JP3768338B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP3768338B2
JP3768338B2 JP26777897A JP26777897A JP3768338B2 JP 3768338 B2 JP3768338 B2 JP 3768338B2 JP 26777897 A JP26777897 A JP 26777897A JP 26777897 A JP26777897 A JP 26777897A JP 3768338 B2 JP3768338 B2 JP 3768338B2
Authority
JP
Japan
Prior art keywords
capacitor
insulating film
lower electrode
dielectric constant
reference example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26777897A
Other languages
English (en)
Other versions
JPH1187629A (ja
Inventor
耕一 木城
正樹 ▲吉▼丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP26777897A priority Critical patent/JP3768338B2/ja
Publication of JPH1187629A publication Critical patent/JPH1187629A/ja
Application granted granted Critical
Publication of JP3768338B2 publication Critical patent/JP3768338B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばDRAMのごときキャパシタを備えた半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
近年、半導体装置の高集積化や高密度化によって、DRAM中のキャパシタ面積は小さくなってきている。キャパシタ面積の減少とともに容量も低下すると、ソフトエラーなどによるデバイスの誤動作を招きかねないため、キャパシタ面積が減少しても、十分な容量を確保しなければならない。この問題を解決する一つの方法として、高比誘電率を有する絶縁膜(高誘電体膜)をキャパシタ絶縁膜として用いる方法がある。ここでTa25は、従来一般にキャパシタ絶縁膜として用いられてきたSiO2やSi34などに比べて3倍以上の大きな比誘電率をもち、また、CVD法によって容易にステップカバレージの優れた薄膜を堆積することができるといった特徴がある。このため、次世代のDRAMキャパシタ絶縁膜としてTa25が研究されてきた。このようにキャパシタ絶縁膜としてTa25を用いる技術は、例えば特開平4−349657号に開示されている。
【0003】
一方、Ta25をCVD法で成膜して形成された絶縁膜は、原料や成膜法に起因する不純物や酸素欠損を多く含み、これらはリーク電流の原因となる。このため、Ta25成膜後にポストアニールを施すことでリーク特性を改善する方法が知られている。ところが、例えばPoly−Siからなる下部電極上に成膜したTa25をポストアニールした場合は、Ta25とSiの界面に低誘電率のSiO2が形成され、キャパシタの容量が低下してしまう。このためTa25とSiの界面にRTN(Rapid Thermal Nitrization)やCVD法で成膜した薄いシリコン窒化膜をバリア層として挿入し、キャパシタを形成することが、例えば特開平7−169917号で提案されている。
【0004】
ここで図13は、Poly−Siからなる下部電極表面をRTNにより窒化し、Ta25を成膜して形成する従来の半導体装置のキャパシタセルの構成を、プロセスフローに従って示している。この図13に沿って、従来のキャパシタの一例について具体的に説明する。
【0005】
まず、図13(a)に示すように半導体基板上に成膜された層間絶縁膜100(SiO2)にコンタクト用のホールを開口し、埋め込みコンタクト101を形成する。次に図13(b)に示すように、埋め込みコンタクト101上にPoly−Siからなる下部電極102を形成し、RTNにより下部電極102の表面を窒化してSiN薄膜103を形成する。さらに図13(c)に示すように、Ta25を膜厚10nm程度に成膜してキャパシタ絶縁膜104を形成し、ポストアニールを行う。最後に図13(d)に示すように、上部電極105を堆積して、キャパシタセルを形成する。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の半導体装置のキャパシタに用いられるキャパシタ絶縁膜は、例えば50以上といったような大きな比誘電率を示すことはできない。その理由を、図13に示した従来のキャパシタセルによって具体的に説明する。図14は、図13に示した従来のキャパシタセルにおいて、ポストアニールにより結晶化させられたTa25のXRD回折パターンを示す。Ta25結晶のピークが見られ、ピーク位置とピーク強度はASTMカードの値とほぼ一致している。2θが23度と28度付近に現れるピークがTa25のメインピークであり、それぞれのピーク強度をI1,I2としたときの強度比(I1/I2)が(001)面と(200)面への配向性を示す。この図14に示されるように、SiN上で結晶化したTa25の強度比(I1/I2)は0.5〜1程度であり、配向性は見られない。このような配向性の低いTa25結晶は、約20〜25程度の比誘電率しか示さず、キャパシタの容量を更に大きくすることはできない。また、図13に示した従来のキャパシタセルは、Ta25より比誘電率の小さなSiNをバリア層として挿入するため、キャパシタの容量が更に低下してしまう。
【0007】
一方、このような比誘電率が約20〜25程度のTa25を256MDRAMのキャパシタ絶縁膜に適用するには、3次元的なキャパシタを形成して表面積を大きくすることが考えられる。しかしキャパシタ絶縁膜の薄膜化とキャパシタ形状の複雑化には限界があり、1G移行のDRAMキャパシタにはより高い比誘電率をもつ誘電体膜の開発を行う必要がある。
【0008】
本発明の目的は、例えば50以上といったような大きな比誘電率を示すことができるキャパシタ絶縁膜を備えた半導体装置の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
前記した目的を達成するために、本発明の半導体装置の製造方法は、半導体基板上にRuで構成される最上層と最上層の直下に設けられるTiN層とにより構成される下部電極を形成する工程と、その後半導体基板に対し最上層の結晶性を向上させるために非酸化性雰囲気中で第1の熱処理をおこなう工程と、第1の熱処理の後下部電極上にTa 2 5 を成膜する工程と、成膜されたTa 2 5 に対し550℃程度の第2の熱処理を行いTa 2 5 を比誘電率を高める特定結晶面(001)面に配向させるように結晶化して下部電極上にキャパシタ絶縁膜を形成する工程と、キャパシタ絶縁膜上に上部電極を形成する工程とを有することを特徴とする。
【0010】
ここで比誘電率を高める特定の結晶面とは、Ta25のXRD回折パターンの2θが,23゜又は28゜付近に現れるピークに配向した面であり、例えば(001)面である。そして例えば(001)面に主配向させれば、本発明の所期の目的を達成することができる。
【0011】
このように、最上層がRuからなる下部電極上でTa25を堆積した後、この下部電極上で該Ta25を、比誘電率を高める特定面に配向させるように結晶化させると、後述の実施形態で示したように、Ta25の比誘電率は飛躍的に向上し、従来は20〜25程度とされていたTa25の比誘電率を、その2倍以上に向上させることができた。なおTa25を結晶化する際の熱処理は、窒素やアルゴン雰囲気などの非酸化性雰囲気中で行うことが好ましい。
【0012】
【発明の実施の形態】
図1は、本発明の第1の参考例にかかる半導体装置のキャパシタセルの構成を、プロセスフローに従って示した説明図である。先ず,図1(a)に示すように、半導体基板上に成膜された層間絶縁膜1(SiO2)の所定の位置にコンタクト用のホールを開口し、埋め込みコンタクト2としてのポリシリコンを埋め込む。次に図1(b)に示すように、埋め込みコンタクト2上に例えばRu、Pt、Irなどといった白金族の金属もしくはそれら金属同士の合金からなる下部電極(ストレージノード)3を形成した後、Ta25を10nm程度堆積し、これに700℃以上のポストアニールを加えてTa25を結晶化させ、キャパシタ絶縁膜4を形成する。そして図1(c)に示すように、上部電極5を堆積し、キャパシタを形成する。
【0013】
この第1の参考例によれば、下部電極3にRu、Pt、Irなどといった酸化されにくい比較的安定な金属を用いているので、キャパシタ絶縁膜4を700℃以上の高温でポストアニールした時に、キャパシタ絶縁膜4であるTa25と下部電極3との反応を抑えることができる。また、ポストアニールによってTa25を下部電極3の結晶構造に配向して結晶化させることができる。
【0014】
ここで、図2は、第1の参考例に従って製造されるキャパシタ絶縁膜4と同じ条件で、ポストアニールにより結晶化させたTa25のXRD回折パターンを示す。図2からわかるように、Ta25結晶のピークが見られ、ピーク位置とピーク強度はASTMカードの値とほぼ一致している。2θが23゜と28゜付近に現れるピークがTa25のメインピークであり、各々のピーク強度をI1、I2としたときの強度比(I1/I2)が(001)面と(200)面への配向性を示す。この図2に示すように、例えばRu上にてポストアニールによって結晶化させたTa25は(001)面に配向し、強度比(I1/I2)が10以上となる。また、Pt上で結晶化させたTa25は強度比(I1/I2)が0.1以下になる。これに対して、SiN上で結晶化したTa25の強度比(I1/I2)は0.5〜1程度であり、配向性は見られない。同じ温度でポストアニールした場合、図3に示すように、(001)面や(200)面に大きく配向したTa25は、配向せずに結晶化したTa25よりも大きい、50以上の比誘電率をもつことがわかる。
【0015】
この第1の参考例に従って製造される半導体装置は、キャパシタ絶縁膜4と下部電極3との界面にSiNなどといった反応防止用の低誘電率の膜をはさむ必要がないので、キャパシタの容量が低下することもない。このように、第1の参考例に従って製造される半導体装置は、大きく配向したTa25結晶を用いることで大きな比誘電率を有するキャパシタ絶縁膜4を形成でき、小面積で大容量を持つ高誘電体キャパシタを実現することができる。
【0016】
図4は、本発明の第2の参考例にかかる半導体装置のキャパシタセルの構成を、プロセスフローに従って示した説明図である。先ず、図4(a)に示すように、層間絶縁膜11上の所定の位置に、埋め込みコンタクト12を設けるまでは第1の参考例と同様である。次に図4(b)に示すように、埋め込みコンタクト2上に例えばRuO2などといった白金族の金属の導電性酸化物もしくは白金族の金属同士の合金の導電性酸化物からなる下部電極(ストレージノード)13を形成する。この後、図4(c)に示すように、Ta25を堆積し、前記第1の参考例と同様、700℃以上のポストアニールを加えてTa25を結晶化させ、キャパシタ絶縁膜14を形成する。更に、図4(d)に示すように、上部電極15を成膜し、キャパシタを形成する。
【0017】
この第2の参考例によれば、下部電極13として例えばRuO2などの導電性酸化物を用いている。このため、第1の参考例と同様に、700℃以上のポストアニールにより、キャパシタ絶縁膜14のTa25は下部電極13の結晶に配向し、Ta25は(001)面に配向して強度比(I1/I2)が10以上になる。このように高配向したTa25の結晶は50以上の比誘電率を示す。
【0018】
これはPoly−SiやSiNなどのアモルファス上で配向せずにTa25が結晶化したときに比べて、2倍以上の大きな比誘電率になる。またRuO2などは酸化物であるため、Ta25堆積後のポストアニールによってそれ以上酸化されることはない。更に,キャパシタ絶縁膜14と下部電極13の界面に誘電率の低いSiNをバリア層としてはさむ必要がないので、キャパシタの容量が低下することはない。RuO2のほかにIrO2などの結晶性の導電性酸化物を用いたときも同様の効果が期待できる。このように導電性酸化物からなる下部電極13上で高配向させたTa25結晶をキャパシタ絶縁膜14に用いることで、50以上の大きな比誘電率を有するキャパシタを形成でき、小面積で大容量を持つ高誘電体キャパシタを実現できる。
【0019】
図5は、本発明の第3の参考例にかかる半導体装置のキャパシタセルの構成を、プロセスフローに従って示した説明図である。先ず、図5(a)に示すように、層間絶縁膜21上の所定の位置に,埋め込みコンタクト22を設けるまでは第1の参考例と同様である。次に図5(b)に示すように、500オングストローム程度のRu23を堆積した後、Ru23上に更にRuO224を積層することにより、埋め込みコンタクト22上にこれらRu23とRuO224を積層した構成の下部電極25(ストレージノード)を形成する。この後、図5(c)に示すように、Ta25を堆積し、前出各参考例と同様、700℃以上のポストアニールを加えてTa25を結晶化させ、キャパシタ絶縁膜26を形成する。その後図5(d)に示すように、上部電極27を成膜し、キャパシタを形成する。
【0020】
この第3の参考例によれば、下部電極25としてRu23とRuO224の積層構造を用いている。下部電極25の表面はRuO224であり、ポストアニールにより結晶化するキャパシタ絶縁膜26のTa25は(001)面に配向し、強度比(I1/I2)が10以上になる。このため、第1、2の参考例と同様の効果がある。また、RuO224と層間絶縁膜21(Si基板表面)との界面にRu23を介在させることで、ポストアニールによるコンタクト界面の酸化を防止し、RuO224と層間絶縁膜21にかかるストレス(熱応力)を緩和することができる。これによりキャパシタ絶縁膜26のリーク電流を小さくすることができる。このように、下部電極25上で大きく配向したTa25結晶のキャパシタ絶縁膜26を用いることにより、50以上の大きな比誘電率を有するキャパシタを形成でき、リーク電流を低く抑えて、小面積で大きな容量を持つ高誘電体キャパシタを実現することができる。
【0021】
図6は,本発明の第4の参考例にかかる半導体装置のキャパシタセルの構成を、プロセスフローに従って示した説明図である。図6(a)に示すように、層間絶縁膜31上の所定の位置に、埋め込みコンタクト32を設けるまでは第1の参考例と同様である。次に図6(b)に示すように、層間絶縁膜31上に例えばRuなどといった白金族の金属33もしくは白金族の金属同士の合金33を堆積し、700℃程度で30秒ほど窒素やアルゴンなどの非酸化性雰囲気中でRTA(Rapid Thermal Annealing)などの熱処理を施す。
【0022】
次に、例えばフォトリソ工程によって、図6(c)に示すように、埋め込みコンタクト32上に下部電極34(ストレージノード)を形成する。その後、図6(c)に示すように、Ta25を堆積し、550℃程度のポストアニールを加えてTa25を結晶化させ、キャパシタ絶縁膜35を形成する。更に、図6(d)に示すように、上部電極36を堆積し、キャパシタを形成する。
【0023】
この第4の参考例によれば、下部電極34がRuなどといった白金族の金属やその合金にRTAを施して結晶性を向上させた構成になっている。非酸化性雰囲気中でRTAすることにより、Ruなどは成膜時より結晶性が向上し、図7に示すように(002)面に強く配向する。このようにRTA処理したRu上ではTa25は成膜直後でも(001)面に配向した結晶性を示す。
【0024】
そして、本参考例によれば、前記した700℃より低い550℃程度の低温アニールで(001)配向したまま結晶化が進み、図8に示すように、その強度比(I1/I2)が100以上になる。いわば従来より低温プロセスによってある配向をもった結晶化をすることができる。この結晶性の向上に伴ってTa25の比誘電率も増加し、図9に示すように、3時間のアニール後には比誘電率が50以上になる。従って、この第4の参考例のように、結晶性を向上させた下部電極34上で配向したTa25結晶からなるキャパシタ絶縁膜35を形成することで、低温プロセスが可能で50以上の比誘電率を有する、小面積で大容量を持つ高誘電体キャパシタを実現するできる。また、先に説明した第2、3の参考例にも、この第4の参考例のように、予め下部電極の結晶性を向上させておくことによって、同様の効果が期待できる。
【0025】
図10は,本発明の実施の形態にかかる半導体装置のキャパシタセルの構成を、プロセスフローに従って示した説明図である。図10(a)に示すように、層間絶縁膜41上の所定の位置に、埋め込みコンタクト42を設けるまでは第1の参考例と同様である。次に、図10(b)に示すように、Ti43を300オングストローム程度、TiN44を500オングストローム程度堆積した後に、Ru45を堆積し、700℃程度で30秒ほど窒素またはアルゴン中などの非酸化性雰囲気中でRTAする。
【0026】
この後、例えばフォトリソ工程により、図10(c)に示すように、埋め込みコンタクト42上に、これらTi43、TiN44、Ru45の積層した構成の下部電極46(ストレージノード)を形成する。その後、図10(c)に示すように、Ta25を堆積し、550℃程度のポストアニールを加えてTa25を結晶化させ、キャパシタ絶縁膜47を形成する。更に、図10(d)に示すように、上部電極48を成膜し、キャパシタを形成する。
【0027】
この実施の形態によれば,結晶配向したTiN44上にRu45を堆積し、更にRTAでRu45の結晶性を向上させている。このようなRu45上ではTa25は、図11に示すように、(200)面のピークが見られないほどに(001)面に強く配向し、前記参考例と同様、550℃程度の低温で結晶化が進む。この結晶性の向上とともにTa25の比誘電率は増加し、図12に示すように、3時間のアニール後には比誘電率が60以上になる。このように、結晶性を向上させた下部電極46にTa25を成膜することでキャパシタ絶縁膜47は大きな比誘電率を有し、かつ低温プロセスを可能にし、小面積で大きな容量を持つ高誘電体キャパシタを実現できる。また、先に説明した第2、3の参考例にも、この実施の形態のように、予め下部電極の結晶性を向上させておくことによって、同様の効果が期待できる。
【0028】
DRAMキャパシタの誘電体膜として研究されているTa25は、これまで比誘電率は20〜25程度と考えられていた。しかし、前記参考例及び実施の形態で明らかなように、白金族の金属や合金又はそれらの金属酸化物上では、Ta25はRuなどの下地によって強く配向して結晶化し、50以上の大きな比誘電率を示すことが判明した。
【0029】
なお、ポストアニール時にTa25と反応せず、結晶性をもつあらゆる下部電極上で結晶配向させたTa25をキャパシタ絶縁膜として用いた場合は、同様の効果が期待できる。以上の参考例及び実施の形態では、(001)面と(200)面に配向したTa25について述べたが、配向する面方位に関係なく高配向させて結晶化させたTa25結晶は、高い比誘電率をもつことが期待できる。
【0030】
【発明の効果】
本発明によれば、キャパシタ絶縁膜として用いたTa25の比誘電率を、従来の2倍の50以上の大きな値とすることができ、小面積で大容量のキャパシタを備えた高集積化や高密度化が可能な半導体装置を製造することができる。またとくに、請求項によれば、Ta25を結晶化させるための熱処理が、従来よりも低温で実施することができる。
【図面の簡単な説明】
【図1】 本発明の第1の参考例に従って製造される半導体装置のキャパシタセルの構成を、プロセスフローに従って示した説明図である。
【図2】 第1の参考例に従って製造されるキャパシタ絶縁膜と同じ条件で、ポストアニールにより結晶化させたTa25のXRD回折パターンを示すグラフである。
【図3】 第1の参考例に従って製造されるキャパシタ絶縁膜と同じ条件で、ポストアニールにより結晶化させたTa25の比誘電率を示すグラフである。
【図4】 本発明の第2の参考例に従って製造される半導体装置のキャパシタセルの構成を、プロセスフローに従って示した説明図である。
【図5】 本発明の第3の参考例に従って製造される半導体装置のキャパシタセルの構成を、プロセスフローに従って示した説明図である。
【図6】 本発明の第4の参考例に従って製造される半導体装置のキャパシタセルの構成を、プロセスフローに従って示した説明図である。
【図7】 第4の参考例に従って製造されるキャパシタ絶縁膜と同じ条件で、RTAにより結晶化させたRuのXRD回折パターンを示すグラフである。
【図8】 第4の参考例に従って製造されるキャパシタ絶縁膜と同じ条件で、ポストアニールにより結晶化させたTa25のXRD回折パターンを示すグラフである。
【図9】 第4の参考例に従って製造されるキャパシタ絶縁膜と同じ条件で、ポストアニールにより結晶化させたTa25の比誘電率を示すグラフである。
【図10】 本発明の実施の形態に従って製造される半導体装置のキャパシタセルの構成を、プロセスフローに従って示した説明図である。
【図11】 本発明の実施の形態に従って製造されるキャパシタ絶縁膜と同じ条件で、ポストアニールにより結晶化させたTa25の比誘電率を示すグラフである。
【図12】 本発明の実施の形態に従って製造されるキャパシタ絶縁膜と同じ条件で、ポストアニールにより結晶化させたTa25の比誘電率を示すグラフである。
【図13】 従来技術の説明図である。
【図14】 従来のキャパシタセルにおいて、ポストアニールにより結晶化されたTa25のXRD回折パターンを示すグラフである。
【符号の説明】
1 層間絶縁膜
2 埋め込みコンタクト
3 下部電極
4 キャパシタ絶縁膜
5 上部電極

Claims (2)

  1. 半導体基板上に、Ruで構成される最上層と前記最上層の直下に設けられるTiN層とにより構成される下部電極を形成する工程と、
    その後前記半導体基板に対し、前記最上層の結晶性を向上させるために、非酸化性雰囲気中で第1の熱処理をおこなう工程と、
    前記第1の熱処理の後、前記下部電極上にTa25を成膜する工程と、
    前記成膜されたTa25に対し550℃程度の第2の熱処理を行い、当該第2の熱処理において、前記Ta25を、比誘電率を高める特定結晶面(001)面に配向させるように結晶化して、前記下部電極上にキャパシタ絶縁膜を形成する工程と、
    前記キャパシタ絶縁膜上に上部電極を形成する工程と、を有することを特徴とする半導体装置の製造方法。
  2. 前記第1の熱処理は、窒素又はアルゴン雰囲気中で、700℃程度で行われることを特徴とする、請求項1に記載の半導体装置の製造方法。
JP26777897A 1997-09-12 1997-09-12 半導体装置の製造方法 Expired - Fee Related JP3768338B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26777897A JP3768338B2 (ja) 1997-09-12 1997-09-12 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26777897A JP3768338B2 (ja) 1997-09-12 1997-09-12 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPH1187629A JPH1187629A (ja) 1999-03-30
JP3768338B2 true JP3768338B2 (ja) 2006-04-19

Family

ID=17449458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26777897A Expired - Fee Related JP3768338B2 (ja) 1997-09-12 1997-09-12 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP3768338B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313951A (ja) * 2001-04-11 2002-10-25 Hitachi Ltd 半導体集積回路装置及びその製造方法
KR100464404B1 (ko) * 2001-07-27 2005-01-03 삼성전자주식회사 반도체 장치의 제조 방법
KR100455375B1 (ko) * 2001-09-17 2004-11-12 삼성전자주식회사 열처리량을 조절하는 반도체 메모리 소자의 커패시터 제조 방법

Also Published As

Publication number Publication date
JPH1187629A (ja) 1999-03-30

Similar Documents

Publication Publication Date Title
US8345461B2 (en) Ferroelectric capacitor and its manufacturing method
JP3512959B2 (ja) 半導体装置及びその製造方法
US7700454B2 (en) Methods of forming integrated circuit electrodes and capacitors by wrinkling a layer that includes a high percentage of impurities
US20060267065A1 (en) Semiconductor device using a conductive film and method of manufacturing the same
US20060180844A1 (en) Integrated circuitry and method of forming a capacitor
US20040232468A1 (en) Barrier layers for protecting metal oxides from hydrogen degradation
JP2000174215A (ja) 強誘電体集積回路及びその製造方法
US6759250B2 (en) Deposition method for lead germanate ferroelectric structure with multi-layered electrode
US6200847B1 (en) Method of manufacturing capacitor of semiconductor device
US6828190B2 (en) Method for manufacturing capacitor of semiconductor device having dielectric layer of high dielectric constant
KR20000071417A (ko) 이리듐 도전성 전극/배리어 구조 및 그의 제조 방법
KR100358430B1 (ko) 이리듐 복합 배리어 구조 및 그의 제조 방법
US20020000590A1 (en) Semiconductor memory device and method of manufacturing the same
JP3768338B2 (ja) 半導体装置の製造方法
KR100293713B1 (ko) 메모리소자의 커패시터 제조방법
US20040092038A1 (en) Method for forming a capacitor having a high-dielectric-constant insulation film
US6455328B2 (en) Method of manufacture of a capacitor with a dielectric on the basis of strontium-bismuth-tantalum
JPH06177347A (ja) 半導体装置および半導体装置の製造方法
JPH0951079A (ja) 半導体素子およびその製造方法
JP2002329845A (ja) 強誘電体メモリ素子の製造方法および強誘電体メモリ装置
JP2009076571A (ja) 強誘電体キャパシタとその製造方法、及び強誘電体メモリ装置
JP2006245612A (ja) 容量素子の製造方法
KR100358147B1 (ko) 강유전체 캐패시터 제조 방법
JP2008227218A (ja) 強誘電体キャパシタの製造方法
KR100725081B1 (ko) 반도체 장치의 제조 방법

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040128

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees