説明】
【図1】本発明に係る渦電流減速装置の正面断面図である。
【図2】同渦電流減速装置の要部を示す側面断面図である。
【図3】同渦電流減速装置の部分的変更実施例を示す側面断面図である。
【図4】同渦電流減速装置の部分的変更実施例を示す側面断面図である。
【図5】同渦電流減速装置の部分的変更実施例を示す側面断面図である。
【図6】本発明の第2実施例に係る渦電流減速装置の側面断面図である。
【図7】本発明の第3実施例に係る渦電流減速装置の側面断面図である。
【図8】強磁性体の断面形状を表す側面図である。
【図9】強磁性体の断面形状を表す側面図である。
【図10】強磁性体の断面形状を表す側面図である。
【図11】本発明が適用される他の形式の渦電流減速装置を示す正面断面図である。
【符号の説明】
2:回転軸 5:ボス部 7:支持腕 8:制動ドラム 10:良伝導体の環状板 11:良伝導体の環状板 12:良伝導体の環状板 15:磁石 16:磁石 21:案内筒 22:外側案内筒 22a:筒体 22b:筒体 23:内側案内筒 24:側壁 24a:側壁 25:磁石支持筒 26:磁石支持筒 29:保持具 31:流体圧アクチユエータ 35:スリツト 41:強磁性板42:薄肉部 43:補強板 44:補強板 45:補強板 53:薄肉部 54:補強板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an eddy current reduction device in which processing of a guide tube and coupling of a ferromagnetic plate to the guide tube are simple.
[0002]
[Prior art]
A movable magnet support tube and an immobile magnet support tube are accommodated in an inner space of a rectangular cross section of the guide tube disposed inside the brake drum, and the movable magnet support tube is rotated forward and backward to rotate each magnet support tube. In a conventional eddy current reduction device that switches between a non-braking position in which the polarities of axially aligned magnets (permanent magnets, hereinafter the same) coupled to the outer peripheral surface are different and a braking position in which the polarities of magnets aligned in the axial direction are the same, Sometimes a fairly thick ferromagnetic plate (usually 10-16 mm) must be embedded in the guide cylinder facing the inner peripheral surface of the brake drum so that the magnetic field of the magnet does not reach the brake drum. For this reason, a ferromagnetic plate is cast into a guide tube made of cast aluminum, or a large number of openings are provided in a guide tube press-formed from a non-magnetic stainless steel plate, and each plate is fitted with a ferromagnetic plate and welded. ing. The former method has a low yield, and the latter method requires a lot of processing, and it is difficult to reduce the cost of both methods.
[0003]
[Problems to be solved by the invention]
In view of the above-described problems, an object of the present invention is to provide an eddy current reduction device that is easy to process a guide tube and is useful for weight reduction and cost reduction.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the configuration of the present invention includes a brake drum coupled to a rotating shaft, at least one movable magnet support cylinder inside the brake drum, and an outer peripheral surface of the movable magnet support cylinder. An eddy current reduction device for generating a braking force on a braking drum by an eddy current based on a magnetic field from the magnet, and a thin plate of soft magnetic material on the outer peripheral side of the magnet And a ferromagnetic plate facing each magnet is coupled to one of the inner and outer peripheral surfaces of the guide cylinder.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a thick ferromagnetic plate is coupled by welding to a portion of the guide cylinder made of a thin plate of soft magnetic material facing the magnet, and the guide cylinder is arranged on the outer peripheral side of the magnet. The portion of the guide tube between the ferromagnetic plate and the ferromagnetic plate (between the magnets) may be thin so that the magnetic field is not easily transmitted. In order to secure the rigidity of the guide tube, a reinforcing plate made of a nonmagnetic material such as aluminum or stainless steel may be joined to the thin portion by welding, brazing, or the like.
[0006]
In order to make the eddy current easily flow through the brake drum, an annular body made of a good conductor such as copper is coupled to a portion of the brake drum not facing the ferromagnetic plate.
[0007]
【Example】
As shown in FIG. 1, an eddy current reduction device according to the present invention includes a flange 5a of a boss portion 5 of a brake drum 8, a parking brake, a mounting flange 3 that is spline-fitted to an output rotary shaft 2 of a vehicle transmission, for example. The brake drum 4 end wall plate is fastened together by a plurality of bolts 6 and nuts. A base end portion or a right end portion of a brake drum 8 having a large number of cooling fins 9 on the outer peripheral surface is coupled to the distal ends of a large number of support arms 7 protruding radially outward from the boss portion 5 by welding or the like. An annular plate 10 made of a good conductor such as copper is coupled to the end wall surface of the open end portion or the left end portion of the brake drum 8, and an annular plate is formed on the left end portion not facing the ferromagnetic plate 41 on the inner peripheral surface of the brake drum 8. A cylindrical or annular plate 11 integrated with the plate 10 is coupled. A similar cylinder or annular plate 12 is also coupled to the right end portion of the inner peripheral surface of the brake drum 8 that does not face the ferromagnetic plate 41. Each of the annular plates 10 to 12 has an axial spread of the eddy current flowing inside the brake drum 8 and increases the braking torque.
[0008]
Inside the brake drum 8, a guide cylinder 21 having an inner space with a rectangular cross section is disposed. The guide tube 21 is formed by connecting a cylindrical portion having an L-shaped cross section having a side wall 24 made of a nonmagnetic material and an inner guide tube 23 and a side wall 24a made of a nonmagnetic material annular plate by a plurality of bolts. Both side edges 20 of the outer guide tube 22 formed from a thin plate are bent radially inward and fixed to the side walls 24, 24a. A large number of block-shaped ferromagnetic plates (pole pieces) 41 are coupled to the outer peripheral surface of the outer guide cylinder 22 at equal intervals in the circumferential direction so as to face the inner peripheral surface of the brake drum 8.
[0009]
A movable magnet support cylinder 25 and a stationary magnet support cylinder 26 made of a magnetic material are accommodated in the inner space of the guide cylinder 21. The movable magnet support tube 25 is supported by the inner guide tube 23 by a bearing 25a so as to be rotatable forward and backward, and the magnet support tube 26 is fixed to the inner guide tube 23 by a bolt or the like. A large number of magnets 15 and 16 facing each ferromagnetic plate 41 are arranged at equal intervals in the circumferential direction on the outer peripheral surfaces of the magnet support cylinders 25 and 26, and the polarities facing the ferromagnetic plates 41 are alternately different in the circumferential direction. Combined with
[0010]
A fluid pressure actuator 31 for rotating the movable magnet support cylinder 25 in the forward and reverse directions is formed by inserting a piston 33 into a cylinder 32 formed integrally with the side wall 24 so as to define both end chambers, and outside the rod connected to the piston 33. The end is connected to the arm 34 protruding from the magnet support cylinder 25 through the slit 35 on the side wall 24 to the outside.
[0011]
In the eddy current reduction device described above, when not braked, the magnet 15 of the magnet support tube 25 and the magnet 16 of the magnet support tube 26 arranged in the axial direction have opposite polarities with respect to the ferromagnetic plate 41, and the magnet support A short-circuit magnetic circuit z is generated between the cylinders 25 and 26 and the ferromagnetic plate 41. Therefore, since the magnetic fields of the magnets 15 and 16 do not reach the braking drum 8, no braking torque is generated in the braking drum 8. At the time of braking, when the magnet support cylinder 25 is rotated by the arrangement pitch of the magnets 15 by the actuator 31, the polarities of the magnets 15 and 16 of the magnet support cylinders 25 and 26 with respect to the ferromagnetic plate 41 become the same. Therefore, when the braking drum 8 that rotates the magnetic field from the magnets 15 and 16 crosses, a braking torque based on the eddy current is generated in the braking drum 8. At this time, as shown in FIG. 2, a magnetic circuit w is generated between the brake drum 8 and the magnet support cylinders 25 and 26.
[0012]
However, in actuality, during the high speed rotation of the brake drum 8, the magnetic circuit w looks like it is dragged in the rotation direction indicated by the arrow x of the brake drum 8. The cross-sectional shape is preferably a shape as shown in FIGS. 9 and 10 rather than a rectangular shape, and the shape as shown in FIG.
[0013]
As shown in FIG. 2, the magnets 15 and 16 are superimposed on the outer peripheral surfaces of the magnet support cylinders 25 and 26, and the magnets 15 and 16 are sandwiched between the magnets 15 and 16 adjacent in the circumferential direction. , 16 are overlapped on shoulders 15a formed on the front and rear end walls, and are fastened to support cylinders 25, 26 by a plurality of bolts 28, respectively.
[0014]
As shown in FIG. 3, by forming an axial groove in a portion between the ferromagnetic plates 41 on the inner peripheral surface of the outer guide tube 22 made of a thin soft magnetic plate, the thin portion 42 is formed. It is possible to suppress the occurrence of a short circuit magnetic circuit due to a leakage magnetic field between the outer guide tube 22 and the magnet support tube 25. In order to reinforce the thin portion 42 of the outer guide tube 22, it is preferable that a reinforcing plate 43 made of a non-magnetic material is joined to the outer guide tube 22 by welding, brazing or the like so as to cover the axial groove. In the embodiment shown in FIG. 4, the rigidity strength of the outer guide tube 22 can be further increased by connecting the reinforcing plate 44 having a groove section.
[0015]
As shown in FIG. 5, an axial groove is provided on the outer peripheral surface of the outer guide tube 22 to form a thin portion 42, and a cross-sectional groove-type reinforcing plate 45 is engaged with the axial groove so that the reinforcing plate 45 If the front and rear edges are engaged with the ferromagnetic plates 41 arranged in the circumferential direction, the positioning of the ferromagnetic plates 41 in the circumferential direction is facilitated.
[0016]
In the embodiment shown in FIG. 6, contrary to the embodiment shown in FIG. 5, a ferromagnetic plate 41 is joined to the inner peripheral surface of the outer guide tube 22 by welding, and a groove is formed on the inner peripheral surface of the outer guide tube 22. The thin-walled portion 53 is formed between the ferromagnetic plate 41 and the ferromagnetic plate 41, and the reinforcing plate 45 having a cross-sectional groove shape is engaged with the groove. Is engaged with the rear front end face.
[0017]
In the embodiment shown in FIG. 7, the outer guide cylinder 22 is composed of a pair of inner and outer cylinders 22a and 22b made of a soft magnetic plate having thin portions 53 and 42, respectively, and the ferromagnetic plate 41 is interposed between the cylinders 22a and 22b. And the coupling strength of the ferromagnetic plate 41 to the outer guide tube 22 can be increased.
[0018]
In each of the embodiments described above, the ferromagnetic plate 41 has a block shape. However, the present invention is not limited to this, and an outer surface 46 and an inner surface 47 that form a cylindrical surface as shown in FIGS. 8 is coupled to the outer guide tube 22, and in the embodiment shown in FIG. 8, the outer peripheral side of the front end surface (the front end surface in the rotational direction of the braking drum 8) 48 is cut away to form an inclined surface 48a. Similarly, by cutting off the outer peripheral side of the rear end surface 49 to form the inclined surface 49a, the magnetic flux from the magnets 15 and 16 is narrowed (increase the magnetic flux density) and led to the braking drum 8 to increase the braking torque. Can do. In the embodiment shown in FIG. 9, the front end face 48 and the rear end face 49 are inclined in the rotational direction indicated by the arrow x in FIG. The magnetic fluxes from the magnets 15 and 16 can be narrowed down to the front end of the ferromagnetic plate 41 (the rotation direction of the braking drum 8). In the embodiment shown in FIG. 10, the rear half portion of the outer surface 46 of the ferromagnetic plate 41 is cut to form a stepped portion 46a, and the magnetic flux from the magnets 15 and 16 is transferred by the high speed rotation of the brake drum 8 to the ferromagnetic plate. It is possible to further narrow down the front end portion of 41 and apply it to the braking drum 8.
[0019]
In the embodiment shown above, the movable magnet support tube 25 and the stationary magnet support tube 26 are accommodated in the inner space of the guide tube 21, but the movable magnet support tube 25 is disposed in the inner space of the guide tube 21. The present invention can also be applied to an eddy current reduction device that accommodates only. At the time of non-braking, the magnet support cylinder 25 is rotated by the half arrangement pitch of the magnet 15 from the braking position shown in FIG. 2, and two magnets having different polarities arranged in the circumferential direction partially face the common ferromagnetic plate 41. By doing so, a short-circuit magnetic circuit is generated between the magnet support cylinder 25 sandwiching the inner and outer surfaces of the two magnets 15 and the ferromagnetic plate 41, and no magnetic field is applied to the braking drum 8.
[0020]
As shown in FIG. 11, the present invention is an eddy current type in which the magnet support cylinder 25 is switched between a braking position where the fluid pressure actuator 31 is pushed into the braking drum 8 and a non-braking position pulled out from the braking drum 8. It can also be applied to a reduction gear. The guide tube 21 includes an outer guide tube 19 made of a magnetic material, a side wall 24 and a cylindrical portion having a C-shaped cross section having an inner guide tube 23, an outer guide tube 22 made of the aforementioned soft magnetic plate, and a side wall 24a made of a non-magnetic material. Are combined to form an inner space 21a having a rectangular cross section. A large number of ferromagnetic plates 41 are coupled to the inner peripheral surface of the outer guide tube 22 at equal intervals in the circumferential direction. A magnet support cylinder 25 that supports the magnet 15 facing each ferromagnetic plate 41 is accommodated in the inner space 21a. The magnet support cylinder 25 is supported along the inner guide cylinder 23 so as to be able to reciprocate. A rod 34 a extending from the piston 33 of the fluid pressure actuator 31 through the side wall 24 to the inner space 21 a is coupled to the magnet support cylinder 25. However, the coupling between the outer guide tube 22 and the ferromagnetic plate 41 can be configured as shown in FIGS. The fluid pressure actuator 31 is different from that shown in FIG. 1 in that a cylinder 32 is disposed in the axial direction of the brake drum 8 and an end wall is coupled to the side wall 24. The brake drum 8 is the same as that shown in FIG.
[0021]
When the magnet support cylinder 25 is pulled out of the braking drum 8 from the braking position shown in FIG. 11 during non-braking, the magnet 15 forms a short circuit magnetic circuit between the outer guide cylinder 19 and the magnet support cylinder 25, and braking is performed. A magnetic field does not reach the drum 8.
[0022]
【The invention's effect】
In the present invention, as described above, the brake drum coupled to the rotating shaft, at least one movable magnet support cylinder inside the brake drum, and the outer peripheral surface of the movable magnet support cylinder are coupled at equal intervals. In an eddy current reduction device that generates a braking force on a braking drum by an eddy current based on a magnetic field from the magnet, a guide tube made of a thin plate of soft magnetic material is installed on the outer peripheral side of the magnet Since the ferromagnetic plate is coupled to one of the inner and outer peripheral surfaces of the guide cylinder so as to face each magnet, the outer guide cylinder supporting the ferromagnetic plate can be formed by press molding, and the ferromagnetic plate is welded. Since it can be joined by brazing, etc., it is easy to process, and the yield is better than the conventional example in which a ferromagnetic plate is cast into an outer guide tube such as aluminum, and the processing cost can be reduced. High bond strength can be obtained.
[Brief description of the drawings]
FIG. 1 is a front sectional view of an eddy current reduction device according to the present invention.
FIG. 2 is a side sectional view showing a main part of the eddy current reduction device.
FIG. 3 is a side sectional view showing a partially modified embodiment of the eddy current reduction device.
FIG. 4 is a side sectional view showing a partially modified embodiment of the eddy current reduction device.
FIG. 5 is a side sectional view showing a partially modified embodiment of the eddy current reduction device.
FIG. 6 is a side sectional view of an eddy current reduction device according to a second embodiment of the present invention.
FIG. 7 is a side sectional view of an eddy current reduction device according to a third embodiment of the present invention.
FIG. 8 is a side view showing a cross-sectional shape of a ferromagnetic material.
FIG. 9 is a side view showing a cross-sectional shape of a ferromagnetic material.
FIG. 10 is a side view showing a cross-sectional shape of a ferromagnetic material.
FIG. 11 is a front sectional view showing another type of eddy current reduction device to which the present invention is applied.
[Explanation of symbols]
2: Rotating shaft 5: Boss portion 7: Support arm 8: Braking drum 10: Annular plate of good conductor 11: Annular plate of good conductor 12: Annular plate of good conductor 15: Magnet 16: Magnet 21: Guide tube 22: Outer guide tube 22a: Tube body 22b: Tube body 23: Inner guide tube 24: Side wall 24a: Side wall 25: Magnet support tube 26: Magnet support tube 29: Holder 31: Fluid pressure actuator 35: Slit 41: Ferromagnetic Plate 42: Thin portion 43: Reinforcement plate 44: Reinforcement plate 45: Reinforcement plate 53: Thin wall portion 54: Reinforcement plate

Claims (6)

回転軸に結合した制動ドラムと、該制動ドラムの内部にあつて少くとも1つの可動の磁石支持筒と、該可動の磁石支持筒の外周面に等間隔に結合した多数の磁石とを有し、該磁石からの磁界に基づく渦電流により制動ドラムに制動力を発生させる渦電流減速装置において、前記磁石の外周側に軟磁性体の薄板からなる案内筒を設置し、該案内筒の内外周面の一方に各磁石に対向する強磁性板を結合したことを特徴とする渦電流減速装置。A brake drum coupled to the rotating shaft, at least one movable magnet support cylinder inside the brake drum, and a number of magnets coupled at equal intervals to the outer peripheral surface of the movable magnet support cylinder; In the eddy current reduction device for generating a braking force on the braking drum by an eddy current based on the magnetic field from the magnet, a guide cylinder made of a thin soft magnetic material is installed on the outer peripheral side of the magnet, and the inner and outer periphery of the guide cylinder An eddy current reduction device characterized in that a ferromagnetic plate facing each magnet is coupled to one of the surfaces. 回転軸に結合した制動ドラムと、該制動ドラムの内部あつて少くとも1つの可動の磁石支持筒と、該可動の磁石支持筒の外周面に等間隔に結合した多数の磁石とを有し、該磁石からの磁界に基づく渦電流により制動ドラムに制動力を発生させる渦電流減速装置において、前記磁石の外周側に軟磁性体の薄板からなる内外2つの案内筒を設置し、該内外2つの案内筒の間に各磁石に対向する強磁性板を挟んで結合したことを特徴とする渦電流減速装置。A brake drum coupled to the rotating shaft, at least one movable magnet support cylinder inside the brake drum, and a plurality of magnets coupled at equal intervals to the outer peripheral surface of the movable magnet support cylinder; In an eddy current reduction device for generating a braking force on a braking drum by an eddy current based on a magnetic field from the magnet, two guide cylinders made of a soft magnetic thin plate are installed on the outer peripheral side of the magnet, and the two inner and outer guide cylinders are installed. An eddy current reduction device characterized in that a ferromagnetic plate facing each magnet is interposed between guide cylinders. 前記案内筒の周方向に隣接する磁石の間に薄肉部分を備えた、請求項1,2のいずれかに記載の渦電流減速装置。The eddy current reduction device according to claim 1, further comprising a thin portion between magnets adjacent to each other in the circumferential direction of the guide tube. 前記案内筒の薄肉部分に非磁性体からなる補強板を結合した、請求項3に記載の渦電流減速装置。The eddy current reduction device according to claim 3, wherein a reinforcing plate made of a non-magnetic material is coupled to the thin portion of the guide tube. 前記強磁性板の外面の面積を内面の面積よりも狭くした、請求項1,2のいずれかに記載の渦電流減速装置。The eddy current reduction device according to claim 1, wherein an area of the outer surface of the ferromagnetic plate is narrower than an area of the inner surface. 制動ドラムの内周面の前記強磁性板に対向しない少くとも一方の端部に、銅などの良伝導体からなる環状体を結合した、請求項1,2のいずれかに記載の渦電流減速装置。The eddy current moderator according to any one of claims 1 and 2, wherein an annular body made of a good conductor such as copper is coupled to at least one end portion of the inner peripheral surface of the brake drum that does not face the ferromagnetic plate. apparatus.
JP02472999A 1999-02-02 1999-02-02 Eddy current reducer Expired - Fee Related JP3656444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02472999A JP3656444B2 (en) 1999-02-02 1999-02-02 Eddy current reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02472999A JP3656444B2 (en) 1999-02-02 1999-02-02 Eddy current reducer

Publications (2)

Publication Number Publication Date
JP2000224835A JP2000224835A (en) 2000-08-11
JP3656444B2 true JP3656444B2 (en) 2005-06-08

Family

ID=12146253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02472999A Expired - Fee Related JP3656444B2 (en) 1999-02-02 1999-02-02 Eddy current reducer

Country Status (1)

Country Link
JP (1) JP3656444B2 (en)

Also Published As

Publication number Publication date
JP2000224835A (en) 2000-08-11

Similar Documents

Publication Publication Date Title
JP3651255B2 (en) Eddy current reducer
JP2000116108A (en) Fddy-current reduction gear
JPH0683571B2 (en) Eddy current type speed reducer
JPH11289747A (en) Eddy-current flow reduction gear
JP3656444B2 (en) Eddy current reducer
JP3769964B2 (en) Eddy current reducer
JP3690471B2 (en) Eddy current reducer
JP2566803Y2 (en) Eddy current type reduction gear
JP3285059B2 (en) Eddy current type reduction gear
JP3882386B2 (en) Eddy current reducer
JPH07245933A (en) Eddy current type reduction gear
JP3233166B2 (en) Eddy current type reduction gear
JP3820793B2 (en) Eddy current reducer
JP3216665B2 (en) Eddy current type reduction gear
JP3285043B2 (en) Eddy current type reduction gear
JP3627432B2 (en) Eddy current reducer
JP3719338B2 (en) Eddy current reducer
JP2573695Y2 (en) Eddy current type reduction gear
JP2572529Y2 (en) Eddy current type reduction gear
JP3959594B2 (en) Eddy current reducer
JP3651256B2 (en) Eddy current reducer
JP3882412B2 (en) Magnet of eddy current reduction device and method of manufacturing the same
JP2000287435A (en) Eddy-current decelerator
JPH114572A (en) Permanent magnet eddy current decelerator
JP2572518Y2 (en) Eddy current type reduction gear

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees