JP3769247B2 - Centrifugal mold and centrifugal molding method - Google Patents

Centrifugal mold and centrifugal molding method Download PDF

Info

Publication number
JP3769247B2
JP3769247B2 JP2002141138A JP2002141138A JP3769247B2 JP 3769247 B2 JP3769247 B2 JP 3769247B2 JP 2002141138 A JP2002141138 A JP 2002141138A JP 2002141138 A JP2002141138 A JP 2002141138A JP 3769247 B2 JP3769247 B2 JP 3769247B2
Authority
JP
Japan
Prior art keywords
mold
slurry
split
centrifugal
split mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002141138A
Other languages
Japanese (ja)
Other versions
JP2003328005A (en
Inventor
裕之 鈴木
英憲 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002141138A priority Critical patent/JP3769247B2/en
Publication of JP2003328005A publication Critical patent/JP2003328005A/en
Application granted granted Critical
Publication of JP3769247B2 publication Critical patent/JP3769247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遠心力を利用して、金属、セラミック等の粉末を液体に混練してなるスラリー(泥漿、懸濁液と呼ばれることもある)から固形状の生成形体を製造する遠心成形方法の改良に関する。
【0002】
【従来の技術】
従来より、金属、セラミックまたはこれらの混合物の粉末から所定形状の焼結体を製造する粉末冶金工業またはセラミック工業において、各種粉末を焼成前に予め一定形状の生成形体に仕上げるための一般的な生成形体の製造方法として、ボールミルで粉砕された各種粉末に有機結合剤、可塑剤、溶剤等を添加し、これらを混練してスラリーを調製し、このスラリーを成形する下記のような方法が知られている。
【0003】
(1)スラリーを回転ロール状のドクターブレードで掻き取りながら帯状の基材上に一定の厚みで付着させた後、加熱乾燥して得た帯状のグリーンシートを切断または打ち抜いて平板状の生成形体を得るドクターブレード法。
(2)スラリーをスプレードライヤーで噴霧乾燥して得た成形用粉末を一定形状の形内でプレス成形することにより生成形体を得る圧縮成形法。
(3)スラリーを石膏型に注入し、乾燥させて所定の形状に仕上げる鋳込み成形法。
(4)スラリーを石膏型に注入し、石膏型中のスラリーに圧力を加えて成形速度を高めた加圧鋳込み成形法。
しかしながら、これらの公知方法には、成形体の形状に制約が大きい、成形体品質が劣る、もしくはスラリーから液成分を迅速に分離しがたい、という問題がある。
【0004】
そこで、本発明者らは、先に、かかる問題を解決し得る生成形体の製造方法を開発した(特開平5-65504号公報)。その方法は、粉末を液体に混練してなる流動体の所定量を底部が密閉された型内に充填し、型をその底部が遠心成形機の回転半径方向外方に向くように遠心成形機にセットし、遠心成形機により型を所定時間回転させた後、型の上部に分離された液体を除去して、生成形体を得るところの高速遠心分離成形方法(HCP方法)である。
【0005】
この高速遠心分離成形方法では、遠心力により型内で流動体中の固形分が沈降し、液成分が生成形体の上方に分離されるので、固液の分離が速やかになされ、短時間で、ほぼ粉体の最密充填率に等しい理想的な粒子充填率を有する生成形体が得られるとともに、結合剤の低減により焼成温度の低下と昇温速度の高速化とを図ることができるので、焼結体の製造能率、寸法精度および歩留を向上させることができる。
【0006】
【発明が解決しようとする課題】
HCP法を乾式の等静圧プレス法(CIP法:等方圧プレス法ともいう。例:特開平9-241704号公報)に比較すると、CIP法は等方圧プレスにより約20〜30%の嵩減りが生じ、減圧段階で内部応力が残留する。また、CIP法は、成形体内の粒子分布の均一性が改善されないので、成形体内部に粒径分布の異常があってもそれを除去する手段がない。一方、HCP法は、乾燥工程を要する点で時間がかかるが、遠心力方向に一方向圧縮され減圧時の弾性変形がないので、生成形体内部に残留応力が残らず、また粗大粒子が除去されるので、より高品質の生成形体が製造できる利点がある。
【0007】
しかしながら、本発明者らが先に開発した方法を、型として割型を用い複雑形状の成形に適用したところ、約5kG(Gは重力加速度)以上の高い遠心力を作用させた場合、割型の分割面から粉末を含むスラリーが漏洩しやすいことが判明した。このため、特に複雑な形状では割型の使用に難点があり、生成形体の形状にかなり制約がある。
【0008】
単純な形状であれば、例えば、図4(b)(特開平10-80909号公報より引用)に示されているように、半球状部20Aを有する下型16Aと上面に底部が漏斗状になり、中心にスラリー通路22を有するスラリ溜め18と半球状部20Bを有する上型16Bを外枠10の中に留め具24,26で固定して、割型の分割面を遠心力と直交する方向にして成形空間19を形成することによって割型からの漏洩をかなり防止することができる。しかし、この方法は、割型の結合や分解にかなり複雑な工程を有する課題がある。
【0009】
この課題を解決するために、本発明者らは、先に、図4(a)に示すように、筒部材1aと円板状の底蓋1bとからなる枠1内に分割面2a(底部)と分割面2bを有する円筒状の割型2をセットし、割型2と枠1の間に低融点合金や蝋など3を充填することにより固定した割型を周囲からバックアップすることでスラリーの漏洩を防止して生成形体7を製造する方法を開発した(特開平6‐293010号=特許第3210700号公報)。
【0010】
この方法は、高い遠心力下でも蝋が殆ど変形しないので、複雑形状品用の割型からのスラリー漏洩を防止することができるが、蝋や低融点合金のバックアップのための充填や、遠心分離後の割型からの溶解除去の工程が必要であり、工程時間がかかるためにさらなる製造能率の向上が求められている。
【0011】
本発明は、かかる点に鑑みてなされたものであり、その目的は、スラリーの漏洩を防止して遠心成形法で複雑形状品を製造し得る手段を講じることにより、形状の制約を受け難く、工程時間の短縮が可能な高速遠心分離成形法の確立を図ることにある。
【0012】
【課題を解決するための手段】
本発明者は、遠心成形中の割型に作用する力を解明することにより割型の形状と外側の流動体の密度がスラリーの漏洩に関係することを見出し、特定の条件により上記の課題を解決出来ることを見出した。すなわち、本発明は、下記の(1)または(2)からなる。
【0013】
(1)金属、セラミック等の粉末を液体に混練してなるスラリーを底部が密閉された型内に所定量入れ、遠心機に該型をセットした後、所定時間の間遠心機により該型の底部を遠心機の回転半径方向外方に向けて回転させ、しかる後、型の上部に分離された液体を除去して、型の下部に固形状の生成形体を得る遠心成形方法において、流動体を充填した型枠中に浸漬して用いられる割型であって、該割型が縦割りの分割面をもつ円筒状割型であって、遠心力方向に直交する方向の割型断面の外側半径をr1とし、該割型断面の内側半径をr2とし、流動体の密度をρ1、スラリーの密度をρ2としたとき、r2≦r1×(ρ1/ρ2)であることを特徴とする遠心成形用割型。
【0016】
)金属、セラミック等の粉末を液体に混練してなるスラリーを底部が密閉された型内に所定量入れ、遠心機に該型をセットした後、所定時間の間遠心機により該型の底部を遠心機の回転半径方向外方に向けて回転させ、しかる後、型の上部に分離された液体を除去して、固形状の生成形体を得る遠心成形方法において、上記(1)の割型中にスラリーを充填する工程と、流動体を充填した型枠の中に該型を浸漬する工程を有することを特徴とする遠心成形方法。
【0017】
【作用】
割型には2分割、4分割など各種の分割方式がある。また、分割面は遠心力と平行方向(縦割り)と遠心力に直交する方向(横割)等がある。このような割型を型枠内の流動体に浸漬して遠心機により回転させて遠心力がかかるとき、スラリーと流動体に遠心力による静圧が発生し、割型の各分割面にスラリーからの内圧、流動体からの外圧が加わる。
【0018】
(1)本発明の割型を用いると、割型の各分割面に加わる内圧、外圧、外力の関係から型断面において割型を開く方向に働く力に比べて圧縮する方向の力が同等または大となる。このため、型が任意方向に分割されていても、分割面を広げることがないので、分割面からのスラリーの漏れが防止できる。型枠に入れる前に割型を予め締め付ける力は計算に入れていないので、一定力で締め付けておけば更に漏洩し難くなる。
【0019】
(2)本発明の割型の代表的な例は、縦割り2分割の円筒状割型である。この場合、金型の割面を通過する平面上における金型外側の投影面積(これを代表面積とする)S1とし、同平面上における金型内面のそれをS2とし、流動体の密度をρ1、スラリーの密度をρ2としたとき、S2≦S1×(ρ1/ρ2)であると、型断面において型を開く方向に働く力より圧縮する方向の力が大となる。
割型内面の代表面積は、成形体断面積(割面を通過する平面上における成形体の投影面積)を用い、割型外面の代表面積は、割面に投影した割型の面積を用いることができる。
【0020】
ここで、割型の長さをLとし、金型外側の半径をr1、内側の半径をr2とすると、S1=2πL×r1およびS2=2πL×r2となることから、(2)における式はr2≦r1×(ρ1/ρ2)とすることができる。
なお、金型の外側および内側が複雑形状の場合は、金型中心から金型外壁および内壁までの距離の平均をそれぞれr1とr2としてもよい。あるいは、金型中心から外壁および内壁までの最大距離をそれぞれr1とr2としてもよい。
【0021】
(3)上記の(1)に記載した作用と同じ作用で型の変形が防止できる。
【0022】
(4)流動体に水を使うとき、スラリーの密度は通常3kg/cm3以下なので、割型合わせ面の面積が成形体断面積(割面を通過する平面上における成形体の投影面積)の2倍以上であれば、遠心力による合力は内圧以上となる。
【0023】
【発明の実施の形態】
以下、本発明の一実施形態をセラミック製ベアリングボールの成形体を製造する場合について説明する。
(型枠の作成)
図1は、セラミック製ベアリングボールの成形体を同時に2個作成する場合の割型の例である。図1(a)は、割型2Aの正面図、図1(b)は、割型2A,2Bの平面図、図1(c)は、図1(a)のA−A’の断面図である。割型2A、2Bにはスラリーの注入口部分31、球形のベアリングボール部分32、粗粒排除用のスラリー溜め33設けている。また、割型2A、2Bはボルト・ナット34で結合する。
【0024】
割型2A,2Bはアルミニウムなどの加工しやすい材料で作成する。割型2A、2Bの合わせ面は、擦り合わせ、ワイヤーカット、溝加工などによって、スラリーの最小粒子が通過できない程十分な狭い隙間を持たせる。ボルト・ナット34によって、型枠が仮止めできる構造とする。ボルト・ナット以外でも、割型の組み立てと分解が容易にできるものであればよく、ねじ止め、はめ合わせ、弾性体による密着、など任意の方法が適用できる。
【0025】
ベアリングボール部分32とスラリー溜め33とは、スラリーに許容される最大粒径の粉体が通過できる径をもつ細孔で連結する。また、スラリーの注入口部分31とベアリングボール部分32は、それ以上の径を持つ細孔で連結する。スラリーの注入口部分31の形状は、成形体の形状に直接関係しないので任意に設計できる。また、スラリー溜め33の形状は楕円体など任意の形状を取れる。
【0026】
以下は条件を簡素にするために、スラリーの充填高さ(図1(c)の一点鎖線)と型枠に充填した流動体の上面が等しい場合で説明する。
割型各々の合わせ面の任意の部分について、遠心成形中に働く該割型を閉じる方向に働く流動体の外圧と遠心成形中に働く外力との合計値は、正確には応力解析などによって求めることができる。
【0027】
図1の例において、割型に加わる力を簡略に求めるには、「遠心成形中に働く該割型を閉じる方向に働く流動体の外圧」は、遠心力と直交し、割型を閉じる方向の面の面積(図1のH×L=S:成形体断面積)と平均流体圧力の積で求めることができ、「割型を開く方向に働くスラリー内圧」は、割型のスラリー充填部の面積(図1(a)のハッチング部分)と内圧との積で求めることができる。
【0028】
内圧、外圧はそれぞれスラリー、流動体の密度×深さに比例するので、平均値を考慮する必要がある。図1の場合、図1(a)のハッチング部分の面積×スラリー密度≦S×流動体密度であればよいので、その条件に合うようにH、Lの寸法を設定する。
【0029】
流動体に水(密度=1.0)を用い、スラリー成形体の含水密度が2.8(高純度アルミナ;平均粒径0.22μm)の場合、H×L≧(2.8/1.0)Sとする。これによって、遠心力と直交し割型を開く方向の型断面のどこを取っても、割型断面において型を開く方向に働く力に比べ、割型を圧縮する方向の力が同等または大となる。このため型が分割されていても、分割面を広げることがないので、分割面からのスラリーの漏れが防止できる。
【0030】
(準備)
次に、型を使った遠心分離成形方法を図2によって説明する。
図2(a)に示すように、型2の形状に合わせて隙間を持ち、容易に出し入れできる型枠1内に、型2をセットし、型枠1と型2の隙間に流動体4として例えば水を注入する。型枠1は遠心成形中に内外面からの静圧が加わるので、体積弾性率が小さな材料(κ≦2.2:鉛)であればプラスチック、合金などであってもよい。
【0031】
流動体は水に限らず、設計密度より密度が大きく、取扱いが容易な非圧縮性流体であればよく、防錆剤、潤滑剤を添加した水でもよい。型2内にスラリー5を所定量だけ充填する。スラリー5は、予めボールミルにより所定の平均粒径に粉砕された金属、セラミックまたはこれらの混合物の粉末に分散剤、分散媒(水、有機液体等)を添加し、混練して得られる。
【0032】
金属、セラミックの粉末としては、オーステナイト系ステンレス鋼粉末、超硬合金、サーメット、その他の焼結金属製造用粉末、高純度アルミナ粉末、アルミナにマグネシア、シリカ、チタニア等を添加した混合粉末(すなわち、フォルステライト、ムライト、コージライト製造用粉末など)、あるいはベリリア、マグネシア磁器等の各種セラミック、フェライト等の磁性体部品製造用粉末、などが例示される。
【0033】
(成形)
このようにして準備された型枠1を、遠心成形機にセットする。図3は、遠心成形機の運転過程を概略的に示す正面図である。図3(a)に示すように、型を遠心成形機にセットする。遠心成形機はモータ11により縦軸回りに回転する回転軸12と該回転軸12の上端に固定された水平棹13とを備えており、該水平棹13の両端部に取り付けられた容器15,15内に上記型2を各々1個ずつセットするようになっている。このとき型枠1の底蓋側が遠心成形機の回転半径方向外方に向くようセットする。さらに、上記各容器15,15は水平棹13の両端部で、水平軸14,14回りに回転自在に支承されており、図3(b)に示すように、遠心成形機の運転中には、その遠心力により容器15,15の底部つまり、各型2の底部側を遠心成形機の回転半径方向外方に向けて回転される。
【0034】
そして、遠心成形機を運転することにより、遠心力でスラリー5中の密度の大きい固体成分を型2の底部側に次第に沈降させ、液体6をその上部に分離して行き、所定時間経過後に遠心成形機の運転を停止したとき、図2(b)に示すように、大部分の液体6が型2の上部に分離し、型の下部に固形状の生成形体7が得られる。
【0035】
このとき、遠心成形機の回転数は粉末の粒径、密度、分散媒の粘性、処理温度等によって決定される。例えば、平均粒径0.2〜0.4μmの粉末のスラリーでは、10〜20kG程度の重力倍数が必要であって、この重力倍数が小さ過ぎると、成形後の生成形体の上部が完全に充填できず、成形時間が極端に長くなる。なお、このとき得られる生成形体7の粒子充填率は60〜65%程度である。
【0036】
(型の取出)
遠心力が除去されたとき、型は流動体と密着していないので、低融点合金でバックアップする時の様な取外し工程が不要となり、簡単に取り出して分解できるので、次工程へのハンドリングが迅速となる。
(除液)
上記の状態となった型2内から上部の液体6のみを除去して生成形体7単独とする。
【0037】
(脱型)
型枠1から型2を取り出す。次いで、型2が割型である場合には、割型を分割面で分解して、図2(c)に示すように、生成形体7を得る。
(乾燥)
その後、このようにして得た生成形体7を乾燥炉に入れて、低温加熱により乾燥させる。この乾燥時間は生成形体の大きさにより異なるが、たとえば、40℃で6時間、70℃で6時間保持した後、更に100℃で2時間保持する程度の処理により乾燥できる。
【0038】
(脱脂、焼成)
最後に、乾燥後の生成形体7を炉内で焼成する。このとき、生成形体7中に含まれる結合剤、分散剤等を予め除くために、例えば、120℃/時間程度の昇温速度で加熱して脱脂(仮焼)するとともに、そのまま連続的に120℃/時間程度の昇温速度で加熱して、焼結体を得ることになる。
【0039】
したがって、上記の実施の形態では、遠心成形工程で、型2が割型である場合でも型内のスラリー5が分割面から漏洩することなく、遠心力により型2内でスラリー5中の固体成分が沈降し、液体6が生成形体7の上方に分離されるので、固体成分の損失が実質的に生じることなく、固体と液体の分離が速やかになされ、80%以上の高い歩留で、且つ短時間で粒子充填率60%以上の、原型と同形状の生成形体7が得られる。このとき、型枠1から型2の出し入れが容易なので、工程処理時間が大幅に短縮される。
【0040】
さらに、通常のスリップキャスティング法のように、スラリー5の濃度、粘度、分散状態の強い影響を受けることなく、成形することができ、また、成形前のスラリー5を真空脱泡する必要がない。結合剤が通常のスリップキャスティング法の1/3程度でよく、その結果、脱脂、焼成温度を低くし得るので、焼結体の寸法安定性および歩留が良好なものとなる。また、例えば、肉厚0.2mm以下の小型精密品の成形が可能であり、さらに、大型品まで幅広い応用が可能である。
【0041】
なお、上記の実施の形態では、成形される流動体を粉末が分散剤、結合剤と混練されてなるスラリーとしたが、本発明はかかる実施の形態に限定されるものではなく、粉末を分散媒中に分散させただけの懸濁液を遠心成形機にセットして、遠心力により生成形体を得ることも可能である。
【0042】
また、図1に示したベアリングボール用割型の例においては、割型の底部にスラリー溜め33を設けているので、万一、規定粒度分布を超える粗粒があったとしても、粗粒はスラリー溜め33部分に分離され、生成形体の内部に粗粒が残ることが無い。スラリー中に気泡が残っていても強い遠心力で生成形体から除去される。このためクラック源となる異常部分がなくなり焼結体の品質が向上する。
【0043】
また、このとき、スラリー溜め33、およびスラリーの注入口部分31にできた粉末の塊は焼結前に除去して再度スラリーと混合して用いることができるので、スラリー対生成形体の原料歩留まりをほぼ100%に高めることができる。さらに、型内での生成形体の粒度分布は底部に行くほど粗粒となるので、スラリー溜め33とスラリーの注入口部分31の粉末の塊(ないし除去部分)の粒子分布を計測すれば、成形体内の粒度分布の最大値と最小値を保証することができ、品質の保証が容易となる。
【0044】
【実施例】
実施例1
次に、本発明の実施例について説明する。単純な円柱を生成形体として得るために、型として円筒状の割型を準備した。割型の材質はアルミニウムとし、割型面はワイヤーカット加工で合わせ面とした。外側の2箇所に留め輪で固定した。下記の表1のオーステナイト系ステンレス鋼粉末(平均粒径4μm)からなる組成のスラリーを調製した。
【0045】
【表1】

Figure 0003769247
【0046】
上記スラリーの計算密度は2.532となる。スラリーの密度ρ2=2,532kg/m3、水の密度ρ1=1,000kg/m3、割型の外側半径r1=9mmのとき、割型の内側半径r2≦r1×(ρ1/ρ2)=3.55mm以下であれば外側からの力が内圧による力以上となり、3.55mmを超えると内圧が外圧よりも強くなる。
【0047】
そこで、外径18mm、長さ90mmの割型について、内径6mmの割型を作成した。遠心成形機の最大回転数は9,000rpmで10分間の遠心成形を行なった。スラリーの漏れがなく、割型内の遠心回転時の半径方向外側部分に所定の形状の生成形体が得られた。
【0048】
比較例1
内径8mmの割型を使用した以外は実施例1と同じ条件で遠心成形した。スラリーがすべて漏洩し生成形体が成形できなかった。
【0049】
【発明の効果】
本発明の方法によれば、金属、セラミック等の粉末を液体に混練してなるスラリーから生成形体を製造する方法として、外枠と割型との間に流動体を入れ、遠心力で外枠を所定時間回転させることにより、割型であっても型の分割面から流動体が漏洩することなく、割型内の流動体の固体成分を型の下部に沈降させ、液成分を固体成分の上部に分離させるようにしたので、固体成分の損失防止および固体と液体の分離の促進により、短時間で、高い粒子充填率を有する、原型と同形状の生成形体が得られる。
【図面の簡単な説明】
【図1】図1は、本発明の遠心成形用割型をセラミック製ベアリングボールの遠心成形に適用した例を示すもので、(a)は、割型全体の正面図、(b)は、同じく平面図、(c)は、(a)のA−A’の断面図である。
【図2】図2は、本発明の方法において、割型内のスラリーの固体と液体を遠心成形により分離して生成形体を形成する工程を示す概念図である。
【図3】図3は、遠心成形機の運転過程を概略的に示す正面図である。
【図4】図4(a)は、従来方法において、低融点合金、蝋などを使った割型の構成を示す断面図、図4(b)は、従来方法において、遠心力方向に直交する面で分割する割型の構成を示す断面図である。
【符号の説明】
1 型枠
2 型
2A、2B割型
3 低融点合金・蝋など
4 流動体
5 スラリー
6 液体
7 固形状の生成形体
11モータ
12回転軸
13水平棹
14水平軸
15容器
31 スラリーの注入口部分
32 球形のベアリングボール部分
33 スラリー溜め
34ボルト・ナット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a centrifugal molding method for producing a solid generated form from a slurry (sometimes called a slurry or a suspension) obtained by kneading a powder of metal, ceramic or the like into a liquid using centrifugal force. Regarding improvements.
[0002]
[Prior art]
Conventionally, in the powder metallurgy industry or the ceramic industry, which manufactures a sintered body of a predetermined shape from a powder of metal, ceramic or a mixture thereof, general generation for finishing various powders into a predetermined shape before firing. As a method for producing a shape, the following methods are known in which an organic binder, a plasticizer, a solvent, and the like are added to various powders pulverized by a ball mill, kneaded to prepare a slurry, and the slurry is molded. ing.
[0003]
(1) A flat formed product obtained by scraping or punching a belt-like green sheet obtained by applying a certain thickness on a belt-like substrate while scraping the slurry with a rotating roll-like doctor blade. Get doctor blade method.
(2) A compression molding method in which a formed powder is obtained by press molding a molding powder obtained by spray-drying a slurry with a spray dryer in a fixed shape.
(3) A casting method in which the slurry is poured into a gypsum mold and dried to a predetermined shape.
(4) A pressure casting molding method in which the slurry is poured into a gypsum mold and pressure is applied to the slurry in the gypsum mold to increase the molding speed.
However, these known methods have a problem that the shape of the molded body is greatly restricted, the quality of the molded body is inferior, or the liquid component is difficult to separate quickly from the slurry.
[0004]
Accordingly, the present inventors have previously developed a method for producing a shaped product that can solve such a problem (Japanese Patent Laid-Open No. 5-65504). The method is such that a predetermined amount of a fluid obtained by kneading powder into a liquid is filled into a mold whose bottom is sealed, and the mold is a centrifugal molding machine so that the bottom is directed outward in the rotational radial direction of the centrifugal molding machine. This is a high-speed centrifugal molding method (HCP method) in which, after the mold is rotated for a predetermined time by a centrifugal molding machine, the liquid separated in the upper part of the mold is removed to obtain a generated shape.
[0005]
In this high-speed centrifugal molding method, the solid content in the fluid settles in the mold by centrifugal force, and the liquid component is separated above the generated shape, so that the solid-liquid separation is performed quickly, and in a short time, As a result, it is possible to obtain a shaped product having an ideal particle packing ratio substantially equal to the closest packing ratio of the powder, and it is possible to lower the firing temperature and increase the heating rate by reducing the binder, so The production efficiency, dimensional accuracy and yield of the bonded body can be improved.
[0006]
[Problems to be solved by the invention]
Compared with the dry isostatic pressing method (CIP method: isotropic pressure pressing method. Example: Japanese Patent Laid-Open No. 9-241704), the HCP method is approximately 20-30% by isostatic pressing. Bulk reduction occurs and internal stress remains in the decompression stage. In addition, the CIP method does not improve the uniformity of the particle distribution in the molded body, and therefore there is no means for removing the abnormal particle size distribution in the molded body. On the other hand, the HCP method takes time in that it requires a drying process, but since it is compressed unidirectionally in the direction of centrifugal force and there is no elastic deformation at the time of decompression, no residual stress remains in the generated shape and coarse particles are removed. Thus, there is an advantage that a higher quality generated form can be produced.
[0007]
However, when the method previously developed by the present inventors is applied to molding a complex shape using a split mold as a mold, when a high centrifugal force of about 5 kG (G is gravitational acceleration) is applied, the split mold is used. It turned out that the slurry containing the powder easily leaks from the divided surface. For this reason, there is a difficulty in using the split mold especially in a complicated shape, and the shape of the generated shape is considerably limited.
[0008]
In the case of a simple shape, for example, as shown in FIG. 4B (cited from Japanese Patent Laid-Open No. 10-80909), a lower mold 16A having a hemispherical portion 20A and a funnel-like bottom on the upper surface. The upper mold 16B having the slurry reservoir 18 having the slurry passage 22 at the center and the hemispherical portion 20B is fixed in the outer frame 10 by the fasteners 24, 26, and the split surface of the split mold is orthogonal to the centrifugal force. By forming the molding space 19 in the direction, leakage from the split mold can be considerably prevented. However, this method has a problem in that it has a rather complicated process for split-type joining and disassembly.
[0009]
In order to solve this problem, the present inventors, as shown in FIG. 4 (a), previously divided the surface 2a (bottom portion) in the frame 1 composed of the cylindrical member 1a and the disc-shaped bottom lid 1b. ) And a cylindrical split mold 2 having a split surface 2b, and slurry is fixed by backing up the split mold fixed by filling a low melting point alloy or wax 3 between the split mold 2 and the frame 1. Has been developed to produce the generated shape 7 while preventing leakage (Japanese Patent Laid-Open No. 6-293010 = Japanese Patent No. 3210700).
[0010]
In this method, the wax hardly deforms even under high centrifugal force, so that it is possible to prevent slurry leakage from the split mold for complex shapes. A process for dissolving and removing from the subsequent split mold is required, and since it takes a long time, further improvement in production efficiency is required.
[0011]
The present invention has been made in view of such points, and its purpose is to prevent the leakage of the slurry and to take a means that can manufacture a complex shape product by centrifugal molding method, it is difficult to receive shape restrictions, The purpose is to establish a high-speed centrifugal molding method capable of shortening the process time.
[0012]
[Means for Solving the Problems]
The present inventor found that the shape of the split mold and the density of the outer fluid are related to the leakage of the slurry by elucidating the force acting on the split mold during centrifugal molding. I found a solution. That is, this invention consists of following (1) or (2) .
[0013]
(1) A predetermined amount of a slurry obtained by kneading metal, ceramic or the like powder into a liquid is placed in a mold whose bottom is sealed, and the mold is set in a centrifuge. In the centrifugal molding method, the bottom is rotated outward in the radial direction of the centrifuge, and then the liquid separated in the upper part of the mold is removed to obtain a solid generated form in the lower part of the mold. A split mold that is used by immersing it in a mold filled with a split mold, the split mold being a cylindrical split mold having a vertical split surface, outside the split cross section in the direction perpendicular to the centrifugal force direction Centrifugal molding , where r2 ≦ r1 × (ρ1 / ρ2), where r1 is the radius, r2 is the inner radius of the split mold section, ρ1 is the density of the fluid, and ρ2 is the density of the slurry. Split type.
[0016]
( 2 ) A predetermined amount of slurry obtained by kneading metal, ceramic, or other powder into a liquid is placed in a mold whose bottom is sealed, and the mold is set in a centrifuge. bottom is rotated toward the radial direction outside of the centrifuge, thereafter, by removing the liquid separated on top of the mold, the centrifugal molding method for obtaining a solid product form, split in the (1) A centrifugal molding method comprising a step of filling a slurry in a mold and a step of immersing the mold in a mold filled with a fluid.
[0017]
[Action]
There are various types of split types such as 2-partition and 4-partition. The dividing surface includes a direction parallel to the centrifugal force (vertical division), a direction orthogonal to the centrifugal force (horizontal division), and the like. When such a split mold is immersed in a fluid in a mold and rotated by a centrifuge to apply a centrifugal force, static pressure is generated by the centrifugal force on the slurry and the fluid, and the slurry is applied to each split surface of the split mold. The internal pressure from the fluid and the external pressure from the fluid are applied.
[0018]
(1) When the split mold of the present invention is used, the force in the compressing direction is equal to the force acting in the direction of opening the split mold in the mold section from the relationship between the internal pressure, external pressure, and external force applied to each split surface of the split mold. Become big. For this reason, even if the mold is divided in an arbitrary direction, since the dividing surface is not widened, the leakage of slurry from the dividing surface can be prevented. Since the force for pre-tightening the split mold before entering the mold is not included in the calculation, it is more difficult to leak if it is tightened with a constant force.
[0019]
(2) A typical example of the split mold of the present invention is a vertically split cylindrical split mold. In this case, the projected area on the outer side of the mold on the plane that passes through the split surface of the mold (this is the representative area) S1, the inner surface of the mold on the same plane is S2, and the density of the fluid is ρ1. When the density of the slurry is ρ2, if S2 ≦ S1 × (ρ1 / ρ2), the force in the direction of compression becomes larger than the force acting in the direction of opening the mold in the mold section.
Use the cross-sectional area of the molded product (projected area of the molded product on the plane passing through the split surface) as the representative area of the inner surface of the split mold, and use the area of the split mold projected onto the split surface as the representative area of the outer surface of the split mold. Can do.
[0020]
Here, assuming that the length of the split mold is L, the outer radius of the mold is r1, and the inner radius is r2, S1 = 2πL × r1 and S2 = 2πL × r2, so the equation in (2) is It is possible to satisfy r2 ≦ r1 × (ρ1 / ρ2).
When the outside and inside of the mold have complicated shapes, the average distances from the mold center to the mold outer wall and the inner wall may be r1 and r2, respectively. Alternatively, the maximum distances from the mold center to the outer wall and the inner wall may be r1 and r2, respectively.
[0021]
(3) Mold deformation can be prevented by the same action as described in (1) above.
[0022]
(4) When water is used for the fluid, the density of the slurry is usually 3 kg / cm 3 or less, so the area of the split mold mating surface is the cross-sectional area of the compact (projected area of the compact on the plane passing through the split surface). If it is 2 times or more, the resultant force due to the centrifugal force is equal to or higher than the internal pressure.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in the case of producing a molded body of ceramic bearing balls.
(Create formwork)
FIG. 1 shows an example of a split mold in the case where two molded bodies of ceramic bearing balls are formed simultaneously. 1A is a front view of the split mold 2A, FIG. 1B is a plan view of the split molds 2A and 2B, and FIG. 1C is a cross-sectional view taken along line AA ′ of FIG. It is. The split molds 2A and 2B are provided with a slurry inlet portion 31, a spherical bearing ball portion 32, and a slurry reservoir 33 for removing coarse particles. Further, the split molds 2A and 2B are coupled by bolts and nuts 34.
[0024]
The split molds 2A and 2B are made of an easily processable material such as aluminum. The mating surfaces of the split molds 2A and 2B have a sufficiently narrow gap so that the minimum particles of the slurry cannot pass by rubbing, wire cutting, grooving or the like. The form can be temporarily fixed by the bolts and nuts 34. Other than bolts and nuts, any method may be used as long as it allows easy assembly and disassembly of the split mold, and any method such as screwing, fitting, and adhesion with an elastic body can be applied.
[0025]
The bearing ball portion 32 and the slurry reservoir 33 are connected by pores having a diameter through which a powder having a maximum particle size allowed for the slurry can pass. The slurry inlet 31 and the bearing ball 32 are connected by pores having a larger diameter. The shape of the slurry inlet 31 can be arbitrarily designed since it does not directly relate to the shape of the molded body. The slurry reservoir 33 can have any shape such as an ellipsoid.
[0026]
In the following, in order to simplify the conditions, the case where the filling height of the slurry (one-dot chain line in FIG. 1C) and the upper surface of the fluid filled in the mold are equal will be described.
For any part of the mating surface of each split mold, the total value of the external pressure of the fluid that acts in the direction of closing the split mold and the external force that acts during centrifugal molding, which are applied during centrifugal molding, is accurately determined by stress analysis or the like. be able to.
[0027]
In the example of FIG. 1, in order to simply obtain the force applied to the split mold, “the external pressure of the fluid acting in the direction of closing the split mold acting during centrifugal molding” is orthogonal to the centrifugal force and the direction of closing the split mold The surface area (H × L = S in FIG. 1: cross-sectional area of the molded body) and the average fluid pressure can be obtained, and the “slurry internal pressure acting in the direction to open the split mold” is the split slurry filling portion The product of the area (hatched portion in FIG. 1A) and the internal pressure can be obtained.
[0028]
Since the internal pressure and the external pressure are proportional to the density and depth of the slurry and fluid, respectively, it is necessary to consider the average value. In the case of FIG. 1, since the area of the hatched portion of FIG. 1A × slurry density ≦ S × fluid density is sufficient, the dimensions of H and L are set so as to meet the conditions.
[0029]
When water (density = 1.0) is used for the fluid and the water content density of the slurry compact is 2.8 (high purity alumina; average particle size 0.22 μm), H × L ≧ (2.8 / 1.0) S. As a result, the force in the direction of compressing the split mold is equal to or greater than the force acting in the direction of opening the mold in the split mold cross section wherever the mold cross section is perpendicular to the centrifugal force and opens the split mold. Become. For this reason, even if the mold is divided, the dividing surface is not widened, so that leakage of slurry from the dividing surface can be prevented.
[0030]
(Preparation)
Next, a centrifugal molding method using a mold will be described with reference to FIG.
As shown in FIG. 2A, a mold 2 is set in a mold 1 that has a gap according to the shape of the mold 2 and can be easily put in and out, and a fluid 4 is formed in the gap between the mold 1 and the mold 2. For example, water is injected. Since the mold 1 is subjected to static pressure from the inner and outer surfaces during centrifugal molding, it may be a plastic, an alloy, or the like as long as the material has a small volume modulus (κ ≦ 2.2: lead).
[0031]
The fluid is not limited to water, but may be any incompressible fluid that has a density higher than the design density and is easy to handle, and may be water to which a rust inhibitor and a lubricant are added. A predetermined amount of slurry 5 is filled in the mold 2. The slurry 5 is obtained by adding a dispersant and a dispersion medium (water, organic liquid, etc.) to a powder of metal, ceramic, or a mixture thereof previously pulverized to a predetermined average particle size by a ball mill and kneading.
[0032]
As metal and ceramic powders, austenitic stainless steel powder, cemented carbide, cermet, other powders for producing sintered metal, high-purity alumina powder, mixed powder in which magnesia, silica, titania, etc. are added to alumina (that is, Forsterite, mullite, cordierite manufacturing powder, etc.), various ceramics such as beryllia and magnesia porcelain, and powders for manufacturing magnetic parts such as ferrite.
[0033]
(Molding)
The mold 1 thus prepared is set in a centrifugal molding machine. FIG. 3 is a front view schematically showing an operation process of the centrifugal molding machine. As shown to Fig.3 (a), a type | mold is set to a centrifugal molding machine. The centrifugal molding machine includes a rotating shaft 12 that is rotated around a vertical axis by a motor 11 and a horizontal rod 13 fixed to the upper end of the rotating shaft 12, and a container 15 attached to both ends of the horizontal rod 13, Each of the above molds 2 is set in the inside 15. At this time, the mold 1 is set so that the bottom lid side thereof faces outward in the rotational radius direction of the centrifugal molding machine. Further, the containers 15 and 15 are supported at both ends of the horizontal rod 13 so as to be rotatable around the horizontal shafts 14 and 14, and as shown in FIG. 3B, during operation of the centrifugal molding machine. The centrifugal force causes the bottoms of the containers 15, 15, that is, the bottoms of the molds 2, to rotate outward in the radial direction of the centrifugal molding machine.
[0034]
Then, by operating the centrifugal molding machine, the solid component having a high density in the slurry 5 is gradually settled down to the bottom side of the mold 2 by centrifugal force, and the liquid 6 is separated into the upper part thereof. When the operation of the molding machine is stopped, as shown in FIG. 2 (b), most of the liquid 6 is separated into the upper part of the mold 2, and a solid product form 7 is obtained at the lower part of the mold.
[0035]
At this time, the rotational speed of the centrifugal molding machine is determined by the particle size, density, viscosity of the dispersion medium, processing temperature and the like of the powder. For example, in a slurry of powder having an average particle size of 0.2 to 0.4 μm, a gravity factor of about 10 to 20 kG is necessary, and if this gravity factor is too small, the upper part of the formed shape after molding is completely filled. The molding time becomes extremely long. In addition, the particle | grain filling rate of the production | generation form 7 obtained at this time is about 60 to 65%.
[0036]
(Mold removal)
When the centrifugal force is removed, the mold is not in close contact with the fluid, so there is no need for a removal process, such as when backing up with a low melting point alloy, and it can be easily removed and disassembled for quick handling to the next process. It becomes.
(Liquid removal)
Only the upper liquid 6 is removed from the mold 2 in the above-described state, so that the generated shape 7 is obtained.
[0037]
(Demolding)
Take out the mold 2 from the mold 1. Next, when the mold 2 is a split mold, the split mold is disassembled on the dividing surface to obtain a generated feature 7 as shown in FIG.
(Dry)
Thereafter, the produced shaped body 7 thus obtained is put into a drying furnace and dried by low-temperature heating. Although this drying time varies depending on the size of the formed shape, for example, it can be dried by a treatment of holding at 40 ° C. for 6 hours and at 70 ° C. for 6 hours and further holding at 100 ° C. for 2 hours.
[0038]
(Degreasing and firing)
Finally, the dried shaped body 7 is fired in a furnace. At this time, in order to remove the binder, dispersant and the like contained in the generated shaped body 7 in advance, for example, it is heated and degreased (calcined) at a heating rate of about 120 ° C./hour, and continuously 120 as it is. The sintered body is obtained by heating at a rate of temperature rise of about ° C./hour.
[0039]
Therefore, in the above embodiment, even if the mold 2 is a split mold in the centrifugal molding process, the slurry 5 in the mold does not leak from the dividing surface, and the solid component in the slurry 5 in the mold 2 by centrifugal force. Is settled and the liquid 6 is separated above the generated shape 7, so that the solid and the liquid are separated quickly without substantial loss of solid components, with a high yield of 80% or more, and The generation form 7 having the same shape as the original mold with a particle filling rate of 60% or more can be obtained in a short time. At this time, since the mold 2 can be easily removed from the mold 1, the process processing time can be greatly shortened.
[0040]
Further, unlike the ordinary slip casting method, the slurry 5 can be molded without being strongly influenced by the concentration, viscosity, and dispersion state of the slurry 5, and it is not necessary to vacuum deaerate the slurry 5 before molding. The binder may be about 1/3 of the ordinary slip casting method, and as a result, the degreasing and firing temperatures can be lowered, so that the dimensional stability and yield of the sintered body are improved. In addition, for example, small precision products with a thickness of 0.2 mm or less can be molded, and furthermore, a wide range of applications are possible up to large products.
[0041]
In the above-described embodiment, the fluid to be molded is a slurry in which powder is kneaded with a dispersant and a binder. However, the present invention is not limited to this embodiment, and the powder is dispersed. It is also possible to set a suspension just dispersed in a medium in a centrifugal molding machine and obtain a generated shape by centrifugal force.
[0042]
Further, in the example of the split mold for the bearing ball shown in FIG. 1, since the slurry reservoir 33 is provided at the bottom of the split mold, even if there are coarse grains exceeding the specified grain size distribution, The slurry is separated into 33 parts of the slurry reservoir, and no coarse particles remain inside the generated shape. Even if bubbles remain in the slurry, they are removed from the generated shape by a strong centrifugal force. For this reason, the abnormal part which becomes a crack source disappears and the quality of a sintered compact improves.
[0043]
Further, at this time, the lump of powder formed in the slurry reservoir 33 and the slurry inlet 31 can be removed before sintering and mixed with the slurry again, so that the raw material yield of the slurry-to-product form can be increased. It can be increased to almost 100%. Further, since the particle size distribution of the generated shape in the mold becomes coarser toward the bottom, if the particle distribution of the lump (or removed portion) of the powder in the slurry reservoir 33 and the slurry inlet portion 31 is measured, molding is performed. The maximum value and minimum value of the particle size distribution in the body can be guaranteed, and quality assurance is facilitated.
[0044]
【Example】
Example 1
Next, examples of the present invention will be described. In order to obtain a simple column as a generated shape, a cylindrical split mold was prepared as a mold. The material of the split mold was aluminum, and the split mold surface was a mating surface by wire cutting. It fixed with the retaining ring at two places outside. A slurry having a composition composed of the austenitic stainless steel powder (average particle size 4 μm) shown in Table 1 below was prepared.
[0045]
[Table 1]
Figure 0003769247
[0046]
The calculated density of the slurry is 2.532. Density ρ2 = 2,532kg / m 3 of slurry, the density of water ρ1 = 1,000kg / m 3, when the outer radius r1 = 9 mm split mold, the inner radius r2 ≦ r1 × split mold (ρ1 / ρ2) = 3.55mm If it is below, the force from the outside becomes more than the force by the internal pressure, and if it exceeds 3.55 mm, the internal pressure becomes stronger than the external pressure.
[0047]
Therefore, a split mold having an inner diameter of 6 mm was prepared for a split mold having an outer diameter of 18 mm and a length of 90 mm. Centrifugal molding was carried out at a maximum rotation speed of 9,000 rpm for 10 minutes. There was no leakage of the slurry, and a generated shape having a predetermined shape was obtained in the radially outer portion during centrifugal rotation in the split mold.
[0048]
Comparative Example 1
Centrifugal molding was performed under the same conditions as in Example 1 except that a split mold having an inner diameter of 8 mm was used. All of the slurry leaked and the formed shape could not be formed.
[0049]
【The invention's effect】
According to the method of the present invention, as a method for producing a formed body from a slurry obtained by kneading metal, ceramic powder or the like into a liquid, a fluid is placed between the outer frame and the split mold, and the outer frame is subjected to centrifugal force. Is rotated for a predetermined time, so that even if it is a split mold, the fluid does not leak from the split surface of the mold, so that the solid component of the fluid in the split mold is settled to the lower part of the mold, and the liquid component is Since the separation is performed at the upper part, a generation form having the same shape as the original mold having a high particle filling rate can be obtained in a short time by preventing the loss of the solid component and promoting the separation of the solid and the liquid.
[Brief description of the drawings]
FIG. 1 shows an example in which the split mold for centrifugal molding of the present invention is applied to centrifugal molding of a ceramic bearing ball. FIG. 1 (a) is a front view of the entire split mold, and FIG. Similarly, a plan view, (c) is a cross-sectional view of AA ′ of (a).
FIG. 2 is a conceptual diagram showing a step of forming a formed shape by separating solid and liquid of slurry in a split mold by centrifugal molding in the method of the present invention.
FIG. 3 is a front view schematically showing an operation process of the centrifugal molding machine.
4A is a cross-sectional view showing a split mold configuration using a low melting point alloy, wax or the like in the conventional method, and FIG. 4B is orthogonal to the centrifugal force direction in the conventional method. It is sectional drawing which shows the structure of the split type divided | segmented by a surface.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mold 2 Type 2A, 2B split type 3 Low melting point alloy, wax, etc. 4 Fluid 5 Slurry 6 Liquid 7 Solid form 11 Motor 12 Rotating shaft 13 Horizontal rod 14 Horizontal shaft 15 Container 31 Slurry inlet portion 32 Spherical bearing ball part 33 Slurry reservoir 34 bolts and nuts

Claims (2)

金属、セラミック等の粉末を液体に混練してなるスラリーを底部が密閉された型内に所定量入れ、遠心機に該型をセットした後、所定時間の間遠心機により該型の底部を遠心機の回転半径方向外方に向けて回転させ、しかる後、型の上部に分離された液体を除去して、型の下部に固形状の生成形体を得る遠心成形方法において、流動体を充填した型枠中に浸漬して用いられる割型であって、該割型が縦割りの分割面をもつ円筒状割型であって、遠心力方向に直交する方向の割型断面の外側半径をr1とし、該割型断面の内側半径をr2とし、流動体の密度をρ1、スラリーの密度をρ2としたとき、r2≦r1×(ρ1/ρ2)であることを特徴とする遠心成形用割型。A predetermined amount of slurry made by kneading metal or ceramic powder into a liquid is put into a mold with a sealed bottom, and the mold is set in a centrifuge. Then, the bottom of the mold is centrifuged by a centrifuge for a predetermined time. In the centrifugal molding method of rotating the machine outward in the radial direction of the machine and then removing the liquid separated at the upper part of the mold to obtain a solid generated form at the lower part of the mold, the fluid was filled. A split mold used by being immersed in a mold, wherein the split mold is a cylindrical split mold having a vertically split surface, and the outer radius of the split mold cross section in the direction perpendicular to the centrifugal force direction is defined as r1. And the inner radius of the split mold section is r2, the fluid density is ρ1, and the slurry density is ρ2, and r2 ≦ r1 × (ρ1 / ρ2). . 金属、セラミック等の粉末を液体に混練してなるスラリーを底部が密閉された型内に所定量入れ、遠心機に該型をセットした後、所定時間の間遠心機により該型の底部を遠心機の回転半径方向外方に向けて回転させ、しかる後、型の上部に分離された液体を除去して、固形状の生成形体を得る遠心成形方法において、請求項1記載の割型の中にスラリーを充填する工程と、流動体を充填した型枠の中に該型を浸漬する工程を有することを特徴とする遠心成形方法。A predetermined amount of slurry made by kneading metal or ceramic powder into a liquid is put into a mold with a sealed bottom, and the mold is set in a centrifuge. Then, the bottom of the mold is centrifuged by a centrifuge for a predetermined time. rotate toward the radial direction outside of the machine, and thereafter, by removing the liquid separated on top of the mold, the centrifugal molding method for obtaining a solid product form, in a split mold of claim 1, wherein A centrifugal molding method comprising: filling a slurry with a slurry; and immersing the mold in a mold filled with a fluid.
JP2002141138A 2002-05-16 2002-05-16 Centrifugal mold and centrifugal molding method Expired - Fee Related JP3769247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002141138A JP3769247B2 (en) 2002-05-16 2002-05-16 Centrifugal mold and centrifugal molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002141138A JP3769247B2 (en) 2002-05-16 2002-05-16 Centrifugal mold and centrifugal molding method

Publications (2)

Publication Number Publication Date
JP2003328005A JP2003328005A (en) 2003-11-19
JP3769247B2 true JP3769247B2 (en) 2006-04-19

Family

ID=29701816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002141138A Expired - Fee Related JP3769247B2 (en) 2002-05-16 2002-05-16 Centrifugal mold and centrifugal molding method

Country Status (1)

Country Link
JP (1) JP3769247B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE533657C2 (en) * 2007-10-16 2010-11-23 Magnetic Components Sweden Ab Powder-based, soft magnetic, inductive component and method and apparatus for manufacturing thereof

Also Published As

Publication number Publication date
JP2003328005A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
US5312571A (en) Shaped bodies and the production thereof
BRPI0609329B1 (en) METHOD PERFORMED FOR PREPARING METAL MATRIX COMPOSITIONS AND DEVICE FOR IMPLEMENTING THE METHOD
JP3769247B2 (en) Centrifugal mold and centrifugal molding method
RU2757139C1 (en) Method for obtaining lost-wax model of a body of revolution
JP4484748B2 (en) Method for producing silica glass product
JPH0565504A (en) Molding method
JP3210770B2 (en) Method for producing solid product form
Thompson et al. Preparation of crucibles from special refractories by slip casting
EP0140682A1 (en) A method for producing a ceramic article
JP4504036B2 (en) Amorphous silica molded body and method for producing the same
JPH08216146A (en) Apparatus for vacuum deaeration of ceramic slurry
KR102533253B1 (en) Method for manufacturing ceramic body
JPH09277222A (en) Forming mold of ceramic ball for ball bearing and forming device
Suzuki et al. Net shape formation of sub-micron alumina with reduced flaws by high-speed centrifugal compaction process
JP3121239B2 (en) Manufacturing method of ceramics ladle for bottom tap hot water supply
JPH01261251A (en) Forming of powder
WO2014003489A1 (en) Method for manufacturing ceramic porous body and composition for manufacturing said ceramic porous body
JP2005035154A (en) Cast molding method of yag
SU769397A1 (en) Method of manufacturing specimen of facing sand
JPH10202632A (en) Manufacture of ceramic ball
JPS632533A (en) Molded sand for precision casting
JPH11291213A (en) Method for forming castable refractory block
RU2035431C1 (en) Method for production of ceramic articles
JPS61281801A (en) Manufacture of powder metallurgical product
CN85101420A (en) Produce a kind of method of ceramic

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees