JP2001258577A - Polygalacturonase - Google Patents

Polygalacturonase

Info

Publication number
JP2001258577A
JP2001258577A JP2000206595A JP2000206595A JP2001258577A JP 2001258577 A JP2001258577 A JP 2001258577A JP 2000206595 A JP2000206595 A JP 2000206595A JP 2000206595 A JP2000206595 A JP 2000206595A JP 2001258577 A JP2001258577 A JP 2001258577A
Authority
JP
Japan
Prior art keywords
asn
gly
polygalacturonase
thr
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000206595A
Other languages
Japanese (ja)
Other versions
JP4395243B2 (en
Inventor
Atsushi Suzumatsu
淳 凉松
Kazuhisa Sawada
和久 澤田
Noriyuki Yajima
則幸 谷島
Norihiko Higaki
紀彦 檜垣
Yoko Kaido
洋子 海藤
Toru Kobayashi
徹 小林
Shuji Kawai
修次 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000206595A priority Critical patent/JP4395243B2/en
Publication of JP2001258577A publication Critical patent/JP2001258577A/en
Application granted granted Critical
Publication of JP4395243B2 publication Critical patent/JP4395243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polygalacturonase that acts on polygalacturonic acid in an exo manner, has an optimal pH around 8, i.e., in an alkaline region, exhibits a protopectinase activity, and is useful as an enzyme used for a detergent for clothes and for treating fibers, and to provide a polygalacturonase gene that permits producing the polygalacturonase as a single product and in a large amount. SOLUTION: A polygalacturonase having a protopectinase activity 30% or more that of the maximal protopectinase at least at a pH from 8 to 11, a microorganism producing the polygalacturonase, a gene encoding the polygalacturonase, a recombination vector containing the gene, a transformant containing the recombination vector, and method for producing the polygalacturonase using these are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は洗浄剤、繊維処理剤
等として有用なポリガラクツロナーゼ及びそれをコード
する遺伝子に関する。
TECHNICAL FIELD The present invention relates to polygalacturonase useful as a detergent, a fiber treatment agent and the like, and a gene encoding the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ポリガ
ラクツロナーゼは、一般にペクチナーゼとも呼ばれ、ポ
リガラクツロン酸(ペクチン酸)やペクチンを分解する
加水分解酵素である。斯かるポリガラクツロナーゼは、
その最適反応pHを酸性−弱酸性に有していることか
ら、主に食品工業用酵素として用いられていたが、最近
では、衣料用洗剤酵素としての利用が試みられている
(特開昭60−226599号公報、特公平6−395
96号公報、WO98/06809号公報等)。
2. Description of the Related Art Polygalacturonase, generally called pectinase, is a hydrolase that degrades polygalacturonic acid (pectic acid) and pectin. Such polygalacturonase is
It has been used mainly as an enzyme for the food industry due to its acidic-weak acidity, but has recently been attempted to be used as a detergent enzyme for clothing. 226599, JP-B 6-395
No. 96, WO98 / 06809, etc.).

【0003】ポリガラクツロナーゼを衣料用洗剤に用い
る場合には、酵素がアルカリ性領域で作用すること、界
面活性剤、キレート剤等の洗浄剤成分に対して安定であ
ることが必要である。また、木綿繊維上のペクチン質は
プロトペクチンとして存在することから、アルカリ性領
域において、不溶性のプロトペクチンに作用してペクチ
ンを遊離するプロトペクチナーゼ活性を有するポリガラ
クツロナーゼが必要である。
When polygalacturonase is used in a detergent for clothing, it is necessary that the enzyme acts in an alkaline region and is stable to detergent components such as a surfactant and a chelating agent. In addition, since pectic substance on cotton fiber exists as protopectin, a polygalacturonase having a protopectinase activity that acts on insoluble protopectin to release pectin in an alkaline region is required.

【0004】従来、アルカリ至適のポリガラクツロナー
ゼとしては、Bacillus sp. P-4-N株の生産するエンド型
のポリガラクツロナーゼ(特公昭48−6557号公
報)が報告されていたが、斯かる酵素は反応にカルシウ
ムイオンを要求するキレート耐性の低い酵素であって洗
剤への応用は困難である。また最近では、プロトペクチ
ナーゼ活性を有するペクチン酸リアーゼの洗浄剤への利
用も考えられている(特開平11−140489号公
報)。しかし、アルカリ性領域で作用するポリガラクツ
ロナーゼであって、プロトペクチナーゼ活性を有する酵
素はこれまでに全く知られていなかった。
Conventionally, an endo-type polygalacturonase produced by Bacillus sp. Strain P-4-N (JP-B-48-6557) has been reported as an alkali-optimized polygalacturonase. However, such an enzyme is an enzyme having a low chelate resistance requiring calcium ions for the reaction, and is difficult to apply to a detergent. Recently, utilization of pectate lyase having protopectinase activity as a detergent has been considered (Japanese Patent Application Laid-Open No. H11-140489). However, a polygalacturonase that acts in an alkaline region and has protopectinase activity has not been known at all.

【0005】本発明の目的は、界面活性剤、キレート剤
等の洗浄剤成分に安定で、アルカリ領域で作用しプロト
ペクチナーゼ活性を有するポリガラクツロナーゼ及びそ
れをコードする遺伝子、並びに遺伝子工学的手法により
該ポリガラクツロナーゼを効率よく大量生産するための
方法を提供することにある。
An object of the present invention is to provide a polygalacturonase which is stable to detergent components such as a surfactant and a chelating agent, acts in an alkaline region and has protopectinase activity, a gene encoding the same, and a genetic engineering technique. To provide a method for efficiently mass-producing the polygalacturonase.

【0006】[0006]

【課題を解決するための手段】本発明者らは、土壌中の
微生物が産生する酵素の中から、アルカリ領域で作用
し、界面活性剤、キレート剤耐性等の洗浄剤成分に安定
で、且つプロトペクチナーゼ活性を有するポリガラクツ
ロナーゼを見出すと共に、該ポリガラクツロナーゼをコ
ードする遺伝子のクローニング及び遺伝子組換えによる
生産技術の確立に成功した。
Means for Solving the Problems The present inventors have found that among enzymes produced by microorganisms in soil, they act in an alkaline region and are stable to detergent components such as surfactants and chelating agent-resistant components. A polygalacturonase having protopectinase activity was found, and a gene encoding the polygalacturonase was cloned and a production technique was successfully established by genetic recombination.

【0007】すなわち、本発明は少なくともpH8〜11
において最大プロトペクチナーゼ活性の30%以上のプ
ロトペクチナーゼ活性を有するポリガラクツロナーゼ、
及び当該ポリガラクツロナーゼを生産する微生物を提供
するものである。
That is, the present invention relates to at least pH 8-11.
A polygalacturonase having a protopectinase activity of 30% or more of the maximum protopectinase activity in
And a microorganism that produces the polygalacturonase.

【0008】更に本発明は、当該ポリガラクツロナーゼ
をコードする遺伝子、該遺伝子を含有する組換えベクタ
ー、該組換えベクターを含む形質転換体及びこれらを用
いたポリガラクツロナーゼの製造法を提供するものであ
る。
Further, the present invention provides a gene encoding the polygalacturonase, a recombinant vector containing the gene, a transformant containing the recombinant vector, and a method for producing polygalacturonase using the same. Is what you do.

【0009】[0009]

【発明の実施の形態】本発明のポリガラクツロナーゼ
は、少なくともpH8〜11においてプロトペクチナーゼ
活性、すなわちプロトペクチン分解活性を有する。当該
プロトペクチン分解活性は、プロトペクチンのポリガラ
クツロン酸の部分を分解して可溶化するもの(Aタイ
プ)である。プロトペクチナーゼ活性は、しつけ糸(基
質)をマックルベイン氏緩衝液(pH5以上7以下)、トリ
ス−塩酸緩衝液(pH7以上9以下)及びグリシン−水酸化
ナトリウム(pH9以上11以下)の各緩衝液、塩化カルシ
ウム及びポリガラクツロナーゼを含む反応液に入れ、所
定温度、時間反応させた後、上清液中に遊離したペクチ
ンをオルシノール塩酸法で測定して得られた生成ペクチ
ン量で測定した。最適反応pHにおける生成ペクチン量
に対する各pHにおける生成ペクチン量の比、即ち最大
プロトペクチナーゼ活性に対する相対比率で評価した。
BEST MODE FOR CARRYING OUT THE INVENTION The polygalacturonase of the present invention has a protopectinase activity, that is, a protopectin degrading activity at least at pH 8 to 11. The protopectin-degrading activity degrades and solubilizes the polygalacturonic acid portion of protopectin (A type). The protopectinase activity was measured by using a basting thread (substrate) in each of the following buffer solutions: McClubane's buffer (pH 5 to 7), Tris-HCl buffer (pH 7 to 9), and glycine-sodium hydroxide (pH 9 to 11). After placing in a reaction solution containing calcium chloride and polygalacturonase and reacting for a predetermined temperature and time, pectin released in the supernatant was measured by the orcinol-hydrochloric acid method, and the amount of pectin produced was measured. The ratio of the amount of pectin produced at each pH to the amount of pectin produced at the optimum reaction pH, that is, the relative ratio to the maximum protopectinase activity was evaluated.

【0010】また、アルカリ領域においてもポリガラク
ツロナーゼ活性、すなわちポリガラクツロン酸の加水分
解活性を有する。当該ポリガラクツロナーゼ活性は、エ
キソ型であり、ジガラクツロン酸を生成する。このよう
に本発明のポリガラクツロナーゼは、アルカリ領域おい
て、不溶性天然ペクチンであるプロトペクチン及びその
一部であるポリガラツクロン酸の両方に作用してジガラ
クツロン酸を生成するため、植物性繊維上のプロトペク
チンに付着した汚れや、ケチャップ、ジャム等の不溶性
ペクチン含量の高い食物の食べこぼしや染み汚れの除去
に有効である。
[0010] Further, it has a polygalacturonase activity, that is, a polygalacturonic acid hydrolysis activity even in an alkaline region. The polygalacturonase activity is exo-type and produces digalacturonic acid. As described above, the polygalacturonase of the present invention acts on both insoluble natural pectin protopectin and polygalacturonic acid, which is a part thereof, in the alkaline region to produce digalacturonic acid. It is effective for removing dirt attached to the protopectin, food spills and stains of foods having a high content of insoluble pectin such as ketchup and jam.

【0011】本発明のポリガラクツロナーゼは、更に界
面活性剤及びキレート剤に対して安定である。例えば、
ドデシル硫酸ナトリウム0.2%含有液中で80%以上
の活性を保持する。また、2mMEDTA含有液中で80
%の活性を保持する。
[0011] The polygalacturonase of the present invention is further stable to detergents and chelating agents. For example,
Retains 80% or more activity in a solution containing 0.2% sodium dodecyl sulfate. In a solution containing 2 mM EDTA, 80
% Activity.

【0012】本発明のポリガラクツロナーゼは、更に次
の酵素学的性質を有するのが好ましい。 (1)作用:ポリガラクツロン酸(ペクチン酸)、ペク
チン及びプロトペクチンに作用し、ポリガラクツロン酸
のα−1,4結合をエキソ的に加水分解し、ジガラクツ
ロン酸を生成する。 (2)最適反応pH:pH8付近(トリス−塩酸緩衝液) (3)最適反応温度:約50℃(トリス−塩酸緩衝液、
pH8.0) (4)pH安定性:pH7〜11.5(30℃、30分間処
理) (5)耐熱性:約50℃まで安定(トリス−塩酸緩衝
液、pH8.0、30分間処理) (6)分子量:約105000(ゲル濾過法) (7)等電点:pH4.6付近(等電点電気泳動法)
The polygalacturonase of the present invention preferably further has the following enzymatic properties. (1) Action: It acts on polygalacturonic acid (pectic acid), pectin and protopectin, and exo-hydrolyzes the α-1,4 bond of polygalacturonic acid to produce digalacturonic acid. (2) Optimal reaction pH: around pH 8 (Tris-HCl buffer) (3) Optimal reaction temperature: about 50 ° C. (Tris-HCl buffer,
(pH 8.0) (4) pH stability: pH 7-11.5 (30 ° C., 30 minutes treatment) (5) Heat resistance: stable up to about 50 ° C. (Tris-HCl buffer, pH 8.0, 30 minutes treatment) (6) Molecular weight: about 105000 (gel filtration method) (7) Isoelectric point: around pH 4.6 (isoelectric focusing)

【0013】本発明のポリガラクツロナーゼは、例えば
プロトペクチナーゼ活性を有するポリガラクツロナーゼ
生産菌を培養し、培養物から採取することにより製造さ
れる。
The polygalacturonase of the present invention is produced, for example, by culturing a polygalacturonase-producing bacterium having protopectinase activity and collecting the bacterium from the culture.

【0014】本発明のポリガラクツロナーゼを生産する
菌としては、Bacillus属に属する細菌、例えばKSM−
P358株を挙げることができる。当該KSM−P35
8株は次の菌学的性質を有する。
The bacteria producing the polygalacturonase of the present invention include bacteria belonging to the genus Bacillus , for example, KSM-
P358 strain can be mentioned. The KSM-P35
Eight strains have the following mycological properties:

【0015】A 形態学的性質 (a)細胞の形、大きさ:桿菌(0.6〜0.8×2.
4〜3.2μm) (b)多形性:無し (c)運動性:有り (d)胞子(大きさ、形、位置、膨潤の有無):楕円
形、0.6〜0.8×1.2〜1.6μm、準端、膨潤
有り (e)グラム染色:不定(CVT寒天培地には生育せ
ず) (f)抗酸性:陰性 (g)肉汁寒天培地上での生育:白色、全縁のコロニー
を形成
A Morphological properties (a) Cell shape and size: Bacillus (0.6-0.8 × 2.
(B) Polymorphism: no (c) Mobility: yes (d) Spores (size, shape, position, presence or absence of swelling): oval, 0.6-0.8 × 1 0.2 to 1.6 μm, semi-edge, swelling (e) Gram stain: undefined (does not grow on CVT agar medium) (f) Acid-fast: negative (g) Growth on gravy agar medium: white, all Form a colony on the edge

【0016】B 生理学的性質 (a)硝酸塩の還元:+ (b)脱窒反応:− (c)MRテスト:− (d)VPテスト:− (e)インドール生成:− (f)硫化水素の生成:− (g)デンプン加水分解:− (h)ゼラチン加水分解:+ (i)カゼイン加水分解:+ (j)クエン酸の利用:− (k)無機窒素の利用:− (l)ウレアーゼ:+ (m)オキシダーゼ:+ (n)カタラーゼ:+ (o)リトマスミルク:色調の変化は認められない (p)生育温度範囲:18〜41℃ (q)生育pH範囲:pH7〜9 (r)嫌気条件下での生育:生育せず (s)OFテスト:− (t)グルコースからのガス産生:− (u)塩化ナトリウムに対する耐性:2%で生育せず (v)糖からの酸生成:以下の糖類からの酸生成は認め
られなかった。ガラクトース、キシロース、アラビノー
ス、シュークロース、グルコース、マンニトール、マン
ノース、イノシトール、ソルビトール、トレハロース、
ラクトース、グリセリン、マルトース、フラクトース、
ラフィノース、メリビオース、可溶性デンプン
B Physiological Properties (a) Reduction of nitrate: + (b) Denitrification:-(c) MR test:-(d) VP test:-(e) Indole formation:-(f) Hydrogen sulfide Production:-(g) Starch hydrolysis:-(h) Gelatin hydrolysis: + (i) Casein hydrolysis: + (j) Use of citric acid:-(k) Use of inorganic nitrogen:-(l) Urease: + (M) Oxidase: + (n) Catalase: + (o) Litmus milk: no change in color tone is observed (p) Growth temperature range: 18 to 41 ° C (q) Growth pH range: pH 7 to 9 (r) Growth under anaerobic conditions: not growing (s) OF test:-(t) Gas production from glucose:-(u) Resistance to sodium chloride: not growing at 2% (v) Acid production from sugar: No acid formation from the following saccharides was observed. Galactose, xylose, arabinose, sucrose, glucose, mannitol, mannose, inositol, sorbitol, trehalose,
Lactose, glycerin, maltose, fructose,
Raffinose, melibiose, soluble starch

【0017】KSM−P358株の形態学、生理学的性
質について「Bergey's Manual of Systematic Bacterio
logy」(Williams & Wilkins社、1984年)の記載に準じ
比較検討した結果、本菌株はBacillus brevisに近縁な
菌種であると考えられた。しかし、その性質は既知のBa
cillus brevisとは一致せず、他のBacillus属細菌の諸
性質とも一致しないため、新規なBacillus属細菌として
本菌株を工業技術院生命工学研究所へバチルス エスピ
ー KSM−P358(Bacillus sp. KSM-P358;FERM
P-17560)として寄託した。
Regarding the morphology and physiological properties of the KSM-P358 strain, see Bergey's Manual of Systematic Bacterio.
As a result of a comparative study in accordance with the description of "B. logy" (Williams & Wilkins, 1984), this strain was considered to be a strain closely related to Bacillus brevis . However, its properties are known Ba
cillus brevis and does not match, because it does not match the properties of other bacteria of the genus Bacillus, the novel bacteria of the genus Bacillus as the present strain to the Agency of Biotechnology Institute Bacillus sp. KSM-P358 (Bacillus sp. KSM -P358 ; FERM
P-17560).

【0018】KSM−P358株等のポリガラクツロナ
ーゼ生産菌を用いて本発明のポリガラクツロナーゼを生
産するには、菌株を同化性の炭素源、窒素源、その他の
必須栄養素を含む培地に接種し、常法に従い振盪培養あ
るいは通気攪拌培養すれば良い。培地のpHは、7〜9に
調整するのが好ましい。
In order to produce the polygalacturonase of the present invention using a polygalacturonase-producing bacterium such as KSM-P358 strain, the strain is placed in a medium containing an assimilable carbon source, nitrogen source and other essential nutrients. Inoculation and shaking culture or aeration and stirring culture may be performed according to a conventional method. The pH of the medium is preferably adjusted to 7-9.

【0019】かくして得られた培養物中からのポリガラ
クツロナーゼの採取及び精製は、一般の方法に準じて行
うことができる。即ち、培養物から遠心分離または濾過
することで菌体を除き、得られた培養上清液から常法手
段により目的酵素を濃縮することができる。このように
して得られた酵素液または乾燥粉末はそのまま用いるこ
ともできるが更に公知の方法により結晶化や造粒化する
ことができる。
The collection and purification of polygalacturonase from the culture thus obtained can be carried out according to a general method. That is, the cells can be removed from the culture by centrifugation or filtration, and the target enzyme can be concentrated from the obtained culture supernatant by a conventional method. The enzyme solution or the dried powder thus obtained can be used as it is, but can be further crystallized or granulated by a known method.

【0020】Bacillus sp. KSM-P358由来のポリガラク
ツロナーゼは以下のような酵素学的性質を有する。
The polygalacturonase derived from Bacillus sp. KSM-P358 has the following enzymatic properties.

【0021】なお、ポリガラクツロナーゼ活性の測定
は、以下のように行った。 〔標準酵素活性測定法〕試験管に0.2mLの0.5Mト
リス−塩酸緩衝液(pH8.0)、0.2mLの1%(w/
v)ポリガラクツロン酸(ICNバイオメディカル;l
ot14482、水酸化ナトリウム溶液にてpH6.8に
調整)、0.5mLの脱イオン水を添加し、30℃で5分
間恒温した。これに0.1mLの適当に希釈した酵素液
(希釈は脱イオン水により行った)を加え20分間反応
させた後、1mLのジニトロサリチル酸試薬を添加し、沸
水中で5分間還元糖の発色を行った。氷水中で急冷した
後、4mLの脱イオン水を加え535nmにおける吸光度を
測定し還元糖の生成量を求めた。尚、ブランクは酵素液
を加えずに処理した反応液にジニトロサリチル酸試薬を
加えた後、酵素液を添加し、同様に発色させたものを用
意した。酵素1単位(1U)は、上記反応条件下におい
て1分間に1μmol のD−ガラクツロン酸相当の還元糖
を生成する量とした。
The measurement of polygalacturonase activity was carried out as follows. [Standard enzyme activity measurement method] 0.2 mL of 0.5 M Tris-HCl buffer (pH 8.0) was placed in a test tube, and 0.2 mL of 1% (w /
v) Polygalacturonic acid (ICN Biomedical; l
ot14482, adjusted to pH 6.8 with sodium hydroxide solution), 0.5 mL of deionized water was added, and the temperature was kept at 30 ° C. for 5 minutes. After adding 0.1 mL of appropriately diluted enzyme solution (diluted with deionized water) and reacting for 20 minutes, 1 mL of dinitrosalicylic acid reagent was added, and the color of reducing sugar was developed in boiling water for 5 minutes. went. After quenching in ice water, 4 mL of deionized water was added, and the absorbance at 535 nm was measured to determine the amount of reducing sugar produced. A blank was prepared by adding a dinitrosalicylic acid reagent to a reaction solution treated without adding an enzyme solution, and then adding an enzyme solution to develop a color in the same manner. One unit (1 U) of the enzyme was an amount that produced 1 μmol of reducing sugar corresponding to D-galacturonic acid per minute under the above reaction conditions.

【0022】(1)基質特異性 ポリガラクツロン酸の代わりにエステル化度の異なるペ
クチン(28、67、93%)を基質とし、標準活性測
定法により反応速度を調べた。エステル化度28%のペ
クチン(シグマ;lot74H1092)では約50
%、エステル化度67%のペクチン(シグマ;lot7
4H1093)に対しては約5%の反応速度で分解した
が、エステル化度93%のペクチン(シグマ;lot2
5H0123)に対しては、本条件下で分解活性は認め
られなかった。次に基質として30cmのしつけ糸(金鈴
印)1本(約25mg)を用い、市販の衣料用洗剤溶液
〔0.067%(w/v)〕及び酵素(0.2U)を添
加し、30℃、1時間反応を行った。反応液(2mL)を
遠心分離し、上清液中に遊離したペクチンをオルシノー
ル塩酸法により測定した。その結果、反応液中に約45
μgのペクチン遊離が認められた。木綿繊維表面のプロ
トペクチンに作用しAタイプに属するプロトペクチナー
ゼ活性を有していた。
(1) Substrate specificity Instead of polygalacturonic acid, pectins (28, 67, 93%) having different degrees of esterification were used as substrates, and the reaction rate was examined by a standard activity measurement method. Pectin with 28% esterification degree (Sigma; lot74H1092) has about 50
%, Pectin having a degree of esterification of 67% (Sigma; lot 7
4H1093) was degraded at a reaction rate of about 5%, but pectin having a degree of esterification of 93% (Sigma; lot2
5H0123) did not show any decomposition activity under these conditions. Next, a single 30 cm basting thread (gold bell) (about 25 mg) was used as a substrate, and a commercially available detergent solution for clothing [0.067% (w / v)] and an enzyme (0.2 U) were added. The reaction was performed for 1 hour. The reaction solution (2 mL) was centrifuged, and pectin released in the supernatant was measured by the orcinol-hydrochloric acid method. As a result, about 45
μg of pectin release was observed. It acted on protopectin on the surface of cotton fiber and had protopectinase activity belonging to type A.

【0023】(2)基質の分解様式 50mMトリス−塩酸緩衝液(pH7.5)、0.2%ポリ
ガラクツロン酸、0.2mM塩化カルシウムからなる反応
液に0.05Uの酵素を添加し、全量を0.25mLとし
た。30℃、30分間反応させた液を薄層クロマトプレ
ート(kiesel gel 60:メルク)に約10μLスポッ
トし、n−ブタノール:酢酸:水=5:2:3(v/
v)の溶媒系にて展開を行った。反応物の検出にはアニ
スアルデヒド−硫酸溶液を用い、プレートに噴霧後、1
00℃、10分間乾燥器中で発色させた。その結果、反
応生成物としてジガラクツロン酸のみが検出され、本酵
素はエキソ型のポリガラクツロナーゼであった。また、
2gのしつけ糸、0.067%市販衣料用洗剤、10mM
グリシン−水酸化ナトリウム緩衝液(pH10.5)から
成る反応液に2Uの酵素を添加し、全量を20mLとし、
30℃で1〜8時間反応させた。経時的にサンプリング
を行い、上記の方法により薄層クロマトグラフィーを行
った結果、反応1時間後からモノガラツクロン酸及びジ
ガラクツロンが検出された。このことからプロトペクチ
ンに対してもエキソ型に作用していた。
(2) Decomposition mode of the substrate 0.05 U of the enzyme was added to a reaction solution comprising 50 mM Tris-HCl buffer (pH 7.5), 0.2% polygalacturonic acid and 0.2 mM calcium chloride, and To 0.25 mL. About 10 μL of the solution reacted at 30 ° C. for 30 minutes was spotted on a thin-layer chromatography plate (kiesel gel 60: Merck), and n-butanol: acetic acid: water = 5: 2: 3 (v /
The development was performed in the solvent system of v). Anisaldehyde-sulfuric acid solution was used for the detection of the reactants.
Color was developed in a dryer at 00 ° C. for 10 minutes. As a result, only digalacturonic acid was detected as a reaction product, and the enzyme was an exo-type polygalacturonase. Also,
2 g of basting thread, 0.067% commercial clothing detergent, 10 mM
2 U of the enzyme was added to a reaction solution composed of glycine-sodium hydroxide buffer (pH 10.5) to make the total volume 20 mL.
The reaction was performed at 30 ° C. for 1 to 8 hours. As a result of performing sampling over time and performing thin-layer chromatography by the above method, monogalacturonic acid and digalacturon were detected 1 hour after the reaction. From this, it also acted on protopectin in exo form.

【0024】(3)ポリガラクツロナーゼ活性の最適反
応pH マックルベイン氏緩衝液(pH5〜7)、トリス−塩酸緩
衝液(pH7〜9)、グリシン−水酸化ナトリウム緩衝液
(pH9〜11)の各緩衝液(100mM)を用いて最適反
応pHを調べた結果、本酵素はpH8.0のトリス−塩酸緩
衝液中で最も高い反応速度を示し、また、pH5〜9の広
範囲で最大活性の50%以上の活性を示した(図1)。
(3) Optimum reaction pH of polygalacturonase activity pH of McClubane's buffer (pH 5-7), Tris-HCl buffer (pH 7-9), glycine-sodium hydroxide buffer (pH 9-11) As a result of examining the optimum reaction pH using each buffer (100 mM), this enzyme showed the highest reaction rate in Tris-HCl buffer at pH 8.0 and a maximum activity of 50 to 50 in the pH 5 to 9 range. % Or more (FIG. 1).

【0025】(4)プロトペチクナーゼ活性の最適反応
pH 基質として30cmしつけ糸(金鈴印)1本(25mg)を
用い、マックルベイン氏緩衝液(pH5〜7)、トリス−
塩酸緩衝液(pH7〜9)、グリシン−水酸化ナトリウム
緩衝液(pH9〜11)の各緩衝液(50mM)、0.4mM
の塩化カルシウムを含む反応液(2mL)にポリガラクツ
ロナーゼ(0.2U)を添加し、30℃、1時間反応を
行い上清液中に遊離したペクチンをオルシノール塩酸法
により測定した。その結果、本酵素はpH8.0のトリス
−塩酸緩衝液中で最も高い反応速度を示した。また、pH
5から11の広範囲で最大活性の30%以上の活性を示
した(図2)。
(4) Optimum reaction of protopeticinase activity
Using a 30 cm basting thread (Kinuzuri) (25 mg) as a pH substrate, McClubane's buffer solution (pH 5-7), Tris-
Each buffer (50 mM) of hydrochloric acid buffer (pH 7 to 9) and glycine-sodium hydroxide buffer (pH 9 to 11), 0.4 mM
Polygalacturonase (0.2 U) was added to a reaction solution (2 mL) containing the above calcium chloride, reacted at 30 ° C. for 1 hour, and pectin released in the supernatant was measured by the orcinol hydrochloric acid method. As a result, this enzyme showed the highest reaction rate in Tris-HCl buffer at pH 8.0. Also, pH
A wide range of 5 to 11 showed 30% or more of the maximum activity (FIG. 2).

【0026】(5)最適反応温度 100mMトリス−塩酸緩衝液(pH8.0)中、10℃〜
80℃の各温度で酵素反応を行い、最適反応温度を調べ
た結果、本酵素は50℃付近に最適反応温度を示し、4
0℃〜60℃の範囲で最大活性の50%以上の活性を示
した。また、1mMの塩化カルシウムを反応系に添加する
と最適反応温度は、55℃付近にシフトすると共に高温
側での反応速度を高めた。即ち、40℃〜70℃の範囲
において最大活性の50%以上の活性を示した(図
3)。
(5) Optimum reaction temperature: 10 ° C. in 100 mM Tris-HCl buffer (pH 8.0)
As a result of performing an enzyme reaction at each temperature of 80 ° C. and examining the optimum reaction temperature, this enzyme showed an optimum reaction temperature near 50 ° C.
The activity was 50% or more of the maximum activity in the range of 0 ° C to 60 ° C. When 1 mM calcium chloride was added to the reaction system, the optimum reaction temperature shifted to around 55 ° C. and the reaction rate on the high temperature side was increased. That is, the activity was 50% or more of the maximum activity in the range of 40 ° C to 70 ° C (Fig. 3).

【0027】(6)安定pH範囲 マックルベイン氏緩衝液(pH2〜8)、グリシン−水酸
化ナトリウム緩衝液(pH7〜11.5)、塩化カリウム
−水酸化ナトリウム緩衝液(pH10〜12.5)の各緩
衝液(50mM)中に本酵素を加え、30℃、30分間恒
温した後、残存活性を測定した結果、本酵素はグリシン
−水酸化ナトリウム緩衝液(pH9.5)中での残存活性
を100%とした場合、pH7〜11.5の範囲で80%
以上の残存活性を示した(図4)。尚、各処理において
1mMの塩化カルシウムを添加しても酵素の安定性の増大
に影響を与えなかった。
(6) Stable pH range McClubane's buffer (pH 2 to 8), glycine-sodium hydroxide buffer (pH 7 to 11.5), potassium chloride-sodium hydroxide buffer (pH 10 to 12.5) The enzyme was added to each of the above buffer solutions (50 mM), incubated at 30 ° C. for 30 minutes, and the remaining activity was measured. As a result, the enzyme was found to have a residual activity in a glycine-sodium hydroxide buffer solution (pH 9.5). Is 100%, the pH is 80% in the range of 7 to 11.5.
The above residual activity was shown (FIG. 4). The addition of 1 mM calcium chloride in each treatment did not affect the stability of the enzyme.

【0028】(7)耐熱性 50mMトリス−塩酸緩衝液(pH8.0)中に本酵素を添
加し、5℃〜80℃の各温度で30分間恒温した後の残
存活性を測定した。本酵素は、この条件下において50
℃まで非常に安定であり、60℃以上で急激に失活した
(図5)。尚、各温度において1mMの塩化カルシウムを
添加しても酵素の安定性には影響を与えなかった。
(7) Heat resistance The enzyme was added to a 50 mM Tris-HCl buffer (pH 8.0), and the remaining activity was measured after being kept at a temperature of 5 ° C. to 80 ° C. for 30 minutes. The enzyme has 50
It was very stable up to 60 ° C. and rapidly deactivated above 60 ° C. (FIG. 5). The addition of 1 mM calcium chloride at each temperature did not affect the stability of the enzyme.

【0029】(8)分子量 a.ゲル濾過法:100mM塩化ナトリウムを含む20mM
トリス−塩酸緩衝液(pH7.0)にて平衡化したトヨパ
ールHW55カラム(1.5×65cm)に本酵素を載せ
約36mL/hの流速で溶出を行った。標準タンパク質と
してカタラーゼ(232000)、アルドラーゼ(15
8000)、牛血清アルブミン(67000)、卵白ア
ルブミン(43000)を用い、それぞれの溶出液量と
分子量から検量線を作製し、本酵素の分子量を求めたと
ころ約105000と推定された。b.SDS−ポリア
クリルアミド電気泳動法:ゲル濾過法により溶出された
酵素活性画分を濃縮し、7.5%アクリルアミドゲルを
用いてSDS−電気泳動を行った。標準タンパク質とし
てミオシン(200000)、β−ガラクトシダーゼ
(116200)、ホスホリラーゼ(97400)、牛
血清アルブミン(67000)を用い、それぞれの移動
度と分子量から検量線を作製し、本酵素の分子量を求め
た結果、約103000と推定された。
(8) Molecular weight a. Gel filtration method: 20 mM containing 100 mM sodium chloride
The enzyme was loaded on a Toyopearl HW55 column (1.5 × 65 cm) equilibrated with a Tris-HCl buffer (pH 7.0) and eluted at a flow rate of about 36 mL / h. Catalase (232000), aldolase (15
8000), bovine serum albumin (67,000), and ovalbumin (43000), a calibration curve was prepared from the respective eluate amounts and molecular weights, and the molecular weight of the enzyme was estimated to be about 105,000. b. SDS-polyacrylamide electrophoresis: The enzymatically active fraction eluted by gel filtration was concentrated and subjected to SDS-electrophoresis using 7.5% acrylamide gel. Using myosin (200000), β-galactosidase (116200), phosphorylase (97400), and bovine serum albumin (67000) as standard proteins, a calibration curve was prepared from the respective mobilities and molecular weights, and the molecular weight of the enzyme was determined. , About 103,000.

【0030】(9)等電点 PAG−Plate(ファルマシア;pH3.5〜9.
5)を用いて本酵素の等電点電気泳動を行った。泳動し
たゲルを10mMリン酸緩衝液(pH7.0)中に浸した
後、ポリガラクツロン酸を含む寒天プレート〔1.0%
ポリガラクツロン酸、0.1%リン酸1水素カリウム、
1.0%塩化ナトリウム、50mMトリス−塩酸緩衝液
(pH7.5)、1.0%寒天〕上に置いた。37℃、3
時間恒温した後、ゲルを取り去り、1%セチルトリメチ
ルアンモニウムブロマイド溶液を注いだ。約10分後に
活性を伴う溶解斑が生じた部分のタンパク質移動度と標
準タンパク質(バイオラッド)の等電点と移動度から得
られた検量線により本酵素の等電点は、pH4.6付近で
あった。
(9) Isoelectric point PAG-Plate (Pharmacia; pH 3.5 to 9.
Isoelectric focusing of this enzyme was performed using 5). After immersing the electrophoresed gel in a 10 mM phosphate buffer (pH 7.0), an agar plate containing polygalacturonic acid [1.0%
Polygalacturonic acid, 0.1% potassium monohydrogen phosphate,
1.0% sodium chloride, 50 mM Tris-HCl buffer (pH 7.5), 1.0% agar]. 37 ° C, 3
After incubating for 1 hour, the gel was removed and a 1% cetyltrimethylammonium bromide solution was poured. The isoelectric point of the present enzyme is around pH 4.6 according to the protein mobility of the portion where the lysis spot with activity occurs after about 10 minutes, the isoelectric point of the standard protein (Bio-Rad), and the calibration curve obtained from the mobility. Met.

【0031】(10)アミノ末端配列 本酵素のSDS−電気泳動後、イモブロン膜(ミリポ
ア)へタンパク質をブロッティングし、クマーシーブリ
リアントブルー溶液にて染色した。分子量103000
付近のタンパク質バンド部分を切り出し裁断した後、プ
ロテインシークエンサー(476A型:アプライドバイ
オシステム)を用いてアミノ末端配列を決定した。その
結果、本酵素の9番目までのアミノ末端配列は、Lys
−Ser−Glu−Gly−(Pro or Ser
or Ala)−Pro−Asn−Ala−Proであ
った。
(10) Amino terminal sequence After SDS-electrophoresis of the present enzyme, the protein was blotted onto an immobron membrane (Millipore) and stained with Coomassie brilliant blue solution. Molecular weight 103000
After cutting out and cutting out the nearby protein band, the amino terminal sequence was determined using a protein sequencer (type 476A: Applied Biosystems). As a result, the ninth amino terminal sequence of this enzyme is Lys
-Ser-Glu-Gly- (Pro or Ser
or Ala) -Pro-Asn-Ala-Pro.

【0032】(11)各種化合物の影響 本酵素の活性に及ぼす各種化合物の影響は、各化合物を
所定濃度になるよう反応系へ添加し、活性測定を行うこ
とにより調べた結果、本酵素は、p−クロロマーキュリ
安息香酸(0.5mM)で約60%、クエン酸(5mM)で
約35%阻害された。EDTA(2、5mM)では、約2
0%、75%阻害、EGTA(5mM)では約65%とそ
れぞれ阻害されたが、完全に失活するものではなくキレ
ート剤耐性を示した(表1)。
(11) Influence of Various Compounds The effect of various compounds on the activity of the present enzyme was examined by adding each compound to the reaction system at a predetermined concentration and measuring the activity. The inhibition was about 60% with p-chloromercury benzoic acid (0.5 mM) and about 35% with citric acid (5 mM). For EDTA (2, 5 mM), about 2
0%, 75% inhibition, and EGTA (5 mM) inhibited about 65%, respectively, but did not completely inactivate but showed chelator resistance (Table 1).

【0033】[0033]

【表1】 [Table 1]

【0034】(12)界面活性剤の影響 各種界面活性剤を0.2%(w/v)になるように添加
した反応系において、酵素の反応性を調べた結果、高濃
度の界面活性剤の存在下においても本酵素は、対象に比
べ80%以上の活性を発現した(表2)。
(12) Influence of surfactant As a result of examining the reactivity of the enzyme in a reaction system in which various surfactants were added to a concentration of 0.2% (w / v), a high concentration of surfactant The enzyme expressed 80% or more of the activity as compared with the control in the presence of (Table 2).

【0035】[0035]

【表2】 [Table 2]

【0036】(13)金属塩の影響 各種金属塩を標準反応系に1mM添加し、酵素活性に与え
る影響を調べた結果、本酵素は塩化カルシウム、塩化マ
グネシウム、塩化マンガン、塩化第1鉄、塩化第2鉄に
より、対照に比べ116〜135%と活性化された。一
方、塩化亜鉛、塩化銅により約95%、85%とそれぞ
れ阻害を受けた。次いで塩化ニッケル、塩化コバルトに
よって約70%、60%の阻害を受けた(表3)。
(13) Influence of metal salts As a result of adding 1 mM of various metal salts to the standard reaction system and examining the effect on enzyme activity, this enzyme was found to be calcium chloride, magnesium chloride, manganese chloride, ferrous chloride, Ferric activated to 116-135% of the control. On the other hand, it was inhibited by zinc chloride and copper chloride at about 95% and 85%, respectively. It was then inhibited by about 70% and 60% by nickel chloride and cobalt chloride (Table 3).

【0037】[0037]

【表3】 [Table 3]

【0038】上述したポリガラクツロナーゼ産生菌、例
えばBacillus属に属する微生物、好ましくはBacillus s
p. KSM-P358株(FERM P-17560)等から、例えばショット
ガン法、PCR法で目的とする遺伝子をクローニングす
る方法等により、本発明のポリガラクツロナーゼをコー
ドする遺伝子をクローニングすることができる。
The polygalacturonase-producing bacteria described above, a microorganism belonging to the genus Bacillus For example <br/> example, preferably Bacillus s
p. From the KSM-P358 strain (FERM P-17560) or the like, it is possible to clone a gene encoding the polygalacturonase of the present invention by, for example, a method of cloning a target gene by a shotgun method, a PCR method, or the like. it can.

【0039】本発明のポリガラクツロナーゼ遺伝子は、
例えば、配列番号1に示すアミノ酸配列、又は該アミノ
酸配列の1若しくは数個のアミノ酸が欠失、置換若しく
は付加されたアミノ酸配列をコードするものが好まし
い。ここで、該アミノ酸配列中のアミノ酸の欠失、置換
又は付加(以下、変異ということがある)は、ポリガラ
クツロナーゼ活性を失わない限り、その変異アミノ酸の
数及び部位は制限されるものではない。また、配列番号
1のアミノ酸配列におけるN末端には、1〜数個のアミ
ノ酸が付加又は欠失していてもよい。
The polygalacturonase gene of the present invention comprises
For example, those encoding an amino acid sequence shown in SEQ ID NO: 1 or an amino acid sequence in which one or several amino acids of the amino acid sequence are deleted, substituted or added are preferable. Here, deletion, substitution or addition (hereinafter sometimes referred to as mutation) of an amino acid in the amino acid sequence does not limit the number and site of the mutated amino acid as long as polygalacturonase activity is not lost. Absent. Further, at the N-terminal in the amino acid sequence of SEQ ID NO: 1, one to several amino acids may be added or deleted.

【0040】配列番号1に示すアミノ酸番号1〜953
の間で、他の酵素との相同性を検討すると、いずれもエ
キソ型のポリガラクツロナーゼであるErwinia chrysant
hemiPehX(He and Collmer, J. Bacteriol., 172, 4988
4995, 1990)、Ralstonia Solanacearum PehB(Huahg and
Allen, J. Bacteriol., 179, 7369-7378, 1997)とそれ
ぞれ29.1%、28.5%の相同性を示すのみであ
り、配列番号1に示すアミノ酸からなるポリガラクツロ
ナーゼは、これまでに報告のない新規な配列を有する酵
素である。
Amino acids 1 to 953 shown in SEQ ID NO: 1
Among the enzymes, Erwinia chrysant is an exo-type polygalacturonase.
hemi PehX (He and Collmer, J. Bacteriol., 172, 4988
4995, 1990), Ralstonia Solanacearum PehB (Huahg and
Allen, J. Bacteriol., 179, 7369-7378, 1997) and 29.1% and 28.5% homology, respectively. Polygalacturonase consisting of the amino acid shown in SEQ ID NO: 1 An enzyme having a novel sequence that has not been reported before.

【0041】本発明ポリガラクツロナーゼ遺伝子は、上
記のように配列番号1のアミノ酸配列又はその前記変異
体をコードするものが好ましいが、特に配列番号2で示
される塩基配列又は該塩基配列の1若しくは数個の塩基
が欠失、置換若しくは付加された塩基配列を有するもの
が好ましい。
The polygalacturonase gene of the present invention preferably encodes the amino acid sequence of SEQ ID NO: 1 or a variant thereof as described above. Alternatively, those having a base sequence in which several bases are deleted, substituted or added are preferable.

【0042】ポリガラクツロナーゼ遺伝子を含む組換え
ベクターを作製するには、目的とする宿主内で遺伝子を
発現するのに適した任意のベクターにポリガラクツロナ
ーゼ遺伝子を組込めばよい。斯かるベクターとしては、
大腸菌を宿主とする場合、pUC18、pUC19、p
BR322等が挙げられ、枯草菌を宿主とする場合、p
UB110等が挙げられる。
To prepare a recombinant vector containing a polygalacturonase gene, the polygalacturonase gene may be incorporated into any vector suitable for expressing the gene in the intended host. Such vectors include:
When E. coli is used as a host, pUC18, pUC19, pUC18
BR322 and the like. When Bacillus subtilis is used as a host, p.
UB110 and the like.

【0043】かくして得られた組換えベクターを用いて
宿主を形質転換するには、常法、例えばプロトプラス
法、コンピテントセル法、エレクトロポレーション法等
により行われる。宿主としては微生物が好ましく、Baci
llus属(枯草菌)、Streptomyces属(放線菌)等のグラ
ム陽性菌;Escherichia coli(大腸菌)等のグラム陰性
菌;Saccharomyces属(酵母)、Aspergillus属(カビ)
等の真菌等が挙げられる。
Transformation of a host with the thus obtained recombinant vector is carried out by a conventional method, for example, the protoplast method, the competent cell method, the electroporation method and the like. Preferably microorganisms as the host, Baci
Gram-positive bacteria such as genus llus (Bacillus subtilis) and Streptomyces (actinomycetes); Gram-negative bacteria such as Escherichia coli (Escherichia coli); genus Saccharomyces (yeast), genus Aspergillus (mold)
And the like.

【0044】得られた形質転換体を培養し、当該培養液
からポリガラクツロナーゼを採取すれば、ポリガラクツ
ロナーゼを得ることができる。培養は微生物の資化可能
な炭素源、窒素源その他の必須栄養素を含む培地に接種
し、常法に従って行えばよい。かくして得られた培養液
から、一般に知られている酵素の採取及び精製方法に準
じた方法により、ポリガラクツロナーゼを得ることがで
きる。
By culturing the obtained transformant and collecting polygalacturonase from the culture, polygalacturonase can be obtained. The cultivation may be performed by inoculating a medium containing a carbon source, a nitrogen source and other essential nutrients that can be used by microorganisms, and conducting the culture according to a conventional method. From the thus obtained culture solution, polygalacturonase can be obtained by a method according to generally known methods for collecting and purifying enzymes.

【0045】[0045]

【実施例】実施例1 ポリガラクツロナーゼ生産菌のス
クリーニング 日本各地の土壌を滅菌水に懸濁したものを80℃、20
分間熱処理し、下記組成の寒天平板培地に塗布した。3
0℃の培養器で3〜5日間静置培養し、菌の生育後、冷
蔵庫で冷却した。生育した菌の周辺にペクチンの分解に
伴う溶解斑が検出されたものについて選抜し、シングル
コロニー化を繰り返し、ポリガラクツロン酸分解酵素の
生産能を検定した。このようにして得られた多くの菌株
は、主にペクチン酸リアーゼを生産したが、その中でポ
リガラクツロナーゼ生産菌としてBacillus sp. KSM-P35
8株を得た。
EXAMPLES Example 1 Screening of polygalacturonase-producing bacteria Soil in various parts of Japan was suspended in sterilized water at 80 ° C and 20 ° C.
After heat treatment for a minute, the composition was applied to an agar plate medium having the following composition. Three
The culture was allowed to stand still in a 0 ° C. incubator for 3 to 5 days, and after growth of the bacteria, the mixture was cooled in a refrigerator. Those in which lysed spots due to the degradation of pectin were detected around the grown bacteria were selected, single colonies were repeated, and the ability to produce polygalacturonic acid-degrading enzyme was tested. Many strains thus obtained mainly produced pectate lyase, among which Bacillus sp.KSM-P35 was produced as a polygalacturonase-producing bacterium.
Eight shares were obtained.

【0046】[0046]

【表4】 [Table 4]

【0047】実施例2 Bacillus sp. KSM-P358株によ
るポリガラクツロナーゼの生産 上述のスクリーニングにより得られたBacillus sp. KSM
-P358株の培養は、500mL容坂口フラスコに50mLの
培地を加え、30℃、2日間好気的に行った。培地組成
は、0.5%(w/v)ペクチン、1.5%ポリペプト
ンS、0.5%酵母エキス、1.0%魚肉エキス、0.
1%リン酸2水素カリウム、0.02%硫酸マグネシウ
ム7水塩、50mMトリス−塩酸緩衝液(pH8.6、別滅
菌)であった。培養液中に生産されるポリガラクツロナ
ーゼ活性は、2mMEDTAを添加しペクチン酸リアーゼ
活性を完全に失活させて測定を行った。この測定法によ
り、培養液あたり200〜400U/Lの生産量を得
た。
[0047] Example 2 Bacillus sp. KSM-P358 strain Bacillus obtained by polygalacturonase production aforementioned screening sp. KSM
The culture of -P358 strain was performed aerobically for 2 days at 30 ° C. by adding 50 mL of medium to a 500 mL Sakaguchi flask. The medium composition was as follows: 0.5% (w / v) pectin, 1.5% polypeptone S, 0.5% yeast extract, 1.0% fish meat extract, 0.
1% potassium dihydrogen phosphate, 0.02% magnesium sulfate heptahydrate, 50 mM Tris-HCl buffer (pH 8.6, sterilized separately). The polygalacturonase activity produced in the culture was measured by adding 2 mM EDTA to completely inactivate the pectate lyase activity. By this measuring method, a production amount of 200 to 400 U / L per culture solution was obtained.

【0048】実施例3 ポリガラクツロナーゼの精製Bacillus sp. KSM-P358株の培養液を遠心分離(800
0×g、15分間、4℃)し上清液(2L)を得た。こ
れを透析膜に入れポリエチレングリコール20000
(和光純薬)をまぶして内液の濃縮を行った。更に限外
濾過用モジュール(AIP1010:旭化成)により濃
縮、脱塩を行った。得られた濃縮液(100mL)は1mM
ジチオスレイトールを含む20mMトリス−塩酸緩衝液
(pH7.0)にて平衡化しておいたDEAEトヨパール
650Mカラム(3×15cm:東ソー)に添着した。約
500mLの平衡化緩衝液を用いて非吸着タンパク質を洗
浄溶出させた後、0から0.2M塩化ナトリウムを含む
緩衝液(500mLずつ)を用い、濃度勾配溶出法により
吸着タンパク質の溶出を行った。約0.1Mの塩化ナト
リウム濃度付近にポリガラクツロナーゼ活性が溶出され
た。次いで、DEAEトヨパール650Mカラムで同様
の精製操作を行い、ペクチン酸リアーゼ活性を含まない
ポリガラクツロナーゼ画分を得た(100mL)。本活性
画分を限外濾過(YM10メンブレン:アミコン)によ
り濃縮し、0.1M塩化ナトリウム及び1mMジチオスレ
イトールを含む20mMトリス−塩酸緩衝液(pH7.0)
にて平衡化しておいたトヨパールHW55カラム(1.
5×65cm:東ソー)へ供した。同緩衝液にて溶出され
たポリガラクツロナーゼ活性画分を集めた(10mL、4
2U、14mgタンパク質)。上記精製操作により得られ
たポリガラクツロナーゼ画分は、前述の酵素学的性質を
示した。
Example 3 Purification of Polygalacturonase The culture of Bacillus sp. KSM-P358 was centrifuged (800
0 × g, 15 minutes, 4 ° C.) to obtain a supernatant (2 L). This is put into a dialysis membrane and polyethylene glycol 20000
(Wako Pure Chemical Industries) was sprinkled to concentrate the internal solution. Further, concentration and desalting were performed using an ultrafiltration module (AIP1010: Asahi Kasei). The resulting concentrate (100 mL) is 1 mM
The column was applied to a DEAE Toyopearl 650M column (3 × 15 cm: Tosoh) equilibrated with a 20 mM Tris-HCl buffer (pH 7.0) containing dithiothreitol. The unadsorbed protein was washed and eluted with about 500 mL of the equilibration buffer, and then the adsorbed protein was eluted by a concentration gradient elution method using a buffer solution (each 500 mL) containing 0 to 0.2 M sodium chloride. . The polygalacturonase activity was eluted near the sodium chloride concentration of about 0.1M. Next, the same purification operation was performed using a DEAE Toyopearl 650M column to obtain a polygalacturonase fraction containing no pectate lyase activity (100 mL). The active fraction was concentrated by ultrafiltration (YM10 membrane: Amicon), and a 20 mM Tris-HCl buffer (pH 7.0) containing 0.1 M sodium chloride and 1 mM dithiothreitol was used.
Toyopearl HW55 column (1.
5 × 65 cm: Tosoh). The polygalacturonase active fraction eluted with the same buffer was collected (10 mL, 4 mL).
2U, 14 mg protein). The polygalacturonase fraction obtained by the above purification procedure exhibited the above-mentioned enzymatic properties.

【0049】実施例4 Bacillus sp. KSM-P358株染色
体DNAの調製Bacillus sp. KSM-P358株をポリペプトンS(日本製薬
製)主成分とする液体培地にて、30℃で一晩振盪培養
し、種培養とした。この種培養液を同様の培地に接種
し、約8時間振盪培養したものを主培養とした。主培養
液から遠心分離にて回収した菌体から、SaitoとMiuraの
方法(Biochim. Biophys. Acta, 72, 619-629, 1963)
にて染色体DNAを調製した。
[0049] In Example 4 Bacillus sp. KSM-P358 strain for preparation of chromosomal DNA Bacillus sp. KSM-P358 strain polypeptone S (Nippon Seiyaku) liquid medium mainly composed, overnight shaking culture at 30 ° C., Seed culture was performed. This seed culture was inoculated into a similar medium, and cultured with shaking for about 8 hours to obtain a main culture. Saito and Miura method (Biochim. Biophys. Acta, 72, 619-629, 1963) from cells recovered from the main culture by centrifugation
Prepared a chromosomal DNA.

【0050】実施例5 Bacillus sp. KSM-P358ポリガ
ラクツロナーゼの部分アミノ酸配列 1)N末端アミノ酸配列の決定Bacillus sp. KSM-P358株の培養液から各種クロマトグ
ラフィーによって精製した酵素を、プロテインシークエ
ンサー476A(PEアプライドバイオシステム社製)に供
し、N末端アミノ酸配列を9残基決定した。得られた配
列は、Lys-Ser-Glu-Gly-(Pro or Ser or Ala)-Pro-Asn-
Ala-Proであった。
[0050] Example 5 Bacillus sp. KSM-P358 polygalacturonase partial amino acid sequence 1) Determination of the N-terminal amino acid sequence Bacillus sp. Enzyme purified by various chromatography from a culture of KSM-P358 strain protein sequencer 476A (manufactured by PE Applied Biosystems), and the N-terminal amino acid sequence was determined to have 9 residues. The resulting sequence is Lys-Ser-Glu-Gly- (Pro or Ser or Ala) -Pro-Asn-
Ala-Pro.

【0051】2)リジルエンドペプチダーゼ分解による
中間アミノ酸配列の決定 精製酵素のSDS−PAGE(ソディウムドデシル硫酸
−ポリアクリルアミドゲル電気泳動)を行った12.5
%のポリアクリルアミドゲルから回収した酵素に対し
て、重量比で約1000分の1のリジルエンドペプチダ
ーゼ(和光純薬工業製)を添加し、60mMのトリス−塩
酸緩衝液(pH9)中にて25℃で15時間恒温した。UL
TRAFREE MCスピンカラム(0.45μmPVDF膜、ミリポ
ア社製)にて回収した試料をSDS−PAGEに供した
後、Milliblot type I(ミリポア社製)を用いてPVDF
膜ヘエレクトロプロティングし、転写後のPVDF膜を
クマシーブリリアントブルーにて染色した。染色後のP
VDF膜から染色されたタンパク質バンドを切り出し、
プロテインシークエンサー476Aに供した。リジルエンド
ペプチダーゼ部分分解物から得られたアミノ酸配列(中
間アミノ酸配列A)は、Asn-Ile-Leu-Phe-Arg-Asn-Asn-A
la-Leu-Glu-Glyであった。
2) Determination of Intermediate Amino Acid Sequence by Lysyl Endopeptidase Decomposition The purified enzyme was subjected to SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis).
Lysyl endopeptidase (manufactured by Wako Pure Chemical Industries, Ltd.) in a weight ratio of about 1/1000 was added to the enzyme recovered from the polyacrylamide gel of 25% in a 60 mM Tris-HCl buffer (pH 9). The temperature was kept at 15 ° C. for 15 hours. UL
After subjecting the sample collected by TRAFREE MC spin column (0.45 μm PVDF membrane, manufactured by Millipore) to SDS-PAGE, PVDF was performed using Milliblot type I (manufactured by Millipore).
The membrane was electroproduced and the transferred PVDF membrane was stained with Coomassie brilliant blue. P after staining
Cut out the stained protein band from the VDF membrane,
The sample was supplied to a protein sequencer 476A. The amino acid sequence (intermediate amino acid sequence A) obtained from the lysyl endopeptidase partially degraded product is Asn-Ile-Leu-Phe-Arg-Asn-Asn-A
la-Leu-Glu-Gly.

【0052】3)V8プロテアーゼ分解による中間アミ
ノ酸配列の決定 精製試料に0.01%となるようにSDSを加え100
℃にて10分間煮沸したものに、重量比で約60分の1
のV8プロテアーゼ(ベーリンガーマンハイム社製)を加
え、110mMのトリス−塩酸緩衝液(pH8.5)中にて、10℃
で15時間恒温した。回収した試料をSDS−PAGE
に供し、エレクトロプロティング後のPVDF膜からタ
ンパク質バンドを切り出し、プロテインシークエンサー
476Aに供した。V8プロテアーゼ部分分解物から得られ
たアミノ酸配列(中間アミノ酸配列B)は、Phe-Glu-(Thr
or Asn or Arg)-Ala-Arg-Pro-Tyr-(Gly or Pro)-(Alao
r Ile)-Gly-Ala-Proであった。
3) Determination of Intermediate Amino Acid Sequence by Degradation of V8 Protease
Boiled for 10 minutes at a temperature of about 1/60 by weight
Of V8 protease (manufactured by Boehringer Mannheim) at 110 ° C. in 110 mM Tris-HCl buffer (pH 8.5).
For 15 hours. The recovered sample was subjected to SDS-PAGE
And excise the protein band from the PVDF membrane after electroplating.
476A. The amino acid sequence (intermediate amino acid sequence B) obtained from the V8 protease partial degradation product was Phe-Glu- (Thr
or Asn or Arg) -Ala-Arg-Pro-Tyr- (Gly or Pro)-(Alao
r Ile) -Gly-Ala-Pro.

【0053】実施例6 P358ポリガラクツロナーゼ
遺伝子のクローニング 精製酵素のN末端アミノ酸配列から配列番号3に示した
混合塩基を用いたプライマーを作製した。同様に、リジ
ルエンドペクチダーゼ部分分解物から得られた中間アミ
ノ酸配列Aをもとに、配列番号4、5に示したプライマ
ー、V8プロテアーゼ部分分解物のアミノ酸配列Bから
配列番号6に示したプライマーを作製した。これらのプ
ライマーを使用し、実施例4で調製したBacillus sp. K
SM-P358株染色体DNAを鋳型とするPCRを実施し
た。配列番号3、4のプライマーの組合せと配列番号
5、6のプライマーの組合せにて、それぞれ約1.3kb
p、1.1kbpの増幅断片が得られ、塩基配列の解析の結
果、推定されるアミノ酸配列がそれぞれのアミノ酸配列
と一致したことから、PCR増幅断片は目的とするKSM-
P358ポリガラクツロナーゼ遺伝子の一部であることが判
明した。これらPCR増幅断片の塩基配列をもとに配列
番号7、8に示すプライマーを作製し、これらのプライ
マーと染色体DNAを制限酵素EcoR Iで切断したのち
に、T4 DNA Ligaseにて自己閉環させたものを鋳型DN
Aとして、inverse PCRを実施した。このようにして
得られた約3.0kbpの増幅断片の塩基配列の解析を行
い、決定した塩基配列から配列番号9、10に示すプラ
イマーを作製し、これらとBacillus sp. KSM-P358株染
色体DNAを鋳型とするPCRを行い、全長約4.5kb
pのP358ポリガラクツロナーゼ遺伝子断片を取得した。
Example 6 Cloning of P358 polygalacturonase gene From the N-terminal amino acid sequence of the purified enzyme, a primer using the mixed base shown in SEQ ID NO: 3 was prepared. Similarly, based on the intermediate amino acid sequence A obtained from the lysyl endopeptidase partial degradation product, the primers shown in SEQ ID NOs: 4 and 5 and the primers shown in SEQ ID NO: 6 from the amino acid sequence B of the V8 protease partial degradation product Was prepared. Bacillus sp. K prepared in Example 4 using these primers
PCR was performed using the chromosomal DNA of the SM-P358 strain as a template. In the combination of the primers of SEQ ID Nos. 3 and 4 and the combination of the primers of SEQ ID Nos. 5 and 6, about 1.3 kb
The amplified fragments of p and 1.1 kbp were obtained, and as a result of the nucleotide sequence analysis, the deduced amino acid sequence matched each amino acid sequence.
It turned out to be part of the P358 polygalacturonase gene. Primers shown in SEQ ID NOs: 7 and 8 were prepared based on the base sequences of these PCR amplified fragments, and these primers and chromosomal DNA were cut with a restriction enzyme Eco RI and then self-closured with T4 DNA Ligase. The mold DN
As A, inverse PCR was performed. The nucleotide sequence of the thus-obtained amplified fragment of about 3.0 kbp was analyzed, and primers shown in SEQ ID NOS: 9 and 10 were prepared from the determined nucleotide sequence. These primers were combined with the chromosomal DNA of Bacillus sp. Is performed as a template, and the total length is about 4.5 kb.
The p358 polygalacturonase gene fragment of p was obtained.

【0054】実施例7 P358ポリガラクツロナーゼ
遺伝子塩基配列の決定 実施例6で調製したPCR増幅断片0.5〜1μgを鋳
型として、BigDye Terminator Cycle Sequencing Kit(P
Eアプライドバイオシステム社製)を用いてシークエンス
解析試料を調製し、377DNAシークエンサー(PEア
プライドバイオシステム社製)にてP358ポリガラク
ツロナーゼ遺伝子の塩基配列を決定した(配列番号1
3)。その結果、P358ポリガラクツロナーゼは配列
番号13の塩基番号540〜3479に示すように29
40残基の塩基配列によりコードされ、980アミノ酸
残基より構成される酵素であることが判明した。さら
に、アミノ酸配列中には、精製酵素から決定したN末端
アミノ酸配列とプロテアーゼ部分分解物から決定した中
間アミノ酸配列が確認された。N末端アミノ酸配列から
終止コドン(TAA)までの953アミノ酸からなるポリガ
ラクツロナーゼの分子量は、103,810 Daと推
定された。
Example 7 Determination of base sequence of P358 polygalacturonase gene Using 0.5 to 1 μg of the PCR amplified fragment prepared in Example 6 as a template, BigDye Terminator Cycle Sequencing Kit (P
A sequence analysis sample was prepared using E Applied Biosystems Co., Ltd., and the base sequence of the P358 polygalacturonase gene was determined with a 377 DNA sequencer (PE Applied Biosystems Co., Ltd.) (SEQ ID NO: 1).
3). As a result, P358 polygalacturonase had 29 nucleotides as shown at base numbers 540 to 3479 in SEQ ID NO: 13.
The enzyme was found to be encoded by a nucleotide sequence of 40 residues and composed of 980 amino acid residues. Furthermore, in the amino acid sequence, an N-terminal amino acid sequence determined from the purified enzyme and an intermediate amino acid sequence determined from the protease partial degradation product were confirmed. The molecular weight of polygalacturonase consisting of 953 amino acids from the N-terminal amino acid sequence to the stop codon (TAA) was estimated to be 103,810 Da.

【0055】実施例8 P358ポリガラクツロナーゼ
発現プラスミドの作製 実施例7で決定したP358ポリガラクツロナーゼ遺伝
子の塩基配列を基に、配列番号11、12に示す配列の
プライマーを作製し、実施例4にて調製したBacillus s
p. KSM-P358株染色体DNAを鋳型としてPCRを実施
し、P358ポリガラクツロナーゼをコードするDNA
断片を増幅した。この際、使用するプライマーにはプラ
スミドベクターpHY300PLK(ヤクルト社製)のマルチクロ
ーニングサイトに効率よくクローニングすることが可能
となるように、制限酵素SalI、XbaIの認識配列を付加さ
せた。プラスミドベクターpHY300PLK及びP358ポリガラ
クツロナーゼ遺伝子のPCR増幅断片を制限酵素SalI、
XbaIにて消化した後、GFX PCR DNA and Gel Band Purif
ication Kit(ファルマシア社製)を用いた精製を行っ
た。精製試料を重量比で1:1となるように混合した
後、T4 DNA Ligaseにより結合させ、この結合サンプル
を用いて、E. coli HB101コンピテントセル(宝酒造社
製)の形質転換を行った。得られた形質転換体の中から
任意の形質転換体を選別し、選別した形質転換体からプ
ラスミドの調製を行い、このプラスミドを制限酵素Sal
I、XbaIにて消化した。アガロース電気泳動にてPCR
増幅断片の挿入が確認されたプラスミドをpHYK358PECと
した(図6)。
Example 8 P358 polygalacturonase
Preparation of expression plasmid P358 polygalacturonase inheritance determined in Example 7
Based on the nucleotide sequence of the
A primer was prepared and prepared in Example 4.Bacillus s
p. Perform PCR using chromosomal DNA of KSM-P358 strain as template
And DNA encoding P358 polygalacturonase
The fragment was amplified. At this time, the primer to be used
Multi-color of Smid Vector pHY300PLK (Yakult)
Can be efficiently cloned into
So that the restriction enzymeSalI,XbaI recognition sequence added
I let you. Plasmid vectors pHY300PLK and P358 polygala
Restriction enzyme for PCR amplified fragment of cutronase geneSalI,
XbaAfter digestion with I, GFX PCR DNA and Gel Band Purif
Purification using ication Kit (Pharmacia)
Was. The purified sample was mixed at a weight ratio of 1: 1.
Then, the sample was ligated with T4 DNA Ligase.
Using,E.coli HB101 competent cell (Takara Shuzo)
Was transformed. From among the obtained transformants
Select an arbitrary transformant, and select a transformant from the selected transformant.
Prepare a rasmid and insert this plasmid into the restriction enzyme.Sal
I,XbaDigested with I. PCR by agarose electrophoresis
The plasmid in which insertion of the amplified fragment was confirmed was called pHYK358PEC.
(FIG. 6).

【0056】実施例9 pHYK358PECを用いた枯草菌形質
転換体によるポリガラクツロナーゼの生産 プラスミドpHYK358PECを用い、プロトプラスト法(Chang
and Choen. Mol. Gen. Genet., 168, 111-115, 1978)
にてBacillus subtilis ISW1214株(ヤクルト社製)の形
質転換を行った。得られた形質転換体を、15μg/mL
のテトラサイクリンを添加したLB培地に接種し、30℃
で一晩振盪培養を行い種培養とした。この種培養液をポ
リペプトンSあるいはコーンスティープリカー、マルト
ースを主成分とする主培養培地40mLに1%(v/v)にな
るように接種し、30℃、120rpmで4日間、振盪培
養を行った。組換えポリガラクツロナーゼの生産量は、
この培養条件で約1000〜3000U/Lであった。
Example 9 Production of Polygalacturonase by Bacillus subtilis Transformant Using pHYK358PEC Using a plasmid pHYK358PEC, a protoplast method (Chang
and Choen. Mol. Gen. Genet., 168, 111-115, 1978)
Was used to transform Bacillus subtilis ISW1214 strain (Yakult). 15 μg / mL of the obtained transformant
Inoculated in LB medium containing tetracycline at 30 ° C
And shake culture was performed overnight to obtain seed culture. This seed culture solution was inoculated at a concentration of 1% (v / v) into 40 mL of a main culture medium containing polypeptone S, corn steep liquor, and maltose as main components, and cultured with shaking at 30 ° C. and 120 rpm for 4 days. . The production of recombinant polygalacturonase is
It was about 1000-3000 U / L under these culture conditions.

【0057】実施例10 組換えポリガラクツロナーゼ
の特性 実施例9で得られた培養液上清を陰イオン交換樹脂に吸
着させ、塩化ナトリウム濃度勾配にて溶出させて精製
し、この精製した組換え酵素の性質について検討した結
果、以下に示すように、その性質は野生型のP358ポリガ
ラクツロナーゼの性質とよく一致した。
Example 10 Characteristics of Recombinant Polygalacturonase The culture supernatant obtained in Example 9 was adsorbed on an anion exchange resin, purified by elution with a sodium chloride concentration gradient, and purified. As a result of examining the properties of the recombinase, the properties were in good agreement with those of wild-type P358 polygalacturonase, as shown below.

【0058】1)最適反応pH 標準酵素活性測定法のかわりに、50mMトリス−塩酸緩
衝液(pH7〜9.5)、50mMグリシリン−水酸化ナトリウム
緩衝液(pH9〜11)を用い、最適反応pHを調べたところ、
本酵素はトリス-塩酸緩衝液中(pH8.0)で最も高い反応速
度を示した。
1) Optimum reaction pH Instead of the standard enzyme activity measurement method, the optimum reaction pH was determined by using 50 mM Tris-HCl buffer (pH 7 to 9.5) and 50 mM glycillin-sodium hydroxide buffer (pH 9 to 11). Where
This enzyme showed the highest reaction rate in Tris-HCl buffer (pH 8.0).

【0059】2)分子量 電気泳動用標準タンパク質(バイオラッド社製)を用いて
SDS−PAGE(12.5%アクリルアミドゲル)にて分子
量を求めた結果、本酵素の分子量は約105kDaである
と推定された。
2) Molecular Weight The molecular weight was determined by SDS-PAGE (12.5% acrylamide gel) using a standard protein for electrophoresis (manufactured by Bio-Rad). As a result, the molecular weight of the present enzyme was estimated to be about 105 kDa. .

【0060】3)プロトペクチナーゼ活性 30cmしつけ糸(金鈴印)1本(25mg)を基質に用い、0.
4mM塩化カルシウムを含む50mMグリシン−水酸化ナト
リウム緩衝液(pH10)を酵素反応液として、これに0.2
Uの酵素(ポリガラクツロナーゼ活性)を加え最終液量を
2.0mLとした。30℃で1時間の反応を行った後、上
清に遊離したペクチン質をオルシノール塩酸法により測
定した。結果、上記条件において0.2Uのポリガラク
ツロナーゼあたり約40μgのペクチンを遊離すること
が認められた。
3) Protopectinase activity One 30 cm disciplined thread (marked with gold bell) (25 mg) was used as a substrate.
A 50 mM glycine-sodium hydroxide buffer (pH 10) containing 4 mM calcium chloride was used as an enzyme reaction solution, and 0.2%
U enzyme (polygalacturonase activity) was added to make the final solution volume 2.0 mL. After performing the reaction at 30 ° C. for 1 hour, the pectin released in the supernatant was measured by the orcinol-hydrochloric acid method. As a result, it was confirmed that about 40 μg of pectin was released per 0.2 U of polygalacturonase under the above conditions.

【0061】[0061]

【発明の効果】本発明のポリガラクツロナーゼは、ポリ
ガラクツロン酸に対しエキソ的に作用するが最適反応pH
をpH8付近に有し、アルカリ性領域においても活性を維
持すること、またプロトペクチナーゼ活性を示すことか
ら衣料用洗剤酵素、繊維処理用酵素として有用である。
また、本発明のポリガラクツロナーゼ遺伝子を用いるこ
とにより、当該ポリガラクツロナーゼを単一且つ大量に
生産することが可能となる。
Industrial Applicability The polygalacturonase of the present invention acts on polygalacturonic acid exoally, but the optimal reaction pH
It is useful as a detergent enzyme for clothing and an enzyme for fiber treatment because it has a pH of around 8, maintains its activity even in an alkaline region, and exhibits protopectinase activity.
Further, by using the polygalacturonase gene of the present invention, the polygalacturonase can be produced singly and in large quantities.

【0062】[0062]

【配列表】 SEQUENCE LISTING <110> KAO CORPOLATION <120> Polygalacturonase <130> P03261207 <150> JP P2000-006926 <151> 2000-01-14 <160> 13 <170> PatentIn Ver. 2.1 <210> 1 <211> 953 <212> PRT <213> Bacillus sp. KSM-P358 <400> 1 Lys Ser Glu Gly Ser Pro Asn Ala Pro Ser Ser Pro Val Asn Leu Gln 1 5 10 15 Ile Pro Gly Leu Ala Phe Asp Asp Asp Ser Ile Thr Leu Val Trp Glu 20 25 30 Lys Pro Lys His Tyr Asn Asp Ile Val Asp Phe Asn Ile Tyr Met Asn 35 40 45 Lys Lys Lys Ile Gly Ser Ala Leu Glu Asp Asn Ser Gly Pro Ala Lys 50 55 60 Ala Tyr Ile Asp Asn Phe Tyr Glu Asn Ile Asp Lys Asp Asn Phe His 65 70 75 80 Glu Lys Ile Leu Ile His Asn Phe Lys Ala Asn Asn Leu Lys Pro Asn 85 90 95 Lys Ser Tyr Glu Phe Tyr Val Thr Ser Val Asn Ala Glu Gly Thr Glu 100 105 110 Ser Ala Pro Ser Asn Lys Ile Val Gly Lys Thr Thr Lys Val Pro Glu 115 120 125 Ile Phe Asn Ile Val Asp Tyr Gly Ala Ile Pro Asp Asp Asp Ser Lys 130 135 140 Asp Thr Glu Ala Ile Gln Ala Ala Ile Asp Ala Ala Thr Pro Gly Ser 145 150 155 160 Lys Val Leu Ile Pro Asp Gly Lys Phe Ile Thr Gly Glu Leu Trp Leu 165 170 175 Lys Ser Asp Met Thr Leu Gln Val Asp Gly Tyr Leu Leu Gly Ser Pro 180 185 190 Asp Ala Glu Asp Tyr Ser Thr Asn Phe Trp Leu Tyr Asp Tyr Ser Thr 195 200 205 Asp Glu Arg Ser Tyr Ser Leu Ile Asn Ala His Thr Tyr Asp Tyr Gly 210 215 220 Ser Leu Lys Asn Ile Arg Ile Val Gly Thr Gly Ile Ile Asp Gly Asn 225 230 235 240 Gly Trp Lys Tyr Asp Lys Asn His Pro Thr Arg Asp Glu Leu Gly Asn 245 250 255 Glu Leu Pro Arg Tyr Val Ala Gly Asn Asn Ser Lys Val Thr Gly Asn 260 265 270 Val Lys Val Glu Asn Gly Lys Met Ser Pro Leu Asp Leu Asn Ser Glu 275 280 285 Asn Thr Leu Gly Ile Leu Ala Ala Asn Gln Ser Tyr Ala Ala Gln Glu 290 295 300 Met Gly Met Asp Ala Lys Ser Ala Tyr Ala Ala Arg Ser Asn Leu Ile 305 310 315 320 Thr Val Arg Gly Val Asp Gly Met Tyr Tyr Glu Gly Ile Thr Gln Leu 325 330 335 Asn Pro Ala Asn His Gly Ile Val Asn Leu His Ser Lys Asn Ile Val 340 345 350 Ile Asn Gly Thr Ile Ser Lys Thr Tyr Asp Gly Asn Asn Ala Asp Gly 355 360 365 Tyr Glu Phe Gly Asp Ser Gln Asn Ile Met Val Phe Asn Asn Phe Val 370 375 380 Asp Thr Gly Asp Asp Ala Ile Asn Phe Ala Ser Gly Met Gly Gln Ala 385 390 395 400 Ala Ala Lys Ser Glu Pro Thr Gly Asn Ala Trp Ile Phe Asn Asn Tyr 405 410 415 Ile Arg Glu Gly His Gly Gly Val Val Thr Gly Ser His Thr Gly Gly 420 425 430 Trp Ile Gln Asp Phe Leu Val Glu Asp Asn Ile Met Tyr Lys Thr Asp 435 440 445 Val Gly Leu Arg Ser Lys Thr Asn Thr Pro Met Gly Gly Gly Ala Lys 450 455 460 Asn Ile Leu Phe Arg Asn Asn Ala Leu Glu Gly Ile Asp Gly Asp Gly 465 470 475 480 Pro Phe Val Phe Thr Ser Ala Tyr Thr Asp Ala Asn Ala Ala Ile Gln 485 490 495 Tyr Glu Pro Ala Glu Val Ile Ser Gln Phe Arg Asp Met Glu Ile Val 500 505 510 Asp Thr Thr Val Arg Asn Gln Gly Gly Ser Asn Lys Gln Ala Ile Leu 515 520 525 Val Asn Gly Asn Asn Ser Ala Gly Glu Val Tyr His Glu Asn Ile Thr 530 535 540 Phe Lys Asn Val Lys Phe Asp Asn Val Tyr Ser Val Asn Met Asp Tyr 545 550 555 560 Ala Lys Asp Phe Lys Phe Ile Asn Val Ser Phe Thr Asn Val Lys Asp 565 570 575 Asn Gly Gly Asn Pro Trp Arg Ile Lys Asn Ser Thr Gly Phe Val Phe 580 585 590 Glu Asn Thr Thr Thr Ala Pro Ile Asp Ala Thr Gln Lys Pro Glu Trp 595 600 605 Ala Glu Asp Thr Ile Ile Asn Ala Gly Ser Ser Pro Asp Gly Lys Asn 610 615 620 Val Thr Leu Thr Trp Ser Glu Ala Thr Asp Asn Val Gly Val Ser Gly 625 630 635 640 Tyr Thr Ile Tyr Lys Asp Arg Glu Lys Leu Gly Gln Asp Tyr Thr Thr 645 650 655 Thr Asn Leu Thr Ser Phe Thr Val Asp Gly Leu Ala Pro Ala Thr Glu 660 665 670 Tyr Thr Phe Lys Val Glu Ala Thr Asp Ala Thr Gly Asn Arg Thr Ser 675 680 685 Asn Gly Pro Glu Ile Lys Val Met Thr Asn Gly Glu Ala Asp Gln Thr 690 695 700 Ala Pro Val Leu Pro Lys Asn Thr Lys Ile Ser Glu Ser Thr Thr Lys 705 710 715 720 Ile Pro Ser Ser Asp Thr Phe Ser Gly Lys Asn Val Asn Val Val Tyr 725 730 735 Thr Gly Phe Thr Trp Thr Ser Ile Thr Trp Asp Ala Ala Ser Asp Asp 740 745 750 Thr Gly Ile Ala Gly Tyr Asn Val Tyr Ala Asn Gly Glu Leu Asn Gly 755 760 765 Phe Ala Thr Ser Asn Lys Tyr Thr Leu Thr Arg Leu Glu Pro Gly Thr 770 775 780 Lys Tyr Asn Ile Glu Val Glu Ala Val Asp Ile Ala Gly Asn Thr Ala 785 790 795 800 Pro Tyr Asn Ser Val Leu Glu Phe Glu Thr Ala Arg Pro Tyr Pro Ile 805 810 815 Gly Ala Pro Ser Phe Asp Gly Gly Leu Asp Ala Lys Ile Asn Ser Asp 820 825 830 Gly Thr Ser Val Thr Leu Ser Trp Asn Ala Ala Lys Ala Leu Asn Gln 835 840 845 Asp Val Ile Gly Tyr Arg Val Tyr Val Asn Gly Gln Pro Met Lys Ser 850 855 860 Glu Gly Ala Pro Phe Thr Pro Ile Asn Ser Glu Met Thr Thr Ser Asp 865 870 875 880 Thr Asn Tyr Thr Val Thr Gly Leu Lys Gln Gly Lys Arg Tyr Thr Phe 885 890 895 Lys Val Glu Ala Val Gly His Ala Ser Lys Tyr Ser Lys Arg Glu Arg 900 905 910 Leu Ser Asp Val Leu Pro Asn Gly Leu Leu Glu Val Ser Gly Tyr Arg 915 920 925 Trp Ser Gly Phe Gly Pro Ser Val Asp Val His Leu Ile Pro Gly Lys 930 935 940 Ala Lys Ser Glu Gln Ala Lys Ser Lys 945 950 [Sequence List] SEQUENCE LISTING <110> KAO CORPOLATION <120> Polygalacturonase <130> P03261207 <150> JP P2000-006926 <151> 2000-01-14 <160> 13 <170> PatentIn Ver. 2.1 <210> 1 <211> 953 <212> PRT <213> Bacillus sp.KSM-P358 <400> 1 Lys Ser Glu Gly Ser Pro Asn Ala Pro Ser Ser Pro Val Asn Leu Gln 1 5 10 15 Ile Pro Gly Leu Ala Phe Asp Asp Asp Ser Ile Thr Leu Val Trp Glu 20 25 30 Lys Pro Lys His Tyr Asn Asp Ile Val Asp Phe Asn Ile Tyr Met Asn 35 40 45 Lys Lys Lys Ile Gly Ser Ala Leu Glu Asp Asn Ser Gly Pro Ala Lys 50 55 60 Ala Tyr Ile Asp Asn Phe Tyr Glu Asn Ile Asp Lys Asp Asn Phe His 65 70 75 80 Glu Lys Ile Leu Ile His Asn Phe Lys Ala Asn Asn Leu Lys Pro Asn 85 90 95 Lys Ser Tyr Glu Phe Tyr Val Thr Ser Val Asn Ala Glu Gly Thr Glu 100 105 110 Ser Ala Pro Ser Asn Lys Ile Val Gly Lys Thr Thr Lys Val Pro Glu 115 120 125 Ile Phe Asn Ile Val Asp Tyr Gly Ala Ile Pro Asp Asp Asp Ser Lys 130 135 140 Asp Thr Glu Ala Ile Gln Ala Ala Ile Asp Ala Ala Thr Pro Gly Ser 145 150 155 160 Lys Val Leu Ile Pro Asp Gly Lys Phe Ile Thr Gly Glu Leu Trp Leu 165 170 175 Lys Ser Asp Met Thr Leu Gln Val Asp Gly Tyr Leu Leu Gly Ser Pro 180 185 190 Asp Ala Glu Asp Tyr Ser Thr Asn Phe Trp Leu Tyr Asp Tyr Ser Thr 195 200 205 Asp Glu Arg Ser Tyr Ser Leu Ile Asn Ala His Thr Tyr Asp Tyr Gly 210 215 220 Ser Leu Lys Asn Ile Arg Ile Val Gly Thr Gly Ile Ile Asp Gly Asn 225 230 235 240 Gly Trp Lys Tyr Asp Lys Asn His Pro Thr Arg Asp Glu Leu Gly Asn 245 250 255 Glu Leu Pro Arg Tyr Val Ala Gly Asn Asn Ser Lys Val Thr Gly Asn 260 265 270 Val Lys Val Glu Asn Gly Lys Met Ser Pro Leu Asp Leu Asn Ser Glu 275 280 285 Asn Thr Leu Gly Ile Leu Ala Ala Asn Gln Ser Tyr Ala Ala Gln Glu 290 295 300 Met Gly Met Asp Ala Lys Ser Ala Tyr Ala Ala Arg Ser Asn Leu Ile 305 310 315 320 Thr Val Arg Gly Val Asp Gly Met Tyr Tyr Glu Gly Ile Thr Gln Leu 325 330 335 Asn Pro Ala Asn His Gly Ile Val Asn Leu His Ser Lys Asn Ile Val 340 345 350 Ile Asn Gly Thr Ile Ser Lys Thr Tyr Asp Gly Asn Asn Ala Asp Gly 355 360 365 Tyr Glu Phe Gly Asp Ser Gln Asn Ile Met Val Phe Asn Asn Phe Val 370 375 380 Asp Thr Gly Asp Asp Ala Ile Asn Phe Ala Ser Gly Met Gly Gln Ala 385 390 395 400 Ala Ala Lys Ser Glu Pro Thr Gly Asn Ala Trp Ile Phe Asn Asn Tyr 405 410 415 Ile Arg Glu Gly His Gly Gly Val Val Thr Gly Ser His Thr Gly Gly 420 425 430 Trp Ile Gln Asp Phe Leu Val Glu Asp Asn Ile Met Tyr Lys Thr Asp 435 440 445 Val Gly Leu Arg Ser Lys Thr Asn Thr Pro Met Gly Gly Gly Ala Lys 450 455 460 Asn Ile Leu Phe Arg Asn Asn Ala Leu Glu Gly Ile Asp Gly Asp Gly 465 470 475 480 480 Pro Phe Val Phe Thr Ser Ala Tyr Thr Asp Ala Asn Ala Ala Ile Gln 485 490 490 495 Tyr Glu Pro Ala Glu Val Ile Ser Gln Phe Arg Asp Met Glu Ile Val 500 505 510 Asp Thr Thr Val Arg Asn Gln Gly Gly Ser Asn Lys Gln Ala Ile Leu 515 520 525 Val Asn Gly Asn Asn Ser Ala Gly Glu Val Tyr His Glu Asn Ile Thr 530 535 540 Phe Lys Asn Val Lys Phe Asp Asn Val Tyr Ser Val Asn Met Asp Tyr 545 550 555 560 Ala Lys Asp Phe Lys Phe Ile Asn Val Ser Phe Thr Asn Val Lys Asp 565 570 575 Asn Gly Gly Asn Pro Trp Arg Ile Lys Asn Ser Thr Gly Phe Val Phe 580 585 590 Glu Asn Thr Thr Thr Ala Pro Ile Asp Ala Thr Gln Lys Pro Glu Trp 595 600 605 Ala Glu Asp Thr Ile Ile Asn Ala Gly Ser Ser Pro Asp Gly Lys Asn 610 615 620 Val Thr Leu Thr Trp Ser Glu Ala Thr Asp Asn Val Gly Val Ser Gly 625 630 635 640 Tyr Thr Ile Tyr Lys Asp Arg Glu Lys Leu Gly Gln Asp Tyr Thr Thr 645 650 655 655 Thr Asn Leu Thr Ser Phe Thr Val Asp Gly Leu Ala Pro Ala Thr Glu 660 665 670 Tyr Thr Phe Lys Val Glu Ala Thr Asp Ala Thr Gly Asn Arg Thr Ser 675 680 685 Asn Gly Pro Glu Ile Lys Val Met Thr Asn Gly Glu Ala Asp Gln Thr 690 695 700 Ala Pro Val Leu Pro Lys Asn Thr Lys Ile Ser Glu Ser Thr Thr Lys 705 710 715 720 Ile Pro Ser Ser Asp Thr Phe Ser Gly Lys Asn Val Asn Val Val Tyr 725 730 735 Thr Gly Phe Thr Trp Thr Ser Ile Thr Trp Asp Ala Ala Ser Asp Asp 740 745 750 Thr Gly Ile Ala Gly Tyr Asn Val Tyr Ala Asn Gly Glu Leu Asn Gly 755 760 765 Phe Ala Thr Ser Asn Lys Tyr Thr Leu Thr Arg Leu Glu Pro Gly Thr 770 775 780 780 Lys Tyr Asn Ile Glu Val Glu Ala Val Asp Ile Ala Gly Asn Thr Ala 785 790 790 795 800 Pro Tyr Asn Ser Val Leu Glu Phe Glu Thr Ala Arg Pro Tyr Pro Ile 805 810 815 Gly Ala Pro Ser Phe Asp Gly Gly Leu Asp Ala Lys Ile Asn Ser Asp 820 825 830 Gly Thr Ser Val Thr Leu Ser Trp Asn Ala Ala Lys Ala Leu Asn Gln 835 840 845 Asp Val Ile Gly Tyr Arg Val Tyr Val Asn Gly Gln Pro Met Lys Ser 850 855 860 Glu Gly Ala Pro Phe Thr Pro Ile Asn Ser Glu Met Thr Thr Ser Asp 865 870 875 880 Thr Asn Tyr Thr Val Thr Gly Leu Lys Gln Gly Lys Arg Tyr Thr Phe 885 890 895 Lys Val Glu Ala Val Gly His Ala Ser Lys Tyr Ser Lys Arg Glu Arg 900 905 910 Leu Ser Asp Val Leu Pro Asn Gly Leu Leu Glu Val Ser Gly Tyr Arg 915 920 925 Trp Ser Gly Phe Gly Pro Ser Val Asp Val His Leu Ile Pro Gly Lys 930 935 940 Ala Lys Ser Glu Gln Ala Lys Ser Lys 945 950

【0063】 <210> 2 <211> 2862 <212> DNA <213> Bacillus sp. KSM-P358 <400> 2 aagtcggaag gatcgcccaa tgcaccttca tcacctgtta atttacagat tccaggcctt 60 gcttttgatg acgacagcat tactcttgtt tgggaaaaac caaagcatta taatgacatc 120 gttgatttta acatctatat gaataagaag aaaattggaa gcgctttgga agacaatagt 180 gggccagcaa aagcgtatat cgataatttc tatgaaaata tcgataagga taatttccat 240 gaaaagattc ttatccataa ttttaaggct aacaatctaa aaccaaataa atcctacgaa 300 ttttatgtaa catctgtgaa tgctgaaggg acggaatcgg caccttccaa taaaattgta 360 ggaaaaacaa caaaggtacc agagattttt aatattgtag attatggggc aataccagat 420 gatgatagta aggatacaga agccattcaa gcagccattg atgctgcaac acctggttca 480 aaggtgttaa taccagatgg aaaatttatc accggagaat tatggcttaa atcagatatg 540 actttacaag tggatggata tttacttggc tcaccggatg ctgaagacta cagtaccaat 600 ttctggctat atgattattc tacagatgaa cgttcttatt cactcatcaa tgcacataca 660 tacgattacg gcagtttgaa aaacattcgt atcgtgggca ctggtatcat tgatgggaat 720 gggtggaaat atgataagaa tcatcctacc agagatgaac ttgggaatga attaccacgt 780 tacgttgctg gcaacaattc aaaagtaact ggaaatgtaa aggtcgaaaa cggaaagatg 840 agcccactag atcttaattc tgaaaataca ttgggaatct tagcagcaaa tcaatcatat 900 gccgcacaag aaatgggcat ggacgcgaag tccgcttatg cagctcgttc caatctgatt 960 accgttcgtg gcgtagatgg aatgtattac gaaggaatta cccagcttaa tcctgcaaat 1020 cacgggattg taaaccttca tagtaagaac attgtaataa atggcaccat ttccaaaacg 1080 tatgatggca ataatgcaga tggatacgag tttggtgatt ctcaaaatat aatggtattt 1140 aataactttg ttgatacagg cgatgatgct attaatttcg cgtcaggaat gggacaagca 1200 gcagcaaaga gtgagccaac aggaaatgct tggattttca ataactatat tcgtgagggt 1260 catggcgggg ttgttaccgg tagtcataca ggtggctgga tccaggactt tttagtagaa 1320 gacaatatca tgtataaaac agatgtaggt ttacgcagta agacaaatac cccaatgggt 1380 ggtggggcaa aaaatatcct tttcagaaac aatgcattgg agggtattga cggagacggc 1440 ccatttgtct tcacttccgc ttatacagat gcaaatgctg caatccaata tgaaccagca 1500 gaggtcatct ctcaatttag agatatggag attgttgata caaccgttcg aaatcaaggt 1560 ggaagtaaca agcaagcgat tcttgtaaat ggtaataata gcgctggcga agtatatcac 1620 gaaaatatta ctttcaaaaa cgttaaattt gataatgtct attccgtaaa tatggattat 1680 gcaaaggact tcaaatttat taatgtatct tttacaaacg ttaaagataa tggcggaaac 1740 ccatggagaa taaaaaattc tacgggattt gtgtttgaaa atacaacaac agcaccaatt 1800 gatgctacac aaaaaccaga atgggcagaa gatacaatta ttaatgccgg gtcatcacct 1860 gatggaaaaa acgttacttt aacatggagt gaagcgactg ataatgttgg tgtctcgggt 1920 tacacaatct acaaagatcg tgaaaaactt ggtcaagatt atacaactac aaacctcaca 1980 agttttactg tggatggact ggcaccagct acagaataca catttaaagt ggaagcaact 2040 gatgcaacag gaaatcgtac ttcgaatggg ccagaaatta aggtaatgac aaatggtgaa 2100 gctgatcaaa cagcacctgt tctcccaaag aatacaaaga tttcagaatc aacaactaaa 2160 attcctagca gtgatacttt tagtggaaag aatgtcaacg tggtgtatac tgggtttact 2220 tggacttcta ttacttggga tgctgctagt gatgacacgg gaattgctgg ttataacgtt 2280 tatgcaaatg gtgagttaaa tggatttgca acatccaata aatacacctt aacacgacta 2340 gagcctggca caaaatataa tattgaagtc gaagcagttg acattgcagg taatacggca 2400 ccttataata gtgtactaga atttgaaaca gccagacctt acccaatcgg cgcgccttcc 2460 tttgatggtg gtttagatgc aaaaattaat tcagatggaa ctagcgtaac tctatcatgg 2520 aacgctgcaa aggcactaaa tcaagatgta atcggatacc gcgtatatgt gaatggtcaa 2580 cctatgaagt ctgaaggagc tccatttaca cctattaatt cagaaatgac tacatctgat 2640 acaaactata ctgtaacagg attaaaacaa ggaaaacgat atacatttaa agtagaagca 2700 gtcggtcatg caagtaaata ctctaagaga gaaagactct cagatgtact tccaaatggt 2760 cttcttgagg tctcaggata tagatggagt ggatttggac caagtgtcga tgttcatcta 2820 attcctggta aagcaaaaag tgaacaagca aaatcaaagt aa 2862 <210> 2 <211> 2862 <212> DNA <213> Bacillus sp. aagcgtatat cgataatttc tatgaaaata tcgataagga taatttccat 240 gaaaagattc ttatccataa ttttaaggct aacaatctaa aaccaaataa atcctacgaa 300 ttttatgtaa catctgtgaa tgctgaaggg acggaatcgg caccttccaa taaaattgta 360 ggaaaaacaa caaaggtacc agagattttt aatattgtag attatggggc aataccagat 420 gatgatagta aggatacaga agccattcaa gcagccattg atgctgcaac acctggttca 480 aaggtgttaa taccagatgg aaaatttatc accggagaat tatggcttaa atcagatatg 540 actttacaag tggatggata tttacttggc tcaccggatg ctgaagacta cagtaccaat 600 ttctggctat atgattattc tacagatgaa cgttcttatt cactcatcaa tgcacataca 660 tacgattacg gcagtttgaa aaacattcgt atcgtgggca ctggtatcat tgatgggaat 720 gggtggaaat atgataagaa tcatcctacc agagatgaac ttgggaatga attaccacgt 780 tacgt ctg gcaacaattc aaaagtaact ggaaatgtaa aggtcgaaaa cggaaagatg 840 agcccactag atcttaattc tgaaaataca ttgggaatct tagcagcaaa tcaatcatat 900 gccgcacaag aaatgggcat ggacgcgaag tccgcttatg cagctcgttc caatctgatt 960 accgttcgtg gcgtagatgg aatgtattac gaaggaatta cccagcttaa tcctgcaaat 1020 cacgggattg taaaccttca tagtaagaac attgtaataa atggcaccat ttccaaaacg 1080 tatgatggca ataatgcaga tggatacgag tttggtgatt ctcaaaatat aatggtattt 1140 aataactttg ttgatacagg cgatgatgct attaatttcg cgtcaggaat gggacaagca 1200 gcagcaaaga gtgagccaac aggaaatgct tggattttca ataactatat tcgtgagggt 1260 catggcgggg ttgttaccgg tagtcataca ggtggctgga tccaggactt tttagtagaa 1320 gacaatatca tgtataaaac agatgtaggt ttacgcagta agacaaatac cccaatgggt 1380 ggtggggcaa aaaatatcct tttcagaaac aatgcattgg agggtattga cggagacggc 1440 ccatttgtct tcacttccgc ttatacagat gcaaatgctg caatccaata tgaaccagca 1500 gaggtcatct ctcaatttag agatatggag attgttgata caaccgttcg aaatcaaggt 1560 ggaagtaaca agcaagcgat tcttgtaaat ggtaataata gcgctggcga agtatatcac 1620 gaaaatatta ctttc aaaaa cgttaaattt gataatgtct attccgtaaa tatggattat 1680 gcaaaggact tcaaatttat taatgtatct tttacaaacg ttaaagataa tggcggaaac 1740 ccatggagaa taaaaaattc tacgggattt gtgtttgaaa atacaacaac agcaccaatt 1800 gatgctacac aaaaaccaga atgggcagaa gatacaatta ttaatgccgg gtcatcacct 1860 gatggaaaaa acgttacttt aacatggagt gaagcgactg ataatgttgg tgtctcgggt 1920 tacacaatct acaaagatcg tgaaaaactt ggtcaagatt atacaactac aaacctcaca 1980 agttttactg tggatggact ggcaccagct acagaataca catttaaagt ggaagcaact 2040 gatgcaacag gaaatcgtac ttcgaatggg ccagaaatta aggtaatgac aaatggtgaa 2100 gctgatcaaa cagcacctgt tctcccaaag aatacaaaga tttcagaatc aacaactaaa 2160 attcctagca gtgatacttt tagtggaaag aatgtcaacg tggtgtatac tgggtttact 2220 tggacttcta ttacttggga tgctgctagt gatgacacgg gaattgctgg ttataacgtt 2280 tatgcaaatg gtgagttaaa tggatttgca acatccaata aatacacctt aacacgacta 2340 gagcctggca caaaatataa tattgaagtc gaagcagttg acattgcagg taatacggca 2400 ccttataata gtgtactaga atttgaaaca gccagacctt acccaatcgg cgcgccttcc 2460 tttgatggtg gtttagatgc aaaaattaat tcagatggaa ctagcgtaac tctatcatgg 2520 aacgctgcaa aggcactaaa tcaagatgta atcggatacc gcgtatatgt gaatggtcaa 2580 cctatgaagt ctgaaggagc tccatttaca cctattaatt cagaaatgac tacatctgat 2640 acaaactata ctgtaacagg attaaaacaa ggaaaacgat atacatttaa agtagaagca 2700 gtcggtcatg caagtaaata ctctaagaga gaaagactct cagatgtact tccaaatggt 2760 cttcttgagg tctcaggata tagatggagt ggatttggac caagtgtcga tgttcatcta 2820 attcctggta aagcaaaaag tgaacaagca aaatcaaagt aa 2862

【0064】 <210> 3 <211> 26 <212> DNA <213> Artificial Sequence <400> 3 aardnsgarg gnnsnccnaa ygcncc 26<210> 3 <211> 26 <212> DNA <213> Artificial Sequence <400> 3 aardnsgarg gnnsnccnaa ygcncc 26

【0065】 <210> 4 <211> 32 <212> DNA <213> Artificial Sequence <400> 4 cctycnarng crttrttnck raanardatr tt 32<210> 4 <211> 32 <212> DNA <213> Artificial Sequence <400> 4 cctycnarng crttrttnck raanardatr tt 32

【0066】 <210> 5 <211> 32 <212> DNA <213> Artificial Sequence <400> 5 aayathytnt tymgnaayaa ygcnytngar gg 32<210> 5 <211> 32 <212> DNA <213> Artificial Sequence <400> 5 aayathytnt tymgnaayaa ygcnytngar gg 32

【0067】 <210> 6 <211> 26 <212> DNA <213> Artificial Sequence <400> 6 nrynssrtan ggnckngcnk ytckaa 26<210> 6 <211> 26 <212> DNA <213> Artificial Sequence <400> 6 nrynssrtan ggnckngcnk ytckaa 26

【0068】 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <400> 7 ttatcgatat acgcttttgc tggc 24<210> 7 <211> 24 <212> DNA <213> Artificial Sequence <400> 7 ttatcgatat acgcttttgc tggc 24

【0069】 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <400> 8 acaccttaac acgactagag cctg 24<210> 8 <211> 24 <212> DNA <213> Artificial Sequence <400> 8 acaccttaac acgactagag cctg 24

【0070】 <210> 9 <211> 28 <212> DNA <213> Artificial Sequence <400> 9 cgacattata atacacgggt tacacagc 28<210> 9 <211> 28 <212> DNA <213> Artificial Sequence <400> 9 cgacattata atacacgggt tacacagc 28

【0071】 <210> 10 <211> 29 <212> DNA <213> Artificial Sequence <400> 10 agaaaaggtt tgtattcaag tcataatgg 29<210> 10 <211> 29 <212> DNA <213> Artificial Sequence <400> 10 agaaaaggtt tgtattcaag tcataatgg 29

【0072】 <210> 11 <211> 36 <212> DNA <213> Artificial Sequence <400> 11 gttctaggaa agcatgtcga catcagagcc tcatgc 36<210> 11 <211> 36 <212> DNA <213> Artificial Sequence <400> 11 gttctaggaa agcatgtcga catcagagcc tcatgc 36

【0073】 <210> 12 <211> 34 <212> DNA <213> Artificial Sequence <400> 12 cagctctaga aagacgatac gagttaatta gtac 34<210> 12 <211> 34 <212> DNA <213> Artificial Sequence <400> 12 cagctctaga aagacgatac gagttaatta gtac 34

【0074】 <210> 13 <211> 3813 <212> DNA <213> Bacillus sp. KSM-P358 <220> <221> CDS <222> (540)..(3479) <220> <221> mat_peptide <222> (621)..(3479) <220> <221> sig_peptide <222> (540)..(620) <400> 13 aaaattcaac gcaatacaaa taatggtgga ggatcttctt ttaccggcgg cggaggcggt 60 ggtggtggcc gctctggtgg tgggggaaga gggttctagg aaagcatgag gacatcagag 120 cctcatgctt ttttctgttt gaaaatggca ggaaagcaat gatgttattc agatataaca 180 cctatattag agaaaaataa tttatttccc aaaagattgt agaaagatac aaagagtttg 240 gtaaaagtga ttagaccaag cttttttgtc tatggtaatc atttcatctg gagataatca 300 caagttcaca aaggactttt tgattaggta aatagaacta taattatcga aatattcaat 360 aaagtgattg tatacgtttc caatagaagc ggttaacata gattggaaat atcagatttt 420 cttaaaaata tgaaccttta tatcgcggtg tctctgcgcc aaaaaaggtt tatataaaat 480 ttaaatagaa aggagaaagt ttagtagatt ttcaaaaaac aataaggtgg ttgaagcat 539 ttg aaa agt ctt aaa gtt aat gga gtt tta ttt tta att tta cta tta 587 Met Lys Ser Leu Lys Val Asn Gly Val Leu Phe Leu Ile Leu Leu Leu -25 -20 -15 gtt ttt agt agc ttt agc gga gca gtt tat gca aag tcg gaa gga tcg 635 Val Phe Ser Ser Phe Ser Gly Ala Val Tyr Ala Lys Ser Glu Gly Ser -10 -5 -1 1 5 ccc aat gca cct tca tca cct gtt aat tta cag att cca ggc ctt gct 683 Pro Asn Ala Pro Ser Ser Pro Val Asn Leu Gln Ile Pro Gly Leu Ala 10 15 20 ttt gat gac gac agc att act ctt gtt tgg gaa aaa cca aag cat tat 731 Phe Asp Asp Asp Ser Ile Thr Leu Val Trp Glu Lys Pro Lys His Tyr 25 30 35 aat gac atc gtt gat ttt aac atc tat atg aat aag aag aaa att gga 779 Asn Asp Ile Val Asp Phe Asn Ile Tyr Met Asn Lys Lys Lys Ile Gly 40 45 50 agc gct ttg gaa gac aat agt ggg cca gca aaa gcg tat atc gat aat 827 Ser Ala Leu Glu Asp Asn Ser Gly Pro Ala Lys Ala Tyr Ile Asp Asn 55 60 65 ttc tat gaa aat atc gat aag gat aat ttc cat gaa aag att ctt atc 875 Phe Tyr Glu Asn Ile Asp Lys Asp Asn Phe His Glu Lys Ile Leu Ile 70 75 80 85 cat aat ttt aag gct aac aat cta aaa cca aat aaa tcc tac gaa ttt 923 His Asn Phe Lys Ala Asn Asn Leu Lys Pro Asn Lys Ser Tyr Glu Phe 90 95 100 tat gta aca tct gtg aat gct gaa ggg acg gaa tcg gca cct tcc aat 971 Tyr Val Thr Ser Val Asn Ala Glu Gly Thr Glu Ser Ala Pro Ser Asn 105 110 115 aaa att gta gga aaa aca aca aag gta cca gag att ttt aat att gta 1019 Lys Ile Val Gly Lys Thr Thr Lys Val Pro Glu Ile Phe Asn Ile Val 120 125 130 gat tat ggg gca ata cca gat gat gat agt aag gat aca gaa gcc att 1067 Asp Tyr Gly Ala Ile Pro Asp Asp Asp Ser Lys Asp Thr Glu Ala Ile 135 140 145 caa gca gcc att gat gct gca aca cct ggt tca aag gtg tta ata cca 1115 Gln Ala Ala Ile Asp Ala Ala Thr Pro Gly Ser Lys Val Leu Ile Pro 150 155 160 165 gat gga aaa ttt atc acc gga gaa tta tgg ctt aaa tca gat atg act 1163 Asp Gly Lys Phe Ile Thr Gly Glu Leu Trp Leu Lys Ser Asp Met Thr 170 175 180 tta caa gtg gat gga tat tta ctt ggc tca ccg gat gct gaa gac tac 1211 Leu Gln Val Asp Gly Tyr Leu Leu Gly Ser Pro Asp Ala Glu Asp Tyr 185 190 195 agt acc aat ttc tgg cta tat gat tat tct aca gat gaa cgt tct tat 1259 Ser Thr Asn Phe Trp Leu Tyr Asp Tyr Ser Thr Asp Glu Arg Ser Tyr 200 205 210 tca ctc atc aat gca cat aca tac gat tac ggc agt ttg aaa aac att 1307 Ser Leu Ile Asn Ala His Thr Tyr Asp Tyr Gly Ser Leu Lys Asn Ile 215 220 225 cgt atc gtg ggc act ggt atc att gat ggg aat ggg tgg aaa tat gat 1355 Arg Ile Val Gly Thr Gly Ile Ile Asp Gly Asn Gly Trp Lys Tyr Asp 230 235 240 245 aag aat cat cct acc aga gat gaa ctt ggg aat gaa tta cca cgt tac 1403 Lys Asn His Pro Thr Arg Asp Glu Leu Gly Asn Glu Leu Pro Arg Tyr 250 255 260 gtt gct ggc aac aat tca aaa gta act gga aat gta aag gtc gaa aac 1451 Val Ala Gly Asn Asn Ser Lys Val Thr Gly Asn Val Lys Val Glu Asn 265 270 275 gga aag atg agc cca cta gat ctt aat tct gaa aat aca ttg gga atc 1499 Gly Lys Met Ser Pro Leu Asp Leu Asn Ser Glu Asn Thr Leu Gly Ile 280 285 290 tta gca gca aat caa tca tat gcc gca caa gaa atg ggc atg gac gcg 1547 Leu Ala Ala Asn Gln Ser Tyr Ala Ala Gln Glu Met Gly Met Asp Ala 295 300 305 aag tcc gct tat gca gct cgt tcc aat ctg att acc gtt cgt ggc gta 1595 Lys Ser Ala Tyr Ala Ala Arg Ser Asn Leu Ile Thr Val Arg Gly Val 310 315 320 325 gat gga atg tat tac gaa gga att acc cag ctt aat cct gca aat cac 1643 Asp Gly Met Tyr Tyr Glu Gly Ile Thr Gln Leu Asn Pro Ala Asn His 330 335 340 ggg att gta aac ctt cat agt aag aac att gta ata aat ggc acc att 1691 Gly Ile Val Asn Leu His Ser Lys Asn Ile Val Ile Asn Gly Thr Ile 345 350 355 tcc aaa acg tat gat ggc aat aat gca gat gga tac gag ttt ggt gat 1739 Ser Lys Thr Tyr Asp Gly Asn Asn Ala Asp Gly Tyr Glu Phe Gly Asp 360 365 370 tct caa aat ata atg gta ttt aat aac ttt gtt gat aca ggc gat gat 1787 Ser Gln Asn Ile Met Val Phe Asn Asn Phe Val Asp Thr Gly Asp Asp 375 380 385 gct att aat ttc gcg tca gga atg gga caa gca gca gca aag agt gag 1835 Ala Ile Asn Phe Ala Ser Gly Met Gly Gln Ala Ala Ala Lys Ser Glu 390 395 400 405 cca aca gga aat gct tgg att ttc aat aac tat att cgt gag ggt cat 1883 Pro Thr Gly Asn Ala Trp Ile Phe Asn Asn Tyr Ile Arg Glu Gly His 410 415 420 ggc ggg gtt gtt acc ggt agt cat aca ggt ggc tgg atc cag gac ttt 1931 Gly Gly Val Val Thr Gly Ser His Thr Gly Gly Trp Ile Gln Asp Phe 425 430 435 tta gta gaa gac aat atc atg tat aaa aca gat gta ggt tta cgc agt 1979 Leu Val Glu Asp Asn Ile Met Tyr Lys Thr Asp Val Gly Leu Arg Ser 440 445 450 aag aca aat acc cca atg ggt ggt ggg gca aaa aat atc ctt ttc aga 2027 Lys Thr Asn Thr Pro Met Gly Gly Gly Ala Lys Asn Ile Leu Phe Arg 455 460 465 aac aat gca ttg gag ggt att gac gga gac ggc cca ttt gtc ttc act 2075 Asn Asn Ala Leu Glu Gly Ile Asp Gly Asp Gly Pro Phe Val Phe Thr 470 475 480 485 tcc gct tat aca gat gca aat gct gca atc caa tat gaa cca gca gag 2123 Ser Ala Tyr Thr Asp Ala Asn Ala Ala Ile Gln Tyr Glu Pro Ala Glu 490 495 500 gtc atc tct caa ttt aga gat atg gag att gtt gat aca acc gtt cga 2171 Val Ile Ser Gln Phe Arg Asp Met Glu Ile Val Asp Thr Thr Val Arg 505 510 515 aat caa ggt gga agt aac aag caa gcg att ctt gta aat ggt aat aat 2219 Asn Gln Gly Gly Ser Asn Lys Gln Ala Ile Leu Val Asn Gly Asn Asn 520 525 530 agc gct ggc gaa gta tat cac gaa aat att act ttc aaa aac gtt aaa 2267 Ser Ala Gly Glu Val Tyr His Glu Asn Ile Thr Phe Lys Asn Val Lys 535 540 545 ttt gat aat gtc tat tcc gta aat atg gat tat gca aag gac ttc aaa 2315 Phe Asp Asn Val Tyr Ser Val Asn Met Asp Tyr Ala Lys Asp Phe Lys 550 555 560 565 ttt att aat gta tct ttt aca aac gtt aaa gat aat ggc gga aac cca 2363 Phe Ile Asn Val Ser Phe Thr Asn Val Lys Asp Asn Gly Gly Asn Pro 570 575 580 tgg aga ata aaa aat tct acg gga ttt gtg ttt gaa aat aca aca aca 2411 Trp Arg Ile Lys Asn Ser Thr Gly Phe Val Phe Glu Asn Thr Thr Thr 585 590 595 gca cca att gat gct aca caa aaa cca gaa tgg gca gaa gat aca att 2459 Ala Pro Ile Asp Ala Thr Gln Lys Pro Glu Trp Ala Glu Asp Thr Ile 600 605 610 att aat gcc ggg tca tca cct gat gga aaa aac gtt act tta aca tgg 2507 Ile Asn Ala Gly Ser Ser Pro Asp Gly Lys Asn Val Thr Leu Thr Trp 615 620 625 agt gaa gcg act gat aat gtt ggt gtc tcg ggt tac aca atc tac aaa 2555 Ser Glu Ala Thr Asp Asn Val Gly Val Ser Gly Tyr Thr Ile Tyr Lys 630 635 640 645 gat cgt gaa aaa ctt ggt caa gat tat aca act aca aac ctc aca agt 2603 Asp Arg Glu Lys Leu Gly Gln Asp Tyr Thr Thr Thr Asn Leu Thr Ser 650 655 660 ttt act gtg gat gga ctg gca cca gct aca gaa tac aca ttt aaa gtg 2651 Phe Thr Val Asp Gly Leu Ala Pro Ala Thr Glu Tyr Thr Phe Lys Val 665 670 675 gaa gca act gat gca aca gga aat cgt act tcg aat ggg cca gaa att 2699 Glu Ala Thr Asp Ala Thr Gly Asn Arg Thr Ser Asn Gly Pro Glu Ile 680 685 690 aag gta atg aca aat ggt gaa gct gat caa aca gca cct gtt ctc cca 2747 Lys Val Met Thr Asn Gly Glu Ala Asp Gln Thr Ala Pro Val Leu Pro 695 700 705 aag aat aca aag att tca gaa tca aca act aaa att cct agc agt gat 2795 Lys Asn Thr Lys Ile Ser Glu Ser Thr Thr Lys Ile Pro Ser Ser Asp 710 715 720 725 act ttt agt gga aag aat gtc aac gtg gtg tat act ggg ttt act tgg 2843 Thr Phe Ser Gly Lys Asn Val Asn Val Val Tyr Thr Gly Phe Thr Trp 730 735 740 act tct att act tgg gat gct gct agt gat gac acg gga att gct ggt 2891 Thr Ser Ile Thr Trp Asp Ala Ala Ser Asp Asp Thr Gly Ile Ala Gly 745 750 755 tat aac gtt tat gca aat ggt gag tta aat gga ttt gca aca tcc aat 2939 Tyr Asn Val Tyr Ala Asn Gly Glu Leu Asn Gly Phe Ala Thr Ser Asn 760 765 770 aaa tac acc tta aca cga cta gag cct ggc aca aaa tat aat att gaa 2987 Lys Tyr Thr Leu Thr Arg Leu Glu Pro Gly Thr Lys Tyr Asn Ile Glu 775 780 785 gtc gaa gca gtt gac att gca ggt aat acg gca cct tat aat agt gta 3035 Val Glu Ala Val Asp Ile Ala Gly Asn Thr Ala Pro Tyr Asn Ser Val 790 795 800 805 cta gaa ttt gaa aca gcc aga cct tac cca atc ggc gcg cct tcc ttt 3083 Leu Glu Phe Glu Thr Ala Arg Pro Tyr Pro Ile Gly Ala Pro Ser Phe 810 815 820 gat ggt ggt tta gat gca aaa att aat tca gat gga act agc gta act 3131 Asp Gly Gly Leu Asp Ala Lys Ile Asn Ser Asp Gly Thr Ser Val Thr 825 830 835 cta tca tgg aac gct gca aag gca cta aat caa gat gta atc gga tac 3179 Leu Ser Trp Asn Ala Ala Lys Ala Leu Asn Gln Asp Val Ile Gly Tyr 840 845 850 cgc gta tat gtg aat ggt caa cct atg aag tct gaa gga gct cca ttt 3227 Arg Val Tyr Val Asn Gly Gln Pro Met Lys Ser Glu Gly Ala Pro Phe 855 860 865 aca cct att aat tca gaa atg act aca tct gat aca aac tat act gta 3275 Thr Pro Ile Asn Ser Glu Met Thr Thr Ser Asp Thr Asn Tyr Thr Val 870 875 880 885 aca gga tta aaa caa gga aaa cga tat aca ttt aaa gta gaa gca gtc 3323 Thr Gly Leu Lys Gln Gly Lys Arg Tyr Thr Phe Lys Val Glu Ala Val 890 895 900 ggt cat gca agt aaa tac tct aag aga gaa aga ctc tca gat gta ctt 3371 Gly His Ala Ser Lys Tyr Ser Lys Arg Glu Arg Leu Ser Asp Val Leu 905 910 915 cca aat ggt ctt ctt gag gtc tca gga tat aga tgg agt gga ttt gga 3419 Pro Asn Gly Leu Leu Glu Val Ser Gly Tyr Arg Trp Ser Gly Phe Gly 920 925 930 cca agt gtc gat gtt cat cta att cct ggt aaa gca aaa agt gaa caa 3467 Pro Ser Val Asp Val His Leu Ile Pro Gly Lys Ala Lys Ser Glu Gln 935 940 945 gca aaa tca aag taaagatatg tgtgaattaa ttgagtgtga ttttcatctt 3519 Ala Lys Ser Lys 950 ttttatattg atcacgcaaa agcaatgtac taattaactc gtatcgtctt tttcgagctg 3579 aatctcttga taactcatat tggaatcctc tccttttaat aatatttttc aatgaatacc 3639 attgaaaaga taaggagggg atttttttgt taatttgcag gctagtagga ttatgaacaa 3699 gtatcttatg aatctgttgc gaggatctcg taaatgccca attaaaatta ggcgatgcaa 3759 tcaggcacaa tacccaatta tcgtacataa tttgttgagg aaagtctttg aaat 3813<210> 13 <211> 3813 <212> DNA <213> Bacillus sp. KSM-P358 <220><221> CDS <222> (540) .. (3479) <220><221> mat_peptide <222> (621) .. (3479) <220><221> sig_peptide <222> (540) .. (620) <400> 13 gatgttattc agatataaca 180 cctatattag agaaaaataa tttatttccc aaaagattgt agaaagatac aaagagtttg 240 gtaaaagtga ttagaccaag cttttttgtc tatggtaatc atttcatctg gagataatca 300 caagttcaca aaggactttt tgattaggta aatagaacta taattatcga aatattcaat 360 aaagtgattg tatacgtttc caatagaagc ggttaacata gattggaaat atcagatttt 420 cttaaaaata tgaaccttta tatcgcggtg tctctgcgcc aaaaaaggtt tatataaaat 480 ttaaatagaa aggagaaagt ttagtagatt ttcaaaaaac aataaggtgg ttgaagcat 539 ttg aaa agt ctt aaa gtt aat gga gtt tta ttt tta att tta cta tta 587 Met Lys Ser Leu Lys Val Asn Gly Val Leu Phe Leu Ile Leu Leu Leu -25 -20 -15 gtt ttt agt agc ttt agc gga gca gtt tat gca aag tcg gaa gga tcg 635 Val Phe Ser Ser Phe Ser Gly Ala Val Tyr Ala Lys Ser Glu Gly Ser -10 -5 -1 15 ccc aat gca cct tca tca cct gtt aat tta cag att cca ggc ctt gct 683 Pro Asn Ala Pro Ser Ser Pro Val Asn Leu Gln Ile Pro Gly Leu Ala 10 15 20 ttt gat gac gac agc att act ctt gtt tgg gaa aaa cca aag cat tat 731 Phe Asp Asp Asp Ser Ile Thr Leu Val Trp Glu Lys Pro Lys His Tyr 25 30 35 aat gac atc gtt gat ttt aac atc tat atg aat aag aag aaa att gga 779 Asn Asp Ile Val Asp Phe Asn Ile Tyr Met Asn Lys Lys Lys Ile Gly 40 45 50 agc gct ttg gaa gac aat agt ggg cca gca aaa gcg tat atc gat aat 827 Ser Ala Leu Glu Asp Asn Ser Gly Pro Ala Lys Ala Tyr Ile Asp Asn 55 60 65 ttc tat gaa aat atc gat aag gat aat ttc cat gaa aag att ctt atc 875 Phe Tyr Glu Asn Ile Asp Lys Asp Asn Phe His Glu Lys Ile Leu Ile 70 75 80 85 cat aat ttt aag gct aac aat cta aaa cca aat aaa tcc tac gaa ttt 923 His Asn Phe Lys Ala Asn Asn Leu Lys Pro Asn Lys Ser Tyr Glu Phe 90 95 100 tat gta aca tct gtg aat gct gaa ggg acg gaa tcg gca cct tcc aat 971 Tyr Val Thr Ser Val Asn Ala Glu Gly Thr Glu Ser Ala Pro Ser Asn 105 110 115 aaa att gta gga aaa aca aca aag gta cca gag att ttt aat att gta 1019 Lys Ile Val Gly Lys Thr Thr Lys Val Pro Glu Ile Phe Asn Ile Val 120 125 130 gat tat ggg gca ata cca gat gat gat agt aag gat aca gaa gcc att 1067 Asp Tyr Gly Ala Ile Pro Asp Asp Asp Ser Lys Asp Thr Glu Ala Ile 135 140 145 caa gca gcc att gat gct gca aca cct ggt tca aag gtg tta ata cca 1115 Gln Ala Ala Ile Asp Ala Ala Thr Pro Gly Ser Lys Val Leu Ile Pro 150 155 160 165 gat gga aaa ttt atc acc gga gaa tta tgg ctt aaa tca gat atg act 1163 Asp Gly Lys Phe Ile Thr Gly Glu Leu Trp Leu Lys Ser Asp Met Thr 170 175 180 tta caa gtg gat gga tat tta ctt ggc tca ccg gat gct gaa gac tac 1211 Leu Gln Val Asp Gly Tyr Leu Leu Gly Ser Pro Asp Ala Glu Asp Tyr 185 190 195 agt acc aat ttc tgg cta tat gat tat tct aca gat gaa cgt tct tat 1259 Ser Thr Asn Phe Trp Leu Tyr Asp Tyr Ser Thr Asp Glu Arg Ser Tyr 200 205 210 tca c tc atc aat gca cat aca tac gat tac ggc agt ttg aaa aac att 1307 Ser Leu Ile Asn Ala His Thr Tyr Asp Tyr Gly Ser Leu Lys Asn Ile 215 220 225 cgt atc gtg ggc act ggt atc att gat ggg aat ggg tgg aaatat gat 1355 Arg Ile Val Gly Thr Gly Ile Ile Asp Gly Asn Gly Trp Lys Tyr Asp 230 235 240 245 aag aat cat cct acc aga gat gaa ctt ggg aat gaa tta cca cgt tac 1403 Lys Asn His Pro Thr Arg Asp Glu Leu Gly Asn Glu Leu Pro Arg Tyr 250 255 260 gtt gct ggc aac aat tca aaa gta act gga aat gta aag gtc gaa aac 1451 Val Ala Gly Asn Asn Ser Lys Val Thr Gly Asn Val Lys Val Glu Asn 265 270 275 gga aag atg agc cca cta gat ctt aat tct gaa aat aca ttg gga atc 1499 Gly Lys Met Ser Pro Leu Asp Leu Asn Ser Glu Asn Thr Leu Gly Ile 280 285 290 tta gca gca aat caa tca tat gcc gca caa gaa atg ggc atg gac gcla A47A Leu Asn Gln Ser Tyr Ala Ala Gln Glu Met Gly Met Asp Ala 295 300 305 aag tcc gct tat gca gct cgt tcc aat ctg att acc gtt cgt ggc gta 1595 Lys Ser Ala Tyr Ala Ala Arg Ser Asn Leu Ile Thr Val Arg Gly Va l 310 315 320 325 gat gga atg tat tac gaa gga att acc cag ctt aat cct gca aat cac 1643 Asp Gly Met Tyr Tyr Glu Gly Ile Thr Gln Leu Asn Pro Ala Asn His 330 335 340 ggg att gta aac ctt cat agt aag aac att gta ata aat ggc acc att 1691 Gly Ile Val Asn Leu His Ser Lys Asn Ile Val Ile Asn Gly Thr Ile 345 350 355 tcc aaa acg tat gat ggc aat aat gca gat gga tac gag ttt ggt gat 1739 Ser Lys Thr Tyr Asp Gly Asn Asn Ala Asp Gly Tyr Glu Phe Gly Asp 360 365 370 tct caa aat ata atg gta ttt aat aac ttt gtt gat aca ggc gat gat 1787 Ser Gln Asn Ile Met Val Phe Asn Asn Phe Val Asp Thr Gly Asp Asp 375 380 385 gct att aat ttc gcg tca gga atg gga caa gca gca gca aag agt gag 1835 Ala Ile Asn Phe Ala Ser Gly Met Gly Gln Ala Ala Ala Lys Ser Glu 390 395 395 400 405 cca aca gga aat gct tgg att ttc aat aac gat attgt ggt cat 1883 Pro Thr Gly Asn Ala Trp Ile Phe Asn Asn Tyr Ile Arg Glu Gly His 410 415 420 ggc ggg gtt gtt acc ggt agt cat aca ggt ggc tgg atc cag gac ttt 1931 Gly Gly Val Val Thr Gly Ser His Thr Gly Gly Trp Ile Gln Asp Phe 425 430 435 tta gta gaa gac aat atc atg tat aaa aca gat gta ggt tta cgc agt 1979 Leu Val Glu Asp Asn Ile Met Tyr Lys Thr Asp Val Gly Leu Arg Ser 440 445 450 aag aca aat acc cca atg ggt ggt ggg gca aaa aat atc ctt ttc aga 2027 Lys Thr Asn Thr Pro Met Gly Gly Gly Ala Lys Asn Ile Leu Phe Arg 455 460 465 aac aat gca ttg gag ggt att gac gga gac ggc cca ttt gtc Ascn act 2075 Ala Leu Glu Gly Ile Asp Gly Asp Gly Pro Phe Val Phe Thr 470 475 480 485 tcc gct tat aca gat gca aat gct gca atc caa tat gaa cca gca gag 2123 Ser Ala Tyr Thr Asp Ala Asn Ala Ala Ile Gln Tyr Glu Pro Ala Glu 490 495 500 gtc atc tct caa ttt aga gat atg gag att gtt gat aca acc gtt cga 2171 Val Ile Ser Gln Phe Arg Asp Met Glu Ile Val Asp Thr Thr Val Arg 505 510 515 aat caa ggt gga agt aac aag caa gcg att ctt gta aat ggt aat aat 2219 Asn Gln Gly Gly Ser Asn Lys Gln Ala Ile Leu Val Asn Gly Asn Asn 520 525 530 agc gct ggc gaa gta tat cac gaa aat att act ttc aaa aac gtt aaa 2267 Ser Ala Gly Glu Val Tyr His Glu Asn Ile Thr Phe Lys Asn Val Lys 535 540 545 ttt gat aat gtc tat tcc gta aat atg gat tat gca aag gac ttc aaa 2315 Phe Asp Asn Val Tyr Ser Val Asn Met Asp Tyr Ala Lys Asp Phe Lys 550 555 560 565 ttt att aat gta tct ttt aca aac gtt aaa gat aat ggc gga aac cca 2363 Phe Ile Asn Val Ser Phe Thr Asn Val Lys Asp Asn Gly Gly Asn Pro 570 575 580 tgg aga ata aaa aat tct acg gga ttt gtg ttt gaa aca aca aca 2411 Trp Arg Ile Lys Asn Ser Thr Gly Phe Val Phe Glu Asn Thr Thr Thr 585 590 595 gca cca att gat gct aca caa aaa cca gaa tgg gca gaa gat aca att 2459 Ala Pro Ile Asp Ala Thr Gln Lys Pro Glu Trp Ala Glu Asp Thr Ile 600 605 610 att aat gcc ggg tca tca cct gat gga aaa aac gtt act tta aca tgg 2507 Ile Asn Ala Gly Ser Ser Pro Asp Gly Lys Asn Val Thr Leu Thr Trp 615 620 625 agt gaa gcg act gat aat gtt ggt gtc tcg ggt tac aca atc tac aaa 2555 Ser Glu Ala Thr Asp Asn Val Gly Val Ser Gly Tyr Thr Ile Tyr Lys 630 635 640 645 gat cgt gaa aaa ctt ggt caa gat tat aca act aca aac ctc aca agt 26 03 Asp Arg Glu Lys Leu Gly Gln Asp Tyr Thr Thr Thr Asn Leu Thr Ser 650 655 660 ttt act gtg gat gga ctg gca cca gct aca gaa tac aca ttt aaa gtg 2651 Phe Thr Val Asp Gly Leu Ala Pro Ala Thr Glu Tyr Thr Phe Lys Val 665 670 675 gaa gca act gat gca aca gga aat cgt act tcg aat ggg cca gaa att 2699 Glu Ala Thr Asp Ala Thr Gly Asn Arg Thr Ser Asn Gly Pro Glu Ile 680 685 690 aag gta atg aca aat ggt gaa gct gat caa aca gca cct gtt ctc cca 2747 Lys Val Met Thr Asn Gly Glu Ala Asp Gln Thr Ala Pro Val Leu Pro 695 700 705 aag aat aca aag att tca gaa tca aca act aaa att cct agc agt gat 2795 Lys Asn Thr Lys Ile Ser Glu Ser Thr Thr Lys Ile Pro Ser Ser Asp 710 715 720 725 act ttt agt gga aag aat gtc aac gtg gtg tat act ggg ttt act tgg 2843 Thr Phe Ser Gly Lys Asn Val Asn Val Val Tyr Thr Gly Phe Thr Trp 730 735 740 act tct att act tgg gat gct gct agt gat gac acg gga att gct ggt 2891 Thr Ser Ile Thr Trp Asp Ala Ala Ser Asp Asp Thr Gly Ile Ala Gly 745 750 755 tat aac gtt tat gca aat ggt gag tta aat gga ttt gca aca tcc aat 2939 Tyr Asn Val Tyr Ala Asn Gly Glu Leu Asn Gly Phe Ala Thr Ser Asn 760 765 770 aaa tac acc tta aca cga cta gag cct ggc aca aaa tat aat att gaa 2987 Lys Tyr Thr Leu Thr Arg Leu Glu Pro Gly Thr Lys Tyr Asn Ile Glu 775 780 785 gtc gaa gca gtt gac att gca ggt aat acg gca cct tat aat agt gta 3035 Val Glu Ala Val Asp Ile Ala Gly Asn Thr Ala Pro Tyr Asn Ser Val 790 795 800 805 cta gaa ttt gaa aca gcc aga cct tac cca atc ggc gcg cct tcc ttt 3083 Leu Glu Plu Glu Thr Ala Arg Pro Tyr Pro Ile Gly Ala Pro Ser Phe 810 815 820 gat ggt ggt tta gat gca aaa att aat tca gat gga act agc gta act 3131 Asp Gly Gly Leu Asp Ala Lys Ile Asn Ser Asp Gly Thr Ser Val Thr 825 830 835 cta tca tgg aac gct gca aag gca cta aat caa gat gta atc gga tac 3179 Leu Ser Trp Asn Ala Ala Lys Ala Leu Asn Gln Asp Val Ile Gly Tyr 840 845 850 cgc gta tat gtg aat ggt caa cct atg aag tct gaa gga gct cca ttt 3227 Arg Val Tyr Val Asn Gly Gln Pro Met Lys Ser Glu Gly Ala Pro Phe 855 860 865 aca cct att aat tca gaa atg act aca tct gat aca aac tat act gta 3275 Thr Pro Ile Asn Ser Glu Met Thr Thr Ser Asp Thr Asn Tyr Thr Val 870 875 880 885 aca gga tta aaa aaa gga aaa cga tat aca ttt aaa gta gaa gca gtc 3323 Thr Gly Leu Lys Gln Gly Lys Arg Tyr Thr Phe Lys Val Glu Ala Val 890 895 900 ggt cat gca agt aaa tac tct aag aga gaa aga ctc tca gat gta ctt 3371 Gly His Ala Ser Lys Tyr Ser Lys Arg Glu Arg Leu Ser Asp Val Leu 905 910 915 cca aat ggt ctt ctt gag gtc tca gga tat aga tgg agt gga ttt gga 3419 Pro Asn Gly Leu Leu Glu Val Ser Gly Tyr Arg Trp Ser Gly Phe Gly 920 925 930 cca agt gtc gat gtt cat cta att cct ggt gca gca aaa agt gaa caa 3467 Pro Ser Val Asp Val His Leu Ile Pro Gly Lys Ala Lys Ser Glu Gln 935 940 945 gca aaa tca aag taaagatatg tgtgaattaa ttgagtgtga ttttcatctt 3519 Ala Lys Ser Lys 950 ttttatattg atcactgatatctattattattatcatgact aatgaatacc 3639 attgaaaaga taaggagggg atttttttgt taatttgcag gctagtagga ttatgaacaa 3699 g tatcttatg aatctgttgc gaggatctcg taaatgccca attaaaatta ggcgatgcaa 3759 tcaggcacaa tacccaatta tcgtacataa tttgttgagg aaagtctttg aaat 3813

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のポリガラクツロナーゼ活性に及ぼすpH
の影響を示す図である。
FIG. 1. Effect of pH on polygalacturonase activity of the present invention
FIG.

【図2】本発明のプロトペクチナーゼ活性に及ぼすpHの
影響を示す図である。
FIG. 2 is a graph showing the effect of pH on protopectinase activity of the present invention.

【図3】本発明のポリガラクツロナーゼ活性に及ぼす温
度の影響を示す図である。
FIG. 3 is a graph showing the effect of temperature on polygalacturonase activity of the present invention.

【図4】本発明のポリガラクツロナーゼ安定性に及ぼす
pHの影響を示す図である。
FIG. 4. Effect of polygalacturonase stability of the present invention
It is a figure which shows the influence of pH.

【図5】本発明のポリガラクツロナーゼ安定性に及ぼす
温度の影響を示す図である。
FIG. 5 is a graph showing the effect of temperature on the stability of polygalacturonase of the present invention.

【図6】ポリガラクツロナーゼ遺伝子(Bacillus sp.KSM
-P358株由来)のプラスミドベクター(pHY300PLK)への導
入と構築したポリガラクツロナーゼ発現分泌ベクターpH
YK358PECを示す図である。
FIG. 6: Polygalacturonase gene ( Bacillus sp. KSM
-P358 strain) into a plasmid vector (pHY300PLK) and constructed polygalacturonase expression secretion vector pH
It is a figure which shows YK358PEC.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 9/26 (C12N 1/21 //(C12N 15/09 ZNA C12R 1:125) C12R 1:07) (C12N 9/26 (C12N 1/21 C12R 1:125) C12R 1:125) C12N 15/00 ZNAA (C12N 9/26 5/00 A C12R 1:125) C12R 1:07) (72)発明者 谷島 則幸 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 (72)発明者 檜垣 紀彦 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 (72)発明者 海藤 洋子 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 (72)発明者 小林 徹 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 (72)発明者 川合 修次 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 Fターム(参考) 4B024 AA03 AA05 BA12 CA04 DA06 DA07 EA04 FA17 GA11 HA03 4B050 CC01 CC03 DD02 FF04E FF05E FF11E FF12E LL02 LL04 4B065 AA15Y AA19X AA26X AB01 AC15 BA02 BA10 BB16 BB19 BD14 CA31 CA41 CA57 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C12N 9/26 (C12N 1/21 // (C12N 15/09 ZNA C12R 1: 125) C12R 1:07) (C12N 9/26 (C12N 1/21 C12R 1: 125) C12R 1: 125) C12N 15/00 ZNAA (C12N 9/26 5/00 A C12R 1: 125) C12R 1:07) (72) Inventor Tanijima Noriyuki 2606 Kabane-cho, Akaga-cho, Haga-gun, Tochigi Pref. In Kao Co., Ltd. (72) Inventor Norihiko Higaki 2606 Kabashi-cho, Kaiga-cho, Haga-gun, Tochigi Pref. In Kao Co., Ltd. (72) Inventor Yoko Kaito Akabane, Kaiga-cho, Haga-gun, Tochigi 2606 Inside Kao Corporation Research Institute (72) Inventor Toru Kobayashi 2606 Kao Corporation Kaiga-cho Akabane, Haga-gun Tochigi Prefecture Inside (72) Inventor Shuji Kawai Red-shelled Kaimachi-cho, Haga-gun Tochigi Prefecture Feather 2606 Kao Corporation Research Laboratory F-term (reference) 4B024 AA03 AA05 BA12 CA04 DA06 DA07 EA04 FA17 GA11 HA03 4B050 CC01 CC03 DD02 FF04E FF05E FF11E FF12E LL02 LL04 4B065 AA15Y AA19X AA26CA13 BA15 CA02

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 少なくともpH8〜11において最大プロ
トペクチナーゼ活性の30%以上のプロトペクチナーゼ
活性を有するポリガラクツロナーゼ。
1. A polygalacturonase having a protopectinase activity of at least 30% of the maximum protopectinase activity at pH 8 to 11.
【請求項2】 pH5〜11において最大プロトペクチナ
ーゼ活性の30%以上のプロトペクチナーゼ活性を有す
る請求項1記載のポリガラクツロナーゼ。
2. The polygalacturonase according to claim 1, which has a protopectinase activity of 30% or more of the maximum protopectinase activity at pH 5 to 11.
【請求項3】 ポリガラクツロン酸を基質とした場合、
ジガラクツロン酸を生成する請求項1又は2記載のポリ
ガラクツロナーゼ。
3. When polygalacturonic acid is used as a substrate,
The polygalacturonase according to claim 1 or 2, which produces digalacturonic acid.
【請求項4】 次の酵素学的性質を有する請求項1〜3
の何れか1項記載のポリガラクツロナーゼ。 (1)作用:ポリガラクツロン酸(ペクチン酸)、ペク
チン及びプロトペクチンに作用し、ポリガラクツロン酸
のα−1,4結合をエキソ的に加水分解し、ジガラクツ
ロン酸を生成する。 (2)最適反応pH:pH8付近(トリス−塩酸緩衝液) (3)最適反応温度:約50℃(トリス−塩酸緩衝液、
pH8.0) (4)pH安定性:pH7〜11.5(30℃、30分間処
理) (5)耐熱性:約50℃まで安定(トリス−塩酸緩衝
液、pH8.0、30分間処理) (6)分子量:約105000(ゲル濾過法) (7)等電点:pH4.6付近(等電点電気泳動法)
4. The composition according to claim 1, which has the following enzymatic properties:
Polygalacturonase according to any one of the above. (1) Action: It acts on polygalacturonic acid (pectic acid), pectin and protopectin, and exo-hydrolyzes the α-1,4 bond of polygalacturonic acid to produce digalacturonic acid. (2) Optimal reaction pH: around pH 8 (Tris-HCl buffer) (3) Optimal reaction temperature: about 50 ° C. (Tris-HCl buffer,
(pH 8.0) (4) pH stability: pH 7-11.5 (30 ° C., 30 minutes treatment) (5) Heat resistance: stable up to about 50 ° C. (Tris-HCl buffer, pH 8.0, 30 minutes treatment) (6) Molecular weight: about 105000 (gel filtration method) (7) Isoelectric point: around pH 4.6 (isoelectric focusing)
【請求項5】 請求項1〜4のいずれか1項記載のポリ
ガラクツロナーゼを生産するバチルス エスピー KS
M−P358(Bacillus sp. KSM-P358;FERM P-1756
0)。
5. A Bacillus sp. KS which produces the polygalacturonase according to any one of claims 1 to 4.
M-P358 ( Bacillus sp. KSM-P358; FERM P-1756
0).
【請求項6】 請求項1〜4のいずれか1項記載のポリ
ガラクツロナーゼをコードする遺伝子。
6. A gene encoding the polygalacturonase according to any one of claims 1 to 4.
【請求項7】 配列番号1に示すアミノ酸配列又は該ア
ミノ酸配列の1若しくは数個のアミノ酸が欠失、置換若
しくは付加されたアミノ酸配列をコードするものである
請求項6記載の遺伝子。
7. The gene according to claim 6, which encodes the amino acid sequence shown in SEQ ID NO: 1 or an amino acid sequence in which one or several amino acids of the amino acid sequence are deleted, substituted or added.
【請求項8】 配列番号2に示す塩基配列又は該塩基配
列の1若しくは数個の塩基が欠失、置換若しくは付加さ
れた塩基配列を有するものである請求項6又は7記載の
遺伝子。
8. The gene according to claim 6, which has the nucleotide sequence shown in SEQ ID NO: 2 or a nucleotide sequence in which one or several bases of the base sequence are deleted, substituted or added.
【請求項9】 請求項6〜8のいずれか1項記載の遺伝
子を含有する組換えベクター。
9. A recombinant vector containing the gene according to any one of claims 6 to 8.
【請求項10】 請求項9記載の組換えベクターを含む
形質転換体。
10. A transformant comprising the recombinant vector according to claim 9.
【請求項11】 請求項10記載の形質転換体を培養す
ることを特徴とするポリガラクツロナーゼの製造法。
11. A method for producing polygalacturonase, which comprises culturing the transformant according to claim 10.
JP2000206595A 2000-01-14 2000-07-07 Polygalacturonase Expired - Fee Related JP4395243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206595A JP4395243B2 (en) 2000-01-14 2000-07-07 Polygalacturonase

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-6926 2000-01-14
JP2000006926 2000-01-14
JP2000206595A JP4395243B2 (en) 2000-01-14 2000-07-07 Polygalacturonase

Publications (2)

Publication Number Publication Date
JP2001258577A true JP2001258577A (en) 2001-09-25
JP4395243B2 JP4395243B2 (en) 2010-01-06

Family

ID=26583577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206595A Expired - Fee Related JP4395243B2 (en) 2000-01-14 2000-07-07 Polygalacturonase

Country Status (1)

Country Link
JP (1) JP4395243B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187042A (en) * 2011-03-10 2012-10-04 Kao Corp Polygalacturonase
JP2019149962A (en) * 2018-03-02 2019-09-12 国立大学法人名古屋大学 Methods for evaluating substrate degrading activity
JP2020010644A (en) * 2018-07-19 2020-01-23 国立大学法人名古屋大学 Evaluation method of decomposition activity
CN114958810A (en) * 2021-02-22 2022-08-30 大连海洋大学 Ultrahigh-temperature-resistant polygalacturonase McPG28A and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187042A (en) * 2011-03-10 2012-10-04 Kao Corp Polygalacturonase
JP2019149962A (en) * 2018-03-02 2019-09-12 国立大学法人名古屋大学 Methods for evaluating substrate degrading activity
JP7017737B2 (en) 2018-03-02 2022-02-09 国立大学法人東海国立大学機構 Evaluation method of substrate decomposition activity
JP2020010644A (en) * 2018-07-19 2020-01-23 国立大学法人名古屋大学 Evaluation method of decomposition activity
JP7250452B2 (en) 2018-07-19 2023-04-03 国立大学法人東海国立大学機構 Evaluation method for decomposition activity
CN114958810A (en) * 2021-02-22 2022-08-30 大连海洋大学 Ultrahigh-temperature-resistant polygalacturonase McPG28A and preparation method thereof

Also Published As

Publication number Publication date
JP4395243B2 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
US6566113B1 (en) Polypeptide having cellobiohydrolase activity
US20020197698A1 (en) Novel amylases
JPH06217770A (en) Pullulanase, microorganism and method for preparation thereof and use thereof
JPH11514219A (en) Alkalinephilic and thermophilic microorganisms and enzymes derived therefrom.
JP3086115B2 (en) Hyperthermostable β-galactosidase gene
JP4216719B2 (en) Halogen compound-resistant novel formate dehydrogenase and method for producing the same
JP2001258577A (en) Polygalacturonase
JPH09173077A (en) Ultrathermoresistant acidic alpha-amylase and dna fragment containing gene for producing the alpha-amylase
JP4228073B2 (en) Highly active fusion enzyme
JP4340382B2 (en) Alkaline cellulase gene
JP4380874B2 (en) Alkaline cellulase gene
JP4358984B2 (en) Alkaline cellulase gene
JPH07203959A (en) Stable cholesterol-esterase and production thereof
JP4372986B2 (en) Alkaline pullulanase
JP4025421B2 (en) Pectate lyase
JP4438479B2 (en) Endo-1,4-β-glucanase
JP2004121257A (en) Heat-resistant xylanase
JP4212340B2 (en) Alkaline protease
JP2913411B2 (en) Cellulase gene
JP3880318B2 (en) Thermostable xylanase
JPH11318443A (en) Alkali pectate lyase
JP3394713B2 (en) Pectate lyase gene
JP2000102391A (en) L-alpha-glycerophosphate oxidase gene, new recombinant dna and production of modified l-alpha-glycerophosphate oxidase
JP4139538B2 (en) Alkaline exopolygalacturonase
KR101102010B1 (en) Novel Microorganism Jeongeupia naejangsanensis and Cellulase Gene Derived from Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees