JP3766461B2 - Novel thermostable β-galactosidase - Google Patents

Novel thermostable β-galactosidase Download PDF

Info

Publication number
JP3766461B2
JP3766461B2 JP30524995A JP30524995A JP3766461B2 JP 3766461 B2 JP3766461 B2 JP 3766461B2 JP 30524995 A JP30524995 A JP 30524995A JP 30524995 A JP30524995 A JP 30524995A JP 3766461 B2 JP3766461 B2 JP 3766461B2
Authority
JP
Japan
Prior art keywords
galactosidase
strain
gal
thermus
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30524995A
Other languages
Japanese (ja)
Other versions
JPH09121866A (en
Inventor
奈穂美 大津
英雅 元島
悦雄 皆川
不二 司城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yotsuba Milk Products Co Ltd
Original Assignee
Yotsuba Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yotsuba Milk Products Co Ltd filed Critical Yotsuba Milk Products Co Ltd
Priority to JP30524995A priority Critical patent/JP3766461B2/en
Publication of JPH09121866A publication Critical patent/JPH09121866A/en
Application granted granted Critical
Publication of JP3766461B2 publication Critical patent/JP3766461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Saccharide Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な耐熱性β−ガラクトシダーゼに関し、詳しくは、サーマス・エスピーA4株(FERM P−15236)由来の新規な耐熱性β−ガラクトシダーゼに関するものである。
本発明のβ−ガラクトシダーゼは、温泉の熱水,泥などのサンプルより分離したサーマス属細菌に由来し、本酵素は耐熱性に優れており、食品工業用酵素としてきわめて有用なものである。
【0002】
【従来の技術および発明が解決しようとする課題】
低乳糖牛乳の生産や乳清中に含まれる乳糖の分解を効率よく行うために、固定化β−ガラクトシダーゼを用いた連続乳糖分解システムが開発され、一部で実用化されている。固定化される酵素の性質は、基質である乳糖との親和性が高いとともに、固定化してもその活性を失わず、殺菌処理などによる加熱に耐えうることが望ましい。
そこで、種々の好熱性細菌由来のβ−ガラクトシダーゼが検討され、これまでにサーマス(Thermus) 4-1A株( D.A.Cowan et al. Biotech. Bioeng.,26, 1141-1145(1984)), バチルス・ステアロサーモフィルス(Bacillus stearothermophilus) ATCC 8005 株( H.Hirata et al. J. Bacteriol., 166 (3), 722-727 (1986)、H.Hirata et al. Appl. Environ. Microbiol., 49 (6), 1547-1549 (1985) ) 由来のβ−ガラクトシダーゼが報告されているが、サーマス属細菌の耐熱性β−ガラクトシダーゼについては、アミノ酸レベルやDNAレベルで、その構造が明らかにされたものはまだない。
ところで、現在、汎用されているβ−ガラクトシダーゼは、酵母である Kluyveromyces flagilis, Kluyveromyces lactis 、カビである Aspergillus oryzae,Aspergillus niger 由来のものである。これらは、いずれも高収率で生産できるため安価であるが、耐熱性という点ではバチルス・ステアロサーモフィルス由来のものに比べて劣っている。しかし、バチルス・ステアロサーモフィルス由来のβ−ガラクトシダーゼは酵素の収率が低いため、一般に汎用されていない。
【0003】
そこで、本発明が解決しようとする課題は、耐熱性に優れたβ−ガラクトシダーゼを産生する微生物を探索して、該微生物由来の酵素を精製し、それが効果的に乳糖を分解することを証明することである。また、本発明のサーマス属細菌由来のβ−ガラクトシダーゼは、自然界からスクリーニングされたもので、そのN−末端アミノ酸配列から新規の酵素であることが明らかとなった。さらに、精製した該耐熱性β−ガラクトシダーゼは従来のサーマス属細菌由来のものよりも基質親和性が高く、より実用的なものである。
また、本酵素のN−末端アミノ酸配列が決定されたことにより、このアミノ酸配列より推定されるDNA配列をプローブとしてサーマス属及び他属細菌の耐熱性β−ガラクトシダーゼをクローニングすることも可能となった。
【0004】
【課題を解決するための手段】
本発明者らは、まず各地の温泉より採集した熱水や泥などのサンプルよりスクリーニングを行い、β−ガラクトシダーゼ活性の高い微生物菌株を選択した。この菌株の菌学的性質を調べ、本菌はサーマス属細菌であると同定した。次いで、該菌株由来のβ−ガラクトシダーゼを精製し、諸性質を決定すると共に、そのN−末端アミノ酸配列を決定した。相同性検索の結果、従来報告されているバチルス・ステアロサーモフィルス由来のβ−ガラクトシダーゼIとは40.9%の低い相同性が示されたことから、本発明のβ−ガラクトシダーゼは新規な酵素であると確認した。また、この精製酵素は従来のサーマス属細菌由来β−ガラクトシダーゼよりも基質親和性が高いことが証明された。本発明はかかる知見により完成されたものである。
【0005】
請求項1記載の本発明は、サーマス・エスピーA4株(FERM P−15236)由来の菌体内酵素で、配列表の配列番号1に記載のN−末端アミノ酸配列を含む新規な耐熱性β−ガラクトシダーゼであり、請求項2記載の本発明は、配列表の配列番号1に記載のN−末端アミノ酸配列を含む耐熱性β−ガラクトシダーゼ産生能を有するサーマス・エスピーA4株(FERM P−15236)である。
【0006】
【発明の実施の形態】
以下に本発明を詳細に説明する。
耐熱性に優れたβ−ガラクトシダーゼを産生する微生物の探索は以下のようにして行った。
各地の温泉から採集した熱水や泥などのサンプルを、X-gal を含むサーマス属細菌用平板培地に塗沫して70℃で2日間培養し、出現したコロニーのうち青色または緑色を呈しているものを選び、上記と同じ組成の液体培地に移して培養する。培養終了後、培養液から遠心分離などの固−液分離を行って菌体を集めた後、超音波破砕処理,ホモジナイザー処理などによって菌体を破砕して粗酵素液とする。この酵素のo−ニトロフェニルβ−D−ガラクトピラノシド(ONPG)に対するβ−ガラクトシダーゼ活性を測定し、最終的に該β−ガラクトシダーゼ活性が高く、増殖が早い菌株を選択する。このようにして、静岡県の熱川温泉より分離した菌株を選択した。本菌は、好気性のグラム陰性桿菌であり、カロチノイド系と考えられる油溶性の黄色色素を産生することから、サーマス属に属するものと同定した。本菌をサーマスA4株と命名した。本菌は工業技術院生命工学工業技術研究所に寄託されており、その受託番号はFERM P−15236である。
【0007】
次に、本発明のβ−ガラクトシダーゼの採取と精製は以下の方法により行うことができる。
選択した菌株を、サーマス属細菌用液体培地を用いて大量培養し、培養物から遠心分離等の固−液分離手段によって菌体を回収する。次いで、該菌体をリン酸ナトリウム緩衝液等に懸濁し、適当な破砕手段によって破砕して粗酵素液(cell free extract) とする。この粗酵素液について、ONPGに対する加水分解活性を指標としてβ−ガラクトシダーゼを精製する。
まず、上記の粗酵素液を80%飽和の硫安等による硫安塩析を行い沈殿を回収し、該沈殿をトリス−塩酸緩衝液等に分散させた後、同じ緩衝液に対して透析処理を行う。次いで、各種のクロマトグラフィーを用いて分画し、精製する。例えば、イオン交換クロマトグラフィー,ヒドロキシアパタイトカラムクロマトグラフィー,ゲル濾過クロマトグラフィー,疎水性クロマトグラフィー等を適宜組み合わせて精製する。
【0008】
このようにして精製した後、常法に従って酵素の諸性質を決定する。本酵素のN−末端アミノ酸配列の決定は、例えばプロテインシークエンサーを用いて行うことができる。決定されたN−末端アミノ酸配列を他のβ−ガラクトシダーゼのN−末端アミノ酸配列と比較することが可能である。さらに、所望により本酵素に対して遺伝子工学的改良を加えることにより、より実用的なβ−ガラクトシダーゼを創製することも可能である。
【0009】
以下に、本発明のβ−ガラクトシダーゼの理化学的性質を示す。
(1)作用 ラクトースをガラクトースとグルコースに加水分解する。
(2)基質特異性 ラクトース(Km=20mM),ONPG(Km=5.9mM)
(3)至適温度 酵素の熱による失活を無視した見かけの至適温度は90℃以上(4)耐熱性 85℃で2時間保温後、75%残存活性
(5)至適pH 5.5〜8.0
(6)分子量 86kDa(単量体)
(7)阻害剤 鉄イオン,銅イオン,PMSF
(8)活性剤 マンガンイオン,コバルトイオン,亜鉛イオン,DTT,β−メルカプトエタノール,システイン
(9)N−末端アミノ酸配列 配列表の配列番号1記載の通り
【0010】
【実施例】
以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれにより制限されるものではない。
実施例1
各地の温泉(温度65〜94℃、pH7前後)から熱水およびそれに接している微生物マットなどを採取した。これらをサーマス属細菌用平板培地(1リットル中、4g ポリペプトン、2 g 酵母エキス、1% ラクトース、1 g MgCl2 、10g GELRITE、10ml X−gal溶液(20mg/mlジメチルホルムアミド溶液)、100ml 10×basal salt solution(この溶液1リットル中には6.89g NaNO3 、1.5gCaSO4 ・2H2 O、1.1g NaHPO4 、1.03g KNO3 、1.0g MgSO4 ・7H2 O、1.0g ニトリロ三酢酸、0.08g NaCl、10ml FeCl2 水溶液(0.28g/L)、10ml Nitsch’trace element solutionが含まれている) (なお、Nitsch’trace element solution 1リットル中には2.2g MnSO4 ・H2 O、0.5g ZnSO4 ・7H2 O、0.5gH3 BO4 、0.5ml H2 SO4 、0.046g CoCl2 ・6H2 O、0.025g Na2 MoO4 ・2H2 O、0.016g CuSO4 が含まれている) )に塗沫して70℃で培養した。
【0011】
2日ほど培養するとコロニーが生じるので、そのうち青−緑色を呈しているもののみを画線分離した。分離により青色を呈さなくなるものもあったが、十分に青色を保っているコロニーを液体培地(先述の平板培地の組成よりMgCl2 とGELRITEを除いたもの)に移して70℃で48時間培養した。
培養終了後、培養液を遠心分離して集菌後、菌体を超音波破砕して粗酵素液とし、これのONPGに対するβ−ガラクトシダーゼ活性を測定した。その結果、β−ガラクトシダーゼ活性が高く、増殖が速い菌株(A4株と名付けた)を選択した。本菌株に由来するβ−ガラクトシダーゼを以後A4−β−Galと称することにする。このA4株は静岡県の熱川温泉より分離された菌株で、菌学的性質を調べた結果、好気性のグラム陰性桿菌で、カロチノイド系と考えられる油溶性の黄色色素を産生することから、サーマス属に属するものと認められ、サーマスA4株と命名した。本菌株はFERM P−15236として工業技術院生命工学工業技術研究所に寄託されている。
【0012】
実施例2
実施例1で得られたA4株(FERM P−15236)を実施例1に示したと同様の液体培地を用いて90リットル容ジャーファーメンターで70℃で2日間培養し、約70リットルの培養液を得た。この培養液よりA4株の菌体を遠心分離によって回収した。
遠心分離により得た菌体(約720g、湿物重)のうち半量(360g)を4リットルの50mM リン酸ナトリウム緩衝液(pH7.0)に懸濁し、5℃以下にて約20時間循環させながら連続的に超音波破砕した。これを遠心分離して得た上清(比活性は0.115unit/mg)に80%飽和となるよう硫安を加え、4℃で一晩放置した。生じたタンパク質の沈殿を遠心分離にて回収し、1リットルの50mM Tris−HCl緩衝液(pH8.0)に分散させて、同じ緩衝液に対して透析を行った。
【0013】
透析を終了したサンプル約3リットルを300mlずつQ−Sepharose陰イオン交換クロマトグラフィーで分画した。分画条件は以下の通りである。
カラム:Q−SepharoseFF(Pharmacia製)
カラムサイズ:Pharmacia XK50 (50×240mm)
緩衝液:A:50mM Tris−HCl(pH8.0),0.02% NaN3
B:1M NaCl/緩衝液A
溶出:十分に吸着させてから、2時間でNaCl濃度を0Mから1Mまで直線的に上昇させて溶出させた。
流速:4ml/min
フラクションサイズ:8ml
このようにして活性画分(約960ml)を回収し、Q−Sepharose活性画分(比活性は0.269unit/mg)を得た。これを常法に従い硫安塩析、透析により脱塩濃縮して約600mlにした。
【0014】
次に、これを50mlずつハイドロキシアパタイトカラムで分画した。条件は以下の通りである。
カラム:ギガパイト (生化学工業)
カラムサイズ:Pharmacia XK50 (50×70mm)
緩衝液:A:10mM リン酸カリウム緩衝液(pH7.0), 0.02%NaN3
B:500mM リン酸カリウム緩衝液(pH7.0), 0.02% NaN3
溶出:目的タンパク質はこのカラムと弱い相互作用しか持たないので、十分な量の緩衝液Aを流して目的タンパク質を溶出してから、緩衝液Bの20%、100%のステップワイズで他のタンパク質を溶出した。
流速:4ml/min
フラクションサイズ:8ml
活性画分を回収し、ハイドロキシアパタイト活性画分(約430ml、5.04unit/mg)を得た。
【0015】
さらに、これを50mlずつMono Q HR10/10カラムを用いたHPLCで分画した。分画の条件は以下の通りである。
カラム:Mono Q HR10/10(Pharmacia製)
緩衝液:A:50mM Tris−HCl(pH8.0),0.02% NaN3
B:1M NaCl/緩衝液A
溶出:十分に吸着させてから、40分間でNaCl濃度を0Mから0.4Mまで直線的に上昇させて溶出させた。
流速:4ml/min
NaCl濃度が約0.3Mのときに活性のピークが得られたので、この活性画分を回収し、Mono Q活性画分(約115ml、8.10unit/mg)を得た。
この際のクロマトグラムを図1に示した。なお、図中の実線はA4−β−Galの相対活性を示し、破線は280nmにおける吸光度を示し、一点鎖線はグラジエントの塩濃度を示す。
【0016】
Mono Q活性画分を限外濾過(分画分子量30000)によりおよそ10mlまで濃縮してからこれを1mlずつ以下の条件で分画した。
カラム:YMC−Pack Diol−300(20×500mm)(YMC)
緩衝液:0.1M KH2 PO4 −K2 HPO4 (pH7.0),0.2M
NaCl
流速:0.3ml/min
活性のピークは分子量約86kDaの蛋白質のピークと重なっていた。この活性画分を回収し、ゲル濾過活性画分(約22ml、49.3unit/mg)とした。
【0017】
ゲル濾過活性画分約22mlに等量の1.7M (NH4)2 SO4 を加えたものを、Phenyl−Superose疎水性クロマトグラフィーにより3mlずつ以下の条件で分画した。
カラム:Phenyl−Superose HR5/5(Pharmacia)
緩衝液:A:50mM Tris−HCl(pH7.5),0.85M (NH4)2 SO4 ,0.02% NaN3
B:50mM Tris−HCl(pH7.5),,0.02%
NaN3
溶出:十分に吸着させた後、B緩衝液の割合を0%から50%に切り替え、さらに50%から100%まで直線的に上昇させて溶出させた。
流速:0.6ml/min
B緩衝液の割合が100%、すなわち硫安濃度がほぼ0となったときに活性画分が溶出されたので、この活性画分を回収してPhenyl−Superose活性画分(約10ml、48.6unit/mg)を得た。
この際のクロマトグラムを図2に示した。なお、図中の実線はA4−β−Galの相対活性を示し、実線は280nmにおける吸光度を示し、矢印で示したピークはA4−β−Galの相対活性のピークと重なっていることを示す。また、破線はグラジエントの緩衝液Bの割合を示す。
【0018】
以上に述べた精製各段階の総タンパク質量、総活性、比活性、収率、精製倍率を表1に示した。なお、タンパク質濃度および酵素活性の測定は以下の方法により行った。
タンパク質濃度はBio−Rad Protein assay(Bio−Rad社製)を用いて測定した。標準にはBovine serum albuminを用いた。
【0019】
ONPGを基質としたときのβ−ガラクトシダーゼ活性は以下のようにして測定した。キュベット中の反応混合液(50mM リン酸ナトリウム緩衝液 (pH6.5)、1mM MgCl2 、2.8mM ONPG、全量は2.9ml)を70℃に保ち、酵素液を100μl加えて30秒後から1分間の405nmにおける吸光度の変化を測定した。o−ニトロフェノールの405nmにおけるモル吸光係数は3.1×103 -1cm-1として計算した。なお、精製の途中の段階での各フラクションの活性は簡易的に以下のようにして測定した。測定するフラクションから10μlを96穴マイクロウェルプレートにとり、180μlのバッファー(50mM リン酸ナトリウム (pH6.5)、1 mM MgCl2)を加えた。次に、10μlの10mM ONPGを加えて、すぐに80℃のインキュベーターに入れて15分間おいた。このあとMTP−100マイクロプレートリーダーで405nmにおける吸光度を測定した。対照にはフラクションからの液の代わりに同じバッファーを用いた。なお、ONPGと同様にp−ニトロフェニルβ−D−ガラクトピラノシド(PNPG)もβ−ガラクトシダーゼの基質として用いられる。
【0020】
乳糖を基質としたときのβ−ガラクトシダーゼ活性は以下のようにして測定した。反応混合物(10−100mM ラクトース、10mM リン酸ナトリウム緩衝液 (pH6.5)、酵素液、全量は1ml)を70℃で1時間反応させ、反応前と反応後のラクトースの量の変化をイオンクロマトグラフィー(DIONEX社製,DX3000型) で測定した。測定条件は以下の通りであった。
カラム:Carbo−pak PA−100
移動相:150mM NaOH
流速:0.8ml/min
検出器:PAD
【0021】
【表1】

Figure 0003766461
【0022】
Phenyl−Superose分画までの精製によってA4−β−Galは423倍にまで精製され、次に記すSDS−PAGEによりほぼ純品であることが確認された。そこで、このPhenyl−Superose活性画分を用いて酵素の諸性質を調べた。
【0023】
(1)SDS−PAGEによる分子量の推定
ポリアクリルアミドゲル電気泳動(PAGE)はLaemmli(U.K.Laemmli Nature (London), 227, 680-685 (1970)) の方法に準じて行い、クマシーブリリアントブルーR−250染色で可視化した。すなわち、精製各段階のサンプルをタンパク質濃度が約1mg/mlとなるように調製し、常法に従ってSDS−ポリアクリルアミドゲル電気泳動を行い、クマシーブリリアントブルーで染色した。
精製各段階のサンプルをSDS−PAGEにかけたものを図3に示した。なお、図中レーン1は分子量マーカー、レーン2は菌体破砕物の上清、レーン3はQ−Sepharoseで分画した活性画分、レーン4はハイドロキシアパタイトで分画した活性画分、レーン5はMono−Qで分画した活性画分、レーン6はゲル濾過で分画した活性画分、レーン7はPhenyl−Superoseで分画した活性画分、レ−ン8は逆相HPLCで精製した際のメインピークをそれぞれ示している。
ここで、A4−β−Galは分子量がおよそ75kDaの位置にバンドを形成した。一方、ここには示さないが、ゲル濾過分画の際、A4−β−Galの分子量はおよそ86kDaと見積もられた。これらのことから、A4−β−Galは分子量が約86kDaの単量体であると推定した。SDS−PAGEにおいて分子量が低く見えるのはA4−β−Galの疎水性が大きいためと考えられる。
【0024】
(2)ミカエリス定数
A4−β−Galのミカエリス定数(Km)は、初期基質濃度を変化させたときの反応初速度の変化を測定し、Lineweaver−Burkプロットを用いて算定した。ONPGに対するKm値は5.9mM、乳糖に対するKm値は20mMであった。
なお、第2表に比較としてサーマス4−1A株( D.A.Cowan et al. Biotech. Bioeng.,26, 1141-1145(1984))、バチルス・ステアロサーモフィルスATCC8005株( H.Hirata et al. J. Bacteriol., 166 (3), 722-727 (1986)、H.Hirata et al. Appl. Environ. Microbiol., 49 (6), 1547-1549 (1985) のβ−ガラクトシダーゼのミカエリス定数も示した。
【0025】
【表2】
Figure 0003766461
【0026】
(3)温度依存性
A4−β−Galの温度依存性は、活性測定時に反応混合液を70℃に保つ代わりにそれぞれの目的温度に保って測定することで決定した。80℃以上ではONPGの熱分解が起こるので、酵素液の代わりに50mM リン酸ナトリウム緩衝液(pH6.5)を100μl加えて同様に測定した値を用いて補正した。この条件下でのA4−β−Gal酵素の熱による失活を無視した見かけの至適温度は90℃以上であった。
【0027】
(4)pH依存性
A4−β−GalのpH依存性は、活性測定時に反応混合液中の50mM リン酸ナトリウム緩衝液(pH6.5)に代えて目的のpH緩衝液を加えて同様に測定することにより決定した。緩衝液には、50mM クエン酸ナトリウム緩衝液 (pH3.5〜6.0)、50mM リン酸ナトリウム緩衝液(pH5.5〜8.0) 、50mM グリシン−ナトリウム緩衝液(pH8.0〜9.0)を用いた。その結果、A4−β−Galの至適pHはおよそ5.5〜8.0であった(図4参照)。なお、図中の─●─はクエン酸ナトリウム緩衝液、─■─はリン酸緩衝液、─▲─はグリシン−NaOH緩衝液を用いたときの結果を示した。
【0028】
(5)耐熱性
A4−β−Galの耐熱性は、酵素液を目的温度で規定した時間保温し、保温終了後すぐに70℃で残存活性を測定することで決定した。A4−β−Galは85℃までであれば2時間保温した後も75%以上の活性を保持していることが明らかになった(図5参照)。なお、図中の─●─は75℃,─■─は80℃,─▲─は85℃,─◆─は90℃,─▼─は95℃のときの結果を示した。
また、70℃では20時間保温後も活性の低減が見られなかった。
【0029】
(6)各種金属イオン、阻害剤による影響
二価の金属イオン(Mn,Mg,Fe,Zn,Cu)は最終1mM、阻害剤(EDTA, PMSF, DTT,β−メルカプトエタノール, システイン, ヨード酢酸)は最終10mMとなるように反応混合液に添加し、通常通り活性測定を行った。その結果、マンガンイオン,コバルトイオン,亜鉛イオン,DTT,β−メルカプトエタノールおよびシステインはA4−β−Galを活性化した。鉄イオン,銅イオン,PMSFはA4−β−Galを阻害したが、ヨード酢酸による阻害はみられなかった(図6(a), (b)参照)。なお、図中の(a)は金属イオンによる影響を、(b)は阻害剤による影響を示した。
【0030】
実施例3
A4−β−GalのN−末端アミノ酸配列を決定するため、逆相HPLCによる精製を以下の条件で行った。
Figure 0003766461
メインのピークを回収し、そのままプロテインシークエンサーにかけた。
【0031】
A4−β−GalのN−末端アミノ酸配列は、逆相HPLCで精製したA4−β−Galサンプルを常法に従い473A Protein Sequencer(Applied Biosystems)で分析して決定した。
その配列を配列表の配列番号1(ただし、Xは決定できなかったアミノ酸残基を示す。)に示す。N−末端より15残基目までが決定できたが、そのうち1残基(5番目)は決定できなかった。
このアミノ酸配列とこれから推定されるDNA配列についてデータベース(NBRF−PIR,Release 43.0)に登録されている配列との相同性検索を行ったところ、バチルス・ステアロサーモフィルスのβ−ガラクトシダーゼI(アクセッションナンバーA29836)のN−末端部分と40.9%の相同性があることが判明した(図7参照)。
【0032】
【発明の効果】
本発明により、サーマス属細菌の産生する菌体内酵素であり、配列表の配列番号1に記載のN−末端アミノ酸配列を含む新規なβ−ガラクトシダーゼが提供される。さらに、このアミノ酸配列から推定されるDNA配列を用いて、サーマス属及び他の属の細菌等から相同性のあるβ−ガラクトシダーゼをクローニングすることが可能となり、実用的なβ−ガラクトシダーゼの創製に貢献できる。このβ−ガラクトシダーゼは耐熱性に富むので、食品工業用酵素として有用である。
【0033】
【配列表】
【0034】
配列番号:1
配列の長さ:15アミノ酸残基,うち1残基は未決定
配列の型:アミノ酸
配列の種類:ペプチド
配列の特徴
Thermus sp.A4 株由来のβ−ガラクトシダーゼのN-末端アミノ酸の配列
存在位置:N-末端
配列
Met-Leu-Gly-Val-X-Tyr-Tyr-Pro-Glu-His-Trp-Pro-Lys-Glu-Arg
【図面の簡単な説明】
【図1】 Mono−Qカラムクロマトグラフィーのクロマトグラムを示した図である。
【図2】 Phenyl−Seperoseクロマトグラフィーのクロマトグラムを示した図である。
【図3】 SDS−ポリアクリルアミドゲル電気泳動の結果を示した写真である。
【図4】 A4−β−GalのpH依存性を示した図である。
【図5】 A4−β−Galの耐熱性を示した図である。
【図6】 (a)はA4−β−Galの金属イオンによる影響を、(b)はA4−β−Galの阻害剤による影響を示した図である。
【図7】 A4−β−Galと B. stearothermophilus由来のβ−ガラクトシダーゼIとのN−末端アミノ酸配列を比較した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel thermostable β-galactosidase, and more particularly to a novel thermostable β-galactosidase derived from Thermus SP A4 strain (FERM P-15236) .
The β-galactosidase of the present invention is derived from a Thermus bacterium isolated from hot spring hot water, mud and other samples, and the enzyme is excellent in heat resistance and is extremely useful as an enzyme for the food industry.
[0002]
[Background Art and Problems to be Solved by the Invention]
A continuous lactose decomposition system using immobilized β-galactosidase has been developed and partly put into practical use in order to efficiently produce lactose milk and decompose lactose contained in whey. It is desirable that the enzyme to be immobilized has a high affinity with the substrate lactose and does not lose its activity even when immobilized, and can withstand heating by sterilization treatment or the like.
Therefore, β-galactosidase derived from various thermophilic bacteria has been studied, and thermus 4-1A strain (DACowan et al. Biotech. Bioeng., 26, 1141-1145 (1984)), Bacillus stear has been studied so far. Bacillus stearothermophilus ATCC 8005 strain (H.Hirata et al. J. Bacteriol., 166 (3), 722-727 (1986), H.Hirata et al. Appl.Environ. Microbiol., 49 (6 ), 1547-1549 (1985)) have been reported. However, the thermostable β-galactosidase of the genus Thermus has not yet been clarified at the amino acid level or DNA level. Absent.
By the way, currently used β-galactosidase is derived from Kluyveromyces flagilis and Kluyveromyces lactis which are yeasts, Aspergillus oryzae and Aspergillus niger which are fungi. All of these are inexpensive because they can be produced in high yield, but are inferior to those derived from Bacillus stearothermophilus in terms of heat resistance. However, since β-galactosidase derived from Bacillus stearothermophilus has a low enzyme yield, it is not generally used.
[0003]
Therefore, the problem to be solved by the present invention is to search for microorganisms that produce β-galactosidase with excellent heat resistance, purify enzymes derived from the microorganisms, and prove that they effectively decompose lactose. It is to be. Moreover, the β-galactosidase derived from the genus Thermus of the present invention was screened from the natural world, and was revealed to be a novel enzyme from its N-terminal amino acid sequence. Furthermore, the purified thermostable β-galactosidase has a higher substrate affinity than that derived from conventional Thermus bacteria, and is more practical.
In addition, since the N-terminal amino acid sequence of this enzyme has been determined, it has become possible to clone thermostable β-galactosidase of the genus Thermus and other genera using the DNA sequence deduced from this amino acid sequence as a probe. .
[0004]
[Means for Solving the Problems]
The inventors first screened samples such as hot water and mud collected from hot springs in various places, and selected microbial strains with high β-galactosidase activity. The bacteriological properties of this strain were examined, and the bacterium was identified as a Thermus bacterium. Subsequently, β-galactosidase derived from the strain was purified to determine various properties, and its N-terminal amino acid sequence was determined. As a result of the homology search, the β-galactosidase of the present invention was found to be a novel enzyme because it showed a low homology of 40.9% with the previously reported β-galactosidase I derived from Bacillus stearothermophilus. It was confirmed that. Moreover, it was proved that this purified enzyme has a higher substrate affinity than the conventional β-galactosidase derived from the genus Thermus. The present invention has been completed based on such findings.
[0005]
The present invention according to claim 1 is a novel thermostable β-galactosidase which is an intracellular enzyme derived from Thermus sp. Strain A4 (FERM P-15236) and comprising the N-terminal amino acid sequence of SEQ ID NO: 1 in the sequence listing. The present invention according to claim 2 is a Thermus sp. A4 strain (FERM P-15236) having the ability to produce heat-resistant β-galactosidase comprising the N-terminal amino acid sequence described in SEQ ID NO: 1 in the sequence listing. .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The search for microorganisms producing β-galactosidase with excellent heat resistance was performed as follows.
Samples such as hot water and mud collected from hot springs in various places are smeared on a plate medium for thermus genus bacteria containing X-gal and cultured at 70 ° C for 2 days. Select the one that is present, transfer to a liquid medium having the same composition as above, and culture. After completion of the culture, solid-liquid separation such as centrifugation is performed from the culture solution to collect microbial cells, and then the microbial cells are crushed by ultrasonic crushing treatment, homogenizer treatment or the like to obtain a crude enzyme solution. The β-galactosidase activity of this enzyme with respect to o-nitrophenyl β-D-galactopyranoside (ONPG) is measured, and finally a strain having high β-galactosidase activity and rapid growth is selected. In this way, a strain isolated from Atagawa hot spring in Shizuoka Prefecture was selected. Since this bacterium is an aerobic gram-negative bacilli and produces an oil-soluble yellow pigment considered to be a carotenoid, it was identified as belonging to the genus Thermus. This bacterium was named Thermus A4 strain. This bacterium is deposited at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology, and the deposit number is FERM P-15236.
[0007]
Next, β-galactosidase of the present invention can be collected and purified by the following method.
The selected strain is cultured in large quantities using a liquid medium for thermus bacteria, and the cells are recovered from the culture by solid-liquid separation means such as centrifugation. Next, the cells are suspended in a sodium phosphate buffer or the like and crushed by an appropriate crushing means to obtain a crude enzyme solution (cell free extract). About this crude enzyme solution, β-galactosidase is purified using the hydrolysis activity for ONPG as an index.
First, the crude enzyme solution is subjected to ammonium sulfate salting out with 80% saturated ammonium sulfate to collect a precipitate, and the precipitate is dispersed in a Tris-HCl buffer solution or the like, followed by dialysis treatment against the same buffer solution. . Next, fractionation and purification are performed using various types of chromatography. For example, purification is performed by appropriately combining ion exchange chromatography, hydroxyapatite column chromatography, gel filtration chromatography, hydrophobic chromatography and the like.
[0008]
After purification in this manner, various properties of the enzyme are determined according to conventional methods. The N-terminal amino acid sequence of this enzyme can be determined using, for example, a protein sequencer. It is possible to compare the determined N-terminal amino acid sequence with the N-terminal amino acid sequences of other β-galactosidases. Furthermore, a more practical β-galactosidase can be created by adding genetic engineering improvements to the enzyme as desired.
[0009]
The physicochemical properties of β-galactosidase of the present invention are shown below.
(1) Action It hydrolyzes lactose into galactose and glucose.
(2) Substrate specificity Lactose (Km = 20 mM), ONPG (Km = 5.9 mM)
(3) Optimum temperature The apparent optimum temperature ignoring the inactivation of the enzyme by heat is 90 ° C. or higher. (4) Heat resistance After keeping at 85 ° C. for 2 hours, 75% residual activity (5) Optimum pH 5.5 ~ 8.0
(6) Molecular weight 86 kDa (monomer)
(7) Inhibitor Iron ion, Copper ion, PMSF
(8) Activator Manganese ion, cobalt ion, zinc ion, DTT, β-mercaptoethanol, cysteine (9) N-terminal amino acid sequence As described in SEQ ID NO: 1 in the sequence listing
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
Example 1
Hot water and microbial mats in contact with it were collected from hot springs at various temperatures (temperature 65 to 94 ° C., pH around 7). These were added to a plate medium for thermus bacteria (4 g polypeptone, 2 g yeast extract, 1% lactose, 1 g MgCl 2 , 10 g GELLITE, 10 ml X-gal solution (20 mg / ml dimethylformamide solution), 100 ml 10 × in 1 liter. basal salt solution (solution 1 during liter 6.89g NaNO 3, 1.5gCaSO 4 · 2H 2 O, 1.1g NaHPO 4, 1.03g KNO 3, 1.0g MgSO 4 · 7H 2 O, 1. 0 g nitrilotriacetic acid, 0.08 g NaCl, 10 ml FeCl 2 aqueous solution (0.28 g / L), 10 ml Nitsch 'trace element solution is included) (Note that 2.2 g in 1 liter of Nitsch' trace element solution) Mn O 4 · H 2 O, 0.5g ZnSO 4 · 7H 2 O, 0.5gH 3 BO 4, 0.5ml H 2 SO 4, 0.046g CoCl 2 · 6H 2 O, 0.025g Na 2 MoO 4 · 2H 2 O, 0.016 g CuSO 4 is contained))), and incubated at 70 ° C.
[0011]
When cultured for about 2 days, colonies formed, and only those showing blue-green color were streaked. Although some of the colonies did not exhibit blue color due to the separation, colonies maintaining a sufficiently blue color were transferred to a liquid medium (excluding MgCl 2 and GELLITE from the composition of the aforementioned plate medium) and cultured at 70 ° C. for 48 hours. .
After completion of the culture, the culture solution was centrifuged to collect the cells, and the cells were sonicated to obtain a crude enzyme solution, which was measured for β-galactosidase activity against ONPG. As a result, a strain having high β-galactosidase activity and rapid growth (named A4 strain) was selected. Hereinafter, β-galactosidase derived from this strain will be referred to as A4-β-Gal. This A4 strain is a strain isolated from Atagawa Hot Spring in Shizuoka Prefecture, and as a result of investigating mycological properties, it is an aerobic gram-negative bacillus and produces an oil-soluble yellow pigment considered to be a carotenoid, It was recognized as belonging to the genus Thermus and was named Thermus A4 strain. This strain is deposited as FERM P-15236 at the Biotechnology Institute of Industrial Technology.
[0012]
Example 2
The A4 strain (FERM P-15236) obtained in Example 1 was cultured at 70 ° C. for 2 days in a 90 liter jar fermenter using the same liquid medium as shown in Example 1, and about 70 liters of the culture solution. Got. The A4 strain cells were collected from this culture by centrifugation.
Half of the bacterial cells (about 720 g, wet weight) obtained by centrifugation (360 g) are suspended in 4 liters of 50 mM sodium phosphate buffer (pH 7.0) and circulated at 5 ° C. or lower for about 20 hours. While continuously sonicating. To this supernatant (specific activity was 0.115 unit / mg) obtained by centrifugation, ammonium sulfate was added to 80% saturation, and the mixture was allowed to stand at 4 ° C. overnight. The resulting protein precipitate was collected by centrifugation, dispersed in 1 liter of 50 mM Tris-HCl buffer (pH 8.0), and dialyzed against the same buffer.
[0013]
About 3 liters of the sample after dialysis was fractionated by Q-Sepharose anion exchange chromatography in 300 ml portions. Fractionation conditions are as follows.
Column: Q-SepharoseFF (Pharmacia)
Column size: Pharmacia XK50 (50 x 240 mm)
Buffer: A: 50 mM Tris-HCl (pH 8.0), 0.02% NaN 3
B: 1M NaCl / buffer A
Elution: After sufficiently adsorbing, the NaCl concentration was linearly increased from 0M to 1M for 2 hours for elution.
Flow rate: 4ml / min
Fraction size: 8ml
In this way, an active fraction (about 960 ml) was collected to obtain a Q-Sepharose active fraction (specific activity 0.269 unit / mg). According to a conventional method, this was salted out with ammonium sulfate and desalted and concentrated by dialysis to make about 600 ml.
[0014]
Next, 50 ml of this was fractionated with a hydroxyapatite column. The conditions are as follows.
Column: Gigapite (Seikagaku Corporation)
Column size: Pharmacia XK50 (50 x 70 mm)
Buffer: A: 10 mM potassium phosphate buffer (pH 7.0), 0.02% NaN 3
B: 500 mM potassium phosphate buffer (pH 7.0), 0.02% NaN 3
Elution: Since the target protein has only a weak interaction with this column, a sufficient amount of buffer A is poured to elute the target protein, and then other proteins are stepwise with 20% and 100% of buffer B. Was eluted.
Flow rate: 4ml / min
Fraction size: 8ml
The active fraction was collected to obtain a hydroxyapatite active fraction (about 430 ml, 5.04 unit / mg).
[0015]
Furthermore, this was fractionated by HPLC using a Mono Q HR 10/10 column in 50 ml portions. The conditions for fractionation are as follows.
Column: Mono Q HR10 / 10 (manufactured by Pharmacia)
Buffer: A: 50 mM Tris-HCl (pH 8.0), 0.02% NaN 3
B: 1M NaCl / buffer A
Elution: After sufficiently adsorbing, the NaCl concentration was linearly increased from 0M to 0.4M for 40 minutes for elution.
Flow rate: 4ml / min
Since a peak of activity was obtained when the NaCl concentration was about 0.3 M, this active fraction was collected to obtain a Mono Q active fraction (about 115 ml, 8.10 unit / mg).
The chromatogram at this time is shown in FIG. The solid line in the figure indicates the relative activity of A4-β-Gal, the broken line indicates the absorbance at 280 nm, and the alternate long and short dash line indicates the gradient salt concentration.
[0016]
The Mono Q active fraction was concentrated to about 10 ml by ultrafiltration (molecular weight cut off 30000), and then fractionated by 1 ml under the following conditions.
Column: YMC-Pack Diol-300 (20 × 500 mm) (YMC)
Buffer: 0.1M KH 2 PO 4 -K 2 HPO 4 (pH 7.0), 0.2M
NaCl
Flow rate: 0.3 ml / min
The peak of activity overlapped with the peak of protein having a molecular weight of about 86 kDa. This active fraction was collected and used as a gel filtration active fraction (about 22 ml, 49.3 unit / mg).
[0017]
A gel filtration active fraction of about 22 ml and an equal amount of 1.7 M (NH 4 ) 2 SO 4 was fractionated by 3 ml of Phenyl-Superose hydrophobic chromatography under the following conditions.
Column: Phenyl-Superose HR5 / 5 (Pharmacia)
Buffer: A: 50 mM Tris-HCl (pH 7.5), 0.85 M (NH 4 ) 2 SO 4 , 0.02% NaN 3
B: 50 mM Tris-HCl (pH 7.5), 0.02%
NaN 3
Elution: After sufficiently adsorbing, the ratio of the B buffer was switched from 0% to 50% and further increased linearly from 50% to 100% for elution.
Flow rate: 0.6 ml / min
Since the active fraction was eluted when the ratio of the B buffer was 100%, that is, when the ammonium sulfate concentration was almost 0, this active fraction was recovered and the Phenyl-Superose active fraction (about 10 ml, 48.6 units). / Mg).
The chromatogram at this time is shown in FIG. In addition, the continuous line in a figure shows the relative activity of A4- (beta) -Gal, a continuous line shows the light absorbency in 280 nm, and shows that the peak shown by the arrow has overlapped with the peak of the relative activity of A4- (beta) -Gal. The broken line indicates the ratio of the gradient buffer B.
[0018]
Table 1 shows the total protein amount, the total activity, the specific activity, the yield, and the purification rate of each purification step described above. The protein concentration and enzyme activity were measured by the following method.
The protein concentration was measured using Bio-Rad Protein assay (manufactured by Bio-Rad). Bovine serum albumin was used as a standard.
[0019]
The β-galactosidase activity when ONPG was used as a substrate was measured as follows. Keep the reaction mixture (50 mM sodium phosphate buffer (pH 6.5), 1 mM MgCl 2 , 2.8 mM ONPG, total amount 2.9 ml) in the cuvette at 70 ° C., add 100 μl of enzyme solution and wait 30 seconds later. The change in absorbance at 405 nm for 1 minute was measured. The molar extinction coefficient of o-nitrophenol at 405 nm was calculated as 3.1 × 10 3 M −1 cm −1 . In addition, the activity of each fraction in the middle of purification was simply measured as follows. 10 μl from the fraction to be measured was placed in a 96-well microwell plate, and 180 μl of buffer (50 mM sodium phosphate (pH 6.5), 1 mM MgCl 2 ) was added. Next, 10 μl of 10 mM ONPG was added and immediately placed in an incubator at 80 ° C. for 15 minutes. Thereafter, the absorbance at 405 nm was measured with an MTP-100 microplate reader. For the control, the same buffer was used instead of the liquid from the fraction. As with ONPG, p-nitrophenyl β-D-galactopyranoside (PNPG) is also used as a substrate for β-galactosidase.
[0020]
The β-galactosidase activity when lactose was used as a substrate was measured as follows. The reaction mixture (10-100 mM lactose, 10 mM sodium phosphate buffer (pH 6.5), enzyme solution, total volume is 1 ml) is reacted at 70 ° C. for 1 hour, and the change in the amount of lactose before and after the reaction is measured by ion chromatography. It was measured by a graphic (DIONEX, DX3000 type). The measurement conditions were as follows.
Column: Carbo-pak PA-100
Mobile phase: 150 mM NaOH
Flow rate: 0.8ml / min
Detector: PAD
[0021]
[Table 1]
Figure 0003766461
[0022]
A4-β-Gal was purified to 423 times by purification up to Phenyl-Superose fraction, and it was confirmed by SDS-PAGE described below that it was almost pure. Therefore, various properties of the enzyme were examined using this Phenyl-Superose active fraction.
[0023]
(1) Estimation of molecular weight by SDS-PAGE Polyacrylamide gel electrophoresis (PAGE) is performed according to the method of Laemmli (UK Laemmli Nature (London), 227, 680-685 (1970)) and stained with Coomassie brilliant blue R-250. Visualized with. That is, samples at each stage of purification were prepared so that the protein concentration was about 1 mg / ml, and subjected to SDS-polyacrylamide gel electrophoresis according to a conventional method, and stained with Coomassie brilliant blue.
A sample obtained by subjecting the sample at each purification stage to SDS-PAGE is shown in FIG. In the figure, lane 1 is a molecular weight marker, lane 2 is a supernatant of disrupted cells, lane 3 is an active fraction fractionated with Q-Sepharose, lane 4 is an active fraction fractionated with hydroxyapatite, lane 5 Is the active fraction fractionated with Mono-Q, lane 6 is the active fraction fractionated by gel filtration, lane 7 is the active fraction fractionated with Phenyl-Superose, and lane 8 is purified by reverse phase HPLC. Each of the main peaks is shown.
Here, A4-β-Gal formed a band at a position where the molecular weight was approximately 75 kDa. On the other hand, although not shown here, the molecular weight of A4-β-Gal was estimated to be about 86 kDa during gel filtration fractionation. From these facts, A4-β-Gal was estimated to be a monomer having a molecular weight of about 86 kDa. The reason why the molecular weight looks low in SDS-PAGE is thought to be due to the large hydrophobicity of A4-β-Gal.
[0024]
(2) Michaelis constant The Michaelis constant (Km) of A4-β-Gal was calculated using a Lineweaver-Burk plot by measuring the change in initial reaction rate when the initial substrate concentration was changed. The Km value for ONPG was 5.9 mM, and the Km value for lactose was 20 mM.
For comparison, the Thermus 4-1A strain (DACowan et al. Biotech. Bioeng., 26, 1141-1145 (1984)) and the Bacillus stearothermophilus ATCC 8005 strain (H.Hirata et al. J. The Michaelis constant of β-galactosidase of Bacteriol., 166 (3), 722-727 (1986), H.Hirata et al. Appl. Environ. Microbiol., 49 (6), 1547-1549 (1985) is also shown.
[0025]
[Table 2]
Figure 0003766461
[0026]
(3) Temperature dependence The temperature dependence of A4-β-Gal was determined by measuring the reaction mixture at each target temperature instead of keeping the reaction mixture at 70 ° C during activity measurement. Since ONPG was thermally decomposed at 80 ° C. or higher, 100 μl of 50 mM sodium phosphate buffer (pH 6.5) was added instead of the enzyme solution, and correction was performed using the same measured value. The apparent optimum temperature neglecting the heat-induced inactivation of the A4-β-Gal enzyme under these conditions was 90 ° C. or higher.
[0027]
(4) pH dependence The pH dependence of A4-β-Gal was measured in the same manner by adding the desired pH buffer instead of the 50 mM sodium phosphate buffer (pH 6.5) in the reaction mixture during the activity measurement. Was determined by Buffers include 50 mM sodium citrate buffer (pH 3.5-6.0), 50 mM sodium phosphate buffer (pH 5.5-8.0), 50 mM glycine-sodium buffer (pH 8.0-9. 0) was used. As a result, the optimum pH of A4-β-Gal was approximately 5.5 to 8.0 (see FIG. 4). In the figure, — ● — indicates the results when using sodium citrate buffer, — ■ — indicates the phosphate buffer, and — ▲ — indicates the results when using the glycine-NaOH buffer.
[0028]
(5) Heat resistance The heat resistance of A4-β-Gal was determined by keeping the enzyme solution at the target temperature for the time specified, and measuring the residual activity at 70 ° C immediately after the heat retention. It was revealed that A4-β-Gal retained 75% or more of the activity after 2 hours of incubation up to 85 ° C. (see FIG. 5). In the figure,-●-indicates 75 ° C,-■-indicates 80 ° C,-▲-indicates 85 ° C,-♦-indicates 90 ° C, and-▼-indicates results at 95 ° C.
Also, at 70 ° C., no decrease in activity was observed after incubation for 20 hours.
[0029]
(6) Effects of various metal ions and inhibitors Divalent metal ions (Mn, Mg, Fe, Zn, Cu) are 1 mM final, inhibitors (EDTA, PMSF, DTT, β-mercaptoethanol, cysteine, iodoacetic acid) Was added to the reaction mixture so that the final concentration was 10 mM, and the activity was measured as usual. As a result, manganese ion, cobalt ion, zinc ion, DTT, β-mercaptoethanol and cysteine activated A4-β-Gal. Iron ions, copper ions, and PMSF inhibited A4-β-Gal, but no inhibition by iodoacetic acid was observed (see FIGS. 6A and 6B). In the figure, (a) shows the effect of metal ions, and (b) shows the effect of inhibitors.
[0030]
Example 3
In order to determine the N-terminal amino acid sequence of A4-β-Gal, purification by reverse phase HPLC was performed under the following conditions.
Figure 0003766461
The main peak was collected and applied directly to the protein sequencer.
[0031]
The N-terminal amino acid sequence of A4-β-Gal was determined by analyzing an A4-β-Gal sample purified by reverse phase HPLC using a 473A Protein Sequencer (Applied Biosystems) according to a conventional method.
The sequence is shown in SEQ ID No. 1 in the sequence listing (where X represents an amino acid residue that could not be determined). Up to 15 residues from the N-terminal could be determined, but 1 residue (fifth) could not be determined.
A homology search between this amino acid sequence and a DNA sequence deduced from the sequence registered in the database (NBRF-PIR, Release 43.0) was performed. As a result, β-galactosidase I of Bacillus stearothermophilus I ( It was found that there was 40.9% homology with the N-terminal part of the accession number A29836) (see FIG. 7).
[0032]
【The invention's effect】
According to the present invention, there is provided a novel β-galactosidase which is an intracellular enzyme produced by the Thermus genus bacteria and which includes the N-terminal amino acid sequence described in SEQ ID NO: 1 in the Sequence Listing. Furthermore, using the DNA sequence deduced from this amino acid sequence, it becomes possible to clone homologous β-galactosidase from bacteria of the genus Thermus and other genera, contributing to the creation of practical β-galactosidase it can. Since β-galactosidase is rich in heat resistance, it is useful as an enzyme for the food industry.
[0033]
[Sequence Listing]
[0034]
SEQ ID NO: 1
Sequence length: 15 amino acid residues, 1 of which is undetermined type of sequence: type of amino acid sequence: characteristics of peptide sequence
Location of N-terminal amino acid sequence of β-galactosidase derived from Thermus sp. A4 strain: N-terminal sequence
Met-Leu-Gly-Val-X-Tyr-Tyr-Pro-Glu-His-Trp-Pro-Lys-Glu-Arg
[Brief description of the drawings]
FIG. 1 is a diagram showing a chromatogram of Mono-Q column chromatography.
FIG. 2 is a diagram showing a chromatogram of phenyl-separose chromatography.
FIG. 3 is a photograph showing the results of SDS-polyacrylamide gel electrophoresis.
FIG. 4 is a diagram showing the pH dependence of A4-β-Gal.
FIG. 5 is a view showing the heat resistance of A4-β-Gal.
FIG. 6 (a) shows the effect of A4-β-Gal metal ions, and (b) shows the effect of A4-β-Gal inhibitors.
FIG. 7 is a view comparing the N-terminal amino acid sequences of A4-β-Gal and β-galactosidase I derived from B. stearothermophilus.

Claims (3)

サーマス・エスピーA4株(FERM P−15236)由来の菌体内酵素で、配列表の配列番号1に記載のN−末端アミノ酸配列を含む新規な耐熱性β−ガラクトシダーゼ。 A novel thermostable β-galactosidase which is an intracellular enzyme derived from Thermus sp. A4 strain (FERM P-15236) and which contains the N-terminal amino acid sequence described in SEQ ID NO: 1 in the Sequence Listing. 配列表の配列番号1に記載のN−末端アミノ酸配列を含む耐熱性β−ガラクトシダーゼ産生能を有するサーマス・エスピーA4株(FERM P−15236)。Thermus sp. A4 strain (FERM P-15236) having the ability to produce heat-resistant β-galactosidase containing the N-terminal amino acid sequence described in SEQ ID NO: 1 in the Sequence Listing. サーマス・エスピーA4株(FERM P−15236)を培養し、培養物から請求項1記載の耐熱性β−ガラクトシダーゼを採取することを特徴とする新規な耐熱性β−ガラクトシダーゼの製造法。  A method for producing a novel thermostable β-galactosidase, comprising culturing Thermus sp. Strain A4 (FERM P-15236) and collecting the thermostable β-galactosidase according to claim 1 from the culture.
JP30524995A 1995-10-31 1995-10-31 Novel thermostable β-galactosidase Expired - Lifetime JP3766461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30524995A JP3766461B2 (en) 1995-10-31 1995-10-31 Novel thermostable β-galactosidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30524995A JP3766461B2 (en) 1995-10-31 1995-10-31 Novel thermostable β-galactosidase

Publications (2)

Publication Number Publication Date
JPH09121866A JPH09121866A (en) 1997-05-13
JP3766461B2 true JP3766461B2 (en) 2006-04-12

Family

ID=17942834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30524995A Expired - Lifetime JP3766461B2 (en) 1995-10-31 1995-10-31 Novel thermostable β-galactosidase

Country Status (1)

Country Link
JP (1) JP3766461B2 (en)

Also Published As

Publication number Publication date
JPH09121866A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
RU2081173C1 (en) Dna fragment encoding polypeptide exhibiting activity of nitrile hydratase, recombinant plasmid dna encoding polypeptide showing nitrile hydratase properties, strain of bacterium escherichia coli - a producer of polypeptide showing nitrile hydratase properties, method of preparing polypeptide showing nitrile hydratase properties
KR100753747B1 (en) New Glucose Dehydrogenase and Its Manufacturing Method
CN109337846B (en) Deep sea derived bacterial strain, beta-galactosidase gene coded by same and application of beta-galactosidase gene
KR20030078910A (en) Agarase and gene thereof
CN101657544A (en) Novel a-galactosidase
JP4216719B2 (en) Halogen compound-resistant novel formate dehydrogenase and method for producing the same
JP3766461B2 (en) Novel thermostable β-galactosidase
JP4336897B2 (en) Novel microorganism, maltose phosphorylase, trehalose phosphorylase and method for producing the same
CA1285896C (en) .alpha.-1, 6-GLUCOSIDASE AND PROCESS FOR PRODUCING THE SAME
US5457037A (en) Cloning of the gene coding the isoamylase enzyme and its use in the production of said enzyme
US5932466A (en) Creatine amidinohydrolase gene, a novel recombinant DNA, and a process for producing creatine amidinohydrolase
US6716609B2 (en) Polypeptides having α-hydroxy-γ-carboxymuconic acid-ε-semialdehyde dehydrogenase activity
US4960877A (en) DNA having genetic information of L-α-glycerophosphate oxidase and application thereof
US6124126A (en) Complementary DNA for rice chitinase having lytic activity against moulds and bacteria, and vector containing said complementary DNA and transformant
JP3959439B2 (en) Thermostable trehalase and its production method
JPWO2002046427A1 (en) Novel formate dehydrogenase and method for producing the same
JP3557276B2 (en) DNA encoding an enzyme, recombinant DNA containing the same, and transformant
JP2001258577A (en) Polygalacturonase
JPH09289893A (en) Thermostable amylase gene
JP3113947B2 (en) Bile acid sulfate sulfatase gene, novel recombinant DNA and method for producing bile acid sulfate sulfatase
Yamano et al. Purification and characterization of N-acetylglucosamine-6-phosphate deacetylase from a psychrotrophic marine bacterium, Alteromonas species
US6284510B1 (en) β-fructofuranosidase gene
JP3649765B2 (en) Novel glycerol kinase and process for producing the same
Sugita et al. Purification and some properties of an α-amylase from an anaerobic bacterium isolated from coastal sediment
JP4161236B2 (en) Novel L-α-glycerophosphate oxidase and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060127

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term