JP2003328005A - Segment die for centrifugal formation and method for centrifugal formation - Google Patents

Segment die for centrifugal formation and method for centrifugal formation

Info

Publication number
JP2003328005A
JP2003328005A JP2002141138A JP2002141138A JP2003328005A JP 2003328005 A JP2003328005 A JP 2003328005A JP 2002141138 A JP2002141138 A JP 2002141138A JP 2002141138 A JP2002141138 A JP 2002141138A JP 2003328005 A JP2003328005 A JP 2003328005A
Authority
JP
Japan
Prior art keywords
mold
slurry
split
centrifuge
split mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002141138A
Other languages
Japanese (ja)
Other versions
JP3769247B2 (en
Inventor
Hiroyuki Suzuki
裕之 鈴木
Hidenori Kuroki
英憲 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002141138A priority Critical patent/JP3769247B2/en
Publication of JP2003328005A publication Critical patent/JP2003328005A/en
Application granted granted Critical
Publication of JP3769247B2 publication Critical patent/JP3769247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To establish a method for high speed centrifugal separating formation wherein shape restriction is hardly caused, and time shortening of a process is enabled by taking measures capable of manufacturing a complicated shaped product by using a method for centrifugal formation. <P>SOLUTION: In the method for centrifugal formation for obtaining a solid formation body on a bottom portion of a die, by putting a prescribed amount of slurry formed by kneading a powder such as, of a metal, ceramic with a liquid into the die the bottom portion of which is sealed, and after the die is set on a centrifuge, by rotating the bottom portion of the die in the direction toward the outside of the rotational radius of the centrifuge, then, by eliminating the liquid separated on a top portion of the die, this segment die is used by being dipped into a die frame filled with a fluid. The segment die for the centrifugal formation is characterized in that an area ratio between the inner face and the outer face of the die is determined in accordance with densities of the slurry and the fluid so that the force caused by pressure from the fluid during the centrifugal formation and acting on the segment die in a closing direction can become more than the force acting on the segment die in an opening direction by an internal pressure of the slurry. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、遠心力を利用し
て、金属、セラミック等の粉末を液体に混練してなるス
ラリー(泥漿、懸濁液と呼ばれることもある)から固形
状の生成形体を製造する遠心成形方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a centrifugal force to knead powders of metals, ceramics and the like into a liquid to form a solid form from a slurry (sometimes called a slurry or a suspension). To improve the centrifugal molding method for producing

【0002】[0002]

【従来の技術】従来より、金属、セラミックまたはこれ
らの混合物の粉末から所定形状の焼結体を製造する粉末
冶金工業またはセラミック工業において、各種粉末を焼
成前に予め一定形状の生成形体に仕上げるための一般的
な生成形体の製造方法として、ボールミルで粉砕された
各種粉末に有機結合剤、可塑剤、溶剤等を添加し、これ
らを混練してスラリーを調製し、このスラリーを成形す
る下記のような方法が知られている。
2. Description of the Related Art Conventionally, in the powder metallurgy industry or the ceramic industry for producing a sintered body of a predetermined shape from a powder of metal, ceramic or a mixture thereof, in order to finish various powders into a predetermined shaped body before firing. As a general method for producing a green body, an organic binder, a plasticizer, a solvent, etc. are added to various powders crushed by a ball mill, and these are kneaded to prepare a slurry, and the slurry is molded as described below. Various methods are known.

【0003】(1)スラリーを回転ロール状のドクター
ブレードで掻き取りながら帯状の基材上に一定の厚みで
付着させた後、加熱乾燥して得た帯状のグリーンシート
を切断または打ち抜いて平板状の生成形体を得るドクタ
ーブレード法。 (2)スラリーをスプレードライヤーで噴霧乾燥して得
た成形用粉末を一定形状の形内でプレス成形することに
より生成形体を得る圧縮成形法。 (3)スラリーを石膏型に注入し、乾燥させて所定の形
状に仕上げる鋳込み成形法。 (4)スラリーを石膏型に注入し、石膏型中のスラリー
に圧力を加えて成形速度を高めた加圧鋳込み成形法。 しかしながら、これらの公知方法には、成形体の形状に
制約が大きい、成形体品質が劣る、もしくはスラリーか
ら液成分を迅速に分離しがたい、という問題がある。
(1) The slurry is adhered to a strip-shaped base material with a certain thickness while scraping it with a doctor blade in the form of a rotating roll, and then the strip-shaped green sheet obtained by heating and drying is cut or punched to form a flat plate. Doctor blade method to obtain the formed form of. (2) A compression molding method in which a green compact is obtained by press-molding a molding powder obtained by spray-drying a slurry with a spray dryer in a shape of a certain shape. (3) A casting method in which the slurry is poured into a plaster mold and dried to finish it into a predetermined shape. (4) A pressure casting method in which the slurry is poured into a gypsum mold and pressure is applied to the slurry in the gypsum mold to increase the molding speed. However, these known methods have problems that the shape of the molded body is largely restricted, the quality of the molded body is inferior, or it is difficult to quickly separate the liquid component from the slurry.

【0004】そこで、本発明者らは、先に、かかる問題
を解決し得る生成形体の製造方法を開発した(特開平5-
65504号公報)。その方法は、粉末を液体に混練してな
る流動体の所定量を底部が密閉された型内に充填し、型
をその底部が遠心成形機の回転半径方向外方に向くよう
に遠心成形機にセットし、遠心成形機により型を所定時
間回転させた後、型の上部に分離された液体を除去し
て、生成形体を得るところの高速遠心分離成形方法(H
CP方法)である。
Therefore, the present inventors have previously developed a method for producing a green body capable of solving such a problem (Japanese Unexamined Patent Publication No. Hei 5-
65504 publication). The method is that a predetermined amount of a fluid made by kneading powder into a liquid is filled in a mold with a closed bottom, and the mold is placed so that the bottom faces outward in the radial direction of rotation of the centrifugal molding machine. , The mold is rotated for a predetermined time by a centrifugal molding machine, and then the liquid separated on the upper part of the mold is removed to obtain a green compact.
CP method).

【0005】この高速遠心分離成形方法では、遠心力に
より型内で流動体中の固形分が沈降し、液成分が生成形
体の上方に分離されるので、固液の分離が速やかになさ
れ、短時間で、ほぼ粉体の最密充填率に等しい理想的な
粒子充填率を有する生成形体が得られるとともに、結合
剤の低減により焼成温度の低下と昇温速度の高速化とを
図ることができるので、焼結体の製造能率、寸法精度お
よび歩留を向上させることができる。
In this high-speed centrifugal separation molding method, the solid content in the fluid is settled in the mold by the centrifugal force, and the liquid component is separated above the forming mold, so that the solid-liquid separation is promptly performed, and In time, it is possible to obtain a green compact having an ideal particle packing rate that is almost equal to the closest packing rate of the powder, and it is possible to reduce the firing temperature and the heating rate by reducing the binder. Therefore, the manufacturing efficiency, dimensional accuracy, and yield of the sintered body can be improved.

【0006】[0006]

【発明が解決しようとする課題】HCP法を乾式の等静
圧プレス法(CIP法:等方圧プレス法ともいう。例:
特開平9-241704号公報)に比較すると、CIP法は等方
圧プレスにより約20〜30%の嵩減りが生じ、減圧段
階で内部応力が残留する。また、CIP法は、成形体内
の粒子分布の均一性が改善されないので、成形体内部に
粒径分布の異常があってもそれを除去する手段がない。
一方、HCP法は、乾燥工程を要する点で時間がかかる
が、遠心力方向に一方向圧縮され減圧時の弾性変形がな
いので、生成形体内部に残留応力が残らず、また粗大粒
子が除去されるので、より高品質の生成形体が製造でき
る利点がある。
The HCP method is also called a dry isostatic pressing method (CIP method: isotropic pressing method. Example:
Compared with Japanese Patent Laid-Open No. 9-241704), in the CIP method, bulk reduction of about 20 to 30% occurs due to isotropic pressing, and internal stress remains in the depressurizing stage. Further, since the CIP method does not improve the uniformity of particle distribution in the molded body, there is no means for removing the abnormal particle size distribution inside the molded body.
On the other hand, the HCP method takes time because it requires a drying step, but since it is unidirectionally compressed in the direction of centrifugal force and does not undergo elastic deformation during depressurization, residual stress does not remain inside the formed body and coarse particles are removed. Therefore, there is an advantage that a higher quality green compact can be manufactured.

【0007】しかしながら、本発明者らが先に開発した
方法を、型として割型を用い複雑形状の成形に適用した
ところ、約5kG(Gは重力加速度)以上の高い遠心力を
作用させた場合、割型の分割面から粉末を含むスラリー
が漏洩しやすいことが判明した。このため、特に複雑な
形状では割型の使用に難点があり、生成形体の形状にか
なり制約がある。
However, when the method developed by the inventors of the present invention is applied to the molding of a complicated shape using a split mold as a mold, when a high centrifugal force of about 5 kG (G is a gravitational acceleration) or more is applied. It was found that the slurry containing the powder easily leaked from the split surface of the split mold. Therefore, there is a difficulty in using the split mold particularly in a complicated shape, and the shape of the green body is considerably restricted.

【0008】単純な形状であれば、例えば、図4(b)
(特開平10-80909号公報より引用)に示されているよう
に、半球状部20Aを有する下型16Aと上面に底部が
漏斗状になり、中心にスラリー通路22を有するスラリ
溜め18と半球状部20Bを有する上型16Bを外枠1
0の中に留め具24,26で固定して、割型の分割面を
遠心力と直交する方向にして成形空間19を形成するこ
とによって割型からの漏洩をかなり防止することができ
る。しかし、この方法は、割型の結合や分解にかなり複
雑な工程を有する課題がある。
If the shape is simple, for example, FIG.
As shown in (Japanese Unexamined Patent Publication No. 10-80909), a lower mold 16A having a hemispherical portion 20A and a slurry reservoir 18 having a funnel-shaped bottom and a slurry passage 22 at the center and a hemisphere. The upper die 16B having the shaped portion 20B is attached to the outer frame 1
It is possible to considerably prevent leakage from the split mold by fixing the split mold of the split mold in No. 0 with the fasteners 24, 26 and forming the molding space 19 with the split surface of the split mold in the direction orthogonal to the centrifugal force. However, this method has a problem in that the split-type bonding and disassembling have fairly complicated steps.

【0009】この課題を解決するために、本発明者ら
は、先に、図4(a)に示すように、筒部材1aと円板
状の底蓋1bとからなる枠1内に分割面2a(底部)と
分割面2bを有する円筒状の割型2をセットし、割型2
と枠1の間に低融点合金や蝋など3を充填することによ
り固定した割型を周囲からバックアップすることでスラ
リーの漏洩を防止して生成形体7を製造する方法を開発
した(特開平6‐293010号=特許第3210700号公報)。
In order to solve this problem, the inventors of the present invention firstly, as shown in FIG. 4 (a), divide the divided surface into a frame 1 composed of a cylindrical member 1a and a disc-shaped bottom lid 1b. 2a (bottom portion) and a cylindrical split mold 2 having a split surface 2b are set and split mold 2
A method of manufacturing a green compact 7 by preventing leakage of slurry by backing up a split mold fixed by filling a low melting point alloy or wax 3 between the frame 1 and the frame 1 has been developed (Japanese Patent Laid-Open No. 6-58242). -293010 = Patent No. 3210700).

【0010】この方法は、高い遠心力下でも蝋が殆ど変
形しないので、複雑形状品用の割型からのスラリー漏洩
を防止することができるが、蝋や低融点合金のバックア
ップのための充填や、遠心分離後の割型からの溶解除去
の工程が必要であり、工程時間がかかるためにさらなる
製造能率の向上が求められている。
According to this method, since the wax hardly deforms even under a high centrifugal force, it is possible to prevent the slurry from leaking from the split mold for a complex-shaped product. However, a step of dissolving and removing from the split mold after centrifugation is required, and since the process time is required, further improvement in manufacturing efficiency is required.

【0011】本発明は、かかる点に鑑みてなされたもの
であり、その目的は、スラリーの漏洩を防止して遠心成
形法で複雑形状品を製造し得る手段を講じることによ
り、形状の制約を受け難く、工程時間の短縮が可能な高
速遠心分離成形法の確立を図ることにある。
The present invention has been made in view of the above points, and an object of the present invention is to limit the shape by providing a means capable of producing a complex shaped article by the centrifugal molding method while preventing the leakage of the slurry. It is to establish a high-speed centrifugal molding method that is difficult to receive and can shorten the process time.

【0012】[0012]

【課題を解決するための手段】本発明者は、遠心成形中
の割型に作用する力を解明することにより割型の形状と
外側の流動体の密度がスラリーの漏洩に関係することを
見出し、特定の条件により上記の課題を解決出来ること
を見出した。すなわち、本発明は、下記の(1)〜
(4)からなる。
The present inventors have found that the shape of the split mold and the density of the outer fluid are related to the leakage of the slurry by elucidating the force acting on the split mold during centrifugal molding. , It was found that the above problems can be solved under specific conditions. That is, the present invention includes the following (1) to
It consists of (4).

【0013】(1)金属、セラミック等の粉末を液体に
混練してなるスラリーを底部が密閉された型内に所定量
入れ、遠心機に該型をセットした後、所定時間の間遠心
機により該型の底部を遠心機の回転半径方向外方に向け
て回転させ、しかる後、型の上部に分離された液体を除
去して、型の下部に固形状の生成形体を得る遠心成形方
法において、流動体を充填した型枠中に浸漬して用いら
れる割型であって、遠心成形中に流動体からの圧力によ
って生じる該割型を閉じる方向に働く力が、スラリー内
圧により該割型を開く方向に働く力以上となるように、
スラリーおよび流動体の密度に応じて割型内面と外面の
面積比を定めたことを特徴とする遠心成形用割型。
(1) A predetermined amount of a slurry obtained by kneading a powder of metal, ceramic or the like with a liquid is placed in a mold whose bottom is closed, and the mold is set in a centrifuge, and then the centrifuge is used for a predetermined time. In the centrifugal molding method, the bottom of the mold is rotated outward in the radial direction of rotation of the centrifuge, and then the liquid separated in the upper part of the mold is removed to obtain a solid green compact in the lower part of the mold. , A split mold used by being immersed in a mold filled with a fluid, the force acting in the closing direction of the split mold due to the pressure from the fluid during centrifugal molding causes the split mold to move due to the internal pressure of the slurry. To be more than the force that works in the opening direction,
A split mold for centrifugal molding, characterized in that the area ratio between the inner surface and the outer surface of the split mold is determined according to the densities of the slurry and the fluid.

【0014】(2)金属、セラミック等の粉末を液体に
混練してなるスラリーを底部が密閉された型内に所定量
入れ、遠心機に該型をセットした後、所定時間の間遠心
機により該型の底部を遠心機の回転半径方向外方に向け
て回転させ、しかる後、型の上部に分離された液体を除
去して、型の下部に固形状の生成形体を得る遠心成形方
法において、流動体を充填した型枠中に浸漬していられ
る割型であって、該割型外面のρ2×S2の値が、割型内
面のρ1×S1の値以上(ただし、ρ1はスラリーの密
度、ρ2は流動体の密度、S1は割型内面の代表面積、S
2は割型外面の代表面積である。)であることを特徴と
する遠心成形用割型。なお、代表面積は金型の割面を通
過する平面上の投影面積と定義される。
(2) A predetermined amount of a slurry obtained by kneading a powder of metal, ceramic or the like with a liquid is placed in a mold having a closed bottom, and the mold is set in a centrifuge, followed by a centrifuge for a predetermined time. In the centrifugal molding method, the bottom of the mold is rotated outward in the radial direction of rotation of the centrifuge, and then the liquid separated in the upper part of the mold is removed to obtain a solid green compact in the lower part of the mold. A split mold that is immersed in a mold filled with a fluid, and the value of ρ2 × S2 on the outer surface of the split mold is greater than or equal to the value of ρ1 × S1 on the inner surface of the split mold (where ρ1 is the density of the slurry. , Ρ2 is the density of the fluid, S1 is the representative area of the inner surface of the split mold, S
2 is the representative area of the split mold outer surface. ) Is a split mold for centrifugal molding. The representative area is defined as the projected area on a plane passing through the split surface of the mold.

【0015】(3)金属、セラミック等の粉末を液体に
混練してなるスラリーを底部が密閉された型内に所定量
入れ、遠心機に該型をセットした後、所定時間の間遠心
機により該型の底部を遠心機の回転半径方向外方に向け
て回転させ、しかる後、型の上部に分離された液体を除
去して、型の下部に固形状の生成形体を得る遠心成形方
法において、流動体を充填した型枠中に浸漬して用いら
れる割型であって、該割型が縦割りの分割面をもつ円筒
状割型であって、遠心力方向に直交する方向の割型断面
の外側半径をr1とし、該割型断面の内側半径をr2と
し、流動体の密度をρ1、スラリーの密度をρ2とした
とき、r2≦r1×(ρ1/ρ2)であることを特徴と
する遠心成形用割型。
(3) A predetermined amount of a slurry obtained by kneading a powder of metal, ceramic or the like with a liquid is placed in a mold having a closed bottom, and the mold is set in a centrifuge, followed by a centrifuge for a predetermined time. In the centrifugal molding method, the bottom of the mold is rotated outward in the radial direction of rotation of the centrifuge, and then the liquid separated in the upper part of the mold is removed to obtain a solid green compact in the lower part of the mold. A split mold used by being immersed in a mold filled with a fluid, the split mold being a cylindrical split mold having a vertical split surface, the split mold being in a direction orthogonal to the centrifugal force direction When the outer radius of the cross section is r1, the inner radius of the split mold cross section is r2, the density of the fluid is ρ1, and the density of the slurry is ρ2, r2 ≦ r1 × (ρ1 / ρ2) Split mold for centrifugal molding.

【0016】(4)金属、セラミック等の粉末を液体に
混練してなるスラリーを底部が密閉された型内に所定量
入れ、遠心機に該型をセットした後、所定時間の間遠心
機により該型の底部を遠心機の回転半径方向外方に向け
て回転させ、しかる後、型の上部に分離された液体を除
去して、固形状の生成形体を得る遠心成形方法におい
て、上記(1)ないし(3)のいずれかの割型中にスラ
リーを充填する工程と、流動体を充填した型枠の中に該
型を浸漬する工程を有することを特徴とする遠心成形方
法。
(4) A predetermined amount of a slurry obtained by kneading a powder of metal, ceramic or the like with a liquid is placed in a mold having a closed bottom, and the mold is set in a centrifuge, followed by a centrifuge for a predetermined time. In the centrifugal molding method, the bottom of the mold is rotated outward in the radial direction of rotation of the centrifuge, and then the liquid separated in the upper part of the mold is removed to obtain a solid green molded body. ) To (3), a step of filling the mold with the slurry, and a step of immersing the mold in a mold filled with a fluid.

【0017】[0017]

【作用】割型には2分割、4分割など各種の分割方式が
ある。また、分割面は遠心力と平行方向(縦割り)と遠
心力に直交する方向(横割)等がある。このような割型
を型枠内の流動体に浸漬して遠心機により回転させて遠
心力がかかるとき、スラリーと流動体に遠心力による静
圧が発生し、割型の各分割面にスラリーからの内圧、流
動体からの外圧が加わる。
The split type includes various division methods such as 2 division and 4 division. Further, the division surface has a direction parallel to the centrifugal force (vertical division), a direction orthogonal to the centrifugal force (horizontal division), and the like. When such a split mold is immersed in the fluid in the mold and rotated by a centrifuge to apply a centrifugal force, static pressure due to the centrifugal force is generated in the slurry and the fluid, and the slurry is spread on each split surface of the split mold. Internal pressure from and external pressure from the fluid are applied.

【0018】(1)本発明の割型を用いると、割型の各
分割面に加わる内圧、外圧、外力の関係から型断面にお
いて割型を開く方向に働く力に比べて圧縮する方向の力
が同等または大となる。このため、型が任意方向に分割
されていても、分割面を広げることがないので、分割面
からのスラリーの漏れが防止できる。型枠に入れる前に
割型を予め締め付ける力は計算に入れていないので、一
定力で締め付けておけば更に漏洩し難くなる。
(1) When the split mold of the present invention is used, the force in the compressing direction is greater than the force acting in the mold cross section in the direction of opening the split mold due to the relationship between the internal pressure, the external pressure and the external force applied to each split surface of the split mold. Are equal or large. Therefore, even if the mold is divided in any direction, the divided surface is not expanded, so that the leakage of the slurry from the divided surface can be prevented. Since the force for tightening the split mold in advance before putting it in the mold is not included in the calculation, if it is tightened with a constant force, leakage will be even more difficult.

【0019】(2)本発明の割型の代表的な例は、縦割
り2分割の円筒状割型である。この場合、金型の割面を
通過する平面上における金型外側の投影面積(これを代
表面積とする)S1とし、同平面上における金型内面の
それをS2とし、流動体の密度をρ1、スラリーの密度
をρ2としたとき、S2≦S1×(ρ1/ρ2)である
と、型断面において型を開く方向に働く力より圧縮する
方向の力が大となる。割型内面の代表面積は、成形体断
面積(割面を通過する平面上における成形体の投影面
積)を用い、割型外面の代表面積は、割面に投影した割
型の面積を用いることができる。
(2) A typical example of the split mold of the present invention is a vertical split two-split cylindrical split mold. In this case, the projected area of the outside of the die on a plane passing through the split surface of the die (representative area is S1), the inner surface of the die on the same plane is S2, and the density of the fluid is ρ1. When the density of the slurry is ρ2, if S2 ≦ S1 × (ρ1 / ρ2), the force in the compressing direction becomes larger than the force acting in the mold opening direction in the mold cross section. Use the cross-sectional area of the molded product (projected area of the molded product on a plane that passes through the split surface) as the representative area of the split mold inner surface, and use the area of the split mold projected on the split surface as the representative area of the split mold outer surface. You can

【0020】ここで、割型の長さをLとし、金型外側の
半径をr1、内側の半径をr2とすると、S1=2πL
×r1およびS2=2πL×r2となることから、
(2)における式はr2≦r1×(ρ1/ρ2)とする
ことができる。なお、金型の外側および内側が複雑形状
の場合は、金型中心から金型外壁および内壁までの距離
の平均をそれぞれr1とr2としてもよい。あるいは、
金型中心から外壁および内壁までの最大距離をそれぞれ
r1とr2としてもよい。
Supposing that the length of the split mold is L, the radius of the outer side of the die is r1, and the radius of the inner side is r2, S1 = 2πL
Since xr1 and S2 = 2πL × r2,
The equation in (2) can be r2 ≦ r1 × (ρ1 / ρ2). When the outside and inside of the mold have a complicated shape, the average distances from the center of the mold to the outer wall and the inner wall of the mold may be r1 and r2, respectively. Alternatively,
The maximum distances from the center of the mold to the outer wall and the inner wall may be r1 and r2, respectively.

【0021】(3)上記の(1)に記載した作用と同じ
作用で型の変形が防止できる。
(3) The deformation of the mold can be prevented by the same operation as described in (1) above.

【0022】(4)流動体に水を使うとき、スラリーの
密度は通常3kg/cm3以下なので、割型合わせ面の面積
が成形体断面積(割面を通過する平面上における成形体
の投影面積)の2倍以上であれば、遠心力による合力は
内圧以上となる。
(4) When water is used as the fluid, since the density of the slurry is usually 3 kg / cm 3 or less, the area of the split mold mating surface is the cross sectional area of the compact (projection of the compact on the plane passing through the split surface). If it is twice or more of the area), the resultant force due to the centrifugal force will be the internal pressure or more.

【0023】[0023]

【発明の実施の形態】以下、本発明の一実施形態をセラ
ミック製ベアリングボールの成形体を製造する場合につ
いて説明する。 (型枠の作成)図1は、セラミック製ベアリングボール
の成形体を同時に2個作成する場合の割型の例である。
図1(a)は、割型2Aの正面図、図1(b)は、割型
2A,2Bの平面図、図1(c)は、図1(a)のA−
A’の断面図である。割型2A、2Bにはスラリーの注
入口部分31、球形のベアリングボール部分32、粗粒
排除用のスラリー溜め33設けている。また、割型2
A、2Bはボルト・ナット34で結合する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below for the case of manufacturing a molded body of a ceramic bearing ball. (Preparation of Form) FIG. 1 shows an example of a split mold in which two ceramic bearing ball compacts are simultaneously prepared.
1A is a front view of the split mold 2A, FIG. 1B is a plan view of the split molds 2A and 2B, and FIG. 1C is A- of FIG.
It is a sectional view of A '. The split molds 2A and 2B are provided with a slurry injection port portion 31, a spherical bearing ball portion 32, and a slurry reservoir 33 for removing coarse particles. Also, split mold 2
A and 2B are connected by a bolt and a nut 34.

【0024】割型2A,2Bはアルミニウムなどの加工
しやすい材料で作成する。割型2A、2Bの合わせ面
は、擦り合わせ、ワイヤーカット、溝加工などによっ
て、スラリーの最小粒子が通過できない程十分な狭い隙
間を持たせる。ボルト・ナット34によって、型枠が仮
止めできる構造とする。ボルト・ナット以外でも、割型
の組み立てと分解が容易にできるものであればよく、ね
じ止め、はめ合わせ、弾性体による密着、など任意の方
法が適用できる。
The split molds 2A and 2B are made of a material such as aluminum which is easy to process. The mating surfaces of the split molds 2A and 2B are provided with a sufficiently narrow gap by rubbing, wire cutting, grooving or the like so that the smallest particles of the slurry cannot pass through. The formwork can be temporarily fixed by the bolts and nuts 34. Other than the bolts and nuts, any type that can be easily assembled and disassembled in the split mold may be used, and any method such as screwing, fitting, and contact with an elastic body may be applied.

【0025】ベアリングボール部分32とスラリー溜め
33とは、スラリーに許容される最大粒径の粉体が通過
できる径をもつ細孔で連結する。また、スラリーの注入
口部分31とベアリングボール部分32は、それ以上の
径を持つ細孔で連結する。スラリーの注入口部分31の
形状は、成形体の形状に直接関係しないので任意に設計
できる。また、スラリー溜め33の形状は楕円体など任
意の形状を取れる。
The bearing ball portion 32 and the slurry reservoir 33 are connected by fine pores having a diameter that allows the powder having the maximum particle size allowed in the slurry to pass through. Further, the slurry injection port portion 31 and the bearing ball portion 32 are connected by pores having a diameter larger than that. The shape of the slurry injection port portion 31 is not directly related to the shape of the molded body and can be arbitrarily designed. Further, the shape of the slurry reservoir 33 can be any shape such as an ellipsoid.

【0026】以下は条件を簡素にするために、スラリー
の充填高さ(図1(c)の一点鎖線)と型枠に充填した
流動体の上面が等しい場合で説明する。割型各々の合わ
せ面の任意の部分について、遠心成形中に働く該割型を
閉じる方向に働く流動体の外圧と遠心成形中に働く外力
との合計値は、正確には応力解析などによって求めるこ
とができる。
In the following, in order to simplify the conditions, the case where the filling height of the slurry (the one-dot chain line in FIG. 1C) and the upper surface of the fluid filled in the mold are the same will be described. For any part of the mating surface of each split mold, the total value of the external pressure of the fluid working in the direction of closing the split mold and the external force working during centrifugal molding is determined accurately by stress analysis, etc. be able to.

【0027】図1の例において、割型に加わる力を簡略
に求めるには、「遠心成形中に働く該割型を閉じる方向
に働く流動体の外圧」は、遠心力と直交し、割型を閉じ
る方向の面の面積(図1のH×L=S:成形体断面積)
と平均流体圧力の積で求めることができ、「割型を開く
方向に働くスラリー内圧」は、割型のスラリー充填部の
面積(図1(a)のハッチング部分)と内圧との積で求
めることができる。
In the example of FIG. 1, in order to simply obtain the force applied to the split mold, the "external pressure of the fluid working in the direction of closing the split mold that works during centrifugal molding" is orthogonal to the centrifugal force and Area of the surface in the direction of closing (H × L = S in FIG. 1: cross-sectional area of molded body)
Can be obtained by the product of the average fluid pressure and the "slurry internal pressure acting in the opening direction of the split mold" is determined by the product of the area of the slurry filling portion of the split mold (hatched portion in FIG. 1A) and the internal pressure. be able to.

【0028】内圧、外圧はそれぞれスラリー、流動体の
密度×深さに比例するので、平均値を考慮する必要があ
る。図1の場合、図1(a)のハッチング部分の面積×
スラリー密度≦S×流動体密度であればよいので、その
条件に合うようにH、Lの寸法を設定する。
Since the internal pressure and the external pressure are respectively proportional to the density and depth of the slurry and the fluid, it is necessary to consider the average value. In the case of FIG. 1, the area of the hatched portion of FIG.
Since it is sufficient if the slurry density ≦ S × fluid density, the dimensions of H and L are set so as to meet the conditions.

【0029】流動体に水(密度=1.0)を用い、スラリ
ー成形体の含水密度が2.8(高純度アルミナ;平均粒径
0.22μm)の場合、H×L≧(2.8/1.0)Sとする。こ
れによって、遠心力と直交し割型を開く方向の型断面の
どこを取っても、割型断面において型を開く方向に働く
力に比べ、割型を圧縮する方向の力が同等または大とな
る。このため型が分割されていても、分割面を広げるこ
とがないので、分割面からのスラリーの漏れが防止でき
る。
Water (density = 1.0) was used as the fluid, and the water content density of the slurry compact was 2.8 (high purity alumina; average particle size).
0.22 μm), H × L ≧ (2.8 / 1.0) S. As a result, no matter where the mold cross section that is orthogonal to the centrifugal force and that opens the split mold is taken, the force in the direction that compresses the split mold is equal or greater than the force that acts in the mold opening direction in the split mold cross section. Become. For this reason, even if the mold is divided, since the dividing surface is not expanded, it is possible to prevent the slurry from leaking from the dividing surface.

【0030】(準備)次に、型を使った遠心分離成形方
法を図2によって説明する。図2(a)に示すように、
型2の形状に合わせて隙間を持ち、容易に出し入れでき
る型枠1内に、型2をセットし、型枠1と型2の隙間に
流動体4として例えば水を注入する。型枠1は遠心成形
中に内外面からの静圧が加わるので、体積弾性率が小さ
な材料(κ≦2.2:鉛)であればプラスチック、合金な
どであってもよい。
(Preparation) Next, a centrifugal molding method using a mold will be described with reference to FIG. As shown in FIG. 2 (a),
The mold 2 is set in a mold 1 having a gap that matches the shape of the mold 2 and can be easily taken in and out, and water, for example, is injected as a fluid 4 into the gap between the mold 1 and the mold 2. Since the mold 1 is subjected to static pressure from the inner and outer surfaces during centrifugal molding, a plastic, an alloy or the like may be used as long as the material has a small bulk modulus (κ ≦ 2.2: lead).

【0031】流動体は水に限らず、設計密度より密度が
大きく、取扱いが容易な非圧縮性流体であればよく、防
錆剤、潤滑剤を添加した水でもよい。型2内にスラリー
5を所定量だけ充填する。スラリー5は、予めボールミ
ルにより所定の平均粒径に粉砕された金属、セラミック
またはこれらの混合物の粉末に分散剤、分散媒(水、有
機液体等)を添加し、混練して得られる。
The fluid is not limited to water, but may be any non-compressible fluid having a density higher than the design density and easy to handle, and may be water added with a rust preventive agent and a lubricant. The mold 5 is filled with a predetermined amount of the slurry 5. The slurry 5 is obtained by adding a dispersant, a dispersion medium (water, an organic liquid, etc.) to a powder of metal, ceramic or a mixture thereof, which has been crushed in advance with a ball mill to a predetermined average particle size, and kneading the mixture.

【0032】金属、セラミックの粉末としては、オース
テナイト系ステンレス鋼粉末、超硬合金、サーメット、
その他の焼結金属製造用粉末、高純度アルミナ粉末、ア
ルミナにマグネシア、シリカ、チタニア等を添加した混
合粉末(すなわち、フォルステライト、ムライト、コー
ジライト製造用粉末など)、あるいはベリリア、マグネ
シア磁器等の各種セラミック、フェライト等の磁性体部
品製造用粉末、などが例示される。
As the metal and ceramic powder, austenitic stainless steel powder, cemented carbide, cermet,
Other powders for producing sintered metals, high-purity alumina powders, mixed powders obtained by adding magnesia, silica, titania, etc. to alumina (that is, powders for producing forsterite, mullite, cordierite, etc.) or beryllia, magnesia porcelain, etc. Examples include various ceramics, powders for producing magnetic parts such as ferrite, and the like.

【0033】(成形)このようにして準備された型枠1
を、遠心成形機にセットする。図3は、遠心成形機の運
転過程を概略的に示す正面図である。図3(a)に示す
ように、型を遠心成形機にセットする。遠心成形機はモ
ータ11により縦軸回りに回転する回転軸12と該回転
軸12の上端に固定された水平棹13とを備えており、
該水平棹13の両端部に取り付けられた容器15,15
内に上記型2を各々1個ずつセットするようになってい
る。このとき型枠1の底蓋側が遠心成形機の回転半径方
向外方に向くようセットする。さらに、上記各容器1
5,15は水平棹13の両端部で、水平軸14,14回
りに回転自在に支承されており、図3(b)に示すよう
に、遠心成形機の運転中には、その遠心力により容器1
5,15の底部つまり、各型2の底部側を遠心成形機の
回転半径方向外方に向けて回転される。
(Molding) Form 1 prepared in this way
Is set in the centrifugal molding machine. FIG. 3 is a front view schematically showing the operation process of the centrifugal molding machine. As shown in FIG. 3A, the mold is set in the centrifugal molding machine. The centrifugal molding machine includes a rotary shaft 12 that rotates around a vertical axis by a motor 11 and a horizontal rod 13 fixed to the upper end of the rotary shaft 12,
Containers 15, 15 attached to both ends of the horizontal rod 13
Each of the molds 2 is set in the inside. At this time, the bottom cover side of the mold 1 is set so as to face outward in the radial direction of rotation of the centrifugal molding machine. Furthermore, each of the above containers 1
Numerals 5 and 15 are rotatably supported around the horizontal shafts 14 and 14 at both ends of the horizontal rod 13, and as shown in FIG. Container 1
The bottoms of the molds 5, 15, that is, the bottoms of the molds 2 are rotated outward in the radial direction of rotation of the centrifugal molding machine.

【0034】そして、遠心成形機を運転することによ
り、遠心力でスラリー5中の密度の大きい固体成分を型
2の底部側に次第に沈降させ、液体6をその上部に分離
して行き、所定時間経過後に遠心成形機の運転を停止し
たとき、図2(b)に示すように、大部分の液体6が型
2の上部に分離し、型の下部に固形状の生成形体7が得
られる。
Then, by operating the centrifugal molding machine, the solid component having a high density in the slurry 5 is gradually settled to the bottom side of the mold 2 by the centrifugal force, and the liquid 6 is separated to the upper part thereof for a predetermined time. When the operation of the centrifugal molding machine is stopped after a lapse of time, as shown in FIG. 2B, most of the liquid 6 is separated into the upper part of the mold 2 and a solid green molded body 7 is obtained in the lower part of the mold.

【0035】このとき、遠心成形機の回転数は粉末の粒
径、密度、分散媒の粘性、処理温度等によって決定され
る。例えば、平均粒径0.2〜0.4μmの粉末のスラ
リーでは、10〜20kG程度の重力倍数が必要であっ
て、この重力倍数が小さ過ぎると、成形後の生成形体の
上部が完全に充填できず、成形時間が極端に長くなる。
なお、このとき得られる生成形体7の粒子充填率は60
〜65%程度である。
At this time, the rotation speed of the centrifugal molding machine is determined by the particle size and density of the powder, the viscosity of the dispersion medium, the processing temperature and the like. For example, a slurry of powder having an average particle diameter of 0.2 to 0.4 μm requires a gravity multiple of about 10 to 20 kG, and if this gravity multiple is too small, the upper part of the green formed body after molding is completely filled. It is not possible, and the molding time becomes extremely long.
The particle filling rate of the green body 7 obtained at this time is 60.
It is about 65%.

【0036】(型の取出)遠心力が除去されたとき、型
は流動体と密着していないので、低融点合金でバックア
ップする時の様な取外し工程が不要となり、簡単に取り
出して分解できるので、次工程へのハンドリングが迅速
となる。 (除液)上記の状態となった型2内から上部の液体6の
みを除去して生成形体7単独とする。
(Removal of Mold) When the centrifugal force is removed, the mold is not in close contact with the fluid, so that a removing step such as backing up with a low melting point alloy is unnecessary, and the mold can be easily taken out and disassembled. The handling to the next process becomes quick. (Removal of liquid) Only the upper liquid 6 is removed from the inside of the mold 2 in the above state to form the green molded body 7 alone.

【0037】(脱型)型枠1から型2を取り出す。次い
で、型2が割型である場合には、割型を分割面で分解し
て、図2(c)に示すように、生成形体7を得る。 (乾燥)その後、このようにして得た生成形体7を乾燥
炉に入れて、低温加熱により乾燥させる。この乾燥時間
は生成形体の大きさにより異なるが、たとえば、40℃
で6時間、70℃で6時間保持した後、更に100℃で
2時間保持する程度の処理により乾燥できる。
(Demolding) The mold 2 is taken out from the mold 1. Next, when the mold 2 is a split mold, the split mold is disassembled along the dividing surface to obtain a green body 7 as shown in FIG. 2 (c). (Drying) After that, the green compact 7 thus obtained is put into a drying furnace and dried by low-temperature heating. This drying time depends on the size of the green body, but is, for example, 40 ° C.
After 6 hours at 70 ° C. for 6 hours, it can be dried by further holding at 100 ° C. for 2 hours.

【0038】(脱脂、焼成)最後に、乾燥後の生成形体
7を炉内で焼成する。このとき、生成形体7中に含まれ
る結合剤、分散剤等を予め除くために、例えば、120
℃/時間程度の昇温速度で加熱して脱脂(仮焼)すると
ともに、そのまま連続的に120℃/時間程度の昇温速
度で加熱して、焼結体を得ることになる。
(Degreasing and firing) Finally, the green compact 7 after drying is fired in a furnace. At this time, in order to remove the binder, dispersant, etc. contained in the green body 7 in advance, for example, 120
Degreasing (calcination) is carried out by heating at a temperature rising rate of about ° C / hour, and at the same time, it is continuously heated at a temperature rising rate of about 120 ° C / hour to obtain a sintered body.

【0039】したがって、上記の実施の形態では、遠心
成形工程で、型2が割型である場合でも型内のスラリー
5が分割面から漏洩することなく、遠心力により型2内
でスラリー5中の固体成分が沈降し、液体6が生成形体
7の上方に分離されるので、固体成分の損失が実質的に
生じることなく、固体と液体の分離が速やかになされ、
80%以上の高い歩留で、且つ短時間で粒子充填率60
%以上の、原型と同形状の生成形体7が得られる。この
とき、型枠1から型2の出し入れが容易なので、工程処
理時間が大幅に短縮される。
Therefore, in the above embodiment, in the centrifugal molding step, even if the mold 2 is a split mold, the slurry 5 in the mold does not leak from the dividing surface, and the slurry 5 is dispersed in the mold 5 by the centrifugal force. Since the solid component of 6 is settled and the liquid 6 is separated above the green body 7, the solid and liquid can be rapidly separated without substantially causing the loss of the solid component.
High yield of 80% or more and particle filling rate of 60 in a short time
% Or more of the green form 7 having the same shape as the prototype is obtained. At this time, since the mold 2 can be easily taken in and out of the mold 1, the process time can be significantly shortened.

【0040】さらに、通常のスリップキャスティング法
のように、スラリー5の濃度、粘度、分散状態の強い影
響を受けることなく、成形することができ、また、成形
前のスラリー5を真空脱泡する必要がない。結合剤が通
常のスリップキャスティング法の1/3程度でよく、そ
の結果、脱脂、焼成温度を低くし得るので、焼結体の寸
法安定性および歩留が良好なものとなる。また、例え
ば、肉厚0.2mm以下の小型精密品の成形が可能であ
り、さらに、大型品まで幅広い応用が可能である。
Further, unlike the ordinary slip casting method, the slurry 5 can be molded without being strongly influenced by the concentration, viscosity and dispersion state of the slurry 5, and the slurry 5 before molding needs to be degassed in vacuum. There is no. The binder may be about ⅓ of the usual slip casting method, and as a result, the degreasing and firing temperatures can be lowered, so that the dimensional stability and yield of the sintered body will be good. Further, for example, it is possible to mold a small precision product having a wall thickness of 0.2 mm or less, and further, it can be widely applied to large products.

【0041】なお、上記の実施の形態では、成形される
流動体を粉末が分散剤、結合剤と混練されてなるスラリ
ーとしたが、本発明はかかる実施の形態に限定されるも
のではなく、粉末を分散媒中に分散させただけの懸濁液
を遠心成形機にセットして、遠心力により生成形体を得
ることも可能である。
In the above embodiment, the fluid to be molded is a slurry in which powder is kneaded with a dispersant and a binder, but the present invention is not limited to this embodiment. It is also possible to set a suspension obtained by simply dispersing powder in a dispersion medium in a centrifugal molding machine and obtain a green compact by centrifugal force.

【0042】また、図1に示したベアリングボール用割
型の例においては、割型の底部にスラリー溜め33を設
けているので、万一、規定粒度分布を超える粗粒があっ
たとしても、粗粒はスラリー溜め33部分に分離され、
生成形体の内部に粗粒が残ることが無い。スラリー中に
気泡が残っていても強い遠心力で生成形体から除去され
る。このためクラック源となる異常部分がなくなり焼結
体の品質が向上する。
Further, in the example of the split mold for bearing balls shown in FIG. 1, since the slurry reservoir 33 is provided at the bottom of the split mold, even if there are coarse particles exceeding the specified particle size distribution, The coarse particles are separated into the slurry reservoir 33,
No coarse particles remain inside the green body. Even if air bubbles remain in the slurry, they are removed from the green body by a strong centrifugal force. Therefore, there is no abnormal portion that becomes a crack source, and the quality of the sintered body is improved.

【0043】また、このとき、スラリー溜め33、およ
びスラリーの注入口部分31にできた粉末の塊は焼結前
に除去して再度スラリーと混合して用いることができる
ので、スラリー対生成形体の原料歩留まりをほぼ100
%に高めることができる。さらに、型内での生成形体の
粒度分布は底部に行くほど粗粒となるので、スラリー溜
め33とスラリーの注入口部分31の粉末の塊(ないし
除去部分)の粒子分布を計測すれば、成形体内の粒度分
布の最大値と最小値を保証することができ、品質の保証
が容易となる。
Further, at this time, since the powder agglomerates formed in the slurry reservoir 33 and the slurry injection port portion 31 can be removed before sintering and mixed again with the slurry, it can be used as a slurry vs. formed form. Raw material yield is almost 100
% Can be increased. Furthermore, since the particle size distribution of the green compact in the mold becomes coarser toward the bottom, if the particle distribution of the powder agglomerate (or the removed part) of the slurry reservoir 33 and the slurry inlet 31 is measured, The maximum and minimum values of the particle size distribution in the body can be guaranteed, and the quality can be easily guaranteed.

【0044】[0044]

【実施例】実施例1 次に、本発明の実施例について説明する。単純な円柱を
生成形体として得るために、型として円筒状の割型を準
備した。割型の材質はアルミニウムとし、割型面はワイ
ヤーカット加工で合わせ面とした。外側の2箇所に留め
輪で固定した。下記の表1のオーステナイト系ステンレ
ス鋼粉末(平均粒径4μm)からなる組成のスラリーを
調製した。
EXAMPLES Example 1 Next, examples of the present invention will be described. A cylindrical split mold was prepared as a mold in order to obtain a simple cylinder as a green body. The split mold was made of aluminum, and the split mold surface was made into a mating surface by wire cutting. It was fixed to the outer two places with snap rings. A slurry having a composition composed of austenitic stainless steel powder (average particle size 4 μm) shown in Table 1 below was prepared.

【0045】[0045]

【表1】 [Table 1]

【0046】上記スラリーの計算密度は2.532となる。
スラリーの密度ρ2=2,532kg/m3、水の密度ρ1=1,00
0kg/m3、割型の外側半径r1=9mmのとき、割型の内側
半径r2≦r1×(ρ1/ρ2)=3.55mm以下であれば外側
からの力が内圧による力以上となり、3.55mmを超える
と内圧が外圧よりも強くなる。
The calculated density of the above slurry is 2.532.
Density ρ2 = 2,532kg / m 3 of slurry, the density of water .rho.1 = 1,00
0 kg / m 3, when the outer radius r1 = 9 mm split mold, split type inner radius r2 ≦ r1 × (ρ1 / ρ2 ) = 3.55mm force from the outside if the less becomes more force due to internal pressure, 3.55 mm When it exceeds, the internal pressure becomes stronger than the external pressure.

【0047】そこで、外径18mm、長さ90mmの割型に
ついて、内径6mmの割型を作成した。遠心成形機の最大
回転数は9,000rpmで10分間の遠心成形を行なった。ス
ラリーの漏れがなく、割型内の遠心回転時の半径方向外
側部分に所定の形状の生成形体が得られた。
Therefore, a split mold having an inner diameter of 6 mm was prepared for a split mold having an outer diameter of 18 mm and a length of 90 mm. The maximum rotational speed of the centrifugal molding machine was 9,000 rpm, and the centrifugal molding was performed for 10 minutes. There was no leakage of the slurry, and a green formed product having a predetermined shape was obtained in the radially outer portion of the split mold during centrifugal rotation.

【0048】比較例1 内径8mmの割型を使用した以外は実施例1と同じ条件で
遠心成形した。スラリーがすべて漏洩し生成形体が成形
できなかった。
Comparative Example 1 Centrifugal molding was carried out under the same conditions as in Example 1 except that a split mold having an inner diameter of 8 mm was used. All of the slurry leaked and the green body could not be molded.

【0049】[0049]

【発明の効果】本発明の方法によれば、金属、セラミッ
ク等の粉末を液体に混練してなるスラリーから生成形体
を製造する方法として、外枠と割型との間に流動体を入
れ、遠心力で外枠を所定時間回転させることにより、割
型であっても型の分割面から流動体が漏洩することな
く、割型内の流動体の固体成分を型の下部に沈降させ、
液成分を固体成分の上部に分離させるようにしたので、
固体成分の損失防止および固体と液体の分離の促進によ
り、短時間で、高い粒子充填率を有する、原型と同形状
の生成形体が得られる。
According to the method of the present invention, as a method for producing a green formed body from a slurry obtained by kneading a powder of metal, ceramic or the like into a liquid, a fluid is put between an outer frame and a split mold, By rotating the outer frame for a predetermined time by centrifugal force, even if it is a split mold, the fluid does not leak from the split surface of the mold, and the solid component of the fluid in the split mold is settled at the bottom of the mold,
Since the liquid component is separated on top of the solid component,
By preventing the loss of the solid component and promoting the separation of the solid and the liquid, it is possible to obtain a green shaped product having a high particle packing rate and having the same shape as the prototype in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の遠心成形用割型をセラミック
製ベアリングボールの遠心成形に適用した例を示すもの
で、(a)は、割型全体の正面図、(b)は、同じく平
面図、(c)は、(a)のA−A’の断面図である。
FIG. 1 shows an example in which a split mold for centrifugal molding according to the present invention is applied to centrifugal molding of a ceramic bearing ball. (A) is a front view of the split mold as a whole, (b) is Similarly, a plan view and (c) are sectional views taken along the line AA ′ of (a).

【図2】図2は、本発明の方法において、割型内のスラ
リーの固体と液体を遠心成形により分離して生成形体を
形成する工程を示す概念図である。
FIG. 2 is a conceptual diagram showing a process of separating a slurry solid and a liquid in a split mold by centrifugal molding to form a green compact in the method of the present invention.

【図3】図3は、遠心成形機の運転過程を概略的に示す
正面図である。
FIG. 3 is a front view schematically showing an operating process of the centrifugal molding machine.

【図4】図4(a)は、従来方法において、低融点合
金、蝋などを使った割型の構成を示す断面図、図4
(b)は、従来方法において、遠心力方向に直交する面
で分割する割型の構成を示す断面図である。
4 (a) is a sectional view showing the structure of a split mold using a low melting point alloy, wax, etc. in the conventional method, FIG.
(B) is a sectional view showing the structure of a split mold divided in a plane orthogonal to the centrifugal force direction in the conventional method.

【符号の説明】[Explanation of symbols]

1 型枠 2 型 2A、2B割型 3 低融点合金・蝋など 4 流動体 5 スラリー 6 液体 7 固形状の生成形体 11モータ 12回転軸 13水平棹 14水平軸 15容器 31 スラリーの注入口部分 32 球形のベアリングボール部分 33 スラリー溜め 34ボルト・ナット 1 formwork Type 2 2A, 2B split type 3 Low melting point alloy, wax, etc. 4 fluid 5 slurry 6 liquid 7 Solid form 11 motors 12 rotation axes 13 horizontal poles 14 horizontal axis 15 containers 31 Slurry injection port 32 spherical bearing ball part 33 Slurry reservoir 34 bolts and nuts

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属、セラミック等の粉末を液体に混練
してなるスラリーを底部が密閉された型内に所定量入
れ、遠心機に該型をセットした後、所定時間の間遠心機
により該型の底部を遠心機の回転半径方向外方に向けて
回転させ、しかる後、型の上部に分離された液体を除去
して、型の下部に固形状の生成形体を得る遠心成形方法
において、流動体を充填した型枠中に浸漬して用いられ
る割型であって、遠心成形中に流動体からの圧力によっ
て生じる該割型を閉じる方向に働く力が、スラリー内圧
により該割型を開く方向に働く力以上となるように、ス
ラリーおよび流動体の密度に応じて割型内面と外面の面
積比を定めたことを特徴とする遠心成形用割型。
1. A predetermined amount of a slurry obtained by kneading a powder of metal, ceramics or the like into a liquid is placed in a mold whose bottom is closed, the mold is set in a centrifuge, and then the centrifuge is used for a predetermined time. In the centrifugal molding method, the bottom of the mold is rotated outward in the radial direction of rotation of the centrifuge, and thereafter, the liquid separated in the upper part of the mold is removed to obtain a solid green molded product in the lower part of the mold. A split mold used by being immersed in a mold filled with a fluid, and a force exerted in the direction of closing the split mold by the pressure from the fluid during centrifugal molding opens the split mold by the internal pressure of the slurry. A split mold for centrifugal molding, characterized in that the area ratio between the inner surface and the outer surface of the split mold is determined according to the densities of the slurry and the fluid so as to be equal to or greater than the force acting in the direction.
【請求項2】 金属、セラミック等の粉末を液体に混練
してなるスラリーを底部が密閉された型内に所定量入
れ、遠心機に該型をセットした後、所定時間の間遠心機
により該型の底部を遠心機の回転半径方向外方に向けて
回転させ、しかる後、型の上部に分離された液体を除去
して、型の下部に固形状の生成形体を得る遠心成形方法
において、流動体を充填した型枠中に浸漬して用いられ
る割型であって、該割型外面のρ2×S2の値が、割型内
面のρ1×S1の値以上(ただし、ρ1はスラリーの密
度、ρ2は流動体の密度、S1は割型内面の代表面積、S
2は割型外面の代表面積である。)であることを特徴と
する遠心成形用割型。
2. A predetermined amount of a slurry obtained by kneading a powder of metal, ceramics or the like into a liquid is placed in a mold having a closed bottom, the mold is set in a centrifuge, and then the centrifuge is used for a predetermined time. In the centrifugal molding method, the bottom of the mold is rotated outward in the radial direction of rotation of the centrifuge, and thereafter, the liquid separated in the upper part of the mold is removed to obtain a solid green molded product in the lower part of the mold. A split mold used by being immersed in a mold filled with a fluid, in which the value of ρ2 × S2 on the outer surface of the split mold is greater than or equal to the value of ρ1 × S1 on the inner surface of the split mold (where ρ1 is the density of the slurry. , Ρ2 is the density of the fluid, S1 is the representative area of the inner surface of the split mold, S
2 is the representative area of the split mold outer surface. ) Is a split mold for centrifugal molding.
【請求項3】 金属、セラミック等の粉末を液体に混練
してなるスラリーを底部が密閉された型内に所定量入
れ、遠心機に該型をセットした後、所定時間の間遠心機
により該型の底部を遠心機の回転半径方向外方に向けて
回転させ、しかる後、型の上部に分離された液体を除去
して、型の下部に固形状の生成形体を得る遠心成形方法
において、流動体を充填した型枠中に浸漬して用いられ
る割型であって、該割型が縦割りの分割面をもつ円筒状
割型であって、遠心力方向に直交する方向の割型断面の
外側半径をr1とし、該割型断面の内側半径をr2と
し、流動体の密度をρ1、スラリーの密度をρ2とした
とき、r2≦r1×(ρ1/ρ2)であることを特徴と
する請求項1記載の遠心成形用割型。
3. A predetermined amount of a slurry obtained by kneading a powder of metal, ceramics or the like into a liquid is placed in a mold whose bottom is closed, the mold is set in a centrifuge, and then the centrifuge is used for a predetermined time. In the centrifugal molding method, the bottom of the mold is rotated outward in the radial direction of rotation of the centrifuge, and thereafter, the liquid separated in the upper part of the mold is removed to obtain a solid green molded product in the lower part of the mold. A split mold used by being immersed in a mold filled with a fluid, wherein the split mold is a cylindrical split mold having a vertical split surface, and a split mold cross section in a direction orthogonal to the centrifugal force direction. Where r1 is the outer radius, r2 is the inner radius of the split mold section, ρ1 is the density of the fluid, and ρ2 is the density of the slurry, r2 ≦ r1 × (ρ1 / ρ2) The split mold for centrifugal molding according to claim 1.
【請求項4】 金属、セラミック等の粉末を液体に混練
してなるスラリーを底部が密閉された型内に所定量入
れ、遠心機に該型をセットした後、所定時間の間遠心機
により該型の底部を遠心機の回転半径方向外方に向けて
回転させ、しかる後、型の上部に分離された液体を除去
して、固形状の生成形体を得る遠心成形方法において、
請求項1ないし3のいずれかの割型の中にスラリーを充
填する工程と、流動体を充填した型枠の中に該型を浸漬
する工程を有することを特徴とする遠心成形方法。
4. A predetermined amount of a slurry obtained by kneading a powder of metal, ceramics or the like into a liquid is placed in a mold whose bottom is closed, the mold is set in a centrifuge, and then the centrifuge is used for a predetermined time. In the centrifugal molding method, the bottom of the mold is rotated outward in the radial direction of rotation of the centrifuge, and then the liquid separated on the top of the mold is removed to obtain a solid green molded body.
A centrifugal molding method comprising: a step of filling the split mold of any one of claims 1 to 3 with a slurry; and a step of immersing the mold in a mold filled with a fluid.
JP2002141138A 2002-05-16 2002-05-16 Centrifugal mold and centrifugal molding method Expired - Fee Related JP3769247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002141138A JP3769247B2 (en) 2002-05-16 2002-05-16 Centrifugal mold and centrifugal molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002141138A JP3769247B2 (en) 2002-05-16 2002-05-16 Centrifugal mold and centrifugal molding method

Publications (2)

Publication Number Publication Date
JP2003328005A true JP2003328005A (en) 2003-11-19
JP3769247B2 JP3769247B2 (en) 2006-04-19

Family

ID=29701816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002141138A Expired - Fee Related JP3769247B2 (en) 2002-05-16 2002-05-16 Centrifugal mold and centrifugal molding method

Country Status (1)

Country Link
JP (1) JP3769247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505680A (en) * 2007-10-16 2011-02-24 マグネティック コンポネンツ スウェーデン アクチボラゲット Powder-based soft magnetic induction component and method and device for its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505680A (en) * 2007-10-16 2011-02-24 マグネティック コンポネンツ スウェーデン アクチボラゲット Powder-based soft magnetic induction component and method and device for its manufacture
US8932517B2 (en) 2007-10-16 2015-01-13 Magnetic Components Sweden Ab Powder based soft magnetic inductive component, and a method and a device for production thereof

Also Published As

Publication number Publication date
JP3769247B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
JP2604592B2 (en) Molding method of metal, ceramic powder, etc. and composition therefor
BRPI0609329B1 (en) METHOD PERFORMED FOR PREPARING METAL MATRIX COMPOSITIONS AND DEVICE FOR IMPLEMENTING THE METHOD
JP2003328005A (en) Segment die for centrifugal formation and method for centrifugal formation
JP4484748B2 (en) Method for producing silica glass product
EP0140682A1 (en) A method for producing a ceramic article
CA1223427A (en) Methods and lined molds for centrifugal casting
JPH1080909A (en) Manufacture of ceramic molding and mold for ceramic molding
JPH0565504A (en) Molding method
JP3210770B2 (en) Method for producing solid product form
JPH09277222A (en) Forming mold of ceramic ball for ball bearing and forming device
JP2983416B2 (en) Mold structure
KR102533253B1 (en) Method for manufacturing ceramic body
JPS63309403A (en) Mold for casting and molding of slurry
JPH08216146A (en) Apparatus for vacuum deaeration of ceramic slurry
RU2713049C1 (en) Method of making ceramic melting crucibles
JP3121239B2 (en) Manufacturing method of ceramics ladle for bottom tap hot water supply
Suzuki et al. Net shape formation of sub-micron alumina with reduced flaws by high-speed centrifugal compaction process
JPH01261251A (en) Forming of powder
JP3069963B2 (en) Method for producing cylindrical silicon carbide body
JPS61281801A (en) Manufacture of powder metallurgical product
JP2005035154A (en) Cast molding method of yag
李暁東 et al. Effect of powder characteristics on centrifugal slip casting of alumina powders
JPH11291213A (en) Method for forming castable refractory block
李暁東 et al. Consolidation induced microstructural inhomogeneities in Al2O3-ZrO2 composites prepared by centrifugal slip casting
WO2002053314A1 (en) Method and apparatus for centrifugal casting

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees