JP3767433B2 - Decontamination / dismantling wastewater treatment method for waste incinerator facilities - Google Patents

Decontamination / dismantling wastewater treatment method for waste incinerator facilities Download PDF

Info

Publication number
JP3767433B2
JP3767433B2 JP2001250986A JP2001250986A JP3767433B2 JP 3767433 B2 JP3767433 B2 JP 3767433B2 JP 2001250986 A JP2001250986 A JP 2001250986A JP 2001250986 A JP2001250986 A JP 2001250986A JP 3767433 B2 JP3767433 B2 JP 3767433B2
Authority
JP
Japan
Prior art keywords
treatment
decontamination
membrane
heavy metal
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001250986A
Other languages
Japanese (ja)
Other versions
JP2003053343A (en
Inventor
博司 宮田
敏仁 内田
秀夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Kurita Engineering Co Ltd
Original Assignee
Kurita Water Industries Ltd
Kurita Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Kurita Engineering Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001250986A priority Critical patent/JP3767433B2/en
Publication of JP2003053343A publication Critical patent/JP2003053343A/en
Application granted granted Critical
Publication of JP3767433B2 publication Critical patent/JP3767433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ごみ焼却炉等の廃棄物焼却炉設備の除染又は解体作業時に排出される排水の処理方法に関する。
【0002】
【従来の技術及び先行技術】
ごみ焼却炉等の焼却炉においては、燃焼中に、フェノール、ベンゼン、アセチレン等の有機化合物、クロロフェノール、クロロベンゼン等の塩素系芳香族化合物や塩素系アルキル化合物等のダイオキシン類前駆体が発生する。これらのダイオキシン類前駆体は、飛灰が共存するとその触媒作用でポリ塩化−p−ジベンゾダイオキシン類(PCDD),ポリ塩化ジベンゾフラン類(PCDF),コプラナーポリクロロビフェニル等の有機塩素化合物(以下、これらを併せて「ダイオキシン類」と称する。)を生成する。
【0003】
生成したダイオキシン類は、ごみ焼却運転中に添加されるダイオキシン類分解剤や吸着剤により除去されたり、焼却灰中に含有されて焼却炉から排出され、その後分解処理されたりするが、一部は、炉壁、煙道等に付着して残留する。また、ダイオキシン類の一部は、焼却炉中に残留した灰等に付着して焼却炉内に残留する。
【0004】
焼却炉ではまた、焼却されたごみ等の廃棄物中に含まれていた重金属類が灰等に含有されて残留する。
【0005】
ところで、ごみ焼却炉等の廃棄物焼却炉設備が老朽化した場合、或いは、広域化のために統合される場合、更には周辺設備を更新する場合等においては、既存の焼却炉を解体することが必要となる。この解体に当たっては、焼却炉内に残留するダイオキシン類や重金属類等の汚染物のために作業環境が著しく損なわれることから、作業の安全性を確保するべく、先に労働省労働基準局長より「廃棄物焼却施設解体工事におけるダイオキシン類による健康障害防止について」の通達が出された。本通達では、焼却施設解体時の汚染除去作業時に発生する発塵防止のために、例えば、次のように高圧水による洗浄で焼却炉設備内の付着物を除去する除染作業を行うことが義務付けられた。
「解体対象設備の汚染除去
解体前に対象設備の汚染除去を以下の方法により行うこと。
▲1▼ 炉内壁及び設備内部等、対象部分が確認できる箇所については、高圧水洗浄等により汚染除去を行うこと。
▲2▼ 煙道等、狭隘な場所については、フランジ部分を手作業により外した後、高圧水洗浄等により汚染除去を行うこと。」
【0006】
この高圧水洗浄時の洗浄水としては、一般的には水道水や工業用水が使用される。また、洗浄で発生する洗浄排水は、通常その地域の排水基準及び下水道等放流基準により放流されることとなる。
【0007】
上記高圧水洗浄に使用される洗浄水量は、当該廃棄物焼却炉設備の規模及び汚染状況によっても異なるが、大量の洗浄水が必要となることが予想される。従って、水道水等の補給水を節減すると共に、下水道等への放流水を大幅に低減するために、洗浄排水は再利用可能な水質に処理した後洗浄水として再利用することが望まれる。
【0008】
高圧水洗浄による汚染物除去対象部分別に廃棄物焼却炉設備を分類すると、焼却炉、廃熱ボイラ、煙道、ガス冷却装置、集塵装置、煙突、灰ピット、排水処理ピット等であり、汚染物の除去対象は、これらの炉設備各部に付着している煤塵等の付着物、炉底やピット等に残存、堆積している煤塵、焼却灰、ボイラダスト及び汚泥類である。
【0009】
従って、高圧水洗浄で発生する洗浄排水は、高圧水で剥離、除去したこれらの汚染物を含むものであり、埋立基準、排水基準等に設定されている物質が多量に且つ複合的に含有されたものとなる。この洗浄排水中の汚染物は、pH、イオン強度、油分含有量等の排水水質によって溶解性も異なる。一方で、高圧水洗浄の洗浄水としての使用には、次のようなことが求められることから、洗浄排水の回収再利用に当っては、一連の水処理システムで下記要求項目を満たす水質の再利用水を得ることが必要となる。
(1) 高圧水洗浄機ポンプの目詰まりを防止するために、懸濁物質濃度を低く抑える。
(2) ダイオキシン類濃度及び重金属類濃度を十分に低減する。高圧水洗浄時の作業雰囲気は、高圧水と汚染付着物との接触による摩擦熱等で作業場は高温になり、再利用水成分の空気中への気化、揮散がある。解体は作業場全体を隔離しており、この隔離された作業場において高圧水洗浄作業中はエアラインマスク等呼吸用保護具を装着するが、作業場系内が水を循環することによりダイオキシン類及び重金属類等の有害物質が作業系内において濃縮傾向になってはならない。
(3) 解体後、排出される廃棄物表面に残存する塩類付着物量を減少させると共に、使用機器の腐食トラブル防止のために、塩類濃度を低く抑える。
(4) 再利用のための水処理システム系から系外に排水できるよう、下水放流基準あるいは排水基準を満足すること。
【0010】
更に、高圧水洗浄で用いる洗浄水量は時間変動が激しく、しかも、汚染物の成分及び濃度も発生場所等により大きく異なるため、洗浄排水の水処理システムには、水量負荷変動、水質負荷変動にも十分に対応できることが望まれる。
【0011】
このような要求条件を満たす水システムとして、本出願人は先に、廃棄物焼却炉設備内の付着物に高圧水を吹き付けて該付着物を剥離する剥離工程と、該剥離工程から排出するスラリーを無害化処理する処理工程と、該処理工程から流出する処理物から水を分離する水分離工程と、該水分離工程で分離された水を前記剥離工程の高圧水として該剥離工程に送給する工程とを有する廃棄物焼却炉設備の洗浄方法を提案した(特願2000−374650。以下「先願」という。)。この方法では、無害化処理工程として、キレート剤等による重金属不溶化工程と活性炭によるダイオキシン類吸着工程とを行い、その後、凝集剤を添加して凝集沈殿処理を行っている。
【0012】
上記先願の方法によれば、各工程で順次重金属類の不溶化及びやダイオキシン類の吸着を行って、凝集反応工程で不溶化物や懸濁物質を凝集分離することにより、良好な再利用水を得ることができる。また、この方法では、多段階の反応工程を経ることで、水質変動や水量変動にも十分に対応することが可能となる。
【0013】
【発明が解決しようとする課題】
しかしながら、先願の方法では、ダイオキシン類を吸着し、高濃度でダイオキシン類を含有する活性炭が後段の凝集沈殿分離工程で少量であっても処理水側に流出すると、処理水中のダイオキシン類濃度が高くなり、排水基準や環境基準を満たすことができず、処理水を放流し得なくなる可能性がある。
【0014】
また、凝集沈殿分離には、大きな凝集沈殿設備を必要とし、設備スペースの面でも問題がある。
【0015】
本発明は、上記先願の問題点を解決し、廃棄物焼却炉設備の除染又は解体時に排出される排水を処理するに当たり、不溶化物や懸濁物質を確実に分離除去して良好な水質の処理水を安定かつ確実に得ると共に、現場に対応したコンパクトな処理装置で処理可能な廃棄物焼却炉設備の除染・解体排水の処理方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明の廃棄物焼却炉設備の除染・解体排水の処理方法は、廃棄物焼却炉設備の除染又は解体時に排出される排水を処理する方法において、該排水に重金属処理剤を添加して重金属を処理する重金属処理工程と、該排水に吸着剤を添加して吸着処理する吸着処理工程と、重金属処理工程及び吸着処理工程を経た処理水を膜により固液分離処理する膜処理工程とを有する廃棄物焼却炉設備の除染・解体排水の処理方法であって、該重金属処理工程の処理水を該吸着処理工程で吸着処理し、該吸着処理工程の処理水を該膜処理工程で固液分離処理することを特徴とする。
【0017】
この方法では、除染・解体排水中の重金属類を重金属処理剤で不溶化し、また、溶存しているダイオキシン類を活性炭等の吸着剤で吸着除去し、その後、膜処理により不溶化物ないし懸濁物質を高度に除去することにより、除染又は解体時に発生する重金属類及びダイオキシン類を含む排水を無害化し、放流ないし再利用可能な処理水を安定かつ確実に得ることができる。また、膜処理であれば、凝集沈殿処理のような大きな設備は必要なく、設置のコンパクト化、設置スペースの節減を図ることができる。
【0018】
本発明において、重金属処理剤としては、ジチオカルバミン酸系キレート剤、鉄塩、硫化物、珪酸塩、リン酸、リン酸塩及び炭酸塩よりなる群から選ばれる1種又は2種以上が好ましい。また、吸着剤としては、活性炭、活性コークス等の炭素系吸着剤、及びゼオライト、珪藻土等の無機系吸着剤よりなる群から選ばれる1種又は2種以上が好ましい。
【0019】
また、膜処理工程で用いる膜としては、セラミック膜、又は高分子膜が好適である。
【0020】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
【0021】
図1は本発明の廃棄物焼却炉設備の除染・解体排水の処理方法の実施の形態を示す系統図である。
【0022】
図1の方法では、ごみ焼却炉等の廃棄物焼却炉設備の除染又は解体時に、設備内に付着した汚染物に高圧水を吹き付けてこれを剥離除去する高圧水洗浄等で発生する除染・解体排水をまず重金属処理工程1に送給し、重金属処理槽にて重金属処理剤を添加して、排水中の重金属を不溶化する。
【0023】
ここで用いる重金属処理剤としては、ジチオカルバミン酸系キレート剤、鉄塩、硫化物、珪酸塩、リン酸、リン酸塩、炭酸塩等が挙げられ、排水中に含まれる重金属の種類に応じて、1種又は2種以上のものを選定使用することが好ましい。
【0024】
例えば、排水中の鉛(Pb)、カドミウム(Cd)、水銀(Hg)等の2価の重金属を不溶化するための薬剤としては、ジチオカルバミン酸系キレート剤が最適であるが、ジチオカルバミン酸系キレート剤に限らず、これらの重金属の不溶化能を有する硫化物、珪酸塩、リン酸、リン酸塩、炭酸塩等であっても良い。
【0025】
チオカルバミン酸系キレート剤の添加量は、被処理排水中の上記重金属濃度に応じて適宜決定されるが、一般的には10〜100mg/L程度である。このチオカルバミン酸系キレート剤による不溶化処理のpHはpH5〜9.5程度が好ましく、必要に応じてアルカリ等を添加してこのようなpH範囲に調整するのが好ましい。
【0026】
また、排水中に6価クロム(Cr6+)、砒素(As)、セレン(Se)が存在する場合には、別途鉄塩、好ましくは第一鉄塩を添加して、第一鉄塩による還元、及び共存するカルシウム塩、アルミニウム塩、鉄塩水酸化物による共沈によりこれらを不溶化処理する。この第一鉄塩としては、硫酸第一鉄(FeSO)、塩化第一鉄(FeCl)等が好ましく、その添加量は被処理排水中のCr6+等の重金属濃度に応じて適宜決定されるが、一般的には30〜300mg/L程度である。鉄塩による不溶化処理のpHはpH7〜12.5特にpH8.5〜9.5とするのが好ましいが、As、Se、Cr6+等の還元にはpH5.5〜6.5が適するのでこれらの濃度が高い場合は一度塩酸等の酸を加えてpHを下げた後、アルカリを添加する。
【0027】
重金属処理工程1の処理水は、次いで吸着処理工程2に送給し、吸着剤を添加してダイオキシン類の吸着処理を行う。この吸着剤としては、活性炭、活性コークス等の炭素系吸着剤、ゼオライト、珪藻土等の無機系吸着剤等の1種又は2種以上を用いることができるが、粉末活性炭が好ましい。用いる粉末活性炭には特に制限はないが、取り扱い性、吸着性等の面で平均粒径10〜40μm、特に15〜35μm程度のものが好ましい。この粉末活性炭の添加量は、被処理排水中のダイオキシン類濃度に応じて適宜決定されるが、一般的には10〜1500mg/L、好ましくは10〜150mg/L程度である。
【0028】
吸着処理工程2の処理水は、次いで膜処理工程3に送給して、重金属の不溶化物ないし懸濁物質、即ちダイオキシン類を吸着した吸着剤を固液分離する。
【0029】
膜処理工程3で用いる膜の種類としては特に制限はないが、吸着剤として粉末活性炭を用いた場合、粉末活性炭は硬度の高い粒子であるため、耐摩耗性に優れたセラミック膜、高分子膜等の精密濾過(MF)膜、限外濾過(UF)膜等を用いるのが好ましい。
【0030】
高分子膜としては、酢酸セルロース(アセチルセルロース)、ポリアミド、ポリイミド、ポリビニルアルコール、ポリアクリルニトリル、ポリスルフォン、ポリエーテルスルフォン、ポリオレフィン、ポリエチレン、ポリプロピレン等の材質の膜が使用できる。
【0031】
また、膜の孔径は、膜の透過水量を過度に低減することなく、処理水(透過水)への汚染物質のリークを高度に防止するために0.8μm〜10nm程度であることが好ましい。
【0032】
このようにして重金属の不溶化、ダイオキシン類の吸着除去及び膜分離処理を行うことにより、重金属及びダイオキシン類等の汚染物質が高度に除去された高水質の処理水を安定かつ確実に得ることができる。
【0033】
なお、図1においては、吸着処理工程2の前段で重金属の処理を行う活性炭はジチオカルバミン酸系キレート剤を吸着するので、活性炭による吸着処理の前段でジチオカルバミン酸系キレート剤による不溶化処理を行うのが好ましい
【0034】
膜処理工程3から排出される濃縮液は、吸着剤に吸着されたダイオキシン類や重金属類を含有するものであるため、適宜固化処理等を行って環境庁告示13号の溶出試験等で基準を満足することを確認の上、管理型処理場に移送して処分する。
【0035】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明する。
【0036】
実施例1
図1に示す方法に従って、都市ごみ焼却炉の除染・解体排水を1m/hrの処理量で処理した。処理した除染・解体排水の水質は表1に示す通りであった。
【0037】
この除染・解体排水をまず重金属処理工程1に送給し、重金属処理槽にてジチオカルバミン酸系キレート剤を50mg/Lとなるように添加し、滞留時間15分で反応させた。pHは8.5になるように調整した。次に、重金属処理工程1の処理水を吸着処理工程2に送給し、活性炭処理槽にて粉末活性炭(ノリット社製「HBPlus」:平均粒径20μm)を100mg/Lとなるよう添加し、滞留時間100分で反応させた。
【0038】
吸着処理工程2の処理水は、次いで膜処理工程3において、セラミック膜にて固液分離を行った。セラミック膜としては、孔径500A(0.05μm)の東芝セラミックス社製膜を用い、膜処理工程3の濃縮液のSS濃度が10000ppmとなるように濃縮液を引き抜いた。
【0039】
この膜処理工程3の処理水(透過水)の水質は表1に示す通りであり、処理水のSS濃度は検出限界以下であった。また、ダイオキシン類は処理前の2pg−TEQ/Lが0.001pg−TEQ/Lと顕著に減少し、環境基準である1pg−TEQ/Lを達成した。Pb,Cd,Hg等の重金属類も処理水では基準値以下となった。
【0040】
【表1】

Figure 0003767433
【0041】
【発明の効果】
以上詳述した通り、本発明の廃棄物焼却炉設備の除染・解体排水の処理方法によれば、除染・解体排水中の重金属類を不溶化し、また、溶存しているダイオキシン類を吸着除去した後、膜処理により不溶化物ないし懸濁物質を確実に除去することによって、除染・解体排水を、一般河川や下水道に放流可能な、或いは再利用可能な水質にまで無害化することができる。しかも、本発明によれば、処理設備のコンパクト化、設置スペースの省スペース化を図ることもでき、現場対応性に優れる。
【図面の簡単な説明】
【図1】本発明の廃棄物焼却炉設備の除染・解体排水の処理方法の実施の形態を示す系統図である。
【符号の説明】
1 重金属処理工程
2 吸着処理工程
3 膜処理工程[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating wastewater discharged during decontamination or dismantling work of waste incinerator equipment such as a waste incinerator.
[0002]
[Prior art and prior art]
In incinerators such as garbage incinerators, organic compounds such as phenol, benzene and acetylene, dioxins precursors such as chlorinated aromatic compounds such as chlorophenol and chlorobenzene, and chlorinated alkyl compounds are generated during combustion. These dioxins precursors, when fly ash coexists, are catalyzed by organochlorine compounds such as polychlorinated p-dibenzodioxins (PCDD), polychlorinated dibenzofurans (PCDF), coplanar polychlorinated biphenyls (hereinafter referred to as these). Are also referred to as “dioxins”).
[0003]
The generated dioxins are removed by the dioxins decomposer and adsorbent added during the waste incineration operation, or they are contained in the incineration ash and discharged from the incinerator. , Remains on the furnace wall and flue. Some of the dioxins adhere to the ash remaining in the incinerator and remain in the incinerator.
[0004]
In the incinerator, heavy metals contained in the waste such as incinerated garbage are contained in the ash and remain.
[0005]
By the way, when waste incinerator facilities such as waste incinerators have become obsolete, or when they are integrated for wider areas, or when peripheral equipment is renewed, dismantle existing incinerators. Is required. In this dismantling, the working environment will be severely damaged due to contaminants such as dioxins and heavy metals remaining in the incinerator. A notice was issued regarding the prevention of health hazards caused by dioxins in the construction of the incineration facility. In this notification, in order to prevent dust generation that occurs during decontamination work when dismantling the incineration facility, for example, the following decontamination work may be performed to remove deposits in the incinerator facility by washing with high-pressure water. Mandated.
“Decontamination of equipment to be dismantled Before the dismantling of the equipment to be decontaminated, use the following method.
(1) For places where the target part can be confirmed, such as the inner wall of the furnace and the inside of the facility, perform decontamination by high-pressure water washing or the like.
(2) For narrow spaces such as flues, remove the flanges by hand, and then remove the contamination by washing with high-pressure water. "
[0006]
In general, tap water or industrial water is used as the washing water for the high-pressure water washing. Moreover, the washing waste water generated by washing is usually discharged according to the drainage standard of the area and the discharge standard such as sewer.
[0007]
Although the amount of cleaning water used for the high-pressure water cleaning varies depending on the scale of the waste incinerator facility and the state of contamination, it is expected that a large amount of cleaning water will be required. Therefore, in order to reduce the supply water such as tap water and to greatly reduce the discharged water to the sewer and the like, it is desired that the cleaning wastewater is reused as the cleaning water after being treated to a reusable water quality.
[0008]
If the waste incinerator facilities are classified according to the target for removing contaminants by high-pressure water washing, they are incinerators, waste heat boilers, flues, gas cooling devices, dust collectors, chimneys, ash pits, wastewater treatment pits, etc. Objects to be removed include deposits such as soot adhering to each part of these furnace facilities, soot remaining on and accumulated in the furnace bottom and pits, incineration ash, boiler dust, and sludge.
[0009]
Therefore, washing wastewater generated by high-pressure water washing contains these contaminants separated and removed with high-pressure water, and contains a large amount and multiple substances set in landfill standards, wastewater standards, etc. It will be. Contaminants in the washing wastewater have different solubility depending on the wastewater quality such as pH, ionic strength and oil content. On the other hand, the use of high-pressure water cleaning as cleaning water requires the following, so when collecting and reusing cleaning wastewater, a series of water treatment systems must meet the following requirements. It is necessary to obtain recycled water.
(1) To prevent clogging of the high pressure water washer pump, the suspended solids concentration should be kept low.
(2) Sufficiently reduce the concentration of dioxins and heavy metals. The working atmosphere at the time of high-pressure water washing is high in the workplace due to frictional heat due to contact between high-pressure water and contaminated deposits, and there is vaporization and volatilization of recycled water components in the air. Dismantling isolates the entire work area, and during the high-pressure water washing work in this isolated work place, respiratory protective equipment such as an airline mask is attached, but dioxins and heavy metals are circulated by circulating water in the work place system. Hazardous substances such as these should not tend to concentrate in the work system.
(3) After dismantling, reduce the amount of salt deposits remaining on the discharged waste surface and keep the salt concentration low to prevent corrosion troubles in the equipment used.
(4) Satisfy sewage discharge standards or drainage standards so that water can be drained out of the water treatment system for reuse.
[0010]
In addition, the amount of water used for high-pressure water washing varies greatly with time, and the components and concentration of contaminants vary greatly depending on the location of occurrence. It is desirable to be able to respond sufficiently.
[0011]
As a water system that satisfies such requirements, the applicant firstly peels off the deposits by spraying the deposits in the waste incinerator facility with high-pressure water, and a slurry discharged from the stripping step. A detoxification treatment step, a water separation step for separating water from the treated product flowing out of the treatment step, and water separated in the water separation step is fed to the separation step as high-pressure water in the separation step. Proposed a cleaning method for waste incinerator equipment (Japanese Patent Application No. 2000-374650, hereinafter referred to as “prior application”). In this method, as a detoxification treatment step, a heavy metal insolubilization step using a chelating agent or the like and a dioxin adsorption step using activated carbon are performed, and then a coagulant is added to perform coagulation precipitation treatment.
[0012]
According to the method of the above-mentioned prior application, it is possible to obtain good reclaimed water by insolubilizing heavy metals and adsorbing dioxins sequentially in each step, and coagulating and separating insolubilized materials and suspended solids in the aggregation reaction step. Obtainable. Further, in this method, it is possible to sufficiently cope with water quality fluctuations and water quantity fluctuations through a multi-step reaction process.
[0013]
[Problems to be solved by the invention]
However, in the method of the prior application, if the dioxins are adsorbed and the activated carbon containing dioxins at a high concentration flows out to the treated water side even in a small amount in the subsequent coagulation sedimentation separation step, the concentration of dioxins in the treated water is reduced. There is a possibility that the wastewater and environmental standards cannot be satisfied and the treated water cannot be discharged.
[0014]
In addition, the coagulation sediment separation requires a large coagulation sedimentation equipment, and there is a problem in terms of equipment space.
[0015]
The present invention solves the above-mentioned problems of the prior application, and in the treatment of waste water discharged during decontamination or dismantling of waste incinerator facilities, it ensures that the insolubilized materials and suspended solids are separated and removed to ensure good water quality. It is an object of the present invention to provide a treatment method for decontamination and demolition wastewater of a waste incinerator facility that can be treated with a compact treatment device that is compatible with the field, while stably obtaining the treated water.
[0016]
[Means for Solving the Problems]
The method for treating decontamination / dismantling waste water of the waste incinerator facility of the present invention is a method of treating waste water discharged during decontamination or dismantling of the waste incinerator facility, wherein a heavy metal treating agent is added to the waste water. A heavy metal treatment process for treating heavy metals, an adsorption treatment process for adding an adsorbent to the waste water, and an adsorption treatment process for treating the heavy metal treatment process and the treated water that has undergone the adsorption treatment process with a membrane. A decontamination / dismantling wastewater treatment method for a waste incinerator facility having an adsorption treatment of the treated water of the heavy metal treatment step in the adsorption treatment step, and a solidification of the treated water of the adsorption treatment step in the membrane treatment step. It is characterized by liquid separation treatment .
[0017]
In this method, heavy metals in decontamination / dismantling wastewater are insolubilized with a heavy metal treatment agent, and dissolved dioxins are adsorbed and removed with an adsorbent such as activated carbon, and then insolubilized or suspended by membrane treatment. By highly removing the substances, waste water containing heavy metals and dioxins generated during decontamination or demolition can be rendered harmless, and treated water that can be discharged or reused can be obtained stably and reliably. Moreover, if it is a membrane process, a big installation like a coagulation sedimentation process is unnecessary, and the installation compactness and installation space saving can be aimed at.
[0018]
In the present invention, the heavy metal treating agent is preferably one or more selected from the group consisting of dithiocarbamic acid chelating agents, iron salts, sulfides, silicates, phosphoric acids, phosphates and carbonates. The adsorbent is preferably one or more selected from the group consisting of carbon-based adsorbents such as activated carbon and activated coke, and inorganic adsorbents such as zeolite and diatomaceous earth.
[0019]
Moreover, as a film | membrane used at a film | membrane process process, a ceramic film or a polymer film is suitable.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0021]
FIG. 1 is a system diagram showing an embodiment of a decontamination / dismantling wastewater treatment method for a waste incinerator facility according to the present invention.
[0022]
In the method of FIG. 1, when decontamination or dismantling of a waste incinerator facility such as a waste incinerator, decontamination that occurs by high-pressure water washing or the like that sprays high-pressure water on the contaminants attached to the facility and peels and removes it. -Dismantled wastewater is first fed to the heavy metal treatment step 1 and a heavy metal treatment agent is added in the heavy metal treatment tank to insolubilize heavy metals in the wastewater.
[0023]
Examples of heavy metal treating agents used here include dithiocarbamic acid-based chelating agents, iron salts, sulfides, silicates, phosphoric acid, phosphates, carbonates, etc., depending on the type of heavy metal contained in the waste water, It is preferable to select and use one type or two or more types.
[0024]
For example, a dithiocarbamic acid chelating agent is most suitable as a drug for insolubilizing divalent heavy metals such as lead (Pb), cadmium (Cd), and mercury (Hg) in wastewater. Not limited to these, sulfides, silicates, phosphoric acid, phosphates, carbonates and the like having insolubility of these heavy metals may be used.
[0025]
The amount of the thiocarbamic acid chelating agent added is appropriately determined according to the heavy metal concentration in the wastewater to be treated, but is generally about 10 to 100 mg / L. The pH of the insolubilization treatment with the thiocarbamic acid-based chelating agent is preferably about 5 to 9.5, and it is preferable to adjust to such a pH range by adding an alkali or the like as necessary.
[0026]
In addition, when hexavalent chromium (Cr 6+ ), arsenic (As), and selenium (Se) are present in the wastewater, reduction with ferrous salt is performed by adding an iron salt, preferably ferrous salt, separately. These are insolubilized by coprecipitation with coexisting calcium salt, aluminum salt and iron salt hydroxide. As the ferrous salt, ferrous sulfate (FeSO 4 ), ferrous chloride (FeCl 2 ) and the like are preferable, and the amount of addition is appropriately determined according to the concentration of heavy metals such as Cr 6+ in the wastewater to be treated. However, it is generally about 30 to 300 mg / L. The pH of the insolubilization treatment with iron salt is preferably pH 7 to 12.5, particularly pH 8.5 to 9.5, but pH 5.5 to 6.5 is suitable for the reduction of As, Se, Cr 6+, etc. When the concentration of is high, an acid such as hydrochloric acid is once added to lower the pH, and then an alkali is added.
[0027]
The treated water in the heavy metal treatment step 1 is then fed to the adsorption treatment step 2 where an adsorbent is added to carry out dioxin adsorption treatment. As the adsorbent, one or more of carbon-based adsorbents such as activated carbon and activated coke and inorganic adsorbents such as zeolite and diatomaceous earth can be used, and powdered activated carbon is preferable. Although there is no restriction | limiting in particular in the powder activated carbon to be used, A thing with an average particle diameter of 10-40 micrometers, especially about 15-35 micrometers is preferable in terms of handleability, adsorptivity, etc. The amount of powdered activated carbon added is appropriately determined according to the dioxin concentration in the wastewater to be treated, but is generally about 10 to 1500 mg / L, preferably about 10 to 150 mg / L.
[0028]
The treated water of the adsorption treatment process 2 is then fed to the membrane treatment process 3 for solid-liquid separation of the heavy metal insolubilized substance or suspended substance, that is, the adsorbent adsorbing dioxins.
[0029]
Although there is no restriction | limiting in particular as a kind of film | membrane used by the film processing process 3, When powdered activated carbon is used as an adsorbent, since powdered activated carbon is a particle | grain with high hardness, it is a ceramic film | membrane and polymer film | membrane excellent in abrasion resistance. It is preferable to use a microfiltration (MF) membrane such as an ultrafiltration (UF) membrane.
[0030]
As the polymer film, a film made of a material such as cellulose acetate (acetylcellulose), polyamide, polyimide, polyvinyl alcohol, polyacrylonitrile, polysulfone, polyethersulfone, polyolefin, polyethylene, or polypropylene can be used.
[0031]
In addition, the pore diameter of the membrane is preferably about 0.8 μm to 10 nm in order to highly prevent leakage of contaminants into the treated water (permeated water) without excessively reducing the amount of permeated water of the membrane.
[0032]
By performing insolubilization of heavy metals, adsorption removal of dioxins and membrane separation treatment in this way, high-quality treated water from which contaminants such as heavy metals and dioxins are highly removed can be stably and reliably obtained. .
[0033]
In FIG. 1, heavy metal processing is performed before the adsorption processing step 2 . Since activated carbon adsorbs a dithiocarbamic acid chelating agent, it is preferable to perform an insolubilization treatment with a dithiocarbamic acid chelating agent before the adsorption treatment with activated carbon .
[0034]
Since the concentrate discharged from the membrane treatment process 3 contains dioxins and heavy metals adsorbed by the adsorbent, the solidification treatment is performed as appropriate, and the standard is set in the dissolution test of Environment Agency Notification No. 13 etc. After confirming that they are satisfied, they are transferred to a management-type treatment plant and disposed of.
[0035]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0036]
Example 1
According to the method shown in FIG. 1, the decontamination / demolition wastewater from the municipal waste incinerator was treated at a treatment amount of 1 m 3 / hr. The water quality of the treated decontamination / dismantling wastewater was as shown in Table 1.
[0037]
This decontamination / disassembly drainage was first fed to the heavy metal treatment step 1, and a dithiocarbamic acid chelating agent was added to a concentration of 50 mg / L in the heavy metal treatment tank and allowed to react for a residence time of 15 minutes. The pH was adjusted to 8.5. Next, the treated water of the heavy metal treatment step 1 is supplied to the adsorption treatment step 2, and powdered activated carbon (“HBPlus” manufactured by Norit: average particle size 20 μm) is added to 100 mg / L in the activated carbon treatment tank, The reaction was carried out with a residence time of 100 minutes.
[0038]
The treated water in the adsorption treatment step 2 was then subjected to solid-liquid separation with a ceramic membrane in the membrane treatment step 3. As the ceramic membrane, a membrane made by Toshiba Ceramics with a pore size of 500 A (0.05 μm) was used, and the concentrate was drawn out so that the SS concentration of the concentrate in the membrane treatment step 3 was 10,000 ppm.
[0039]
The quality of the treated water (permeated water) in this membrane treatment step 3 is as shown in Table 1, and the SS concentration of the treated water was below the detection limit. Moreover, 2 pg-TEQ / L before processing of the dioxins markedly decreased to 0.001 pg-TEQ / L and achieved 1 pg-TEQ / L which is an environmental standard. Heavy metals such as Pb, Cd, and Hg were also below the standard value in the treated water.
[0040]
[Table 1]
Figure 0003767433
[0041]
【The invention's effect】
As described above in detail, according to the method for treating decontamination / dismantling wastewater of the waste incinerator facility of the present invention, heavy metals in the decontamination / dismantling wastewater are insolubilized, and dissolved dioxins are adsorbed. After removal, it is possible to detoxify decontamination / dismantling wastewater to a quality that can be discharged into general rivers and sewers or reused by reliably removing insolubilized materials and suspended solids by membrane treatment. it can. Moreover, according to the present invention, the processing equipment can be made compact and the installation space can be reduced, and the on-site compatibility is excellent.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a method for treating decontamination / dismantling waste water of a waste incinerator facility according to the present invention.
[Explanation of symbols]
1 Heavy metal treatment process 2 Adsorption treatment process 3 Membrane treatment process

Claims (4)

廃棄物焼却炉設備の除染又は解体時に排出される排水を処理する方法において、
該排水に重金属処理剤を添加して重金属を処理する重金属処理工程と、
該排水に吸着剤を添加して吸着処理する吸着処理工程と、
重金属処理工程及び吸着処理工程を経た処理水を膜により固液分離処理する膜処理工程と
を有する廃棄物焼却炉設備の除染・解体排水の処理方法であって、
該重金属処理工程の処理水を該吸着処理工程で吸着処理し、該吸着処理工程の処理水を該膜処理工程で固液分離処理することを特徴とする廃棄物焼却炉設備の除染・解体排水の処理方法。
In a method for treating wastewater discharged during decontamination or dismantling of waste incinerator facilities,
A heavy metal treatment step of treating a heavy metal by adding a heavy metal treatment agent to the waste water;
An adsorption treatment step of adding an adsorbent to the waste water and performing an adsorption treatment;
A waste incinerator facility decontamination / dismantling wastewater treatment method having a membrane treatment step for solid-liquid separation treatment of the treated water after the heavy metal treatment step and the adsorption treatment step with a membrane ,
Decontamination / disassembly of waste incinerator equipment characterized in that treated water in the heavy metal treatment process is adsorbed in the adsorption treatment process, and treated water in the adsorption treatment process is subjected to solid-liquid separation treatment in the membrane treatment process. Wastewater treatment method.
請求項1において、重金属処理剤は、ジチオカルバミン酸系キレート剤、鉄塩、硫化物、珪酸塩、リン酸、リン酸塩及び炭酸塩よりなる群から選ばれる1種又は2種以上であることを特徴とする廃棄物焼却炉設備の除染・解体排水の処理方法。  The heavy metal treating agent according to claim 1, wherein the heavy metal treating agent is one or more selected from the group consisting of dithiocarbamic acid chelating agents, iron salts, sulfides, silicates, phosphoric acid, phosphates and carbonates. A decontamination / dismantling wastewater treatment method for waste incinerator facilities. 請求項1又は2において、該吸着剤は、活性炭、活性コークス等の炭素系吸着剤、及びゼオライト、珪藻土等の無機系吸着剤よりなる群から選ばれる1種又は2種以上であることを特徴とする廃棄物焼却炉設備の除染・解体排水の処理方法。  3. The adsorbent according to claim 1, wherein the adsorbent is one or more selected from the group consisting of carbon-based adsorbents such as activated carbon and activated coke, and inorganic adsorbents such as zeolite and diatomaceous earth. Wastewater incinerator equipment decontamination and demolition wastewater treatment method. 請求項1ないし3のいずれか1項において、該膜処理工程で用いる膜は、セラミック膜、又は高分子膜であることを特徴とする廃棄物焼却炉設備の除染・解体排水の処理方法。  4. The method for treating decontamination / dismantling waste water in a waste incinerator facility according to claim 1, wherein the membrane used in the membrane treatment step is a ceramic membrane or a polymer membrane.
JP2001250986A 2001-08-22 2001-08-22 Decontamination / dismantling wastewater treatment method for waste incinerator facilities Expired - Lifetime JP3767433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001250986A JP3767433B2 (en) 2001-08-22 2001-08-22 Decontamination / dismantling wastewater treatment method for waste incinerator facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001250986A JP3767433B2 (en) 2001-08-22 2001-08-22 Decontamination / dismantling wastewater treatment method for waste incinerator facilities

Publications (2)

Publication Number Publication Date
JP2003053343A JP2003053343A (en) 2003-02-25
JP3767433B2 true JP3767433B2 (en) 2006-04-19

Family

ID=19079705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001250986A Expired - Lifetime JP3767433B2 (en) 2001-08-22 2001-08-22 Decontamination / dismantling wastewater treatment method for waste incinerator facilities

Country Status (1)

Country Link
JP (1) JP3767433B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051553A1 (en) * 2008-08-29 2010-03-04 General Electric Company Method for removing mercury from wastewater and other liquid streams
CN101891280B (en) * 2010-05-14 2011-12-21 江西金达莱环保研发中心有限公司 Solid-liquid separation system for heavy metal wastewater treatment after chemical precipitation
CN104671624B (en) * 2015-02-10 2016-06-22 江苏金山环保科技股份有限公司 A kind of low cost sludge containing heavy metal processing method
CN106032294A (en) * 2015-03-19 2016-10-19 厦门蔚扬药业有限公司 Method for treating residual heavy metal ions in organic reaction with dithiocarbamate
CN106861436A (en) * 2017-03-16 2017-06-20 安阳工学院 One kind is using nano ceramics hyperfiltration treatment alkylation spent acid technique

Also Published As

Publication number Publication date
JP2003053343A (en) 2003-02-25

Similar Documents

Publication Publication Date Title
JP3767433B2 (en) Decontamination / dismantling wastewater treatment method for waste incinerator facilities
JP3869451B1 (en) Dioxin removal method and removal agent
JP3377091B2 (en) Method and apparatus for treating leachate at landfill site
JP3271621B1 (en) Cleaning method of waste incinerator equipment
JP2005237778A (en) Method for treating hardly decomposable organic compound
Shuckrow Concentration technologies for hazardous aqueous waste treatment
JP4203576B2 (en) Treatment method for boron-containing wastewater
JP6052041B2 (en) Waste water treatment method and waste water treatment equipment
JP4202004B2 (en) Hazardous substance removal system
JP2002159975A (en) Treatment equipment for pcdds-containing waste water
JP3327882B2 (en) Exhaust gas treatment equipment
JP2000210663A (en) Method of removing dioxins in waste water
Liu et al. Evaluation of a Full-Scale Physico-Chemical Treatment Plant for Removal of Bdat Constituents from Hazardous Waste Landfill Leachate
JP3485450B2 (en) Resource recovery landfill method
JP2003220381A (en) Soil cleaning apparatus
JP3966485B2 (en) Method and apparatus for treating exhaust gas generated during incineration of waste containing chlorine compounds
JP2000176244A (en) Treatment of incinerator waste gas
JP4442890B2 (en) Waste disposal method
JP2003080188A (en) Dust recovering method
JP2004188340A (en) Method for treating liquid containing dioxins
TW542754B (en) Method and apparatus for removing harmful heavy metal in contaminated soil and slurry waste
JP2002254072A (en) Drainage treatment system
JP3454770B2 (en) Dioxin removal method and dioxin removal agent
JP4471467B2 (en) Method and apparatus for treating combustion exhaust gas treatment residue
Higgins et al. Treatment processes for contaminated groundwater—three case studies

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Ref document number: 3767433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term