JP3769795B2 - Method for manufacturing non-combustible electronic components - Google Patents

Method for manufacturing non-combustible electronic components Download PDF

Info

Publication number
JP3769795B2
JP3769795B2 JP33648195A JP33648195A JP3769795B2 JP 3769795 B2 JP3769795 B2 JP 3769795B2 JP 33648195 A JP33648195 A JP 33648195A JP 33648195 A JP33648195 A JP 33648195A JP 3769795 B2 JP3769795 B2 JP 3769795B2
Authority
JP
Japan
Prior art keywords
low
electronic components
electronic component
combustible
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33648195A
Other languages
Japanese (ja)
Other versions
JPH09180961A (en
Inventor
圭博 清村
紀哉 佐藤
勝利 中松
益裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP33648195A priority Critical patent/JP3769795B2/en
Publication of JPH09180961A publication Critical patent/JPH09180961A/en
Application granted granted Critical
Publication of JP3769795B2 publication Critical patent/JP3769795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は磁器コンデンサー,マイカーコンデンサー,有材フィルムコンデンサー,金属化紙コンデンサー,タンタル固体電解コンデンサー,抵抗品等の電子部品を不燃化した不燃性電子部品及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、電子部品の分野において、その不燃化対策が大きな課題となっている。従来、有機系および無機系塗料を用いた不燃化対策が提案されている。しかしながら、いずれの不燃化対策も電子部品の本来の性質を低下させることなく、不燃化を達成させることはいずれも不十分であった。
【0003】
たとえば、磁器コンデンサーの分野においては、難燃化処理されたエポキシ樹脂系塗料、シリコーン樹脂系塗料等の塗料が一般的に使用されている。このようなコンデンサーは電気的な特性に優れており、またその製造上の作業性においても優れている。
【0004】
【発明が解決しようとする課題】
しかしながら上記従来の不燃性電子部品及びその製造方法では、不慮の落雷等で電器製品中の磁器コンデンサーが絶縁破壊され、異常電流の発生によりコンデンサーが赤熱された場合、現在使用されている外装材はこの発熱に耐えられない可能性がある。このため不燃性を有する外装材の開発が行われているものの、電子部品用として必要な絶縁性、防湿性および作業性に優れているという条件を満足し、かつ不燃性を有するものは得られていない。
【0005】
従来絶縁性および不燃性に優れている材料で被覆する試みでは、逆にその軟化温度が400度以上と高いために外装時に素子の構造を破壊したり、電気特性を劣化させるため電子部品への外装材としての適応が困難という問題点を有していた。
【0006】
本発明は上記従来の問題点を解決するもので、素子の電気特性を劣化させることがなく、不燃化を達成でき高品質で絶縁性、防湿性に優れた不燃性電子部品の提供、及び不燃性に優れ高品質の不燃性電子部品を高い生産性で生産作業性に優れた不燃性電子部品の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の不燃性電子部品の製造方法は、製造工程において、軟化温度が低い低融点ガラスを用い、素子をディッピングする工程又は容器内で素子を密封、固定する密封工程を備えた構成を有している。
【0010】
この構成により、簡単な作業で不燃性に優れ、電気特性を損なうことのない高品質な不燃性電子部品を低原価で量産することができる。
【0011】
【発明の実施の形態】
本発明の請求項1に記載の発明は、電子部品素体が容器内に絶縁材で密封された不燃性電子部品の製造方法であって、前記絶縁材が150℃〜400℃の軟化点を有する低融点ガラスを用い電子部品素体を容器内に密封、固定する密封工程を備えた不燃性電子部品の製造方法に関するものであり、電子部品が予期せぬ異常電流により加熱されても軟化点が150℃〜400℃の低融点ガラスが溶融流動し表面を完全に被覆するので発火のおそれのない不燃性電子部品をディッピングする簡単な工程で作製することができ、高い生産性と作業性で低原価で製造することができるという作用を有する。以下本発明の実施の形態について、図1及び図2を用いて説明する。
【0016】
(実施の形態1)
図1は実施例1及び実施例2の試験用試料の断面図である。図1において、1は磁器コンデンサー、2は低融点ガラスからなる外装、3は端子である。外装2は、磁器コンデンサー1が予期せぬ異常電流により加熱されても炎、煙、有害ガスなどの発生を防止するという作用を行うもので、加熱により溶解する材質、その軟化点が150℃〜400℃の低融点ガラス、またはPbO−SnO−P25系の低融点ガラスから構成されている。
【0017】
(実施の形態2)
図2は実施例3及び実施例4の試験用試料の断面図である。図2において、実施の形態1と異なるのは、低融点ガラスからなる外装2が不燃性容器4中に充填密封され、磁器コンデンサー1が予期せぬ異常電流により加熱されても炎、煙、有害ガスなどの発生を防止するという作用を行うもので、外装2は加熱により溶解する材質、その軟化点が150℃〜400℃の低融点ガラス、またはPbO−SnO−P25系の低融点ガラスから構成され、不燃性容器4はセラミッス製容器、金属製容器から構成されている。
【0018】
【実施例】
次に本発明の具体例を説明する。
【0019】
低融点ガラスの作製は、原料としてPbO、SnO、P25及びNH4Clの試薬を用いた。PbO、SnO及びP25を(表2)に示す2種類の比率に秤量した。合計量を30gとし、これに対してNH4Clを30wt%加えた。これらの原料試薬をアルミナ乳鉢で十分混合した後、アルミナるつぼに移した。500℃に保持した炉内にアルミナるつぼを挿入し、90分間溶解した。溶融後空冷したものを電子部品への外装材として用いた。
【0020】
定格2kVDC、1000pFの円盤型磁器コンデンサー1に低融点ガラス及び従来品のエポキシ樹脂系塗料、シリコーン樹脂系塗料、及び従来の低融点ガラスを塗装、硬化させたものを試料とし、それぞれ、実施例1、2及び従来例1、2、3として(表1)に示した。
【0021】
【表1】

Figure 0003769795
【0022】
それぞれの外装材の加工条件は以下に示す通りであった。ただし、低融点ガラスについては、これをるつぼ炉内で350℃に加熱、溶融したものに磁器コンデンサー1をディッピング、除冷したものを試料とした。このときの低融点ガラスの塗装膜厚は薄いところで0.2mm、薄いところで1.00mmであった。
【0023】
また、定格2kVDC、1000pFの円盤型磁器コンデンサー1をアルミニウム製の容器内に低融点ガラスで密封したものを試料とし、実施例3、4として(表1)に示した。低融点ガラスとアルミニウム製容器とを併用の際は、外径11mm、内径10mm,高さ11.5mmの円筒状アルミニウム容器を用いた。予めアルミニウム容器内に低融点ガラスを取り、これを350℃に加温、溶解し、この中に磁器コンデンサー1を挿入し除冷したものを試料とした。
【0024】
実施例1から実施例4、従来例1と従来例2の試料のいずれも350℃の加熱により静電容量等の特性の変化は見られなかった。但し、従来例3は電極部のはんだが溶融して静電特性を失った。
【0025】
低融点ガラスは(表2)のものを用いた。
【0026】
【表2】
Figure 0003769795
【0027】
これらの試料を不燃性試験用試料とした。不燃性試験方法の詳細は以下の通りである。
【0028】
耐圧試験器(0〜10kVDC)を用いてそれぞれの試料の絶縁破壊を行った。外装した磁器コンデンサー1を耐圧試験器に接続し、電極の電圧を次第に上げていき、絶縁破壊により電極間の電圧が低下するまでこれを行った。一つの試料についてこの操作を10回行った。絶縁破壊したそれぞれの試料を過電流センサー耐圧試験器(最大供給能力AC600V,7A)に接続し、1秒間通電し磁器コンデンサー1を加熱したときの外装材の燃焼の状態を観察した。
【0029】
不燃性試験結果を(表3)に示した。
【0030】
【表3】
Figure 0003769795
【0031】
この結果から明らかなように、本発明によると不燃性は著しく高められていることが確認された。
【0032】
【発明の効果】
以上のように、本発明の不燃性電子部品の製造方法によれば、簡単な作業で高い製品得率を得ることができ生産性を著しく向上させるとともに高品質で耐久性に優れた不燃性電子部品を低原価で量産できるものである。
【図面の簡単な説明】
【図1】実施例1及び実施例2の試験用試料の断面図
【図2】実施例3及び実施例4の試験用試料の断面図
【符号の説明】
1 磁器コンデンサー
2 外装
3 端子
4 不燃性容器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonflammable electronic component in which electronic components such as a porcelain capacitor, a miker capacitor, a material film capacitor, a metallized paper capacitor, a tantalum solid electrolytic capacitor, and a resistor are made nonflammable, and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, countermeasures against incombustibility have become a major issue in the field of electronic components. Conventionally, measures for incombustibility using organic and inorganic paints have been proposed. However, none of the countermeasures for incombustibility has achieved incombustibility without deteriorating the original properties of electronic components.
[0003]
For example, in the field of porcelain capacitors, paints such as epoxy resin paints and silicone resin paints that have been subjected to flame retardant treatment are generally used. Such a capacitor is excellent in electrical characteristics and in workability in manufacturing.
[0004]
[Problems to be solved by the invention]
However, in the conventional non-combustible electronic parts and the manufacturing method thereof, when a ceramic capacitor in an electrical product is broken down due to an unexpected lightning strike, etc., and the capacitor becomes red hot due to the occurrence of an abnormal current, It may not be able to withstand this heat generation. For this reason, although nonflammable exterior materials have been developed, those that satisfy the conditions of excellent insulation, moisture proofing and workability required for electronic parts and have nonflammability can be obtained. Not.
[0005]
In an attempt to coat with a material having excellent insulation and nonflammability in the past, the softening temperature is higher than 400 degrees, so the structure of the element is destroyed at the time of exterior or the electrical characteristics are deteriorated. There was a problem that adaptation as an exterior material was difficult.
[0006]
The present invention solves the above-mentioned conventional problems, and provides a non-flammable electronic component that does not deteriorate the electrical characteristics of the device, can achieve non-flammability, has high quality, and is excellent in insulation and moisture resistance. An object of the present invention is to provide a method for producing a non-combustible electronic component that is excellent in productivity and high-quality non-combustible electronic components with high productivity and excellent workability.
[0009]
[Means for Solving the Problems]
The non-combustible electronic component manufacturing method of the present invention has a configuration including a low melting point glass having a low softening temperature and a step of dipping the device or a sealing step of sealing and fixing the device in a container in the manufacturing process. ing.
[0010]
With this configuration, it is possible to mass-produce high-quality non-combustible electronic components that are excellent in non-combustibility and do not impair electrical characteristics by simple work at a low cost.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Invention of Claim 1 of this invention is a manufacturing method of the nonflammable electronic component by which the electronic component element | base_body was sealed with the insulating material in the container, Comprising: The said insulating material has a softening point of 150 to 400 degreeC. The present invention relates to a method for producing a non-combustible electronic component having a sealing process for sealing and fixing an electronic component element body in a container using a low melting point glass having a softening point even if the electronic component is heated by an unexpected abnormal current The low melting point glass of 150 to 400 ° C melts and flows and completely covers the surface, so it can be produced by a simple process of dipping non-combustible electronic components that do not ignite, with high productivity and workability. It has the effect that it can be manufactured at a low cost. Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2.
[0016]
(Embodiment 1)
FIG. 1 is a cross-sectional view of the test samples of Example 1 and Example 2. In FIG. 1, 1 is a porcelain capacitor, 2 is an exterior made of low-melting glass, and 3 is a terminal. The outer casing 2 functions to prevent generation of flames, smoke, harmful gases and the like even when the ceramic capacitor 1 is heated by an unexpected abnormal current. It is composed of 400 ° C. low melting point glass or PbO—SnO—P 2 O 5 type low melting point glass.
[0017]
(Embodiment 2)
FIG. 2 is a cross-sectional view of the test samples of Example 3 and Example 4. In FIG. 2, the difference from the first embodiment is that the exterior 2 made of low-melting glass is filled and sealed in a non-combustible container 4, and even if the ceramic capacitor 1 is heated by an unexpected abnormal current, flame, smoke, harmful The outer casing 2 is made of a material that dissolves by heating, a low-melting glass having a softening point of 150 ° C. to 400 ° C., or a low melting point of PbO—SnO—P 2 O 5 system. It is comprised from glass and the nonflammable container 4 is comprised from the ceramics container and the metal container.
[0018]
【Example】
Next, specific examples of the present invention will be described.
[0019]
The low-melting glass was produced using PbO, SnO, P 2 O 5 and NH 4 Cl reagents as raw materials. PbO, SnO and P 2 O 5 were weighed in two ratios shown in (Table 2). The total amount was 30 g, and 30 wt% of NH 4 Cl was added thereto. These raw material reagents were sufficiently mixed in an alumina mortar and then transferred to an alumina crucible. An alumina crucible was inserted into a furnace maintained at 500 ° C. and melted for 90 minutes. What was air-cooled after melting was used as an exterior material for electronic parts.
[0020]
Example 1 A low-melting glass, a conventional epoxy resin-based paint, a silicone resin-based paint, and a conventional low-melting glass coated and cured on a disk-type porcelain capacitor 1 having a rating of 2 kVDC and 1000 pF were used as samples. 2 and Conventional Examples 1, 2, and 3 are shown in Table 1.
[0021]
[Table 1]
Figure 0003769795
[0022]
The processing conditions of each exterior material were as shown below. However, as for the low melting point glass, a sample obtained by dipping the ceramic capacitor 1 in a crucible furnace heated and melted at 350 ° C. and then removing the glass was used as a sample. At this time, the coating film thickness of the low melting point glass was 0.2 mm at the thin part and 1.00 mm at the thin part.
[0023]
In addition, a disk type porcelain capacitor 1 rated at 2 kVDC and 1000 pF sealed in a container made of aluminum with a low-melting glass was used as a sample, and examples 3 and 4 are shown in Table 1. When the low melting point glass and the aluminum container were used in combination, a cylindrical aluminum container having an outer diameter of 11 mm, an inner diameter of 10 mm, and a height of 11.5 mm was used. A low-melting glass was previously taken in an aluminum container, heated and melted at 350 ° C., and a ceramic condenser 1 was inserted therein to remove the temperature, thereby preparing a sample.
[0024]
In all of the samples of Examples 1 to 4, Conventional Example 1 and Conventional Example 2, there was no change in characteristics such as capacitance due to heating at 350 ° C. However, in Conventional Example 3, the solder of the electrode portion melted and the electrostatic characteristics were lost.
[0025]
The low melting point glass (Table 2) was used.
[0026]
[Table 2]
Figure 0003769795
[0027]
These samples were used as nonflammability test samples. The details of the nonflammability test method are as follows.
[0028]
Each sample was subjected to dielectric breakdown using a pressure tester (0 to 10 kVDC). The exterior ceramic capacitor 1 was connected to a withstand voltage tester, and the voltage of the electrodes was gradually increased, and this was performed until the voltage between the electrodes decreased due to dielectric breakdown. This operation was performed 10 times for one sample. Each of the dielectric breakdown samples was connected to an overcurrent sensor withstand voltage tester (maximum supply capacity AC 600 V, 7 A), and the state of combustion of the exterior material when the ceramic capacitor 1 was heated by energizing for 1 second was observed.
[0029]
The nonflammability test results are shown in (Table 3).
[0030]
[Table 3]
Figure 0003769795
[0031]
As is apparent from this result, it was confirmed that the nonflammability was remarkably enhanced according to the present invention.
[0032]
【The invention's effect】
As described above , according to the method of manufacturing a non-combustible electronic component of the present invention , a high product yield can be obtained with a simple operation, the productivity can be remarkably improved, and a high-quality and durable non-combustible electronic device can be obtained. Parts can be mass-produced at low cost.
[Brief description of the drawings]
1 is a cross-sectional view of a test sample of Example 1 and Example 2. FIG. 2 is a cross-sectional view of a test sample of Example 3 and Example 4. DESCRIPTION OF SYMBOLS
1 Porcelain capacitor 2 Exterior 3 Terminal 4 Nonflammable container

Claims (1)

電子部品素体が容器内に絶縁材で密封された不燃性電子部品の製造方法であって、前記絶縁材が150℃〜400℃の軟化点を有する低融点ガラスを用い電子部品素体を容器内に密封、固定する密封工程を備えていることを特徴とする不燃性電子部品の製造方法。A method for manufacturing a non-combustible electronic component in which an electronic component body is sealed with an insulating material in a container, wherein the insulating material is made of low-melting glass having a softening point of 150 ° C. to 400 ° C. A non-combustible electronic component manufacturing method comprising a sealing step of sealing and fixing inside.
JP33648195A 1995-12-25 1995-12-25 Method for manufacturing non-combustible electronic components Expired - Lifetime JP3769795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33648195A JP3769795B2 (en) 1995-12-25 1995-12-25 Method for manufacturing non-combustible electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33648195A JP3769795B2 (en) 1995-12-25 1995-12-25 Method for manufacturing non-combustible electronic components

Publications (2)

Publication Number Publication Date
JPH09180961A JPH09180961A (en) 1997-07-11
JP3769795B2 true JP3769795B2 (en) 2006-04-26

Family

ID=18299585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33648195A Expired - Lifetime JP3769795B2 (en) 1995-12-25 1995-12-25 Method for manufacturing non-combustible electronic components

Country Status (1)

Country Link
JP (1) JP3769795B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991501B2 (en) * 2007-11-30 2012-08-01 至美電器股▲分▼有限公司 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH09180961A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
US6233817B1 (en) Method of forming thick-film hybrid circuit on a metal circuit board
US2530217A (en) Conductive coating compositions
US3914514A (en) Termination for resistor and method of making the same
US2321840A (en) Spark plug and method of making same
JP3769795B2 (en) Method for manufacturing non-combustible electronic components
US4322477A (en) Electrical resistor material, resistor made therefrom and method of making the same
US3788997A (en) Resistance material and electrical resistor made therefrom
JP2004039634A (en) Spark plug, spark plug insulator, and method of manufacturing spark plug
JP3346023B2 (en) Electroconductive paint for electrode and method for producing the same
WO2021221173A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JPS6326522B2 (en)
KR20180043173A (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and method for producing positive temperature coefficient resistor
CN209388805U (en) Piezoresistor
JPH097879A (en) Ceramic electronic part and manufacture thereof
JP4544255B2 (en) Electronic component enclosure
JPH08119665A (en) Glass composition and plasma display panel using the same
TW527607B (en) Ceramic electronic element
EP1129050B1 (en) Paste for screenprinting electric structures onto carrier substrates
JPS6237801B2 (en)
CN111205763B (en) Coating composition, coating and piezoresistor containing coating
Hu et al. Preparation and effects of glass-coatings on BaTiO 3-based PTC thermistors
JPH07133136A (en) Glass paste and its production
JP3180545B2 (en) High dielectric constant crystallized glass
JPS6347123B2 (en)
JPH11209147A (en) Dielectric paste for plasma display panel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

EXPY Cancellation because of completion of term