JP3690471B2 - Eddy current reducer - Google Patents

Eddy current reducer Download PDF

Info

Publication number
JP3690471B2
JP3690471B2 JP26827298A JP26827298A JP3690471B2 JP 3690471 B2 JP3690471 B2 JP 3690471B2 JP 26827298 A JP26827298 A JP 26827298A JP 26827298 A JP26827298 A JP 26827298A JP 3690471 B2 JP3690471 B2 JP 3690471B2
Authority
JP
Japan
Prior art keywords
ferromagnetic plate
magnet
eddy current
ferromagnetic
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26827298A
Other languages
Japanese (ja)
Other versions
JP2000102240A (en
Inventor
徹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP26827298A priority Critical patent/JP3690471B2/en
Publication of JP2000102240A publication Critical patent/JP2000102240A/en
Application granted granted Critical
Publication of JP3690471B2 publication Critical patent/JP3690471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

【0001】
【発明の属する技術分野】
本発明は大形車両などの摩擦ブレーキの負担を軽減する渦電流減速装置、特に永久磁石(以下、これを単に磁石という)の磁束が制動ドラムへ有効に働くようにした渦電流減速装置に関するものである。
【0002】
【従来の技術】
特開平4-88867 号公報に開示される渦電流減速装置では、図2に示すように、例えば車両用変速機の出力回転軸1に結合される導体からなる制動ドラム7と、制動ドラム7の内部に配設される非磁性体からなる案内筒10と、案内筒10の内空部に回動可能に支持した磁性体からなる磁石支持筒14とを備えている。制動ドラム7はボス5のフランジ部5aを、駐車ブレーキの制動ドラム3の端壁部と一緒に、回転軸1にスプライン嵌合固定した取付フランジ2に重ね合され、かつボルト4により締結される。ボス5から放射状に延びるスポーク6に、放熱フイン8を備えた制動ドラム7が結合される。
【0003】
案内筒10は断面長方形の内空部を備えており、具体的には断面コ字形をなす筒体に、環状の蓋板11を結合して構成される。案内筒10は適当な手段により例えば変速機の歯車箱に固定される。案内筒10の外筒部10aに周方向等間隔に設けた多数の開口13に、強磁性板(ポールピース)15がそれぞれ結合される。好ましくは、強磁性板15は案内筒10の成形時鋳ぐるまれる。磁石支持筒14は案内筒10の内空部、詳しくは内筒部10bに軸受12により回動可能に支持される。
【0004】
案内筒10の左端壁に、好ましくは3つの流体圧アクチユエータ20が周方向等間隔に結合される。流体圧アクチユエータ20はシリンダ18にピストン17を嵌装してなり、ピストン17から外部へ突出するロツドに、磁石支持筒14から案内筒10の左端壁のスリツトを経て突出する腕16が連結される。磁石支持筒14に強磁性板15の約半分の面積で倍数の磁石14aが、強磁性板15の配列ピツチの1/2の配列ピツチで周方向等間隔に結合される。図3に示すように、磁石支持筒14はアルミニウムなどの非磁性体からなり、多数の磁石14aが、強磁性板15と対向しかつ強磁性板15に対する極性が周方向に2つずつ異なるように配設される。
【0005】
図3に示すように、非制動時、共通の強磁性板15に対し、周方向に隣接する2つの磁石14aの極性が互いに異なる状態では、強磁性板15と磁石支持筒14との間に短絡的磁気回路yが生じ、制動ドラム7に磁界を及ぼさない。
【0006】
図4に示すように、制動時、流体圧アクチユエータ20により磁石支持筒14を磁石14aの配列ピツチpだけ回動すると、共通の強磁性板15に対し、隣接する2つの磁石14aの極性が同じになる。したがつて、2つの磁石14aが等しく強磁性板15を経て制動ドラム7に磁界を及ぼす。回転する制動ドラム7が磁界を横切る時、制動ドラム7に渦電流が流れ、制動ドラム7が制動トルクを受ける。この時、制動ドラム7と磁石支持筒14との間に磁気回路zが生じる。
【0007】
上述したように、磁石支持筒14の外周面に多数の磁石14aを、強磁性板15に対向する極性がN,N,S,S,…というように、2つごとに異なるように結合し、2つの磁石14aの外面を覆うように強磁性板15(強磁性材かつ軟磁性材からなる)を案内筒10に配置し、流体圧アクチエータ20により磁石14aの配列ピツチpだけ磁石支持筒14を正逆回動させて、制動位置と非制動位置との切換えを行う従来の渦電流減速装置では、強磁性板15の断面形状、正確には案内筒10の中心軸線に対して垂直な断面の形状が、ほぼ長方形をなしていたので、磁石支持筒14の磁石14aから制動ドラム7へ向う磁束の集中が得られず、制動力の低下を招いていた。つまり、上述の渦電流減速装置では、磁石14aの外面の面積よりも強磁性板15の外面の面積のほうが広く、強磁性板15から出てくる磁束密度が小さくなり、制動力の低下を招いていたのである。
【0008】
【発明が解決しようとする課題】
本発明の課題は上述の問題に鑑み、強磁性板の回転軸に対する断面形状を台形に似た形にし、磁束密度を高めて制動力を向上させる渦電流減速装置を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明の構成は回転軸に結合した制動ドラムの内部に、非磁性体からなる断面長方形の内空部を有する案内筒を配設し、該案内筒の外筒部に周方向等間隔に多数の強磁性板を配設し、案内筒の内部に軸方向移動可能または回動可能に配設した磁性体からなる少くとも1つの磁石支持筒の外周面に、強磁性板に対する極性が周方向に交互に異なるように磁石を結合し、同極性の磁石が各強磁性板に全面的に対向する制動位置と、磁石が各強磁性板に全面的には対向しない非制動位置とに切り換わる渦電流減速装置において、前記強磁性板の磁石に対向する内面に隣接する前後の壁面を内面に対し垂直な第1の壁面とし、前記強磁性板の制動ドラムに対向する外面に隣接する前後の壁面を外面に対し垂直な第2の壁面とし、第1の壁面と第2の壁面との間の前後の壁面を、前後の壁面の周方向の間隔が内面から外面へ向かつて次第に狭くなるように互いに反対方向へ傾斜させたことを特徴とする。
【0010】
【発明の実施の形態】
強磁性板の周方向寸法を径外方へ向かつて狭めて台形に似た形にし、磁束密度を高めて制動力を向上させる。特に、強磁性板が2つの磁石と磁石の間を覆う部分の肉厚を最大にする。これにより、強磁性板の外面の面積が狭くなり、磁石から強磁性板を経て制動ドラムへ向う磁束密度が高められる。
【0011】
【実施例】
図1に示すように、本発明は強磁性板15の制動ドラム7に対する磁束密度を高めるために、強磁性板15の回転軸(制動ドラム7の中心軸線)に垂直な断面形状を、内面25から外面24に向けて周方向寸法W2が周方向寸法W1へと次第に小さくなるように、ほぼ台形に構成したものである。したがつて、強磁性板15の外面24は内面25よりも狭くなる。制動ドラム7の矢印x方向の回転に関して、強磁性板15の前方の壁面は壁面26a,26,27からなり、強磁性板15の後方の壁面は壁面28a,28,29からなる。強磁性板15の内面25に隣接する壁面27,29は、強磁性板15の体積を確保するために、制動ドラム7の回転中心から径外方へ延びる線と平行にされる。つまり、前方の壁面26と後方の壁面28は、2つの磁石14aの間を通る径方向線に関してほぼ対称に傾斜される。上述の形状に予め成形された磁石14aは、案内筒10をアルミニウムから鋳造する際に、鋳型へ配列されて鋳込まれる。共通の強磁性板15に対向する極性が同じ磁石は1つの連続したものとしてもよい。
【0012】
案内筒10の外筒部10aの壁面26a,28a,26,28と接する部分21が鋭角になり、この部分21から熱などの影響により破損する恐れがあるので、図1に示す実施例では、傾斜した壁面26,28の外面24に隣接する部分を、案内筒10の外周面に対しほぼ垂直な壁面26a,28aに形成し、外面24にほぼ垂直な壁面26a,28aと内面25にほぼ垂直な壁面27,29との間に、内面25から外面24へ向つて周方向寸法が次第に縮小するように互いに反対方向へ傾斜した壁面26,28が形成される。これにより、案内筒10の外筒部10aと強磁性板15との安定な結合が得られる。
【0013】
本発明は図2に示す渦電流減速装置に限定されるものではなく、他の形式の渦電流減速装置にも適用できる。図5に示す実施例では、回転軸1に結合した制動ドラム7の内部に、非磁性体からなりかつ断面長方形の内空部を有する案内筒10を配設し、案内筒10の外筒部10aに周方向等間隔に多数の強磁性板15を配設し、案内筒10の内部に配設した磁性体からなる可動の磁石支持筒14と不動の磁石支持筒34の外周面に、各強磁性板15に対向しかつ強磁性板15に対する極性が周方向に交互に異なるように磁石14a,34aをそれぞれ結合し、同極性の磁石14a,34aが各強磁性板15に全面的に対向する制動位置と、異極性の磁石14a,34aが各強磁性板15に全面的に対向する図示の非制動位置とに、可動の磁石支持筒14をアクチユエータ20により正逆回動して切り換えられるものであり、図1に示したように、強磁性板15の周方向の寸法は内面25から外面24へ向かつて次第に狭められる。
【0014】
図6に示す実施例では、回転軸1に結合した制動ドラム7の内部に、非磁性体からなりかつ断面長方形の内空部を有する案内筒10を配設し、案内筒10の外筒部10aに周方向等間隔に多数の強磁性板15を配設し、案内筒10の内部に軸方向移動可能に配設した磁性体からなる磁石支持筒14の外面に、各強磁性板15に対する極性が周方向に交互に異なるように磁石14aを結合し、磁石支持筒10を制動ドラム7の内部へ突出させて各磁石14aが各強磁性板15に全面的に対向する図示の制動位置と、磁石支持筒14を制動ドラム7から軸方向に引退させて各磁石14aが各強磁性板15に対向しない非制動位置とにアクチユエータ20により切り換えられるものであり、図1に示したように、強磁性板15の周方向の寸法は内面から外面へ向かつて次第に狭められる。
【0015】
以上説明したように、本発明は強磁性板15の回転軸に垂直な断面の形状を、内面25よりも外面24が狭くなつているほぼ台形にされているので、磁石14aから強磁性板15を経て制動ドラム7へ及ぼす磁束が絞られる。つまり、2つの磁石14aの磁束が強磁性板15を透過する時に絞られて制動ドラム7ヘ及ぶので、制動ドラム7の内部で磁束密度が大きくなり、制動ドラム7の内部に発生する渦電流が強くなり、制動力が高められる。
【0016】
【発明の効果】
要するに、本発明は回転軸に結合した制動ドラムの内部に、非磁性体からなる断面長方形の内空部を有する案内筒を配設し、該案内筒の外筒部に周方向等間隔に多数の強磁性板を配設し、案内筒の内部に軸方向移動可能または回動可能に配設した磁性体からなる少くとも1つの磁石支持筒の外周面に、前記強磁性板に対する極性が周方向に交互に異なるように1つずつ磁石を結合し、同極性の磁石が各強磁性板に全面的に対向する制動位置と、磁石が各強磁性板に全面的には対向しない非制動位置とに切り換わる渦電流減速装置において、前記強磁性板の磁石に対向する内面に隣接する前後の壁面を内面に対し垂直な第1の壁面とし、前記強磁性板の制動ドラムに対向する外面に隣接する前後の壁面を外面に対し垂直な第2の壁面とし、第1の壁面と第2の壁面との間の前後の壁面を、前後の壁面の周方向の間隔が内面から外面へ向かつて次第に狭くなるように互いに反対方向へ傾斜させたものであり、磁石からの磁束が強磁性板を透過する時に絞られて制動ドラムヘ及ぶので、制動ドラムの内部での磁束密度が大きくなり、制動力が向上される。
【図面の簡単な説明】
【図1】本発明の実施例に係る渦電流減速装置の要部を示す正面断面図である。
【図2】本発明が適用される渦電流減速装置の上半部を示す側面断面図である。
【図3】同渦電流減速装置の非制動状態を示す正面断面図である。
【図4】同渦電流減速装置の制動状態を示す正面断面図である。
【図5】本発明が適用される他の渦電流減速装置の上半部を示す側面断面図である。
【図6】本発明が適用される他の渦電流減速装置の上半部を示す側面断面図である。
【符号の説明】
W1,W2:周方向寸法 1:回転軸 6:スポーク 7:制動ドラム 8:放熱フイン 10:案内筒 10a:外筒部 10b:内筒部 14,34:磁石支持筒 14a,34a:磁石 15:強磁性板 20:流体圧アクチユエータ 24:外面 25:内面 26:側面 27:側面 28:側面 29:側面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an eddy current reduction device for reducing the burden of a friction brake on a large vehicle or the like, and more particularly to an eddy current reduction device in which a magnetic flux of a permanent magnet (hereinafter simply referred to as a magnet) works effectively on a braking drum. It is.
[0002]
[Prior art]
In the eddy current reduction device disclosed in Japanese Patent Laid-Open No. 4-88867, as shown in FIG. 2, for example, a brake drum 7 made of a conductor coupled to an output rotation shaft 1 of a vehicle transmission, A guide tube 10 made of a non-magnetic material disposed inside and a magnet support tube 14 made of a magnetic material rotatably supported in the inner space of the guide tube 10 are provided. The brake drum 7 is overlapped with the flange 5a of the boss 5 together with the end wall of the brake drum 3 of the parking brake on the mounting flange 2 that is spline-fitted to the rotary shaft 1 and fastened by a bolt 4. . A brake drum 7 having a heat radiation fin 8 is coupled to the spokes 6 that extend radially from the boss 5.
[0003]
The guide cylinder 10 includes an inner space having a rectangular cross section, and specifically, is configured by connecting an annular cover plate 11 to a cylindrical body having a U-shaped cross section. The guide tube 10 is fixed to a gear box of a transmission, for example, by appropriate means. Ferromagnetic plates (pole pieces) 15 are coupled to a large number of openings 13 provided at equal intervals in the circumferential direction in the outer tube portion 10a of the guide tube 10 respectively. Preferably, the ferromagnetic plate 15 is cast when the guide tube 10 is formed. The magnet support cylinder 14 is rotatably supported by the bearing 12 on the inner space of the guide cylinder 10, more specifically, the inner cylinder 10b.
[0004]
Preferably, three fluid pressure actuators 20 are coupled to the left end wall of the guide tube 10 at equal intervals in the circumferential direction. The fluid pressure actuator 20 has a piston 17 fitted to a cylinder 18, and an arm 16 protruding from the magnet support cylinder 14 through a slit on the left end wall of the guide cylinder 10 is connected to a rod protruding outward from the piston 17. . The magnet support cylinder 14 is coupled with magnets 14a, which are approximately half the area of the ferromagnetic plate 15 and a multiple of the magnet plate 14a, at equal intervals in the circumferential direction by an arrangement pitch that is 1/2 of the arrangement pitch of the ferromagnetic plate 15. As shown in FIG. 3, the magnet support cylinder 14 is made of a nonmagnetic material such as aluminum, and a large number of magnets 14a face the ferromagnetic plate 15 so that the polarities with respect to the ferromagnetic plate 15 differ by two in the circumferential direction. It is arranged.
[0005]
As shown in FIG. 3, during non-braking, when the polarities of the two magnets 14a adjacent to each other in the circumferential direction are different from each other with respect to the common ferromagnetic plate 15, there is a gap between the ferromagnetic plate 15 and the magnet support cylinder 14. A short circuit magnetic circuit y is generated and no magnetic field is applied to the brake drum 7.
[0006]
As shown in FIG. 4, when braking, when the magnet support cylinder 14 is rotated by the arrangement pitch p of the magnets 14a by the fluid pressure actuator 20, the two adjacent magnets 14a have the same polarity with respect to the common ferromagnetic plate 15. become. Therefore, the two magnets 14 a equally apply a magnetic field to the braking drum 7 through the ferromagnetic plate 15. When the rotating brake drum 7 crosses the magnetic field, an eddy current flows through the brake drum 7 and the brake drum 7 receives a braking torque. At this time, a magnetic circuit z is generated between the brake drum 7 and the magnet support cylinder 14.
[0007]
As described above, a large number of magnets 14a are coupled to the outer peripheral surface of the magnet support cylinder 14 so that the polarities facing the ferromagnetic plate 15 are different from each other such as N, N, S, S,. A ferromagnetic plate 15 (made of a ferromagnetic material and a soft magnetic material) is disposed on the guide tube 10 so as to cover the outer surfaces of the two magnets 14a, and the magnet support tube 14 is arranged by the fluid pressure actuator 20 by an arrangement pitch p of the magnets 14a. In the conventional eddy current reduction device that switches between the braking position and the non-braking position by rotating the forward and reverse, the cross-sectional shape of the ferromagnetic plate 15, more precisely, the cross-section perpendicular to the central axis of the guide cylinder 10 Is substantially rectangular, the concentration of magnetic flux from the magnet 14a of the magnet support cylinder 14 toward the braking drum 7 cannot be obtained, leading to a reduction in braking force. That is, in the above-described eddy current reduction device, the area of the outer surface of the ferromagnetic plate 15 is larger than the area of the outer surface of the magnet 14a, and the magnetic flux density coming out of the ferromagnetic plate 15 is reduced, resulting in a decrease in braking force. It was.
[0008]
[Problems to be solved by the invention]
In view of the above-described problems, an object of the present invention is to provide an eddy current reduction device in which the cross-sectional shape of a ferromagnetic plate with respect to the rotation axis is similar to a trapezoid, and the magnetic flux density is increased to improve the braking force.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the configuration of the present invention is such that a guide cylinder having an inner space with a rectangular cross section made of a non-magnetic material is disposed inside a brake drum coupled to a rotating shaft, and the outer cylinder of the guide cylinder A large number of ferromagnetic plates are arranged at equal intervals in the circumferential direction on the outer peripheral surface of at least one magnet support cylinder made of a magnetic body that is axially movable or rotatable inside the guide cylinder. The magnets are coupled so that the polarities with respect to the ferromagnetic plates are alternately different in the circumferential direction, and the braking position where the magnets of the same polarity are opposed to the respective ferromagnetic plates and the magnets are opposed to the respective ferromagnetic plates. In the eddy current reduction device that switches to the non-braking position, the front and rear wall surfaces adjacent to the inner surface facing the magnet of the ferromagnetic plate are first wall surfaces perpendicular to the inner surface, and the braking drum of the ferromagnetic plate is The second wall surface perpendicular to the outer surface on the front and rear wall surfaces adjacent to the opposing outer surface And, characterized in that the front and rear walls, the circumferential spacing of the front and rear walls is inclined in mutually opposite directions such that countercurrent former gradually narrowed to the outer surface from the inner surface between the first and second walls And
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The circumferential dimension of the ferromagnetic plate is once narrowed outward in a radial shape to resemble a trapezoid, and the magnetic flux density is increased to improve the braking force. In particular, the thickness of the portion where the ferromagnetic plate covers between the two magnets is maximized. Thereby, the area of the outer surface of the ferromagnetic plate is reduced, and the magnetic flux density from the magnet to the braking drum through the ferromagnetic plate is increased.
[0011]
【Example】
As shown in FIG. 1, in the present invention, in order to increase the magnetic flux density of the ferromagnetic plate 15 with respect to the braking drum 7, a cross-sectional shape perpendicular to the rotation axis of the ferromagnetic plate 15 (center axis of the braking drum 7) It is configured to be substantially trapezoidal so that the circumferential dimension W2 gradually decreases toward the outer dimension 24 toward the circumferential dimension W1. Therefore, the outer surface 24 of the ferromagnetic plate 15 is narrower than the inner surface 25. Regarding the rotation of the brake drum 7 in the direction of the arrow x, the front wall surface of the ferromagnetic plate 15 is made up of wall surfaces 26a, 26, 27, and the rear wall surface of the ferromagnetic plate 15 is made up of wall surfaces 28a, 28, 29. Wall surfaces 27 and 29 adjacent to the inner surface 25 of the ferromagnetic plate 15 are made parallel to a line extending radially outward from the rotation center of the brake drum 7 in order to secure the volume of the ferromagnetic plate 15. That is, the front wall surface 26 and the rear wall surface 28 are inclined substantially symmetrically with respect to the radial line passing between the two magnets 14a. When the guide tube 10 is cast from aluminum, the magnets 14a previously formed in the shape described above are arranged and cast into a mold. The magnets having the same polarity facing the common ferromagnetic plate 15 may be one continuous magnet.
[0012]
In the embodiment shown in FIG. 1, the portion 21 in contact with the wall surface 26a, 28a, 26, 28 of the outer tube portion 10a of the guide tube 10 has an acute angle and may be damaged by the influence of heat or the like. The portions adjacent to the outer surface 24 of the inclined wall surfaces 26, 28 are formed on the wall surfaces 26 a, 28 a substantially perpendicular to the outer peripheral surface of the guide cylinder 10, and are substantially perpendicular to the wall surfaces 26 a, 28 a substantially perpendicular to the outer surface 24 and the inner surface 25. Wall surfaces 26 and 28 inclined in opposite directions are formed between the inner wall surfaces 27 and 29 so that the circumferential dimension gradually decreases from the inner surface 25 toward the outer surface 24. Thereby, the stable coupling | bonding of the outer cylinder part 10a of the guide cylinder 10 and the ferromagnetic plate 15 is obtained.
[0013]
The present invention is not limited to the eddy current reduction device shown in FIG. 2, but can be applied to other types of eddy current reduction devices. In the embodiment shown in FIG. 5, a guide cylinder 10 made of a non-magnetic material and having an inner space with a rectangular cross section is disposed inside the brake drum 7 coupled to the rotary shaft 1. A large number of ferromagnetic plates 15 are arranged at equal intervals in the circumferential direction 10a, and the outer peripheral surfaces of a movable magnet support cylinder 14 and a stationary magnet support cylinder 34 made of a magnetic material arranged inside the guide cylinder 10 The magnets 14a and 34a are coupled so as to face the ferromagnetic plate 15 and the polarities with respect to the ferromagnetic plate 15 are alternately different in the circumferential direction, and the magnets 14a and 34a of the same polarity face the respective ferromagnetic plates 15 entirely. The movable magnet support cylinder 14 is switched by forward / reverse rotation by the actuator 20 between the braking position to be operated and the non-braking position shown in the figure where the magnets 14a and 34a having different polarities are opposed to the respective ferromagnetic plates 15 entirely. As shown in FIG. Circumferential dimension of the plate 15 is narrowed gradually once toward the inner surface 25 to outer surface 24.
[0014]
In the embodiment shown in FIG. 6, a guide cylinder 10 made of a non-magnetic material and having an inner space with a rectangular cross section is disposed inside the brake drum 7 coupled to the rotary shaft 1, and the outer cylinder portion of the guide cylinder 10 is arranged. A large number of ferromagnetic plates 15 are arranged at equal intervals in the circumferential direction 10a, and on the outer surface of a magnet support cylinder 14 made of a magnetic material arranged in the guide tube 10 so as to be movable in the axial direction, The magnets 14a are coupled so that the polarities are alternately different in the circumferential direction, and the magnet support cylinder 10 is protruded into the brake drum 7 so that each magnet 14a is opposed to each ferromagnetic plate 15 and the illustrated braking position. The magnet support cylinder 14 is retracted from the braking drum 7 in the axial direction, and each magnet 14a is switched to the non-braking position where it does not oppose each ferromagnetic plate 15, by the actuator 20, as shown in FIG. The circumferential dimension of the ferromagnetic plate 15 is the inner surface. Once directed to the Luo outer surface is narrowed gradually.
[0015]
As described above, according to the present invention, the shape of the cross section perpendicular to the rotation axis of the ferromagnetic plate 15 is substantially trapezoidal in which the outer surface 24 is narrower than the inner surface 25. After that, the magnetic flux exerted on the braking drum 7 is reduced. That is, when the magnetic flux of the two magnets 14a passes through the ferromagnetic plate 15 and reaches the brake drum 7, the magnetic flux density increases inside the brake drum 7, and eddy currents generated inside the brake drum 7 are generated. Strengthens and increases braking power.
[0016]
【The invention's effect】
In short, according to the present invention, a guide cylinder having a rectangular cross section made of a non-magnetic material is disposed inside a brake drum coupled to a rotating shaft, and a large number of circumferentially equally spaced outer cylinder parts of the guide cylinder are provided. A ferromagnetic plate is disposed on the outer peripheral surface of at least one magnet support cylinder made of a magnetic body that is axially movable or pivotable inside the guide cylinder. Brake positions where magnets are coupled one by one so that they are alternately different in direction, and the magnets of the same polarity face each ferromagnetic plate, and the non-braking positions where the magnet does not face each ferromagnetic plate In the eddy current reduction device, the front and rear wall surfaces adjacent to the inner surface facing the magnet of the ferromagnetic plate are first wall surfaces perpendicular to the inner surface, and the outer surface of the ferromagnetic plate facing the braking drum is The adjacent front and rear wall surfaces are second wall surfaces perpendicular to the outer surface, and the first Walls and the front and rear wall between the second wall, which circumferential spacing of the front and rear walls is inclined in mutually opposite directions such that countercurrent former gradually narrowed to the outer surface from the inner surface, the magnetic flux from the magnet Is reduced when passing through the ferromagnetic plate and reaches the braking drum, the magnetic flux density inside the braking drum is increased and the braking force is improved.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing a main part of an eddy current reduction device according to an embodiment of the present invention.
FIG. 2 is a side sectional view showing an upper half portion of an eddy current reduction device to which the present invention is applied.
FIG. 3 is a front sectional view showing a non-braking state of the eddy current reduction device.
FIG. 4 is a front sectional view showing a braking state of the eddy current reduction device.
FIG. 5 is a side sectional view showing an upper half portion of another eddy current reduction device to which the present invention is applied.
FIG. 6 is a side sectional view showing an upper half portion of another eddy current reduction device to which the present invention is applied.
[Explanation of symbols]
W1, W2: Circumferential dimensions 1: Rotating shaft 6: Spoke 7: Braking drum 8: Heat radiation fin 10: Guide tube 10a: Outer tube portion 10b: Inner tube portion 14, 34: Magnet support tube 14a, 34a: Magnet 15: Ferromagnetic plate 20: Fluid pressure actuator 24: Outer surface 25: Inner surface 26: Side surface 27: Side surface 28: Side surface 29: Side surface

Claims (1)

回転軸に結合した制動ドラムの内部に、非磁性体からなる断面長方形の内空部を有する案内筒を配設し、該案内筒の外筒部に周方向等間隔に多数の強磁性板を配設し、案内筒の内部に軸方向移動可能または回動可能に配設した磁性体からなる少くとも1つの磁石支持筒の外周面に、強磁性板に対する極性が周方向に交互に異なるように磁石を結合し、同極性の磁石が各強磁性板に全面的に対向する制動位置と、磁石が各強磁性板に全面的には対向しない非制動位置とに切り換わる渦電流減速装置において、前記強磁性板の磁石に対向する内面に隣接する前後の壁面を内面に対し垂直な第1の壁面とし、前記強磁性板の制動ドラムに対向する外面に隣接する前後の壁面を外面に対し垂直な第2の壁面とし、第1の壁面と第2の壁面との間の前後の壁面を、前後の壁面の周方向の間隔が内面から外面へ向かつて次第に狭くなるように互いに反対方向へ傾斜させたことを特徴とする渦電流減速装置。A guide cylinder having a rectangular inner section made of a non-magnetic material is disposed inside a brake drum coupled to the rotating shaft, and a large number of ferromagnetic plates are arranged at equal intervals in the circumferential direction on the outer cylinder of the guide cylinder. The polarity with respect to the ferromagnetic plate is alternately different in the circumferential direction on the outer peripheral surface of at least one magnet support cylinder made of a magnetic material that is arranged and can move axially or turn inside the guide cylinder. In an eddy current reduction device, the magnet is coupled to a braking position where the magnet of the same polarity completely faces each ferromagnetic plate and a non-braking position where the magnet does not entirely face each ferromagnetic plate . The front and rear wall surfaces adjacent to the inner surface of the ferromagnetic plate facing the magnet are first wall surfaces perpendicular to the inner surface, and the front and rear wall surfaces of the ferromagnetic plate adjacent to the outer surface facing the braking drum are A vertical second wall and front and back between the first wall and the second wall Wall surface, the eddy current reduction apparatus characterized by circumferential spacing of the front and rear walls is inclined in mutually opposite directions such that countercurrent former gradually narrowed to the outer surface from the inner surface.
JP26827298A 1998-09-22 1998-09-22 Eddy current reducer Expired - Fee Related JP3690471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26827298A JP3690471B2 (en) 1998-09-22 1998-09-22 Eddy current reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26827298A JP3690471B2 (en) 1998-09-22 1998-09-22 Eddy current reducer

Publications (2)

Publication Number Publication Date
JP2000102240A JP2000102240A (en) 2000-04-07
JP3690471B2 true JP3690471B2 (en) 2005-08-31

Family

ID=17456267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26827298A Expired - Fee Related JP3690471B2 (en) 1998-09-22 1998-09-22 Eddy current reducer

Country Status (1)

Country Link
JP (1) JP3690471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111645531A (en) * 2020-06-16 2020-09-11 中车青岛四方车辆研究所有限公司 Electromagnetic interference suppression method based on eddy current brake

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60030049T2 (en) * 1999-07-29 2006-12-07 Isuzu Motors Ltd. Eddy current brake device
JP2015061422A (en) * 2013-09-19 2015-03-30 株式会社デンソー Power transmission mechanism
JP6202354B2 (en) * 2014-09-03 2017-09-27 インダストリー−アカデミック コーポレーション ファウンデイション, チョソン ユニバーシティーIndustry−Academic Cooperation Foundation, Chosun University Magnetic gear with magnetic flux concentrated pole piece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111645531A (en) * 2020-06-16 2020-09-11 中车青岛四方车辆研究所有限公司 Electromagnetic interference suppression method based on eddy current brake
CN111645531B (en) * 2020-06-16 2021-07-09 中车青岛四方车辆研究所有限公司 Electromagnetic interference suppression method based on eddy current brake

Also Published As

Publication number Publication date
JP2000102240A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
JP3651255B2 (en) Eddy current reducer
JPH0683571B2 (en) Eddy current type speed reducer
JP3487318B2 (en) Eddy current speed reducer
JP3690471B2 (en) Eddy current reducer
JP3285059B2 (en) Eddy current type reduction gear
JPH07245933A (en) Eddy current type reduction gear
JPH07118905B2 (en) Permanent magnet type eddy current reducer
JPH10127039A (en) Permanent magnet eddy current speed reducer
JP3719338B2 (en) Eddy current reducer
JP2550818B2 (en) Eddy current type speed reducer
JP2566803Y2 (en) Eddy current type reduction gear
JP3809771B2 (en) Eddy current reducer
JP3436271B2 (en) Eddy current type reduction gear
JP3959594B2 (en) Eddy current reducer
JP3233166B2 (en) Eddy current type reduction gear
JP2573695Y2 (en) Eddy current type reduction gear
JP3285067B2 (en) Eddy current type reduction gear
JP3704946B2 (en) Permanent magnet type eddy current reducer
JP3651256B2 (en) Eddy current reducer
JP2002354781A (en) Eddy current speed reducing apparatus
JP3216665B2 (en) Eddy current type reduction gear
JPH0638505A (en) Eddy current speed reduction device
JP2572511Y2 (en) Eddy current type reduction gear
JP3988318B2 (en) Eddy current reducer
JP2582755Y2 (en) Eddy current type reduction gear

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees