JP3768602B2 - Magnetic levitation railway ground coil equipment - Google Patents

Magnetic levitation railway ground coil equipment Download PDF

Info

Publication number
JP3768602B2
JP3768602B2 JP17113396A JP17113396A JP3768602B2 JP 3768602 B2 JP3768602 B2 JP 3768602B2 JP 17113396 A JP17113396 A JP 17113396A JP 17113396 A JP17113396 A JP 17113396A JP 3768602 B2 JP3768602 B2 JP 3768602B2
Authority
JP
Japan
Prior art keywords
glass fiber
spacer
side wall
ground coil
magnetic levitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17113396A
Other languages
Japanese (ja)
Other versions
JPH1023611A (en
Inventor
好文 板橋
明生 都
正壽 忍
博 諏訪
博隆 夏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Mitsubishi Electric Corp
Central Japan Railway Co
Original Assignee
Railway Technical Research Institute
Mitsubishi Electric Corp
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Mitsubishi Electric Corp, Central Japan Railway Co filed Critical Railway Technical Research Institute
Priority to JP17113396A priority Critical patent/JP3768602B2/en
Publication of JPH1023611A publication Critical patent/JPH1023611A/en
Application granted granted Critical
Publication of JP3768602B2 publication Critical patent/JP3768602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Railway Tracks (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、コンクリート軌道内に推進コイル及び浮上コイルを備えた磁気浮上式鉄道の地上コイル装置に関するものである。
【0002】
【従来の技術】
図6は、例えば特開平5−21137号、特開平5−276607号及び特開平5−304761号公報に記載された従来の磁気浮上式鉄道の地上コイル装置の断面図、図7及び図8は図6の要部を示す断面図である。
【0003】
図6〜図8において、側壁1aと底壁1bとで断面がU字形状のコンクリート軌道1が構成されている。そして、車両(図示せず)の推進力を発生する推進コイル2がスペーサ3を介して締結手段4で側壁1aに固定してある。
また、車両(図示せず)の浮上案内をする浮上コイル5を推進コイル2よりコンクリート軌道1の中心側に配置して締結手段6で側壁1aに固定してある。
推進コイル2は導体2aをエポキシ樹脂の外被2bで被ったものである。そして、スペーサ3はシートモールディングコンパウンド(以下、SMCという)の短ガラス繊維強化樹脂で形成してある。さらに、浮上コイル5は導体5aの外周をSMCで形成した外被5bで被ったものである。
なお、SMCは、例えば熱硬化性ポリエステル樹脂と短ガラス繊維基材とをコンパウンドし、約2mmの厚さのシート状に形成したもので、加熱・加圧成形時の金型内での流動性を考慮して、短ガラス繊維として一般に3〜6mm(最大でも25mm)のものを約30wt%含有するように選定されている。
なお、図6において、車両が図示の紙面に向かって垂直方向に通過する際に、図7に示す導体2aには瞬時的ではあるが、コンクリート軌道1から引き離されるY方向に力が作用する。したがって、車両が通過する際に車両との間が狭い場所で使用する図7のスペーサ3のA部及びB部には、引張をともなう曲げ応力が発生し、特にB部の曲げ応力が大きくなるので、機械的に信頼性の高いものが要求される。
【0004】
【発明が解決しようとする課題】
従来の磁気浮上式鉄道の地上コイル装置は以上のように構成されているので、加熱・加圧成形時に樹脂が流動することによりSMCのガラス繊維の密度が低くなるところが起こり易いため、機械的強度のばらつきがあり、外力に対して十分な裕度を確保するのが困難であるという問題点があった。
【0005】
この発明は上記のような問題点を解消するためになされたもので、機械的強度の向上を図ることができる磁気浮上式鉄道の地上コイル装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1の発明に係る磁気浮上式鉄道の地上コイル装置は、両側壁と底壁とからなる断面がU字形状のコンクリート軌道の側壁の内側部に、車両の推進力を発生する推進コイルにスペーサを押圧して締結手段でスペーサを側壁に固定し、車両の浮上案内をする浮上コイルを推進コイルよりコンクリート軌道の中心側に配置して側壁に固定した磁気浮上式鉄道の地上コイル装置において、スペーサを連続ガラス繊維強化樹脂で形成したものである。
【0007】
請求項2の発明に係る磁気浮上式鉄道の地上コイル装置は、請求項1に記載の磁気浮上式鉄道の地上コイル装置において、連続ガラス繊維強化樹脂の連続ガラス繊維の含有率を30wt%から40wt%とし、無方向に分散させたものである。
【0008】
【発明の実施の形態】
図1は発明の実施例の一形態を示す断面図、図2は図1のII−II線からみた正面図、図3は図1のIII−III線からみた正面図、図4は図2のIV−IV線の断面図、図5は図3のV−V線の断面図である。
【0009】
図1〜図5において、7は断面がU字形状のコンクリート軌道で、側壁7aと底壁7bとで構成されている。8はコンクリート軌道7の側壁7aの内側部に後述のスペーサ9で固定した推進コイルで、導体8aをエポキシ樹脂で成形した外被8bで被っている。9は後述の連続ガラス繊維強化樹脂のL−SMCで形成したスペーサで、推進コイル8を後述の締結手段14でコンクリート軌道7の側壁7aに押圧して固定する。
10は側壁7aに埋設したインサート、11はインサート10に螺合したボルト、12は座金、13はボルト11に螺合したナットで、スペーサ9を側壁7aに固定するとともに、スペーサ9を介して推進コイル8を側壁7aに固定する。なお、11〜13で締結手段14を構成している。
15は推進コイル8よりコンクリート軌道7の中心側に配置した浮上コイルで、導体15aを短ガラス繊維強化樹脂のSMCで形成した外被15bで被っている。16はコンクリート軌道7の側壁7aに埋設したインサート、17はインサート16に螺合したボルトで、座金18を介して浮上コイル15を側壁7aに押圧して固定している。なお、17及び18で締結手段19を構成している。
連続ガラス繊維強化樹脂のL−SMCは、例えば特開平5−301221号公報に記載されているように、熱硬化性ポリエステル樹脂に連続ガラス繊維を渦巻状に密度が均等になるように配置して約40wt%含有したもので、約1〜2mmの厚さのシート状に形成したものである。したがって、連続ガラス繊維を渦巻状に配置しているので、ガラス繊維が絡み合って加圧・加熱成形時の移動を阻止する。
【0010】
表1に連続ガラス繊維の含有率を変えた場合の機械的強度(曲げ強さ)と硬化物の外観及び内部切断調査の成形性とについての検討結果を示す。
【0011】
【表1】

Figure 0003768602
【0012】
表1の結果から、連続ガラス繊維の含有率が、L−SMC全体に対して30wt%未満では成形品としての強度が従来より20%弱ほど大きくなった(後述の表2参照)が、強度的に裕度を確保するのに不十分である。また、40wt%を越えると、成形品の製造時に樹脂の流動性が悪く、内部に巣が発生して強度的に悪影響を及ぼす恐れがある。したがって、連続ガラス繊維の含有率は、L−SMC全体に対して30wt%〜40wt%が適している。
【0013】
次に、表2は連続ガラス繊維強化樹脂のL−SMCと従来のガラス繊維強化樹脂のSMCとを比較した機械強度特性である。
【0014】
【表2】
Figure 0003768602
【0015】
表2の結果から、連続ガラス繊維強化樹脂のL−SMCは、従来の短ガラス繊維強化樹脂のSMCと比較した場合に、初期強度が約50%以上、長期的強度(平面曲げ疲労強度)が約40%向上している。
これは、連続ガラス繊維を渦巻状に配置したので、ガラス繊維が互いに絡み合うため、加熱・加圧時に樹脂が流動してもガラス繊維の移動が抑制され、ガラス繊維の密度が疎密になり難いためである。
したがって、車両が通過する際に車両との間が狭い場所で使用するスペーサ9を連続ガラス繊維強化樹脂で成形することにより、図4に示すC部及びD部を強化できるので、初期強度及び長期的強度を向上させることができる。
【0016】
【発明の効果】
請求項1の発明によれば、推進コイルを押圧するスペーサを連続ガラス繊維強化樹脂で形成したので、初期強度及び長期的強度が向上して、電磁力及び熱応力などの外力に対して十分な裕度を確保できるため、推進コイルを長期間にわたって安定して保持することができる。
【0017】
請求項2の発明によれば、請求項1に記載の磁気浮上式鉄道の地上コイル装置において、連続ガラス繊維強化樹脂を連続ガラス繊維の含有率が30wt%から40wt%で、無方向に分散させたので、成形品の製造時における樹脂の流動性がよく、強度的に安定したものを得ることができる。
【図面の簡単な説明】
【図1】 発明の実施の一形態を示す断面図である。
【図2】 図1のII−II線からみた正面図である。
【図3】 図1のIII−III線からみた正面図である。
【図4】 図2のIV−IV線の断面図である。
【図5】 図3のV−V線の断面図である。
【図6】 従来の磁気浮上式鉄道の地上コイル装置の断面図である。
【図7】 図6の要部を示す断面図である。
【図8】 図6の要部を示す断面図である。
【符号の説明】
7 コンクリート軌道、7a 側壁、7b 底壁、8 推進コイル、9 スペーサ、14 締結手段、15 浮上コイル、15b 外被。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ground coil device for a magnetic levitation railway provided with a propulsion coil and a levitation coil in a concrete track.
[0002]
[Prior art]
6, for example, JP-A-5-211 7 37 No., cross-sectional view of a conventional maglev ground coil device described in Japanese Patent Laid-Open No. 5-276607 Patent and Hei 5-304761, Fig. 7 and Fig. 8 is a cross-sectional view showing a main part of FIG.
[0003]
6 to 8, a side wall 1a and a bottom wall 1b constitute a concrete track 1 having a U-shaped cross section. A propulsion coil 2 that generates a propulsive force of a vehicle (not shown) is fixed to the side wall 1 a by a fastening means 4 via a spacer 3.
A levitation coil 5 that guides the levitation of a vehicle (not shown) is arranged on the center side of the concrete track 1 with respect to the propulsion coil 2 and is fixed to the side wall 1 a by fastening means 6.
The propulsion coil 2 is formed by covering a conductor 2a with an epoxy resin outer sheath 2b. The spacer 3 is made of a short glass fiber reinforced resin of a sheet molding compound (hereinafter referred to as SMC). Further, the levitation coil 5 is formed by covering the outer circumference of the conductor 5a with a jacket 5b formed of SMC.
In addition, SMC is formed by compounding, for example, a thermosetting polyester resin and a short glass fiber substrate, and is formed into a sheet shape having a thickness of about 2 mm, and the fluidity in the mold during heating and pressure molding. Therefore, the short glass fiber is generally selected to contain about 30 wt% of 3 to 6 mm (25 mm at the maximum).
In FIG. 6, when the vehicle passes in the vertical direction toward the paper surface shown in the figure, a force acts on the conductor 2 a shown in FIG. 7 in the Y direction that is instantaneously separated from the concrete track 1. Therefore, bending stress with tension is generated in the A portion and B portion of the spacer 3 of FIG. 7 used in a narrow space between the vehicle when the vehicle passes, and particularly, the bending stress in the B portion becomes large. Therefore, a mechanically reliable one is required.
[0004]
[Problems to be solved by the invention]
Since the ground coil device of the conventional magnetic levitation railway is constructed as described above, the density of SMC glass fibers tends to decrease due to the flow of resin during heating and pressure molding, so mechanical strength There is a problem that it is difficult to secure a sufficient margin for external force.
[0005]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a ground coil device for a magnetic levitation railway that can improve mechanical strength.
[0006]
[Means for Solving the Problems]
A ground coil device for a magnetically levitated railway according to a first aspect of the present invention is a propulsion coil that generates propulsive force of a vehicle on an inner side of a side wall of a U-shaped concrete track having both side walls and a bottom wall. In the ground coil device of the magnetic levitation railway, which presses the spacer and fixes the spacer to the side wall with fastening means, and the levitation coil that guides the vehicle's levitation to the center side of the concrete track from the propulsion coil is fixed to the side wall. The spacer is made of continuous glass fiber reinforced resin.
[0007]
The ground coil device for a magnetically levitated railway according to the invention of claim 2 is the ground coil device for a magnetically levitated railway according to claim 1, wherein the content of the continuous glass fiber of the continuous glass fiber reinforced resin is 30 wt% to 40 wt%. % And dispersed in a non-directional direction.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
1 is a cross-sectional view showing an embodiment of the invention, FIG. 2 is a front view taken along line II-II in FIG. 1, FIG. 3 is a front view taken along line III-III in FIG. 4 is a sectional view taken along line IV-IV, and FIG. 5 is a sectional view taken along line VV in FIG.
[0009]
1 to 5, reference numeral 7 denotes a concrete track having a U-shaped cross section, which includes a side wall 7a and a bottom wall 7b. Reference numeral 8 denotes a propulsion coil fixed to the inner side of the side wall 7a of the concrete track 7 with a spacer 9 described later, and covers the conductor 8a with an outer cover 8b formed of epoxy resin. Reference numeral 9 denotes a spacer formed of L-SMC of a continuous glass fiber reinforced resin, which will be described later. The propulsion coil 8 is pressed and fixed to the side wall 7a of the concrete track 7 by a fastening means 14, which will be described later.
10 is an insert embedded in the side wall 7 a, 11 is a bolt screwed to the insert 10, 12 is a washer, 13 is a nut screwed to the bolt 11, and the spacer 9 is fixed to the side wall 7 a and propelled through the spacer 9. The coil 8 is fixed to the side wall 7a. In addition, the fastening means 14 is comprised by 11-13.
A levitation coil 15 is arranged on the center side of the concrete track 7 with respect to the propulsion coil 8, and covers the conductor 15a with a jacket 15b formed of SMC of a short glass fiber reinforced resin. Reference numeral 16 denotes an insert embedded in the side wall 7 a of the concrete track 7, and 17 denotes a bolt screwed into the insert 16. The floating coil 15 is pressed and fixed to the side wall 7 a via a washer 18. In addition, the fastening means 19 is comprised by 17 and 18.
For example, as described in JP-A-5-301221, the continuous glass fiber reinforced resin L-SMC is formed by arranging continuous glass fibers in a spiral shape on a thermosetting polyester resin so that the density is uniform. It contains about 40 wt% and is formed into a sheet having a thickness of about 1 to 2 mm. Therefore, since the continuous glass fibers are arranged in a spiral shape, the glass fibers are entangled to prevent movement during pressurization and heat molding.
[0010]
Table 1 shows the examination results of the mechanical strength (bending strength), the appearance of the cured product, and the moldability of the internal cutting investigation when the content of the continuous glass fiber is changed.
[0011]
[Table 1]
Figure 0003768602
[0012]
From the results of Table 1, when the content of continuous glass fiber is less than 30 wt% with respect to the entire L-SMC, the strength as a molded product is about 20% less than before (see Table 2 described later). In general, it is insufficient to secure a margin. On the other hand, if it exceeds 40 wt%, the resin has poor fluidity during the production of a molded product, and there is a risk that a nest will be generated inside and the strength will be adversely affected. Therefore, the content of continuous glass fibers is suitably 30 wt% to 40 wt% with respect to the entire L-SMC.
[0013]
Next, Table 2 shows mechanical strength characteristics comparing L-SMC of continuous glass fiber reinforced resin and SMC of conventional glass fiber reinforced resin.
[0014]
[Table 2]
Figure 0003768602
[0015]
From the results of Table 2, L-SMC of continuous glass fiber reinforced resin has an initial strength of about 50% or more and long-term strength (plane bending fatigue strength) when compared with SMC of conventional short glass fiber reinforced resin. About 40% improvement.
This is because the continuous glass fibers are arranged in a spiral shape, and the glass fibers are entangled with each other. Therefore, even if the resin flows during heating and pressurization, the movement of the glass fibers is suppressed, and the density of the glass fibers is not easily reduced. It is.
Accordingly, by forming the spacer 9 used in a narrow space between the vehicle and the vehicle with the continuous glass fiber reinforced resin when the vehicle passes, the C part and the D part shown in FIG. Strength can be improved.
[0016]
【The invention's effect】
According to the first aspect of the present invention, since the spacer for pressing the propulsion coil is formed of continuous glass fiber reinforced resin, the initial strength and the long-term strength are improved, and sufficient for external forces such as electromagnetic force and thermal stress. Since the margin can be ensured, the propulsion coil can be stably held over a long period of time.
[0017]
According to the invention of claim 2, in the ground coil device of the magnetic levitation railway according to claim 1, the continuous glass fiber reinforced resin is dispersed in a non-directional manner with a continuous glass fiber content of 30 wt% to 40 wt%. Therefore, it is possible to obtain a resin having good resin fluidity and stable in strength at the time of producing a molded product.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the invention.
FIG. 2 is a front view taken along line II-II in FIG.
FIG. 3 is a front view taken along line III-III in FIG. 1;
4 is a cross-sectional view taken along line IV-IV in FIG.
5 is a cross-sectional view taken along line VV in FIG.
FIG. 6 is a cross-sectional view of a conventional ground coil device for a magnetically levitated railway.
7 is a cross-sectional view showing a main part of FIG. 6;
8 is a cross-sectional view showing a main part of FIG. 6;
[Explanation of symbols]
7 concrete track, 7a side wall, 7b bottom wall, 8 propulsion coil, 9 spacer, 14 fastening means, 15 levitation coil, 15b jacket.

Claims (2)

両側壁と底壁とからなる断面がU字形状のコンクリート軌道の上記側壁の内側部に、車両の推進力を発生する推進コイルにスペーサを押圧して締結手段で上記スペーサを上記側壁に固定し、上記車両の浮上案内をする浮上コイルを上記推進コイルより上記コンクリート軌道の中心側に配置して上記側壁に固定した磁気浮上式鉄道の地上コイル装置において、上記スペーサは連続ガラス繊維強化樹脂で形成したことを特徴とする磁気浮上式鉄道の地上コイル装置。A spacer is pressed against a propulsion coil that generates a propulsive force of a vehicle on the inner side of the side wall of a U-shaped concrete track having both side walls and a bottom wall, and the spacer is fixed to the side wall by fastening means. In the ground coil device of a magnetic levitation railway in which a levitation coil for guiding the levitation of the vehicle is arranged on the side of the concrete track from the propulsion coil and fixed to the side wall, the spacer is formed of continuous glass fiber reinforced resin. A magnetic levitation railway ground coil device characterized by 請求項1に記載の磁気浮上式鉄道の地上コイル装置において、連続ガラス繊維強化樹脂は連続ガラス繊維の含有率が30wt%から40wt%で、無方向に分散させたものであることを特徴とする磁気浮上式鉄道の地上コイル装置。The ground coil device for a magnetically levitated railway according to claim 1, wherein the continuous glass fiber reinforced resin has a continuous glass fiber content of 30 wt% to 40 wt% and is dispersed in a non-directional direction. Ground coil device for magnetic levitation railway.
JP17113396A 1996-07-01 1996-07-01 Magnetic levitation railway ground coil equipment Expired - Fee Related JP3768602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17113396A JP3768602B2 (en) 1996-07-01 1996-07-01 Magnetic levitation railway ground coil equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17113396A JP3768602B2 (en) 1996-07-01 1996-07-01 Magnetic levitation railway ground coil equipment

Publications (2)

Publication Number Publication Date
JPH1023611A JPH1023611A (en) 1998-01-23
JP3768602B2 true JP3768602B2 (en) 2006-04-19

Family

ID=15917602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17113396A Expired - Fee Related JP3768602B2 (en) 1996-07-01 1996-07-01 Magnetic levitation railway ground coil equipment

Country Status (1)

Country Link
JP (1) JP3768602B2 (en)

Also Published As

Publication number Publication date
JPH1023611A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
US5078397A (en) Golf club head
JP3071511B2 (en) Ski with three-dimensionally shaped upper side
US6464289B2 (en) Reinforced front-face support for a motor vehicle
JP3768602B2 (en) Magnetic levitation railway ground coil equipment
CN102224039A (en) Functional panel and method for joining same
JP3301892B2 (en) Ground coil device for magnetic levitation railway
JPH0414307Y2 (en)
JPH0415237Y2 (en)
EP0465824A1 (en) Steering wheel
GB2156166A (en) Improvements in electrodynamic shakers
EP0010815B1 (en) An electromagnetic track brake for a railway vehicle
US7428877B2 (en) Small watercraft
JP3805426B2 (en) Ground laying coil device and manufacturing method thereof
JPH0335565Y2 (en)
JPH05213189A (en) Vehicle body structure
JP2729689B2 (en) Golf club head
WO2021210579A1 (en) Core and method for molding structure
EP1303369B1 (en) A device for continuous or semi-continuous casting of a metal material
WO2023149280A1 (en) Fin
JP2008201194A (en) Outer board panel component for automobile, method for using outer panel component for automobile, and hood for automobile
JPH10152052A (en) Pole for barrier and use of the same
JPS60101690U (en) Vacuum insulation material arrangement structure
JPH097831A (en) Ground coil for magnetic levitation system railway use
JPS59173337A (en) Member for held frame
JP3587169B2 (en) Composite molded products

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051021

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051021

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees